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Abstract. Clustering is an unsupervised machine learning technique for
data mining to find objects with similar characteristics in a group. How-
ever, due to the lack of relevant prior information on the data, numer-
ous single models or methods cannot identify the shape and size of the
clusters. Therefore, an ensemble of multiple weak models is required to
further mine the implicit information of the data and improve the cluster-
ing accuracy. LSMC-EPMC is an evolutionary clustering algorithm that
consists of three parts, the emotional preference and migration behavior
clustering (EPMC) model, the Laplacian spectral clustering model, and
the Monte Carlo statistical data simulation model. This paper mainly
integrates the spectral clustering model and the Monte Carlo statisti-
cal data simulation method into the EPMC algorithm by mapping the
individual in EPMC and the optimized center point in the other two
methods. Through numerous experiments, LSMC-EPMC shows a signif-
icantly increased performance to EPMC and is highly competitive with
the other seven clustering algorithms on several standard datasets.

Keywords: Evolutionary optimization algorithm · Laplacian
spectral-domain · Monte Carlo simulation · Ensemble learning · Data
clustering

1 Introduction

With the continuous growth and evolution of artificial intelligence, natural heuris-
tic algorithms are becoming more and more popular among scholars. They can
solve many complex optimization problems due to their intelligence, such as clus-
tering tasks. These heuristic algorithms utilize principles similar to bionics to sim-
ulate the evolution, cooperation, or foraging process of animals or plants. For
instance, as a well-known heuristic algorithm based on the foraging behavior of
birds swarm system, particle swarm algorithm (PSO) [1] is widely used by schol-
ars due to its fast convergence speed and easy implementation. The simulated
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annealing (SA) algorithm [2] is a classic heuristic algorithm, which is a probability-
based algorithm derived from the principle of solid annealing and has the charac-
teristics of random iterative approximate asymptotic convergence. The ant colony
optimization (ACO) algorithm [3] is inspired by the path planning behavior of
ants in the process of foraging cooperation. Li et al. [4] propose a new heuristic
optimization method which is an experience by the animal migration behavior
(AMO), it mimics the process of animals transfer from one habitat to another.
Inspired by natural biogeography and its mathematics, Simon et al. [5] proposed a
biogeography-based optimization (BBO) algorithm to solve high-dimension opti-
mization and real-world sensor selection problems.

Spectral clustering represents a bunch of clustering algorithms based on dif-
ferent graph cut theories. One of the classic graph cut algorithms is Cheeger cut.
Its optimal segmentation is also an NP problem [6]. Szlam et al. [7] describe the
process of Cheeger cuts balanced subgraphs. Therefore, the eigenvectors of the
Laplacian matrix eigendecomposition can be used to settle the graph cut prob-
lem [8], so as to approximate the best partition mode of the clustering problem.
As shown in Fig. 1(a), all data points can be considered fully connected. After
the operation of graph cut, the optimal cutting mode can divide the whole graph
into several partitions, which represent the most appropriate clustering mode.

In addition, as a classic numerical calculation method guided by probability
and statistics theory [9] and the law of large numbers [10], the Monte Carlo
method [11] utilizes an information-intensive and high-speed computing com-
puter as a platform to transform complex research objects or calculation prob-
lems into simulations of random numbers and their digital characteristics. In
machine learning [12,13], especially in reinforcement learning, a relatively fuzzy
model is generally created for the obtained sample data set, and the parameters
in the model are selected by the Monte Carlo method to make the residual error
of the original data smaller.

Fig. 1. Basic theory and sub-model structure of the LSMC-EPMC

In order to further efficient the clustering performance of emotion prefer-
ence and migration behavior model, we integrated several learners and methods
for learning, then proposed an ensemble algorithm called LSMC-EPMC in this
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paper. The LSMC-EPMC contains three parts of the emotional preference and
migration behavior model (EPMC) [14], the Laplacian spectral clustering model,
and the Monte Carlo statistical data simulation model. The basic theory and
sub-model structure of the LSMC-EPMC algorithm are shown in Fig. 1(b). The
red frame represents the partition of the emotional preference and migration
behavior model. The main contributions of this paper are as follows:

1. The manifold spectral clustering mode based on Laplacian eigenmaps is intro-
duced to help update the position of the individual in the emotional prefer-
ence and migration behavior model, and attempt to promote the performance
when dealing with clustering tasks.

2. A Monte Carlo statistical data theory is designed to simulate the cluster
center point to help the emotional preference and migration behavior model
approaching the optimal individual, and endeavor to benefit the efficiency of
clustering.

3. Numerous experiments were performed to compare the proposed ensemble
model LSMC-EPMC with the other seven clustering algorithms on solving
data clustering problems through testing on several standard datasets.

The rest content of this paper is organized as follows: The related models and
theories of LSMC-EPMC are introduced in Sect. 2. Section 3 give the calculation
steps and algorithm details of the proposed LSMC-EPMC. Section 4 shows the
work of the experiment. Finally, Sect. 5 concludes the paper.

2 Mathematical and Physical Models

2.1 Emotional Preference and Migration Behavior Model

As a commonly used distance measurement criterion, Euclidean distance has
been widely used in calculating the distance between data points. In this paper,
we utilize the fitness function to evaluate the pros and cons of each individual.

Definition 1. (Fitness function) As shown in Eq. 1, individuals in the pop-
ulation can be measured using fitness values, and the fitness function can be
defined as:

fit(p,M) =
p ×

n∑

i=1

‖Insi − Inslabel‖2

min ‖xa − xb‖ (1)

where p and M represent the number of the clusters and the individual matrix,
respectively. And Insi and Inslabel represent an instance in the dataset and the
label class it belongs to, xa and xb represent two clustering centers in individual
matrix M . The smaller the numerator, the smaller value of the function. There-
fore, the goal of the optimizing is to minimize the fitness function Eq. 1 and find
the individual Mop.
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This section briefly introduce the emotional preference and migration behav-
ior (EPMC) model proposed by Feng et al. [14]. It consists of four sub-parts: the
migration model, the emotional preference model, the social group model, and
the inertial learning model. The first two models can help individuals find the
global optimal learning object and the best learning object nearby. The third
model divides the population into two groups to improve learning ability, and
the last model can help individuals explore more solution space.

2.2 Manifold Laplacian Spectral Clustering Model

Let G = (V,E) be an undirected graph with vertex set V = v1, ..., vn. Supposing
that the graph G is weighted, wij represents the non-negative weight between
the two vertices vi and vj . For any two vertices in V , there can be an edge
connection or no edge connection. Since it is an undirected graph, wij = wji.
The similarity matrix S of the sample point distance measurement is used to
obtain the weighted adjacency matrix W = (wij)i,j=1,2,...,n of the graph. For
any point vi in the graph, its degree di is defined as the sum of the weights of
all edges connected to it.

According to the definition of the degree of each point, we can get a nn
degree matrix D, which is a diagonal matrix, as defined in Eq. 2:

D =

⎛

⎜
⎝

deg (v1) · · · · · ·
...

. . .
...

· · · · · · deg (vn)

⎞

⎟
⎠ (2)

For the cut graph of the undirected graph G, our proposal is to cut the graph
G = (V,E) into k subgraphs that are not connected. A subgraph GS =

(
S,ES

)

of G = (V,E) is composed of a set of vertices S ⊆ V and a set of edges ES ⊆ E.
The set of each subgraph point is: GS

1 , GS
2 , . . . GS

k , they satisfy GS
i ∩ GS

j = ∅,
and GS

1 ∪ GS
2 ∪ . . . ∪ GS

k = G. For the set of any two subgraph points A,B ⊂ V ,
A ∩ B = ∅, the weight of the cut between A and B is W (A,B) =

∑
i∈A,j∈B wij .

Then for the set of k subgraph points GS
1 , GS

2 , . . . GS
k , the NCut is donated as

Eq. 3,

NCut
(
GS

1 , GS
2 , . . . GS

k

)
=

1
2

k∑

i=1

W
(
GS

i , ḠS
i

)

vol
(
GS

i

) (3)

where vol
(
GS

)
=

∑
i∈A di. The unnormalized graph Laplacian matrix is

defined as:

L = D − W (4)

In this way, we can continue to follow the idea of RatioCut to find the
smallest first k eigenvalues of Lsym = D− 1

2 LD− 1
2 , then find the corresponding

eigenvectors, and standardize them to get the final eigenmatrix F . Finally, it is
sufficient to perform traditional clustering on the matrix F .
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2.3 Determining Parameters for the Model Using the Monte Carlo
Method

The Naive Monte Carlo method is the most popular and frequently used method
to settle multi-dimensional MC problems. Supposing an approximate computa-
tion of the integral Q[f ] =

∫
Ω

f(x)p(x)dx, and the expectation the random
variable φ = f(δ) is that Eφ =

∫
Ω

f(x)p(x)dx. Among them, δ is a random
point in the probability density function p(x), and all variables δ1, δ2, . . . , δN

are independent with φ1 = f (δ1) , . . . , φN = f (δN ). Common Monte Carlo
estimation is based on the N repeated simulations and simulate the dataset
through the minimum cut set. Given the simulation set τi = fs

(
x

(i)
1 , . . . , x

(i)
n

)
,

the common Monte Carlo estimate can be expressed as the following form:
T̂s = 1

N

∑N
i=1 fs

(
x

(i)
1 , . . . , x

(i)
n

)
. The variance estimated by the Monte Carlo

algorithm is proportional to N−1, and V ar
(
T̂s

)
= V ar

(
1
N

∑N
i=1 τi

)
=

1
N2 V ar

(∑N
i=1 τi

)
= 1

N V ar (τi). More generally, the central limit of Monte Carlo
can be expressed as:

P (|Ts − E (Ts)|) > z

√
Var (τi)√

n
≈ P (|Z| > z) (5)

where Z ∼ N(0, 1). Therefore, for the expected accuracy ε > 0 with a confidence
level of 1−α, Monte Carlo simulation with n = z2

∂
2

Var (τi) ε−2 is required, where

the quantile z α
2 is selected to ensure P

(
Z > z α

2

)
= α

2 . Naturally, z α
2 is a constant

for any regular confidence level.

3 The Proposed LSMC-EPMC Optimization Algorithm

3.1 Main Framework of LSMC-EPMC Algorithm

The LSMC framework consists of 3 main components and 6 sub-parts. First, the
emotional preference and migration behavior model initializes the population
and other parameters, and evaluates and ranks the individuals in the popula-
tion. Then individuals update their position based on the best individuals in
the population and the excellent neighbor around them, and the model uses
a certain strategy to eliminate inferior individuals in the population. Second,
by matching individual cluster centers with a similar class of spectral cluster
centers, Laplacian spectral cluster solutions can help individuals update their
positions. Finally, the Monte Carlo method can simulate similar center points
to assist individual’s update according to the law of large numbers.

3.2 Calculation Steps of LSMC-EPMC Algorithm

The optimization steps of the proposed LSMC-EPMC algorithm can be listed
as follows:
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Step 1: Data preprocessing and initialization
During the preprocessing, the upper and lower bounds of the dataset are calcu-
lated. The parameter initialization contains the scale of the population (NP ),
the number the elite individuals(elite), the initial number of clusters(k), the
maximum number of iterations(iteration), the maximum number of running
rounds(run), and so on.

Step 2: Evaluation and grouping
All individuals evaluate their fitness values according to Eq. 1 and sort the NP
individuals in the population from small to large. Among them, the top elitenum
individuals are considered as elite, and the remaining individuals are considered
as ordinary individuals. Besides, all data points are assigned to the nearest cen-
troid (a row of the individual matrix Mi). When a centroid has no data point
or only one data point, the centroid will be ignored and the data point will be
reassigned.

Step 3: Selection of learning objects
As depicted in Sect. 2.1 [14], the individual selects the best individual in the
population.

Step 4: Laplacian spectral cluster centers learning

Hypothesis 1. Supposing that the emotional preference and migration behavior
model contains p central points at the t-th iteration, the elite are selected to
be updated. When considering using the center point of spectral clustering to
update the centroid in an individual, the mode combined with spectral clustering
is recorded as SpectClus-p, that is, there are p spectral clustering center points
that assist the base model to update the individual.

Hypothesis 2. Supposing that the classes with the largest number of temporary
labels in the current iteration on the Laplacian learning are the actual classes of
the dataset.

Hypothesis 3. In the current iteration, if the Euclidean distance between a
certain spectral cluster center point and a certain centroid of the individual is
the smallest, the spectral cluster center-point can be identified as the same class
as the centroid.

After matching the actual centroid of the individual with the same class of
the spectral clustering center point one by one, then the SpectClus-p method
can utilize to update the individual. The SpectClus-p method acts on elite, and
ordinary individuals follow the elite individuals in the population to learn and
update to reach the optimal more properly.

Step 5: Individual learning and updating
After selecting the ideal learning object, the individual updates the position. If
the individual’s fitness becomes better, go to Step 6, otherwise, The model will
determine whether to accept this update.

Step 6: Replace of emotional preference matrix
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After the individual updates the position, the corresponding emotional prefer-
ence matrix feeli,j is updated simultaneously. The elements in the emotional
preference matrix are set to 1 initially.

Step 7: Elimination of inferior individuals
In each iteration, the LSMC-EPMC algorithm eliminates individuals with poor
fitness values in the second half of the population with a certain probability Pe,
and adds new individuals to the population.

Step 8: Monte Carlo simulate cluster centers learning

Hypothesis 1. Supposing that the classes with the largest number of temporary
labels in the current iteration on the Monte Carlo simulate are the actual classes
of the dataset.

Hypothesis 2. After using the Monte Carlo method to expand and filter the
data features of several classes in the current iteration, the mean value of the
expanded data is selected as the current better center point Centermc.

Hypothesis 3. In the current iteration, if the Euclidean distance between a
certain Monte Carlo simulation center and a certain centroid of the individual
is the smallest, the Monte Carlo simulation center can be identified as the same
class as the centroid.

After matching the actual centroid of the individual with the same class of
the Monte Carlo simulation center one by one, then the Monte Carlo simulation
center is utilized to update the individual. The Monte Carlo simulation method
acts on elite, and ordinary individuals are updated synchronously in social group
to reach the optimal.

Step 9: Termination
The algorithm repeats Step 2 to Step 8 until met the termination condition
or reached the maximum number of iterations. Finally, the optimal solution is
obtained, and the algorithm ends.

Suppose that the computational complexity of choosing a learning object
is Oc in the LSMC-EPMC. Moreover, Oe and Oo represent the computational
complexity of position updating rule for elite and ordinary, respectively. The
computational complexity of spectral and Monte Carlo operator are represented
by Os and Om, respectively. In addition, the size of elite and ordinary (Ne

and No) of LSMC-EPMC. So the computation complexity of LSMC-EPMC is
Ne · (Oc + Oe) +No · (Oc + Oo) + Os + Om.

4 Experiment and Results

This section discusses the computational experiments performed with the pro-
posed LSMC-EPMC algorithm. And 11 UCI standard datasets were used in the
experiment, including the Iris, Soybean, Glass, Seeds, Vowel, Car Evaluation
(CE), User Knowledge (UK), Wine, BLOOD, Hagerman’s Survival (HK) and
Banknote. Authentication (BA).
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The operating environment of all experiments is running on Lenovo Shenteng
1800 HPCC, which has 8 computing nodes and 1 console node. Each compute
node is a high-performance server with two 2.4 GHz quad-core CPUs and 24 GB
of memory. The operating system of all servers is Red Hat Enterprise Linux 7,
and the experimental computing platform is MATLAB R2021b.

Table 1. Parameter settings details on eight algorithms

Algorithm Parameter setting

EPMC As depicted in [14]

K-Means k is set to be equal to the real ClusNum of the dataset

Cop-kmeans k is set to be equal to the real ClusNum of the dataset, the indices
of the pairs that must be in the same cluster nML is set to 8, the
indices of the pairs that cannot be in the same cluster nCL is set to
8

Graph-SSC The certainty of each observed label is set to 10, the number of
initial labels in each class is set to 10, the number of nearest
neighbors is set to 29, and set the hyperparameter α = 100, β = e−3

PSO The weight factor w reduces from 0.9 to 0.4 and c1, c2 are set to 2

AMO The range of critical interval is set to 5

BBO The number of elite is set to elitenum = 2, and the mutation rate
is set to Pe = 0.05

LSMC-EPMC The number of elitenum is set to 2, the number of iterations T is
set to 100, the initial number of clusters k is set to 10 (Vowel is 15),
the number of runs is set to 25, set α = 0.8 and β = 0.2, the scale
of Monte Carlo simulation data is set to 5000, the hyperparameter
of Gaussian similarity in spectral clustering is set to 0.9, and the
max mutation rate Pe,max is set to 0.05

The computational result is compared with the other seven algorithms,
including a machine learning algorithm: K-means algorithm, two semi-supervised
algorithms: Cop-kmeans algorithm, Graph-SSC algorithm, and four optimization
algorithms: PSO algorithm, BBO algorithm, AMO algorithm and EPMC algo-
rithm. In all experiments, the population size of the eight algorithms is set to
15, and the maximum number of iterations is set to 100. The initial number of
clusters is set to 15 for Vowel and 10 for the rest of the datasets. All algorithms
run 25 times independently, and we take the average value as the final result
for comparison. The parameter setting details of the remaining algorithms are
shown in Table 1.

The clustering performance of the eight algorithms is evaluated according
to four criteria. The first one is the internal quality (fitness) measure, which
is defined in Eq. 1. The smaller the fitness, the better the performance. The
second one is the Jaccard coefficient (JacIndex). Kou et al. [15] use the Jaccard
coefficient to test the quality of clustering results, which measure the similarity
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between instances properly. The larger the JacIndex, the better the algorithm.
The third one is the Average number of clusters (ClusNum), which is calculated
by Eq. 6. The closer the result is to the actual classes of the dataset, the better
the algorithm. The last one is the Time, which records the speed of the eight
algorithms on clustering. The smaller the Time, the better the algorithm.

ClusNum =
∑run

i=1 clusnumi

run
(6)

where clusnumi represents the final number of clusters in each round, and run
represents the execute round of the algorithm.

The results of the fitness, JacIndex, ClusNum and Time executed by the
eight optimization algorithms are listed in Tables 2 and 3, respectively. In Table 2,
the data shows the Average Best-so-far (Avg), Best-so-far (Best), Worst-so-far
(Worst), and the standard deviation of Best-so-far-solution (Std) of all execution
results. The best Avg of the eight algorithms are shown in bold.

In order to analyze the performance of all algorithms more intuitively, a
summary of Friedman test is used. The smaller the rank of the test result, the
better the algorithm. Figure 2(a) describes the Friedman ranking results on the
fitness of eight algorithms. From Fig. 2(a) we can conclude that the LSMC-
EPMC algorithm gets the ten best results among 11 datasets, and is only slightly

Fig. 2. The Friedman ranking results on the fitness, JacIndex, ClusNum and Time
of eight algorithms
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Table 2. Fitness results on eight algorithms

Dataset Indices EPMC K-means Cop-kmeans Graph-SSC PSO BBO AMO LSMC-EPMC

Iris Avg 25.95 33.68 34.59 29.38 41.48 32.29 30.87 20.46

Best 20.83 28.72 25.86 28.43 30.16 27.05 24.67 18.89

Worst 34.60 42.28 46.39 31.26 49.38 35.78 38.18 23.18

Std 2.85 5.83 5.69 0.96 5.71 2.45 3.46 0.998

Soybean Avg 7.63 21.72 30.01 49.67 28.76 26.13 7.32 6.11

Best 6.64 18.65 18.95 29.74 21.33 23.50 6.44 5.26

Worst 9.54 31.09 40.47 54.00 34.86 28.72 7.97 7.38

Std 0.75 5.04 4.27 7.29 3.11 1.24 0.40 0.543

Wine Avg 16.21 33.86 57.78 109.74 61.57 17.90 18.15 15.41

Best 17.69 36.52 51.52 68.63 49.01 18.74 18.77 16.69

Worst 21.74 37.95 68.89 168.7 91.23 23.05 23.32 22.83

Std 1.11 0.47 4.16 24.58 8.89 1.24 1.34 1.404

Seeds Avg 20.48 60.16 67.60 62.66 35.46 49.7 23.94 16.99

Best 17.20 58.59 63.66 59.65 30.52 43.35 18.02 16.24

Worst 24.65 85.94 77.59 65.88 41.94 58.65 28.95 19.43

Std 1.94 5.38 3.00 1.93 3.01 3.33 3.47 0.772

Glass Avg 6.88 49.44 52.47 88.26 8.41 55.25 6.47 5.69

Best 5.11 34.72 42.80 62.43 7.62 41.15 4.67 4.51

Worst 9.42 84.34 64.71 104.1 9.21 72.76 8.12 6.85

Std 1.16 11.01 6.11 9.25 0.37 7.54 0.89 0.774

HS Avg 55.36 151.06 155.21 255.5 59.92 55.64 70.36 54.36

Best 49.05 147.2 150.9 156.7 53.43 47.76 59.40 48.63

Worst 63.35 187.8 159.7 722.6 63.02 60.90 80.26 58.98

Std 3.97 8.04 2.38 115.7 2.71 2.98 5.85 3.44

UK Avg 163.73 287.51 290.06 325.18 271.13 165.9 241.34 187.34

Best 126.6 275.2 278.08 291.7 235.1 153.9 213.7 137.01

Worst 217.8 293.7 308.85 372.6 307.1 169.8 253.1 212.41

Std 30.80 7.26 9.49 25.37 17.19 4.69 10.98 20.57

Vowel Avg 259.08 508.72 511.88 773.86 811.39 390.9 249.13 221.0

Best 213.3 472.5 494.36 681.0 682.9 354.6 181.9 174.1

Worst 364.9 528.3 540.54 875.5 907.9 420.9 347.6 282.8

Std 47.00 13.28 10.19 46.12 55.09 17.76 48.03 31.80

BLOOD Avg 27.47 154.33 172.48 5937 454.85 28.83 39.18 26.09

Best 24.30 154.33 167.27 399.1 380.1 22.89 32.69 22.28

Worst 33.66 154.33 177.06 48762 612.0 31.41 44.44 30.58

Std 2.02 0 2.71 9915 62.39 2.20 3.35 1.81

BA Avg 375.82 639.24 608.40 1281.85 1681.60 381.7 503.19 367.04

Best 348.6 629.5 600.03 974.3 1123 289.6 409.2 342.31

Worst 445.4 643.75 617.24 2399 2374 406.5 514.9 387.55

Std 24.19 3.48 4.45 269.3 313.4 28.16 27.52 13.50

CE Avg 1093.5 1622.9 1561.44 2002.45 1492.4 1371 1417.7 1063.5

Best 730.2 1353 1506.6 1854 930 893.4 1173 1106.0

Worst 1263 1587 1665.4 2304.6 1122 996.9 1268 1268.0

Std 161.7 66.75 48.08 110.7 46.82 23.17 22.52 35.08

inferior to EPMC and BBO algorithm on the UK dataset during the fitness
criterion. Specifically, the proposed LSMC-EPMC algorithm and three classic
algorithms (PSO, BBO, AMO) are superior to the two semi-supervised learning
methods (Cop-kmeans, Graph-SSC) on the fitness criterion. This may be due to
the defective algorithm design, which leads to individuals escaping the optimal
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Table 3. Results of JacIndex, ClusNum and Time on eight algorithms

Dataset Measure EPMC K-means Cop-kmeans Graph-SSC PSO BBO AMO LSMC-EPMC

Iris JacIndex 0.62 0.27 0.34 0.74 0.23 0.19 0.28 0.68

ClusNum 2.56 – – 3.00 3.88 6.32 3.84 3.08

Time 9.74 10.88 0.72 0.05 45.20 37.20 25.80 13.23

Soybean JacIndex 0.40 0.56 0.39 0.34 0.26 0.45 0.33 0.52

ClusNum 2.16 – – 2.08 6.36 4.36 3.00 2.8

Time 4.84 5.29 0.04 0.06 15.40 13.00 9.99 53.66

Wine JacIndex 0.30 0.20 0.26 0.34 0.21 0.12 0.12 0.31

ClusNum 3.08 – – 3.00 4.28 9.15 9.20 3.24

Time 12.22 14.35 0.09 0.06 54.40 48.40 32.60 32.08

Seeds JacIndex 0.51 0.27 0.60 0.51 0.23 0.16 0.26 0.57

ClusNum 2.20 – – 3.00 5.48 10.0 3.44 2.72

Time 11.93 15.38 0.11 0.15 63.80 52.60 36.20 23.7

Glass JacIndex 0.26 0.11 0.26 0.34 0.15 0.21 0.24 0.30

ClusNum 2.00 – – 6.00 4.60 5.72 3.00 2.56

Time 11.84 19.88 0.12 0.09 65.10 56.90 37.20 25.14

HS JacIndex 0.32 0.31 0.38 0.51 0.27 0.15 0.29 0.32

ClusNum 4.76 – – 2.00 4.76 8.40 6.00 4.76

Time 16.45 18.45 0.07 0.06 91.60 53.80 51.30 22.05

UK JacIndex 0.26 0.12 0.27 0.36 0.13 0.08 0.08 0.24

ClusNum 3.32 – – 4.00 5.76 10.0 9.20 6.6

Time 20.75 27.97 0.36 0.08 121.0 99.40 68.20 38.14

Vowel JacIndex 0.10 0.03 0.16 0.28 0.05 0.04 0.08 0.10

ClusNum 2.20 – – 11.0 6.32 8.04 3.32 2.52

Time 73.4 90.13 0.84 0.25 393.0 391.0 272.0 147.8

BLOOD JacIndex 0.40 0.55 0.20 0.20 0.39 0.22 0.46 0.39

ClusNum 9.52 – – 2.00 9.76 9.80 8.96 9.64

Time 36.95 41.44 0.12 0.09 222.9 159.8 113.2 84.53

BA JacIndex 0.36 0.36 0.38 0.30 0.33 0.25 0.32 0.38

ClusNum 5.04 – – 2.00 5.08 7.00 5.84 4.84

Time 66.11 73.22 0.41 0.14 417.7 333.1 208.7 210.64

CE JacIndex 0.32 0.25 0.24 0.42 0.19 0.11 0.12 0.30

ClusNum 2.84 – – 4.00 8.36 10.0 10.00 9.36

Time 37.3 63.39 1.13 0.15 526.8 365.4 283.8 391.22

solution prematurely. In general, except the User Knowledge dataset, LSMC-
EPMC can obtain superior results among eight algorithms include the EPMC
optimization algorithm on the fitness criterion.

Then, Fig. 2(b), Fig. 2(c) and Fig. 2(d) indicate the Friedman ranking results
on the JacIndex, ClusNum and Time of eight algorithms, respectively. As can
be seen from Fig. 2(b), the semi-supervised learning method Graph-SSC is supe-
rior to other algorithms on most datasets during the JacIndex criterion, which
possibly rely on the thorough consideration of the data by the graph structure.
And the LSMC-EPMC can get the superior results among most datasets on the
JacIndex criterion. Since K-means and Cop-kmeans have determined the ini-
tial number of clusters, Fig. 2(c) only shows the Friedman ranking results of the
LSMC-EPMC algorithm and other six algorithms on the ClusNum criterion.
As can be concluded from Fig. 2(c), the LSMC-EPMC algorithm is slightly infe-
rior to the semi-supervised learning method Graph-SSC, but is higher than the
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other five algorithms including EPMC on most datasets during the ClusNum
criterion. Besides, Fig. 2(d) describes the running time Friedman ranking of the
eight algorithms. We can be seen from Fig. 2(d) that the LSMC-EPMC algo-
rithm shows worse speed than two semi-supervised learning methods, but its
Friedman ranking is higher than the other three classic algorithms and EPMC
on most datasets during the Time criterion. In addition, the Friedman ranking
of the proposed LSMC-EPMC algorithm is superior to all other seven algorithms
on the fitness criterion.

5 Conclusion

Based on the emotional preference and transfer behavior model, an ensemble
algorithm called LSMC-EPMC which merged several learners and methods was
proposed in the paper. First, we incorporate the spectral clustering based on
Laplacian eigenmaps to update the individual position in optimization. Second,
a Monte Carlo statistical data theory is used to simulate the cluster center point
and help to approach the optimal. Third, the proposed LSMC-EPMC is applied
to settle the data clustering tasks.

Then, numerous experiments were performed to compare the proposed
LSMC-EPMC with the other seven clustering algorithms on several standard
datasets. The paper utilized four criteria to measure the clustering performance
of the eight algorithms. In addition, the Friedman test was used to analyze the
ranking of the eight algorithms. Through the Friedman ranking results, we can
conclude that the clustering performance of the proposed LSMC-EPMC is better
than the other seven algorithms including the EPMC.

However, there are still many flaws that need to be settled. For instance,
on the high-dimensional dataset (Vowel dataset) or the large-scale dataset (BA
dataset), the number of centers searched by the LSMC-EPMC is still far from
the actual number of classes. Furthermore, time consumption also requires more
attention. In the future, we will focus on the application of LSMC-EPMC to
real-world unmanned system mixed precision problems, and further improve the
biophysical and mathematical models of LSMC-EPMC to realize the parallelism.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant NOs. 61772200, Shanghai Pujiang Talent Pro-
gram (17PJ1401900), the Information Development Special Funds of Shanghai Eco-
nomic and Information Commission under Grant NO. XX-XXFZ-02-20-2463, and the
Key Program of National Natural Science Foundation of China (62136003).

References

1. Lv, J., Shi, X.: Particle swarm optimization algorithm based on factor selection
strategy, pp. 1606–1611 (2019)

2. Xin, X., Li, K.-J., Sun, K., Liu, Z., Wang, Z.-D.: A simulated annealing genetic
algorithm for urban power grid partitioning based on load characteristics, pp. 1–5
(2019)



328 M. Dai et al.

3. Guan, B., Zhao, Y., Li, Y.: An improved ant colony optimization with an automatic
updating mechanism for constraint satisfaction problems. Expert Syst. Appl. 164,
114021 (2021)

4. Li, X., Zhang, J., Yin, M.: Animal migration optimization: an optimization algo-
rithm inspired by animal migration behavior. Neural Comput. Appl. 24, 1867–1877
(2014)

5. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12, 702–
713 (2008)

6. Qiu, H., Zheng, Q., Msahli, M., Memmi, G., Qiu, M., Jialiang, L.: Topological
graph convolutional network-based urban traffic flow and density prediction. IEEE
Trans. Intell. Transp. Syst. 22(7), 4560–4569 (2021)

7. Szlam, A., Bresson, X.: Total variation and cheeger cuts, pp. 1039–1046 (2010)
8. Dai, M., Guo, W., Feng, X.: Over-smoothing algorithm and its application to

GCN semi-supervised classification. In: Qin, P., Wang, H., Sun, G., Lu, Z. (eds.)
ICPCSEE 2020. CCIS, vol. 1258, pp. 197–215. Springer, Singapore (2020). https://
doi.org/10.1007/978-981-15-7984-4 16

9. Qin, W.: A study on real estate price by using probability statistics theory and
grey theory, pp. 153–156 (2019)

10. Ma, H., Sun, Y., Miao, Yu.: Some extensions of the classical law of large numbers.
Commun. Stat. Theory Methods 49, 3228–3237 (2020)

11. Mikhov, R., et al.: A two-stage Monte Carlo approach for optimization of bimetallic
nanostructures, pp. 285–288 (2020)

12. Mohamed, S., Rosca, M., Figurnov, M., Mnih, A.: Monte Carlo gradient estimation
in machine learning. J. Mach. Learn. Res. 21, 1–62 (2020)

13. Kimmel, R., Li, T., Winston, D.: An enhanced machine learning model for adaptive
Monte Carlo yield analysis, pp. 89–94 (2020)

14. Feng, X., Zhong, D., Yu, H.: A clustering algorithm based on emotional preference
and migratory behavior. Soft. Comput. 24(10), 7163–7179 (2019). https://doi.org/
10.1007/s00500-019-04333-4

15. Kou, G., Peng, Y., Wang, G.: Evaluation of clustering algorithms for financial risk
analysis using MCDM methods. Inf. Sci. 275, 1–12 (2014)

https://doi.org/10.1007/978-981-15-7984-4_16
https://doi.org/10.1007/978-981-15-7984-4_16
https://doi.org/10.1007/s00500-019-04333-4
https://doi.org/10.1007/s00500-019-04333-4

	A Novel Spectral Ensemble Clustering Algorithm Based on Social Group Migratory Behavior and Emotional Preference
	1 Introduction
	2 Mathematical and Physical Models
	2.1 Emotional Preference and Migration Behavior Model
	2.2 Manifold Laplacian Spectral Clustering Model
	2.3 Determining Parameters for the Model Using the Monte Carlo Method

	3 The Proposed LSMC-EPMC Optimization Algorithm
	3.1 Main Framework of LSMC-EPMC Algorithm
	3.2 Calculation Steps of LSMC-EPMC Algorithm

	4 Experiment and Results
	5 Conclusion
	References




