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Abstract. To solve the problems of complex model structure, large number of
parameters, and high resource consumption that make it difficult to meet the
real-time requirements of embedded target detection tasks, this paper proposed a
lightweight target detection algorithmbased on improvedMobileNetv3-YOLOv3.
This algorithm uses MobileNetv3 network to replace the backbone of the original
YOLOv3 network, and the reduction of network parameters greatly improves the
detection speed of the algorithm; the loss function is modified to CIoU to improve
the accuracy and detection speed of the network. The experimental results showed
that the improved lightweight detection algorithm on the VOC07+ 12 dataset has
a 1.55% improvement in mAP and a 2.47 times improvement in FPS on CPU
compared to the original YOLOv3 algorithm. This improved algorithm ensures
the detection accuracy based on a significant increase in detection speed, which
reflects the theoretical and application value of the research.

Keywords: MobileNetv3 · Object detection · YOLOv3 · Lightweight target
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1 Introduction

Currently SLAM (simultaneous localization and map building) algorithms have an
important position in robot motion estimation and map building applications. Semantic
perception of unknown environments bymobile robots is a frontier of current research in
robotics and computer vision, and target detection can be used to achieve the perception
of semantic information in the environment.

With the development of deep learning and the improvement of GPU computing
power, deep learning based target detection algorithms have become mainstream [1].
The current target detection algorithms can be broadly divided into two categories with
the development of deep learning [2]: Two-stage target detection algorithms and one-
stage target detection algorithms [3, 4]. Two-stage target detection algorithms are far
superior to traditional detection algorithms in terms of accuracy, but it is difficult to
apply to mobile devices such as mobile robots with poor computing power due to their
large computing power. The regression-based One-stage target detection algorithm, on
the other hand, can achieve real-time operation with little loss of accuracy, and thus is
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widely used in mobile. Also deep learning based target detection is widely used in urban
traffic flow monitoring [5], intelligent fault diagnosis [6] and other fields.

The classical YOLOv3 has a better detection effect [8, 9], but its complex model
and the number of ten million parameters have great drawbacks in both debugging,
training and deployment stages. Considering the limited computing power of mobile
platforms, this paper replaces the feature extraction network Darknet53 of YOLOv3
with MobileNetv3 to reduce the number of parameters of the network and modifies the
regression loss function of the grasping frame with the CIoU method. In this way, the
speed of the algorithm in mobile platform detection is improved on the basis of ensuring
the detection accuracy. Finally, the effectiveness of the proposed model is verified on
the VOC07 + 12 dataset.

The paper is organized as follows. Section 2 describes the innovative nature of
the algorithms in this paper and introduces the improvement of the backbone network
part and the improvement of the loss function based on CIoU. Section 3 presents the
ablation experiments, which demonstrate the effectiveness of the proposed algorithm
and understand the contributions of different elements. Section 4 contains conclusions
and future work.

2 Algorithm of this Paper

2.1 Lightweight Feature Extraction Network Improvement Based
on MobileNetv3

To be able to achieve low latency high frequency real-time target detection on an embed-
ded platform with limited computing power, this paper proposes a backbone feature
extraction network using the lightweight network MobileNetv3 to replace YOLOv3
[10].

In this paper,MobileNetv3-large is used. This version combinesMobileNetv1’sDeep
Separable Convolution, MobileNetv2’s Inverted Residuals and Linear Bottleneck, and
SEmodules [11], uses neural structure search to search the configuration and parameters
of the network. Although the number of parameters is increased in the large version
compared to MobileNetv3-small, the small increase in the number of parameters can
be exchanged for an increase in the detection accuracy, which guarantees the detection
accuracy for the lightweight detection algorithm proposed in this paper (Fig. 1).

In MobileNetv3, the number of parameters can be greatly reduced by using depth-
separable convolution instead of normal convolution.

In the model where the input feature map size isDI ×DI and the number of channels
is M. When a convolution kernel of size DK × DK is used to output the feature map of
size DI × DI and the number of channels is N, the number of parameters PC and the
amount of computation CC required for one ordinary convolution are shown in Eqs. (1)
and (2).

PC = DK × DK × M × N (1)

CC = DK × DK × M × N × DI × DI (2)
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Fig. 1. Network structure diagram after replacing the backbone network.

And in the depth-separable convolution, the number of parameters PW and the
amount of computation CW required are shown in Eqs. (3) and (4).

PW = DK × DK × M + M × N (3)

CW = DK × DK × M × DI × DI + M × N × DI × DI (4)

So for the same featuremap and convolution kernel, the ratio of the number of parameters
to the amount of computation required for a depth-separable convolution versus an
ordinary convolution is.

P = DK × DK × M + M × N

DK × DK × M × N
= 1

N
+ 1

D2
K

(5)

C = DK × DK × M × DI × DI + M × N × DI × DI

DK × DK × M × N × DI × DI
= 1

N
+ 1

D2
K

(6)

It can be seen that the use of depth-separable convolution instead of normal convolution
can reduce a significant portion of the number of parameters and computation, which
lays the foundation for the implementation of porting the target detection algorithm to
the mobile platform side where the arithmetic power is much less.

The special block of MobileNetv3 introduces the inverse residual structure with
linear bottleneck. The residual structure can significantly improve the training effect of
the network without adding additional parameters and with only less computation, and
the inverse residual mechanism is to first use 1 × 1 convolution in the residual block to
boost the number of channels before subsequent operations with residual edges; and the
weight of each channel is adjusted by introducing a lightweight attention mechanism
(Fig. 2).
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Fig. 2. MobileNetv3 block.

In the use of activation function, swish function can effectively improve the network
accuracy, but the computation is too large and time consuming, especially in the mobile
end of the time consuming embodiment will be more obvious, which is not conducive
to the algorithm to reduce the detection time.

swish x = x · σ(x) (7)

where σ(x) is the Sigmoid function:

σ(x)= 1

1+e−x
(8)

So ReLU6(x + 3)/6 is used to approximate the replacement of the sigmoid function
in order to achieve a fast computation that can be performed on any hardware or software
platform. The algorithm uses the h-swish activation function instead of the original swish
function.

h − swish[x] = s
ReLU6(x + 6)

6
(9)

2.2 CIoU-Based Loss Function Improvement

In YOLOv3, the performance of target detection is evaluated by IoU. IoU is defined as
the intersection and merging ratio between the true frame and the predicted frame, as
shown in Eq. (10). Where P is the prediction frame and R is the real frame.

IoU = P ∩ R

P ∪ R
(10)

However, there is a problem with using IoU, when there is no intersection between
the prediction frame and the real frame, IoU is 0, and there is no gradient nor can the
parameters be updated. To solve this problem, this algorithm uses the CIoU function
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to replace IoU as the loss function of the enclosing frame [12]. The CIoU function is
calculated as follows.

CIoU = IoU − ρ2(b, bgt)

c2
− αv (11)

where:

α = v

1 − IoU + v
(12)

v = 4

ρ2 (arctan
wgt

hgt
− arctan

w

h
)2 (13)

where ρ2(b, bgt) represents the Euclidean distance d between the center points of the
prediction frame and the real frame, c represents the diagonal distance of the smallest
closed region that can contain both the prediction frame and the real frame, α and v are
penalty factors, and wgt , hgt and w, h are the width and height of the real frame and the
prediction frame, respectively (Fig. 3).

Fig. 3. Geometric relationship between the prediction box and the real box.

3 Experimental Results and Analysis

3.1 Experimental Environment and Model Training

The experiments in this paper are based on the Pytorch 1.7.1 framework, the program-
ming language is Python 3.8, the experimental OS is Windows 10, the processor is
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Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz, the GPU model is NVIDIA GeForce
RTX 2060, the CUDA version is 11.0, and Cudnn version 8.0.5.39.

In the selection of dataset, this paper uses the classical dataset of target detection,
VOC07 + 12. The VOC07 + 12 dataset is divided into a total of 4 major categories
and 20 minor categories, with 21504 labeled images. The dataset is divided according
to the ratio of 9:1, with 19354 images as the training set and 2150 images as the test set.
The experiments use the average precision (AP) to respond to the detection results of
targets in each category, use the mean average precision (mAP) as a measure of detection
accuracy, the higher the mAP, the better the comprehensive performance of the model in
all categories, and use the time consumed to detect each image as a measure of detection
speed.

In order to verify the effect of the proposed algorithm in this paper, influenced by
the arithmetic power, during the training process, only the pre-training weights of the
backbone network are loaded, the optimizer for training is chosen as Adam, the initial
learning rate is 1e−3, and the learning rate decay strategy is cosine annealing. In order
to improve the robustness of the proposed algorithm, Mosaic data augmentation [13]
was performed on the first 70% of the training set during the algorithm training process,
and the specific implementation idea is as follows: firstly, four images are read at a time;
then these four images are scaled, rotated, and color-field transformed, respectively, and
placed well according to the four directions; finally, the combination of images and the
combination of frames is performed.

3.2 MobileNetv3 Detection Effect After Replacing Backbone

The original YOLOv3 algorithm is set to A, and the algorithm after replacing backbone
with MobileNetv3 is set to B. The experimental results of the two algorithms in terms
of accuracy and speed are shown in Table 1.

Table 1. Comparison of detection effect after replacing backbone.

Detection algorithm Training set mAP/% FPS (GPU) FPS (CPU)

A VOC07 + 12 67.56 27.24 2.10

B VOC07 + 12 63.78 22.78 4.97

Compared with the original YOLOv3 network, the detection accuracy decreases
after using MobileNetv3 to replace backbone, and the detection speed on CPU is greatly
improved because the number of parameters is greatly reduced after replacing the back-
bone feature extraction network with MobileNetv3, which can reduce the time needed
for algorithm detection, but the reduction in the number of parameters also makes the
network less effective and the detection accuracy decreases.
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3.3 Improved Detection Effect of CIoU-Based Loss Function

The original YOLOv3 algorithm is set as A, and the improved algorithm based on the
loss function of CIoU is set as B. The experimental results of the two algorithms in terms
of accuracy and speed are shown in Table 2.

Table 2. Comparison of detection results after using CIoU loss function.

Detection algorithm Training set mAP/% FPS (GPU) FPS (CPU)

A VOC07 + 12 67.56 27.24 2.10

B VOC07 + 12 69.50 27.67 2.35

Compared with the original YOLOv3 network, the detection effect of the network
is improved after modifying the loss function, and the detection time is also slightly
accelerated. The experiment proves that by improving the loss function of the original
YOLOv3 algorithm, it can be more beneficial for the model to achieve better results.

3.4 Analysis of Experimental Results of Light-Weight Target Detection
Algorithm

In this paper, we compare the detection effect of the improved YOLOv3 algorithm with
the original YOLOv3 algorithm. It is shown in Fig. 4.

(a) YOLOv3 detection effect

(b) Improved YOLOv3 detection effect

Fig. 4. Comparison of detection effects on VOC07 + 12 dataset.

The improved algorithm in this paper was compared with the original YOLOv3
algorithm and the current mainstream Two-stage detection algorithm Faster-RCNN in
terms of performance. The results of mAP and AP comparison for various types of
targets on the test set are shown in Fig. 5 and Table 3.
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Fig. 5. Comparison of AP and mAP of different algorithms on VOC07 + 12 dataset.
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Table 3. Comparison of detection results on the VOC07 + 12 dataset.

Detection algorithm Training set mAP/% FPS (GPU) FPS (CPU)

Faster-RCNN VOC07 + 12 69.50 17.24 0.93

YOLOv3 VOC07 + 12 67.56 27.24 2.10

Algorithm of this paper VOC07 + 12 69.11 23.93 5.24

The experimental results show that compared to the original YOLOv3 network, the
detection speed of the algorithm in this paper is 2.47 times higher on the CPU than the
original network, and the detection accuracy is slightly improved while the detection
speed is guaranteed to increase, and the mAP is improved by 1.55%, compared with
the Faster-RCNN network, the accuracy is slightly reduced, but the detection speed is
improved by 5.63 times. The comparison also shows that the improvement of CIoU
works better for the network after replacing backbone.

Table 4. Comparison of the number of parameters of the two algorithms.

Detection algorithm Number of participants Model file size/M

YOLOv3 61,949,149 236.32

Algorithm of this paper 23,608,237 90.06

As can be seen in Table 3, the improved network does not improve the detection speed
on GPUs with sufficient arithmetic power, but has a slight decrease, which is due to the
general optimization of the depth-separable convolution in the MobileNetv3 network
on GPUs. Although the depth-separable convolution splits a standard convolution into
two convolutions, reducing the number of parameters, as shown in Table 4, the number
of parameters is reduced by nearly 2/3 compared to the original YOLOv3 network. The
CPU tends to compute data serially. Therefore, if the GPU memory is large enough,
because each layer can be processed in parallel at once, the total computing time is
dominated by the number of layers of the network. For CPUs lacking parallelism, a
significant reduction in the number of parameters, the dominant factor in computing
time, results in a much higher detection speed.

The proposed algorithm is effective on CPU, which also verifies that this algorithm
can achieve fast and accurate target detection on mobile platforms with poor arithmetic
power.

4 Conclusion

In order to improve the detection speed of the target detection algorithm on embedded
devices with poor arithmetic power while ensuring accuracy, this paper proposed a
lightweight target detection algorithmbasedon improvedMobileNetv3-YOLOv3,which
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greatly reduced the number of parameters in the network by introducing MobileNetv3
as the backbone feature extraction network of the algorithm, and the loss function is also
improved based on CIoU The loss function is also improved based on CIoU. Compared
with the original YOLOv3 network, the mAP of the algorithm in this paper is improved
by 1.55%, and the detection speed on CPU is improved by 2.47 times. The algorithm
proposed in this paper is able to meet the task of real-time accurate target detection by
embedded devices using limited on-board processor computing resources in terms of
comprehensive evaluation of detection accuracy and detection speed.

In the subsequent research work, we will continue to compress the model, including
channel pruning and other operations to continue to reduce the parameters, and further
improve the detection speed of the model on the mobile device side with lower perfor-
mance on the basis of ensuring the detection accuracy, the proposed algorithm will also
be applied to more areas to prove the potential impact of the algorithm.
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