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Abstract. Software model checking is the technique that automatically
verifies whether software meets the given correctness properties. In the
past decades, a large number of model checking techniques and tools
have been developed, reaching a point where modern model checkers
are sophisticated enough to handle large-scale software systems. How-
ever, due to the fact that the software model checkering techniques are
diverse and each of them is designed and optimized for a specific type
of software system, it remains a hard problem for engineers to efficiently
combine them to verify the complex software systems in practice. To
alleviate this problem, we propose a novel algorithm selection approach
based on Random Vector Functional Link net (RVFL) for software model
checking, namely Kaleidoscopic RVFL (K-RVFL). The novel design of
feature hybridization and fusion enables K-RVFL to extract more diverse
and multi-level features. We have also carried out a thorough experimen-
tal evaluation on a publicly available data set and compared K-RVFL
with a number of neural networks, including RVFL, Extreme Learning
Machine (ELM), Stochastic Configuration Network (SCN), Back Prop-
agation algorithm (BP), and Supporting Vector Machine (SVM). The
experimental results demonstrate the usefulness and effectiveness of K-
RVFL.
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1 Introduction

Software model checking is a prevailing technique that aims at automatically
verifying whether a software satisfies the given correctness properties [6]. In the
past decades, a large amount of model checking techniques have been developed
and successfully applied to many fields. However, given a number of software
model checking tools, the engineers are still facing the problem of ‘which is the
most suitable one for verifying my software?’. This question arises since the
underlying model checking techniques are diverse and there is no single solution
that works well for all kinds of software systems. Each model checking technique
has its individual characteristics and thus strengthens on a specific type of soft-
ware. Moreover, there has been a growing awareness of the need to understand
how each model checking tool performs and which one is most suitable for a spe-
cific type of software, in order to promote software model checking to a larger
industrial scope [2,7,13].

Previously the machine learning based algorithm prediction problem has been
investigated in some related work [9,12,13]. Instead of selecting the most suitable
software model checking tool, their work aims to predict the ranking in terms
of the verification performance. All the prediction models are constructed by
using Supporting Vector Machine (SVM). In our previous work [14], we view the
above problem as an instance of the algorithm selection problem and propose to
build the selection model by using neural network techniques [4]. To boost the
capability of neural networks, we also define a set of software features that are
precise enough to represent the key structural characteristics of the software on
the source code level, such as the variable role usage, control flow metrics and
loop patterns. Compared with SVM, neural network techniques have several
advantages. For example, neural networks are more efficient in handling large
data sets than SVM, due to the fact that SVM suffers from the difficulty of
parallelizing the learning process.

In this work, we go one step further and propose a novel Kaleidoscopic RVFL
algorithm (K-RVFL) with a feature hybridization and fusion mechanism. The
network structure of K-RVFL still maintains the direct links from the input layer
to the output layer, such that the model’s feature extraction ability is enhanced
and a regularization for the randomization is provided. Different from RVFL, K-
RVFL uses multiple types of bounded non-linear functions such as Sigmoid and
Sin function as its activation function. The input data first undergoes the non-
linear mapping through each activation function, and then the output matrix
corresponding to each activation function is used as the input of other activation
functions for secondary mapping. This process of feature hybridization provides
the capability of extracting much more diverse features from the training data.
Then, in the feature fusion step, we linearly fuse multi-level features (includ-
ing the original ones) to get the final feature matrix. The output weights are
computed by using the least square method. Last but not the least, K-RVFL
maintains the non-iterative training mechanism of RVFL, which enables the
ability of fast learning.

To this end, the following contributions have been made in this work.
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(1) We present a general formalization of the algorithm selection problem for
software model checking. Our work shows that the neural network tech-
niques, in particular, the randomized learning algorithms can solve this prob-
lem efficiently and achieve state-of-the-art results. The proposed approach
can be extraordinarily helpful for applying software model checking tech-
niques to complex industrial software systems.

(2) We have proposed a novel RVFL algorithm named K-RVFL. Multiple types
of activation functions, two-time non-linear mappings, and the fusion of
multi-level features can bring rich features to K-RVFL, which enables the
model to produce more accurate decisions. It is worth mentioning that the
idea of K-RVFL can also be applied to other randomized algorithms such as
ELM and SCN.

(3) We have carried out a thorough experimental evaluation, which shows that
our proposed K-RVFL algorithm can achieve higher prediction accuracy than
ELM, RVFL, SCN, BP, and SVM algorithms. Moreover, compared with BP
and SVM algorithms, the training speed of K-RVFL is increased by more
than 100 times and 300 times, respectively.

2 Related Works

The work in [13] proposes a SVM based technique to construct a strategy selector
for the verification of different programs. The selector takes as input a set of
program features and outputs a strategy for verification. A strategy defines the
algorithm or parameter that can be useful for verifying the given program. The
primary aim of the work in [8,9] is to empirically evaluate and explain the
performance differences of the various model checkers in the annual software
verification competition (SV-COMP). A portfolio solver based on support vector
machine has also been proposed, which essentially chooses the most performant
tool for a given model checking task based on the evaluations. In their work,
they show that the overall performance of the portfolio solver outperforms all the
other tools, which in our opinion demonstrates a strong viability and usefulness of
algorithm selection for software verification The work in [7] studies the ranking
prediction problem for software model checking. A ranking of the candidate
model checkers can indicate which is the most suitable one for the give software
at hand. However, their prediction model is also based on SVM.

The authors in [2] present a specific strategy selector for the model checker
CPAChecker1. However, the selector only works for CAPChecker, because the
strategies are merely different parameter specifications or model checking algo-
rithm configurations integrated in CPAChecker. Moreover, the selection model
is explicitly defined and implemented in CPAChecker. No machine learning tech-
niques are applied. The experimental evaluation shows that the performance of
their strategy selector is much better than any single algorithm configuration
of CPAChecker. Similarly in [12], a technique called PeSCo has been proposed

1 https://cpachecker.sosy-lab.org/.

https://cpachecker.sosy-lab.org/
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to predict the likely best sequential combination of algorithm configurations in
CPAChecker. The approach is also based on support vector machine.

In our previous work [14], we have proposed for the first time to employ
the randomized learning algorithm to solve the algorithm selection problem for
software verification. Later in [15] a novel algorithm based on the long-short term
memory network (LSTM) has been proposed, which uses word2vec to obtain a
representation of the software. For more preliminaries, please refer to [14,15].

3 Algorithm Selection Based on Neural Network
with Random Weights

3.1 Extracting Features for Software Model Checking Tasks

In order to solve the algorithm selection problem using the framework of machine
learning, we need to represent the software model checking tasks. For this pur-
pose, we define a set of features and the corresponding metrics that can precisely
characterize the software on the source code level, leveraging on the related works
[8–10].

The first set of features are based on variable roles. Basically, a variable role
indicates the usage pattern of the variable in the source code. The choice of
roles is inspired by the standard concepts in programming, such as counter, bit-
vector and file descriptor etc. In total, we have defined 27 variable roles. For a
given software source code f and the set of variable roles Roles, we compute a
mapping Res : Roles → V ars from variable roles to the program variables. The
variable role metric mR that represents the relative occurrence of each variable
role R ∈ Roles is defined as mR = |Res(R)|/|V ars|, where |V ars| represents
the total number of variables.

The second set of features are based on loop patterns. In total, we define
four different loop patterns including syntactically bounded loops, syntactically
terminating loops, simple loops, and hard loops. The corresponding metric is
called loop pattern based metric. For a given software source code f , we compute
the set of syntactically bounded loops LSB , the set of syntactically terminating
loops LST , the set of simple loops Lsimple, the set of hard loops Lhard. The loop
pattern based metrics mlp represents the relative occurrence of each loop pattern
lp ∈ {ST, SB, simple, hard} and it is computed as mlp = |Llp|/|Loops|, where
|Loops| represents the set of all loops.

Both variable role based metrics and loop pattern based metrics can be effi-
ciently computed from the software source code by using static analysis tech-
niques [11]. We omit the elaboration since it is out of the scope of this paper.

We denote a software model checking task by v = (f, p, type), where f , p, and
type are the software source file, property, and the property type, respectively.
We use Tasks to represent the set of software model checking tasks. Each task
serves as a sample of the data set for model training. The corresponding feature
vector for a task v is defined by x(v) = (mR,mlp, type), where type ∈ {0, 1, 2, 3}
encodes the verification property type, i.e., reachability, memory safety, overflow
and termination.
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3.2 Formalizing the Algorithm Selection Problem

In this subsection we present how to encode the algorithm selection problem as
a multi-classification problem. For each task v = (f, p, type) ∈ Tasks, the func-
tion ExpAns : Tasks → {true, false} defines the expected answer of whether
software f satisfies property p. In other words, this function defines the ground
truth for each task, which is regardless of the model checking tool being used.

Given a model checking tool t ∈ Tools and a task v = (f, p, type) ∈
Tasks, applying tool t to verify task v in limited time and resources
would produce an answer PracAns(t, v) = (anst,v, timet,v), where anst,v ∈
{true, false, unknown}, and timet,v is the amount of computing time. We
remark that the answer anst,v could be unknown, meaning that the tool t is
unable to check whether the property holds or not. due to the fact that the
software model checking problem generally is undecidable [6].

In neural networks based machine learning techniques, we need labeled data
for model training. In our case, the label of a task is the (likely) best tool that is
able to verify this task correctly. We denote by L : Tasks → Tools the labeling
function. Given a task v ∈ Tasks and a tool t ∈ Tools, we set L(v) = t if the
following two conditions are satisfied:

1 the tool t provides the correct answer on v, i.e., anst,v = ExpAns(v)∧anst,v �=
unknown;

2 the tool t costs the least time among Tools that can provide the correct
answer, i.e., ∀t′ ∈ {t′ | t′ �= t∧(anst′,v = ExpAns(v))∧(anst′,v �= unknown)},
timet′,v > timet,v.

Finally, the algorithm selection problem studied in this work can be formal-
ized as follows. Given a set of software model checking tasks Tasks and a set of
model checking tools Tools, the algorithm selection problem for software model
checking is to find a selection model M : Tasks → Tools, such that M(v) gives
the best possible tool for solving v, i.e., M(v) = L(v).

3.3 Our Proposed Kaleidoscopic RVFL Algorithm

In classical RVFL, only one type of activation function is used to perform the
non-linear feature mapping, however, in K-RVFL three different non-linear func-
tions are defined and used as the activation functions. In this work, we have cho-
sen the Sigmoid function, Sin function, and Triangular basis transfer function
as the three activation functions. Note that any arbitrary bounded non-linear
function can be chosen as the activation function in K-RVFL.

The network structure of the K-RVFL algorithm is shown in Fig. 1, where
X, O, d, m, ω, b, and β refer to the input of the model, the output of the model,
the node number of the input layer, the node number of the output layer, input
weights, hidden biases, and output weights, respectively. K-RVFL also has only
one hidden layer and its input layer and output layer are directly connected. The
difference between the RVFL and K-RVFL is that the single hidden layer of the
RVFL only makes one-time non-linear feature mapping based on a single type of
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Fig. 1. The K-RVFL network structure.

activation function, while the hidden layer of the K-RVFL consists of multiple
types of activation functions and makes two-time non-linear feature mapping,
so that the K-RVFL can extract more diverse and multi-level features from the
input data.

Specifically, In K-RVFL the input data first undergoes the non-linear map-
ping of each specific activation function (i.e., the random feature mapping layer).
Then the corresponding output matrix will be used as the input of the other two
activation functions for feature mapping for the second time. For example, if
the input matrix first passes through the non-linear mapping of the Sigmoid
function in the hidden layer, it will then be mapped by the Sin function and the
Trigonometric basis function in the feature hybrid stage. This step is called the
feature hybridization. After this two-stage nonlinear mapping, it is the feature
fusion step, where we fuse the extracted features with the original features to
get the final feature matrix of the hidden layer. Finally, the output weights are
obtained by solving a system of linear matrix equations.

K-RVFL algorithm is summarized and depicted in Algorithm 1. For machine
learning algorithms, the diversity of data features is very useful for the correct
decision of the model. For example, one of the most important reasons for the
success of deep learning is that it can achieve the features hybridization through
the layer by layer processing of multiple hidden layers and then obtain the diverse
and multi-level features. The basic idea behind the K-RVFL is to improve the
diversity of features through multiple types of activation functions and multiple
non-linear mappings without adding too many hidden layers. The advantage
of this method is that the shallow network structure can make the K-RVFL
maintain fast training speed and the feature hybridization and fusion strategy
can make the model obtain better feature information. Fast and high accuracy
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Algorithm 1: The proposed K-RVFL algorithm
Input: A training data set X, three types of activation functions (denoted as

G1(·), G2(·), and G3(·)), and the number of the hidden layer nodes using each
type of activation function (denoted as i, j, and k).

Output: Output weights β.
1: Initialization: set the number of the input layer nodes and the output layer

nodes equal to the number of the features and classes of the input data,
respectively;

2: Random feature mapping stage:

– Randomly generate the input weights ω from the range (-1, 1) under the
uniform distribution and the hidden biases b from the range (0, 1) under
the uniform distribution.

– Use the randomly generated ω and b to linearly map the input data:
H0 = ωX + b

– Non-linear mapping of H0 with three activation functions: (1)
H1 G1 FirstTime = G1(H0), (2) H1 G2 FirstTime = G2(H0), and (3)
H1 G3 FirstTime = G3(H0)

3: Feature hybridization stage: The nonlinear mapping matrix corresponding to
each activation function is used as the input of the other two activation
functions for the second-time nonlinear feature mapping.

– For G1’s output matrix:

H2 G1 SecondT ime = [G2(H1 G1 FirstT ime), G3(H1 G1 FirstT ime)].

– For G2’s output matrix:

H2 G2 SecondT ime = [G1(H1 G2 FirstT ime), G3(H1 G2 FirstT ime)].

– For G3’s output matrix:

H2 G3 SecondT ime = [G1(H1 G3 FirstT ime), G2(H1 G3 FirstT ime)].

4: Feature fusion stage: Linearly fuse the non-linear mapping feature matrix with
the original feature matrix.

H3 = [H2 G1 SecondT ime, H2 G2 SecondT ime, H2 G3 SecondT ime, X].

5: Solve the output weights: β = H3+T, where T and H3+ refer to the samples’
real labels and H3’Moore-Penrose generalized inverse, respectively.

are both very important for the application of the software model checking tools
recommendation system in practical engineering.
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4 Experimental Evaluation

4.1 Preparation of the Data-Set

We collect the raw data for the verification tasks in the annual competition on
software verification [1], in order to compare with the previous results in the
related work [9]. We remark that each year the competition tasks are mostly the
same, with only minor additions and changes in the category structure.

We extract the features of the tasks and compute the vector representations.
Each dimension of the vector corresponds to a specific feature introduced in
Sect. 3. In total, the data set has 31371 samples. For each sample, there are 46
attributes. Then for each task, we add a label to its vector representation to indi-
cate the most suitable tool according to the competition results. We artificially
create 3 classes for the classification.

In our experiments, the training set and testing set are divided according
to 8:2. Similarly, we divide the original training set into pure training set and
corresponding validation set according to 8:2 to select the best model for each
method.

4.2 Parameters Settings

In our experiment, we choose the most commonly used randomization strategy
for ELM and RVFL. That is, for their input weights, we generate them from (-
1, 1) randomly and keep them unchanged throughout the subsequent training
process. For the input weights of SCN, we generate them according to a super-
visory strategy [5]. We set the number of hidden layer nodes in all comparison
algorithms to the same and choose Sigmoid function as their activation function.

4.3 Experimental Results

In the experimental evaluations, we compare the accuracy and learning time of
all the six relevant algorithms on the above dataset, including ELM, RVFL, SCN,
BP, SVM, and K-RVFL. The number of hidden layer nodes in these algorithms
is selected from {50, 100, 150, 200, 250, 300, 350, 400, 450, 500} one by one. The
experiments are conducted with MATLAB R2016b software. Each experiment
results are the average of 50 independently experiments. Figures 2–3 and Table 1
show our experimental results.

In Fig. 2, we compare the testing performance of five related algorithms with
our proposed K-RVFL algorithm. According to these experimental results, one
can infer that ELM, RVFL, SCN, and K-RVFL models can get better perfor-
mance with the number increase of the hidden nodes. However, the performance
of the BP model fluctuates greatly due to the difficulty of setting best values for
its hyper-parameters and the instability of the gradient descent method. There-
fore, compared with the traditional neural network BP algorithm, NNRW based
algorithms always enjoy a higher accuracy and better stability. Compared with
the SVM algorithm, all NNRW based algorithms except ELM can achieve better
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Fig. 2. Comparison of testing accuracy between the relevant algorithms.
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Fig. 3. Comparison of learning error between the relevant algorithms.

generalization performance, and they all have higher prediction accuracy when
the hidden nodes are over 150. For the original NNRW algorithms (i.e., RVFL,
ELM, and SCN), we can see that RVFL and SCN have better prediction perfor-
mance than ELM regardless of the number of hidden layers. This is due to the
special architecture design of RVFL and the supervised random method of SCN,
which play a positive role in the model training. However, when the number of
hidden layers increases, the differences between their performances decrease to a
comparable level. Compared with the above algorithms, our proposed K-RVFL
achieves the highest prediction accuracy in all cases. The margin shows that the
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improvement is substantial. It is worth mentioning that this is also the current
SOTA result in the model checking algorithm selection task. Previous SOTA
results are based on the SVM algorithm [9].

Figure 3 shows the learning error changing curves of ELM, RVFL, SCN, BP,
SVM, and our proposed algorithm K-RVFL. In general, one can observe that
the learning errors of the NNRW based models will gradually decrease with
the increase of the hidden nodes, and they all have lower learning errors than
the BP algorithm. Moreover, we can find that our proposed K-RVFL model
Moreover, e can find that our proposed K-RVFL algorithm can achieve faster
error reduction than other NNRW based algorithms (i.e., ELM, RVFL, and SCN)
in the training process. This phenomenon implies that K-RVFL can approach the
lower bound of error at the fastest speed. This also implies that compared with
other algorithms, the proposed K-RVFL has faster convergence speed. And under
the same network complexity, K-RVFL is expected to have better prediction
performance than other models.

Table 1. Comparison of training time between ELM, RVFL, SCN, BP, SVM, and
K-RVFL. The best results are in bold.

Hidden nodes ELM RVFL SCN KRVFL BP SVM

50 0.1962 0.4056 29.1138 0.8218 74.7245 5854.6707

100 0.5014 0.6767 73.1227 1.7042 114.2707 *

150 0.7441 1.0349 180.7078 2.9453 155.1274 *

200 1.0371 1.5728 278.0518 4.3165 185.7504 *

250 1.5382 1.8062 389.2362 5.6323 229.2435 *

300 1.7697 2.2901 432.3528 8.0344 267.0893 *

350 2.2885 2.8411 551.4656 10.4330 314.0300 *

400 2.7827 3.3347 719.3612 12.2311 334.8561 *

450 3.2261 4.1006 970.5653 14.3265 357.9287 *

500 3.8875 4.6264 1170.5231 17.1579 383.6377 *

In Table 1, we compare the training time of the proposed K-RVFL algorithm
with other algorithms. From the experimental results, we can conclude that
compared with the traditional neural network BP and SVM, the NNRW based
algorithms have absolute advantages in the training speed of the model. Taking
the proposed K-RVFL algorithm as an example, its model training speed is more
than 100 times faster than BP and more than 300 times faster than SVM.

One can also find that the ELM algorithm can achieve faster learning time
than other algorithms. The main reason is that compared with ELM, RVFL
and K-RVFL have a relatively complex network structure, which may result in
higher computational complexity. For SCN, it uses a supervised mechanism to
initialize its input weights, so its training time is also longer than ELM.
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We believe that the design of feature hybridization and fusion is a useful
means, which can enable K-RVFL to extract more diverse and multi-level fea-
tures and thus provide much better performance. This advantage also makes it
great potential in time-critical applications [3].

5 Conclusion and Future Work

In this work, we propose to use neural network techniques to solve the algorithm
selection problem for software model checking. We also propose an improved
RVFL algorithm named K-RVFL to train the selection model. K-RVFL uses
multiple types of activation functions to improve the diversity of features and
uses feature hybridization to extract multi-level features, which have a posi-
tive impact on the correct decision-making of the model. K-RVFL inherits the
non-iterative training mechanism of the RVFL and maintains the advantage
of extremely fast training speed. Moreover, we conduct extensive experiments
which demonstrate the effectiveness of neural network techniques for this prob-
lem. Our results show that K-RVFL has obvious advantages over the existing
state-of-the-art algorithm (i.e., SVM) in both the prediction accuracy (81.37% vs
71.24%) and the training speed (17.16 s vs 5854.67 s). K-RVFL also outperforms
the other randomized learning algorithms, including ELM, RVFL, and SCN and
traditional neural network BP.
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