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Abstract. Aspect-category sentiment analysis (ACSA) is crucial for capturing
and understanding sentiment polarities of aspect categories hidden behind in sen-
tences or documents automatically. Nevertheless, existing methods have not mod-
eled semantic dependencies of aspect terms and specified entity’s aspect category
in sentences. In this paper, we propose a New Neural Detection Network, named
NNDF in short, to enhance the ACSA performance. Specifically, representations
of input sentences and aspect categories contained in our method are generated by
a CNN-pooling-BiLSTM structure respectively, where sentences are represented
based on their contextual words and aspect categories are represented based
on word embeddings of entities category-specific. Then, a Transformer-based
encoder is used to model implicit dependency of sentence contexts and aspect
categories of entities in sentences. Finally, the embedding of aspect-category is
learned by the novel bidirectional attention mechanism for the sentiment classi-
fication. Besides, experiments conducted on Restaurant and MAMS benchmark
datasets for the task demonstrate that NNDF achieves more accurate prediction
results as compared to several state-of-the-art baselines.

Keywords: Aspect-category sentiment analysis · Transformer-based encoder ·
Bidirectional attention mechanism

1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task
which has attracted increasing attention in industry and academia. Other than tradi-
tional sentiment analysis tasks which predict sentiment polarity of a sentence or doc-
ument, ABSA mainly focuses on identifying emotional polarities of multiple aspects
contained in a sentence. Besides, it mainly consists of two tasks, i.e., aspect term senti-
ment analysis (ATSA) and aspect category sentiment analysis (ACSA). ATSA aims to
predict emotional polarities towards aspect terms contained in a sentence. Contrast to
the ATSA, ACSA is intended to analyze the sentiment polarity of a set of predefined
aspect categories which are possibly not existing in sentences. A typical example of
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Though the service might be a little slow, the waitresses are very friendly

Aspect-Term Aspect-Category Polarity

Service Service Negative

Waitresses Staff Positive

Fig. 1. An example of the sentence manifesting multi-aspect emotions

the comparison ATSA and ACSA, based on the sentence “Though the service might be
a little slow, the waitresses are very friendly” is in Fig. 1. In the ATSA, “service” and
“waitresses” are aspect terms, which are visible in the sentence denoting the positive
and negative emotions, respectively. In the ACSA, two aspect categories are “staff” and
“service” which also express the same emotions, but the “staff” category doesn’t appear
in the sentence. In this paper, the focus of our research is mainly on ACSA. Therefore,
how to accurately identify aspect categories and their contexts in sentences and obtain
their relations is the main challenge we face.

Previous sentiment analysis works are almost sentence-based, which only focus on
prediction of the emotional orientation of a whole sentence. Therefore, if we still apply
the traditional models in ACSA, the outputs will possess some biases with respect to
practical conditions. Recently, since neural network models were introduced into ACSA
task, the performance of related models has been greatly improved. Based on Convo-
lutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), most early
models achieved good performance. By employing convolutional windows-fixed filters,
CNN and its derived models can effectively acquire semantic features and dependencies
between words of sentences. Nevertheless, complex syntactic information contained in
sentences still can not be obtained. e.g., for RNN [1] and its derivations, they are very
sufficient for data with sequence characteristics and can mine temporal and semantic
information in data. Hence, compared with other models, these sequence models based
on RNN achieve better performance in ACSA. However, as the number of aspect cate-
gories with different sentiment polarities in sentences increases, they can not accurately
obtain semantic features of aspect categories and their dependencies. Then, as the atten-
tion mechanism was proposed [2], combining it with RNN or CNN allows these models
[3–5] to concentrate on key features for aspect terms which play great roles in senti-
ment prediction. However, because a sentence may contain various aspect categories,
simply employing a single attention module is not enough to adequately obtain seman-
tic features and associations between aspect categories and contexts. In general, these
pre-existing models have following problems: (1) Noise data from other aspect cate-
gories will interfere with sentiment prediction. (2) These models can not fully acquire
aspect-specific features and semantic dependencies of sentences because they contain
multiple aspect categories.

To alleviate the aforementioned issues, in this paper, we propose a New Neural
Detection Network, named NNDF in short, which applies the Pre-trained Bidirec-
tional Encoder Representations from Transformers (BERT) to encode context words
and aspect categories respectively to word embedding and utilizes a global feature
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extraction layer to capture both local and long-term feature information of sentences.
Then, with the Transformer module [6], NNDF can better acquire semantic dependen-
cies and emotional information and obtain connections between contexts and aspect cat-
egories. Finally, we utilize the bidirectional attention mechanism [7] to synchronously
learn multi-aspect categories and their relations, which also avoids interference from
sentiment information of other aspect categories.

All in all, our contributions can be summarized as follows:

– We propose a novel framework called NNDF for the aspect-category sentiment anal-
ysis.

– Our method leverages the Transformer-based encoder to capture implicit depen-
dency of the sentence context and aspect categories of entities simultaneously, fol-
lowed by the novel bidirectional attention mechanism is used to learn the aspect-
category embedding.

– We conduct extensive experiments on two benchmark datasets, namely Restaurant
and MAMS, and compare our results against several state-of-the-art baselines across
on the ACSA task. The experimental results have verified the effectiveness of NNDF.

Organization: The remainder of this paper is organized as follows. We review related
research in this area in Sect. 2. In Sect. 3, we formalize the problem and give an
overview of the framework of our proposed NNDFmodel. Section 4 provides the details
of the proposed NNDFmodel. In Sect. 5 and Sect. 6, we conduct extensive experimental
evaluations and provide an analysis of the effectiveness of NNDF in terms of the ACSA
task. Meanwhile, we also conduct the results of node embeddings for quantitative eval-
uations. Finally, the conclusion and future work are described in Sect. 7.

2 Related Work

This section briefly reviews related works from different semantic analysis granular-
ity, i.e., sentence-level sentiment analysis methods and aspect-level sentiment analysis
methods.

2.1 Sentence-Level Sentiment Analysis Methods

Machine Learning-Based Methods. Bhoi [8] compared the performances of vari-
ous machine learning methods, including Naive Bayes, Decision Tree, Random For-
est, Extra Trees, Extreme Gradient Boosting (XGBoost) and Support Vector Machine
(SVM) [9]. Among of them, SVM gets the best classification results. However, these
methods need to pre-construct abundant features and do lots of pre-processing for input
sentences. The performance of these models greatly depends on the features of artificial
construction and sufficient prior knowledge, which will cost more human resources.
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Deep Neural Network-Based Methods. Since deep neural networks were applied
widely to the field of sentiment classification, some models benefiting from them have
obtained great performances. Compared with machine learning based models, deep
neural networks are more powerful in capturing complex high-order features with
non-linear activation functions, which usually yields better performance. For exam-
ple, RNNs and CNNs [10–12] are capable of flexibly acquiring features of sentences.
Account for positive conditions discussed before, some derived models have been pro-
posed. Tang et al. [13] first proposed the idea of considering the semantic related-
ness between target aspect term and its context word who also put forward two target-
dependent LSTM modules to automatically capture features of aspect terms and con-
texts. Besides, some researchers combined CNN and LSTM to obtain both local and
long-term semantic dependent information. Further, Yoon et al. [14] proposed a Multi-
Channel Lexicon Integrated CNN-BiLSTM model, which utilized a multi-channel
method on lexicon to improve lexicon feature and CNN and BiLSTM to obtain the n-
gram features as well as long-term dependent information respectively. Besides, Wang
el al. [15] put forward a novel CNN-LSTM model, which is composed of a regional
CNN (R-CNN) and LSTM. Different from traditional CNNwhich regards a whole input
text as input text, the regional CNN splits sentences into different regions whose use-
ful local features will be effectively extracted. Moreover, by integrating R-CNN and
LSTM, both local features and long-term dependent information can be utilized in the
prediction process. Inspired by Wang’s work, we designed a global feature extraction
layer which is composed of CNN and RNN and inherits main advantages of Wang’s
work.

2.2 Aspect-Level Sentiment Analysis Methods

Deep Neural Network-Based Methods. All above models do not successfully take
aspect-aware information into consideration and establish correlations between aspect
terms and their emotional information in training completely. Then, researchers applied
the attention mechanism to address the problem, which achieved good performance
so that more and more attention-based models were raised. In view of this, some
researchers combined LSTM with the attention mechanism, and also provided some
valuable solutions in correlation construction. Wang et al. [3] applied the attention
mechanism to establish semantic dependencies between contexts and aspect terms by
appending aspect term embedding into word vectors as the input vectors. Besides, to
generate more comprehensive representations, Ma et al. [16] designed more compli-
cated network structures, including two separate attention modules which were used to
learn attention weight of aspect terms and sentences. Inspired by Wang, some studies
tried to apply the attention mechanism to other network structures. For instance, Tang
et al. [17] employed the deep memory network and attention mechanism to generate
deeper text representation. And Gu et al. [18] adopted a bidirectional attention mecha-
nism to mutually establish relationships between sentences and aspect terms. In the last,
Xue et al. [19] made computations parallel and effectively decreased training time by
using CNN and gating units, but accuracy of the proposed model had not been improved
significantly.
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Transformer-Based Methods. Transformer [6] based methods make great progress
in comparison to CNN and RNN in ACSA tasks. Jiang et al. [20] combined capsule
networks with BERT to compute the deeper representations of sentences and aspect
terms. Moreover, Wu et al. [21] adopted the pre-trained RoBERTa as backbone network
to predict sentiment polarities of multi-aspect terms. And Wu et al. [22] put forward
the quasi-attention to enable their model to learn both additive and subtractive atten-
tion, which effectively calculates the context-aware attention representations. All these
works have achieved excellent performances, so we employ BERT as our backbone
network to ensure accuracy of downstream classification task of our model.

Graph Neural Network-Based Methods. The prevalence of graph neural network
based models, typically GCN [23–25], has led to excellent performance gains on senti-
ment analysis tasks. Liu et al. [7] utilized GCN to obtain sentence structure information
and employed the bidirectional attention mechanism to acquire useful interactive infor-
mation between aspect terms and contexts. By building a dependency tree of sentence,
Zhang et al. [26] used a GCN module to better acquire semantic dependencies and
syntactic information. In addition, Li et al. [27] integrated syntactic information and
semantic dependencies through the SynGCN and SemGCNmodule simultaneously and
employed two regularizers to model correlations among words.

3 Preliminary

In this section, we first formulate our task. Then, we introduce the framework of our
proposed NNDF model.

3.1 Task Definition

The ACSA task aims to predict emotional polarity of designated aspect categories.
Given a sentence S = {W1,W2, · · · ,Wn} and we pre-defined special aspect cate-
gories C = {C1, C2, · · · , Cm} which may be a word or a phrase. The purpose of this
paper is to predict the emotional polarities y ∈ {1, ..., P}. P is the number of sentiment
categories, and the lengths of sentence S and aspect categories C are n and m. In the
following, we take a sentence “The bar area was fairly crowded but service remained
friendly and efficient” as an example shown in Fig. 2. Two aspect categories in the sen-
tence are “place” and “service”, and the emotional polarities towards them are negative
and positive.

3.2 Solution Framework

The whole framework of NNDF can be illustrated in Fig. 3. The framework is divided
into two key components:

• Embedding layer, it is used for forming the unified representations for encoding
feature vectors of input nodes with different dimensions.

• Global Feature Extraction layer, Transformer Encoder Layer, Bidirectional Atten-
tion Layer, and Classification Layer.
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Fig. 2. A sentence from MAMS dataset. The categories “place” and “service” show negative and
positive. And “place” is not presented in the sentence.

4 The Proposed Method

In this section, we first formulate our task, and then introduce the framework of our
proposed NNDF model.

4.1 Input Representation Layer

We apply the GloVe embedding or BERT embedding in embedding layer to transform
the sentence S into word embedding E = {E1, E2, · · · , En}. Then, we will briefly
introduce the two embedding methods.

GloVe Embedding [28]: The GloVe model has high computational efficiency, and its
scale of calculation is proportional to the corpus. When the corpus is small, the GloVe
model still works well enough. Therefore, we use the pre-trained GloVe to convert sen-
tence S into word embedding E. The context embedding is presented as Es ∈ Rde×n

and de is the dimension of word vector. And the categories embedding is represented
as Ec ∈ Rde×m. After the sentence passes through the embedding layer, we concate-
nate categories embedding and sentence embedding into the categories-aware sentence
embedding Esc = [Es;Ec].

BERT Embedding [29]: Compared with traditional embedding methods, BERT
has obtained obvious improvement since it was introduced into NLP tasks. The
input of BERT consists of a token, segmentation, and position embedding. There-
fore, to utilize pre-trained BERT, the sentence and categories are denoted as
{[CLS], S1, S2, · · · , [SEP ]} and {[CLS], C1, C2, · · · , [SEP ]}. Then, the input
will be transformed to the presentation {H[CLS],H[S1], · · · ,H[Sn],H[SEP ]} and
{H[CLS],H[C1], · · · ,H[Cm],H[SEP ]} respectively.

4.2 Global Feature Extraction

Wewill introduce the global feature extraction layer (GFE), which is composed of CNN
and BiLSTM.
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Fig. 3. The overall architecture of NNDF

CNN:We utilize the convolutional layer to extract local features and reduce dimensions
of input. Convolving the window vectors, each filter can generate different features
at separate positions. And as filter moves, numerous local features of sentences are
captured. In this paper, we set the number and length of filter to be 150 and 3. Besides,
we select ReLU which is easy to calculate and speed up convergence of the network
as our non-linear transformation function in the convolution process. Then, we applied
K-Max pooling to output of convolutional layer, because max-pooling layer not only
reduces the amount of computations but also preserves the most significant information.
And output of all max-pooling layers will be fused to produce input of BiLSTM.

BiLSTM: Due to weak ability of CNN to capture long-term features, we put BiLSTM
over CNN to acquire long-term semantic information, which deals with the problems of
gradient explosion as well as gradient vanishing and utilizes gating units and memory
cells to selectively capture useful semantic information in both directions. The update
of hidden states and memory cells contents, which includes current input and past state,
is determined by gate units, consisting of input, output and forget gate. In this case,
we set the dimension of all hidden layers in BiLSTM to be 150. Then, we regard the
last hidden state of BiLSTM as the final representation. Therefore, output of GFE will
contain local features and long-term semantic information, which will help Transformer
module to establish better connections between contexts and aspect categories.
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4.3 Transformer Encoder

Transformer parallelly processes all the words and symbols in a sequence without recur-
rent structure and utilizes the self-attention mechanism to combine context with distant
words. It not only trains faster than RNN but also performs better. Hence, we only uti-
lize the encoder of Transformer to obtain associations between aspect categories and
contexts.

In the Transformer encoder, multiple scaled dot-product attention constitutes the
multi-head attention mechanism. Therefore, MHA can execute attentions simultane-
ously, which is helpful to obtain connections between contexts and aspect categories.
The output of the GFE layer is a matrix XGFE ∈ RM×de . Then, we will randomly
initialize three matrixes WQ, WK , WV , and multiple them with XGFE to obtain three
same weight matrixes Q = (Q1, ...,QM ), K = (K1, ...,KM ), V = (V1, ...,VM ), where
qi, ki, vi ∈ R

dh
h , and dh is a hidden dimension. Then, the specific calculation is defined

as follows:

Attention(Q,K,V ) = Softmax(
QKT√

dk

)V (1)

Following a series of linear transformations with diverse parameters, three weight
matrixes Q, K, V learn different features from contexts and aspect categories severally.
Then, through multiple times of transformation, the multi-head attention further cap-
tures degrees of associations between aspect categories and its semantic words. The
summing of all outputs of scaled dot-product attention will be output of multi-head
attention:

MHA(Q,K,V) = Concat(head1, ..., headh)WO (2)

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3)

where WQ
i ∈ Rdh×dk ,WK

i ∈ Rdh×dk ,WV
i ∈ Rdh×dv ,WO ∈ Rdh , and dk =

dv = dh/h. In this paper, we set h = 8 which is the number of attention layers.
And output of GFE layer will be used as input of Transformer encoder and aspect
categories representation MHAca = [hca

1 , hca
2 , · · · , hca

m ] and context representation
MHAc = [hc

1, h
c
2, · · · , hc

m] will be calculated, where hca
i ,hc

i ∈ Rdh .

4.4 Bidirectional Attention

We utilize bidirectional attention to further fuse the feature information of contexts and
aspect categories. During the process of calculation, attention vectors go into the mod-
eling layer with embedding vectors from the previous layer for each time step, which
contributes to decreasing loss of information. And we will fuse semantic dependencies
by categories-aware attention and context-aware attention mechanism.

Categories-Aware Attention: Assume the output matrices of contexts and aspect cate-
gories are hc = [hc

1, h
c
2, . . . , h

c
t , · · · , hc

n] and hca = [hca
1 , hca

2 , · · · , hca
t , · · · , hca

m ]. The
calculation is defined as follows:

α =
m∑

i=1

exp(e ¯hcT · Wca · hca
cai

)
∑m

i=1 exp(
¯hcT · Wca · hca

cai
)

· hca
cai

(4)
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rca =
M∑

i=1

α · hca
cai

(5)

where rca is representation of categories, which has learned lots of emotional informa-
tion from contexts. h̄c is obtained by average pooling context vectors. hca

cai
represents

aspect category vectors and Wca denotes the attention weight matrix.

Contexts-Aware Attention: Similarly, we will utilize the new categories-aware repre-
sentation for the same calculation. Then, the new context representation will be calcu-
lated as rca. The expression of calculation is:

β =
exp ( ¯rcaT · Wc · hc

i )∑m
i=1 exp(

¯rcaT · Wc · hc
i )

(6)

rc =
M∑

i=1

β · hc (7)

where rc, which contains the semantic relevance of aspect categories and contexts, is
the final representation for the sentiment prediction.

4.5 Loss Function and Training

We will input the final representation rc into the classification layer to predict the emo-
tional polarities towards aspect categories given.

p = Softmax(Wprc + bp), (8)

where p is sentiment polarities towards aspect categories, Wp, bp are learnable param-
eters. And to constrain randomness dropout brings, we apply the Regularized Dropout
(R-Drop) [30] to put a regular constraint on prediction, which reduces inconsistency
between training and testing. Compared with the traditional training methods, R-Drop
only adds a KL-divergence loss function.

LCE
i = − logP

(1)
θ (yi|xi) − logP

(2)
θ (yi|xi), (9)

L
(KL)
i =

1
2
[KL(P (2)

θ (y|xi))||P (1)
θ (y|xi) + KL(P (1)

θ (y|xi))||P (2)
θ (y|xi)], (10)

Li = LCE
i + αLKL

i . (11)

where xi, yi are results of two predictions with the same parameters, LCE
i is the sum of

two original cross-entropy functions. LKL
i is KL divergence between two models, α is

weight of KL loss. In this paper, α will be set to 3, which is different from the optimal
solution proposed in the original paper.

5 Experiments

In this section, we compare the performance of our proposed NNDF model with sev-
eral state-of-the-art baselines, and a few variants of NNDF itself, using two benchmark
datasets.
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5.1 Experiment Settings

Datasets: We select two benchmark datasets to conduct a series of experiments to
evaluate the performance of NNDF, which includes Restaurant [31]1 and MAMS
datasets [32]2. Then, we will briefly introduce the two datasets. Compared with the
Restaurant dataset, MAMS adopts five aspect categories from the Restaurant dataset
and adds two more aspect categories to deal with some chaotic cases. Different from
other datasets, every sentence fromMAMS expresses multiple emotional polarities. The
release of MAMS pushes forward the development of the ABSA task and prevents it
from degenerating to sentence-level sentiment analysis. Table 1 provides specific quan-
titative information of two datasets.

Table 1. The statistics of both Restaurant and MAMS datasets in the experiments

Dataset Pos. Neg. Neu. Total.

Restaurant Train 2164 807 637 3608

Test 728 196 196 1120

MAMS Train 1929 2084 3077 7090

Validation 241 259 388 888

Test 245 263 393 901

Baselines: In order to evaluate NNDF more comprehensively, we exploit a series of
state-of-the-art models as baselines for comparison, including variations of RNN mod-
els, CNN with gate units, capsule network, heterogeneous GCN-based models, and
Transformer-based models.

– LSTM [1] is a basic RNN network, which utilizes output of the last layer as final
sentence representation to conduct emotional categorization.

– TD-LSTM [13] integrates the aspect terms into LSTM to establish correlations
between aspects and contexts.

– ATAE-LSTM [3] adds input aspect terms embedding into vector of each word and
utilizes the attention mechanism to better establish dependencies between aspect
terms and input vector.

– BiLSTM+Attn, based on AT-LSTM, replaces LSTM with BiLSTM to enable the
model to take information from both directions of semantic features into accounts.

– IAN [16] uses two same parts which are composed of LSTM and an attention mech-
anism to learn representations of aspect terms and contexts interactively. Then, con-
catenate two representations as final representation for emotion prediction.

– MemNet [13] uses multiple computational layers to calculate text representation and
representation of the last layer will be used for emotional categorization.

– GCAE [19] utilizes the convolutional layer and gate units to parallelly generate and
capture aspect-related sentiment features, which is more efficient than RNN-based
models.

1 The Restaurant dataset of SemEval-2014 Task 4: https://alt.qcri.org/semeval2014/task4.
2 The MAMS dataset: http://tcci.ccf.org.cn/conference/2020.

https://alt.qcri.org/semeval2014/task4
http://tcci.ccf.org.cn/conference/2020
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– PBAN [18] appends positional vectors into input vectors, which can distill aspect-
aware information better, and employs bidirectional attention mechanism to estab-
lish semantic dependencies between aspect terms and their emotional information.

– BRET [29] utilizes the multi-layer bidirectional transformer encoder to compute
more comprehensive representation.

– RoBERTa [33] pre-trains with eight times larger batches and corpora and employs
dynamic masking to take place of static masking in BERT, compared with BERT.

– RoBERTa-TMM [34] adopts the pre-trained RoBERTa as backbone network, then
fine-tune it on the MAMS dataset.

– CapsNet [20] uses bidirectional gated recurrent unit (BiGRU) to obtain contextual-
ized representation and feeds them into capsule network whose outputs are used to
predict emotional polarities.

– CapsNet-BERT combines strength of the capsule network and BERT. The pre-
trained BERT is used to compute deep representations of sentences and aspect terms,
which will be fed into a capsule network to predict sentiment polarities.

– ASGCN [26] employs Bidirectional LSTM to capture contextual information
regarding aspect terms and uses GCN to obtain edge information of syntactical
dependencies, which enables the model to capture dependencies among aspect
terms.

– QACG-BERT [22] improves the structure of BERT to be context-aware and appends
a quasi-attention mechanism. By learning quasi-attention weights which could be
negative, the model could learn compositional attention that supports subtractive
attention.

– DualGCN [27] obtains syntactic information and semantic dependencies by the Syn-
GCN and SemGCN module. Then, usage of regularizers with semantic constraints
is to solve the overlapping problem of semantic information, which makes emotion
prediction more accurate.

Implementation Details: We choose 300-dimension Glove vectors to generate word
embedding for non-Transformer-based models. For Transformer-based models, we uti-
lize pre-trained BERT as the backbone network whose embedding dimension and hid-
den state dimensions are set to 768. For MAMS dataset and Restaurant dataset, we
set the size of mini-batch to be 64 and 32 respectively. Then, we employ Adam [35]
as our optimization function to update models parameters in iterations. And for non-
Transformer-based models and Transformer-based models, we set the initial learning
rates to be 0.0003 and 0.00003. The initial dropout rate will be set to 0.5. Finally, we
obtain final results by averaging the outputs of 5 round of running.

6 Experimental Results and Analyses

We utilize accuracy and macro-averaged F1-score as our assessment metrics to assess
performance of NNDF. The experimental results are shown in Table 2. Obviously,
NNDF achieves the best performance in comparison to other baseline methods on two
datasets. Then, we will make some discussions and analyses based on the experimental
results.
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Table 2. The performance results (%) of different methods on the two datasets for the aspect-
category Sentiment task. The best and second best results in each column is boldfaced and under-
lined respectively (the higher, the better). Improvements over the best baseline are shown in the
last row

Method MAMS Restaurant

Acc F1 Acc F1

LSTM 47.37 0.432 72.77 0.554

TD-LSTM 62.37 0.497 75.09 0.587

ATAE-LSTM 70.63 0.584 77.58 0.66

BiLSTM+Attn 66.3 0.553 76.36 0.645

IAN - - 78.6 0.689

MemNet 63.29 0.541 76.54 0.653

GCAE 72.11 0.613 77.84 0.675

PBAN - - 81.16 0.716

CapsNet 73.99 0.629 83.55 0.735

ASGCN - - 80.77 0.722

DualGCN - - 84.27 0.781

BERT 78.29 0.697 90.44 0.806

RoBERTa 77.44 0.683 - -

QACG-BERT - - 90.67 0.813

RoBERTa-TMM 78.03 0.686 - -

CapsNet-BERT 79.46 0.698 91.38 0.824

NNDF 76.42 0.672 83.76 0.728

NNDF-BERT 81.53 0.713 92.26 0.835

The performance of all models on the Restaurant dataset is much higher than the
one on the MAMS dataset. The result remains consistent with our intuition that the
sentences in the MAMS dataset involve more aspect categories, which makes it more
difficult for those models to accurately detect emotional information and establish cor-
relations of different aspect categories. The performance of TD-LSTM has made great
progress compared with the original LSTM, because TD-LSTM utilizes LSTM to sep-
arately capture features of aspect terms and contexts and model their relationships. But
one thing needs to be pointed out is that it cannot judge which one of contextual fea-
tures contributes more to the determination of emotional polarity. To generate a more
comprehensive representation, ATAE-LSTM integrates embedding of aspect term into
vector of each word. Different from ATAE-LSTM, IAN pays more attention to estab-
lishing the relationship between aspect terms and contexts which not only calculates the
weight of each word in contexts but also learns weight of each word in corresponding
aspect terms. Besides, PBAN achieves outstanding performance by appending posi-
tional vectors to input vectors to enable the model to find aspect terms and related
information more accurately and utilizing bidirectional attention to model correlations
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between aspect terms and contexts. The experimental results proved that adding posi-
tion information is vital for finding the location of aspect categories in ACSA task.

For GCN-based models, the performance of DualGCN on Restaurant dataset is bet-
ter than ASGCN. In the process of extracting feature information, problem of overlap-
ping semantic dependencies exists, which means that one category will match some
semantic information of another category. For DualGCN model, it uses orthogonal
and differential regularizers to learn an semantic attention matrix and features respec-
tively, which solves interference of semantic information of other aspect terms. Previ-
ous experimental results have proved that LSTM is not skilled in aspect-specific feature
extraction. It is not enough to use a BiLSTM in obtaining aspect-specific features, or it
will result in unapparent improvement. For ASGCN model, due to the excellent ability
of GCN to employ semantic dependencies and syntactic information despite the usage
of LSTM, ASGCN still achieves great performance.

Obviously, compared with non-Transformer-based models, Transformer-based
models have made great progress in performance improvement on two datasets, which
proves the strong ability of BERT. But at the same time, it also costs generous time.
To calculate representations of each layer, the theoretical time complexity of NNDF is
O(n2 ·d), where n is the length of input sequence, d is the dimension of representation.
For our model, in comparison with non-Transformer-based models, NNDF achieves
the second performance, second only to DualGCN. Compared with Transformer-based
methods, NNDF-BERT achieves the best performance on both datasets. The perfor-
mance of NNDF-BERT on MAMS datasets exceeds CapsNet-BERT by 2.07%. In gen-
eral, NNDF-BERT accurately extracts feature information and models relationships
between aspect categories and contexts, and the relationships enable aspect categories
to better match corresponding emotional information.

6.1 Case Study

To further explore how our model outperforms other ones, we use our model, CapsNet-
BERT, ASGCN to predict a sentence from MAMS dataset, which has two aspect cat-
egories named “food” and “service”. Figure 4 and Table 3 provides the experimental
results, where the underline indicates that the weight of the word is the largest, fol-
lowed by the wavy underline and the overline is the lowest. Based on the results of
experiment, NNDF performs better than the other two models. Through the visual anal-
ysis above, when NNDF accurately locates words representing aspect categories in sen-
tences, they are distributed the highest weight. And different with the other two models,
it finds out words or phrases that represent emotional information of specific aspect
categories and reduces influences brought by other interfering words. Besides, another
point which should be pointed out is that NNDF assigns some weight to conjunction
word “but”, which sets up a symbol of differentiation of semantic orientation and helps
distinguish sentiment information of two aspect categories named “space” and “ser-
vice” well. Thus, the above analysis proves that NNDF has a better ability to identify
emotional information of each category than pre-existing models.



352 L. Li et al.

Table 3. The weight visualization of a sentence for CapsNet, DualGCN and NNDF

Model Category Attention visualization Prediction Label

CapsNet Place The bar area was fairly crowded but service
remained friendly

�����

Neu. Neg.

Service The bar area was fairly crowded but service
remained friendly

Pos. Pos.

DualGCN Place The bar area was fairly crowded but service
remained friendly

Neg. Neg.

Service The bar area was fairly crowded but service
remained friendly

Pos. Pos.

NNDF Place The bar area was fairly crowded but service
remained friendly

Neg. Neg.

Service The bar area was fairly crowded but service
remained friendly

Pos. Pos.

The bar area was fairly crowded but service remained friendly

Local features Global features Sentiment

Fig. 4. The weight visualization of a sentence for NNDF

6.2 Ablation Study

We conduct some ablation studies to further explore the function of each part of NNDF
in this section. And the experimental results of the ablation study are provided in
Table 4.

Table 4. The experimental results of the ablation study

Model MAMS (ACSA) Restaurant (ACSA)

Acc F1 Acc F1

NNDF 76.42 0.672 83.76 0.728

NNDF w/o GFE 75.37 0.665 81.14 0.701

NNDF w/o BA 73.76 0.641 82.37 0.713

NNDF w/o TE 73.45 0.637 82.69 0.716

NNDF w/o R 75.67 0.669 82.57 0.715
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where NNDF w/o BA denotes that NNDF removes the bidirectional attention layer
and uses the original attention mechanism. NNDF w/o GFE denotes NNDF without
the global feature extraction layer. And NNDF w/o TE represents Transformer encoder
layer-removed NNDF. Besides, NNDF w/o R symbolizes NNDF without R-Drop and
using the original cross-entropy function. According to Table 3, it is interesting to see
that the experimental results of NNDF w/o BA are similar to NNDF w/o TE. It implies
that both Transformer encoder and bidirectional attention are significant to establish
relationships between aspect categories and their emotional information. Obviously,
NNDF w/o GFE performs worse on both datasets, which suggests that the GFE layer
helps to locate multiple aspect categories and capture their corresponding features.
Finally, without R-Drop, the performance of NNDF w/o R receives the same percentage
of deterioration on both datasets, which indicates that R-Drop can improve the general-
ization ability of NNDF.

7 Conclusion

In this paper, we proposed a new Transformer-based model with bidirectional attention
mechanism. NNDF mainly focuses on establishing connections between aspect cate-
gories and their emotional information and filtering noise information during predic-
tion. And except for the GloVe embeddings, we employ a pre-trained BERT to encode
our sentences and categories to further enhance the performance of NNDF. We conduct
a series of experiments on Restaurant and MAMS datasets. The experimental results
indicate that NNDF-BERT achieves the best performance in comparison to some strong
baseline models. Our future work will concentrate on two aspects:

• the time cost of our model is large for the abundant RNNs. Therefore, we will focus
on using the GCN to obtain semantic dependencies to decrease the training time.

• we will strengthen associations between semantic dependencies. We tend to remould
the structure of the Transformer to further capture the syntactic dependencies and
incorporate syntactic and semantic information.

Acknowledgement. We greatly appreciate the valuable suggestions and encouragement from
anonymous reviewers and the editor.
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