
A Vehicle Value Based Ride-Hailing Order
Matching and Dispatching Algorithm

Shuai Xu1, Zeheng Zhong1, Yikai Luo1, and Bing Shi1,2(B)

1 School of Computer Science and Artificial Intelligence,
Wuhan University of Technology, Wuhan, China

{xushuai,lyk,bingshi}@whut.edu.cn
2 Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, China

Abstract. Online ride-hailing has become one of the most important
transportation ways in the modern city. In the ride-hailing system, how
to efficiently match passengers (orders) with vehicles and how to dis-
patch idle vehicles are key issues. In the online ride-hailing system, the
ride-hailing platform needs to match riding orders with vehicles and dis-
patches the idle vehicles efficiently to maximize the social welfare. How-
ever, the matching and dispatching decisions at the current round may
affect the supply and demand of ride-hailing in the future rounds since
they will affect the future vehicle distributions in different geographical
zones. In fact, vehicles in different zones at different times may have dif-
ferent values for the matching and dispatching results. In this paper, we
use the vehicle value function to characterize the spatio-temporal value
of vehicles in each zone and then use it to design the order matching and
idle vehicle dispatching algorithm to improve the long-term social wel-
fare. We further run experiments to evaluate the proposed algorithm. The
experimental results show that our algorithm can outperform benchmark
approaches in terms of the social welfare, and can also achieve effective
utilization of idle vehicles and thus improve the service ratio.

Keywords: Ride-hailing · Order matching · Idle vehicle dispatching ·
Social welfare

1 Introduction

As the quick development of ride-hailing business, various online ride-hailing
platforms have emerged, such as DiDi and Uber. In fact, the annual volume of
passengers transported by DiDi has exceeded 10 billion.1 The market value of
the global online ride-hailing business is expected to grow to $285 billion by
2030. In such a business, the ride-hailing platform needs to match riding orders
with vehicles and dispatch idle vehicles efficiently in order to improve the profit.

Specifically, the ride-hailing platform needs to match vehicles with orders
while dispatching idle vehicles to the potential high-demanding zones to avoid

1 http://news.cctv.com/2020/10/26/ARTIRbGKnKHCeLzgSAltRgwJ201026.shtml.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Memmi et al. (Eds.): KSEM 2022, LNAI 13370, pp. 289–301, 2022.
https://doi.org/10.1007/978-3-031-10989-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10989-8_23&domain=pdf
http://news.cctv.com/2020/10/26/ARTIRbGKnKHCeLzgSAltRgwJ201026.shtml
https://doi.org/10.1007/978-3-031-10989-8_23

290 S. Xu et al.

randomly exploring potential riding orders periodically (i.e., over multiple
rounds). The ride-hailing platform should maximize the long-term social welfare2

(i.e., the sum of social welfare of all rounds), instead of maximizing the social
welfare of one round. However, the current matching and dispatching decisions
may affect the future vehicle distributions, and thus affect the future matching
and dispatching, which may affect the overall social welfare. Therefore, we need
to consider the decision of current round on the future impacts when design-
ing the order matching and idle vehicle dispatching algorithm to maximize the
long-term social welfare. In more detail, historical information about matching
and the corresponding social welfare can provide the implicit information about
how much value the vehicle can provide in the spatial-temporal state, which can
provide some insights for designing the matching and dispatching algorithm.
Therefore, we design a vehicle value function to characterize the future value
the vehicle can provide in the spatial-temporal state, and then use this value
function to design the order matching and idle vehicle dispatching algorithm. In
so doing, our algorithm can take into account the impacts of current decisions
on the future rounds, and thus can improve the long-term social welfare.

In more detail, this paper advances the state of the art in the following ways.
Firstly, we design a vehicle value function to characterize the future value the vehi-
cle can provide. Then we consider the dispatching of idle vehicle to a zone as a
virtual order. In so doing, we combine the order matching problem and idle vehi-
cle dispatching problem as a whole order matching problem. We then convert the
order matching problem to a bipartite graph maximum weight matching prob-
lem with the vehicle values as the edge weights. In so doing, we can complete the
matching and dispatching quickly, and can avoid the issue that vehicles are con-
centrated in some zones. We run experiments to evaluate the proposed algorithm.
The experimental results show that the proposed algorithm can outperform bench-
mark approaches in terms of the long-term social welfare. It can also improve the
service ratio and achieve an effective utilization of idle vehicles.

The rest of this paper is organized as follows. We introduce the related work
in Sect. 2. We then describe basic settings in Sect. 3, and introduce the proposed
algorithms in Sect. 4. We provide experimental analysis in Sect. 5 and conclude
the paper in Sect. 6.

2 Related Work

There exist many works about ride-hailing, especially in the order matching and
idle vehicle dispatching issues [9,14]. For the order matching problem, the ride-
hailing platform usually matches vehicles with orders to maximize profit, maxi-
mize order service ratio or minimize the travel distance. For maximizing profit,
Cheng et al. [2] proposed a queueing theory-based order matching framework,
while combining demand forecasts with predicted idle time slots to maximize
the expected profits of the platform for each round. For maximizing the order
2 In this paper, we assume that vehicles belong to the ride-hailing platform, and thus

the social welfare consists of the profits of the ride-hailing platform and passengers.

A Ride-Hailing Order Matching and Dispatching Algorithm 291

service ratio, Garaix et al. [3] proposed an iterative algorithm to solve the order
matching problem to maximize the order service ratio. For minimizing vehicle
travel distance, Cao et al. [1] proposed a large-scale many-to-many matching
algorithm based on spatial pruning techniques in the shared mobility environ-
ment to minimize the detour distance of vehicles.

There also exist some works about dispatching idle vehicles. Holler et al. [5]
proposed a deep reinforcement learning based approach for solving the order
matching and idle vehicle dispatching problems to maximize the profits of all
vehicles. Haliem et al. [4] proposed a route planning framework based on demand
forecasting and reinforcement learning to dynamically generate optimal routes.
Liang et al. [6] integrated both real-time order matching and idle vehicle dis-
patching within a Markov decision process framework to increase drivers’ profits
while reducing the waiting time of passengers. Shou et al. [10] used Markov
decision process to model an idle vehicle finding passengers and used inverse
reinforcement learning to solve the reward function of the model.

However, to the best of our knowledge, existing works usually did not consider
the impacts of current decision of order matching and idle vehicle dispatching
on the future rounds, and did not maximize the long-term social welfare. Fur-
thermore, existing works usually analyzed the order matching and dispatching
problems separately. In this paper, we address the above issues by taking the
spatio-temporal value of vehicles into account, and consider the order matching
and idle vehicle dispatching as a whole to maximize the long-term social welfare.

3 Basic Settings

In this paper, we assume that all vehicles are managed by the online ride-hailing
platform. In the ride-hailing system, firstly, passengers submit riding orders to
the platform. Then the platform matches orders with available vehicles, and
provide dispatching suggestions for idle vehicles.

Furthermore, we divide the entire time into T time steps (i.e., rounds) T =
{1, 2, · · · T}. The geographical zone where passengers and vehicles are located is
constructed as a road network, which is defined as follows:

Definition 1. Road Network. The road network is defined as a weighted graph
G = (L,E) where L is the set of nodes and E is the set of edges on the road
network. We use dis (li, lj) to represent the shortest path from node li to lj.
dis (li, lj) is also used to denote the weight of edge 〈li, lj〉.

The riding order is defined as follows:

Definition 2. Order. An order o ∈ O is defined as a tuple (lpo , ldo , tro, t
w
o , valo),

where lpo , ldo is the pick-up and drop-off locations of order o respectively, tro is
the time when the order o is raised, two is the maximum time that a passenger
in order o is willing to wait for the riding service, valo is the highest price the
passenger is willing to pay for the service, which can be regarded as the real value
of this order for the passenger.

292 S. Xu et al.

Noted that in the realistic scenarios, passengers do not need to express the above
value information when submitting orders. However, such information will be
used to maximize social welfare. Therefore, similar to existing work [15,16], we
assume that the passenger is required to submit this value for the riding service.
Note that passengers may not reveal this information truthfully in order to
obtain more profits. How to prevent passengers from dishonestly revealing their
values is beyond the scope of this paper. In addition, we assume that when the
order o is not matched within two time, the passenger is not willing to wait and
the order will be cancelled.

Definition 3. Vehicle. A vehicle v ∈ V is defined as a tuple (lv, cv), where lv
is the current position and cv is the unit travel cost.

Note that different types of vehicles may have different unit travel costs. When
the platform matches orders with vehicles, it can only match the order with
feasible vehicle, which is defined as follows.

Definition 4. Feasible Vehicle. For an order o, a feasible vehicle v must serve
a passenger before the maximum waiting time two , that is, dis(lv, lpo) ≤ Vavg · two ,
where dis (lv, lpo) is the distance from the current position lv of the vehicle to the
pick-up position lpo of order o, and Vavg is the average speed of the vehicle.

We now introduce the social welfare of the ride-hailing system, which consists
of the profits of the passengers and the platform. The passenger’s profit uo is
the passenger’s true value for order o minus its payment for the riding service:

uo =
{

valo − po, o ∈ Ow

0, o /∈ Ow (1)

where po is the price paid to the platform and Ow is the set of matched orders.
When order o is not matched, the passenger’s profit uo = 0. The platform’s
profit is the sum of passengers’ payments for the matched orders minus the
costs of the corresponding vehicles to complete these orders over all time steps:
Up =

∑T
t=1

∑
o∈Ow

t
(po −Co

Θt(o)) , where Ow
t is the set of matched orders at time

step t, Θt denotes the matching results at time step t, and Θt(o) = v means that
order o is matched with vehicle v. CΘt(o) is the cost of vehicle Θt(o) completing
order o, which is:Co

Θt(o) =
(
dis

(
lΘt(o), l

p
o

)
+ dis

(
lpo , ldo

))
· cΘt(o).

We now give the definition of social welfare. Note that in this paper, we
consider the long-term social welfare, which is the sum of the profits of all par-
ticipants over the whole time steps, i.e., the summary profits of the platform and
passengers, which is:

SW =
∑T

t=1

(∑
o∈Ow

t

(valo − po) +
∑

o∈Ow
t

(
po − Co

θt(o)

))

=
∑T

t=1

∑
o∈Ow

t

(
valo − Co

Θt(o)

) (2)

A Ride-Hailing Order Matching and Dispatching Algorithm 293

4 The Algorithm

In this paper, we intend to maximize the long-term social welfare over all time
steps. Therefore, we need to consider the impacts of current decision on the future
matching. We design a vehicle state value function, which implies the ability of
vehicles to make social welfare in different spatio-temporal states. Then based
on the vehicle value function, we design the order matching and idle vehicle
dispatching algorithm.

4.1 Vehicle Value Function

The vehicle value function shows the potential social welfare the vehicle can
make in the future in the current spatial-temporal state, which is:

Definition 5. Vehicle Value Function. The vehicle value function is
V (t, g, c), where t ∈ T is the time step, g ∈ G is the zone index at which
the vehicle is located, and c is the vehicle unit travel cost.

At each time step, the platform collects order information and makes deci-
sions based on the current vehicle states, including whether the vehicle is
matched with the order, whether the vehicle is stationary, or whether the vehicle
is idle and dispatched to some place. Then the platform computes the social wel-
fare of the current time step and enter into the next step. In such a multi-round
matching process, we can capture how the current vehicle state can affect the
future social welfare, i.e., the vehicle value function. This process is a sequential
decision process, and thus we can model it as a Markov Decision Process (MDP)
[11], and then compute the state value function by value iteration.

In the following, we give the description of MDP M = 〈S,A, P, r, γ〉.
State: The state of each vehicle is defined as a tuple s = (t, g, c) ∈ S, which is
the vehicle value function.

Action: The action is a ∈ A = {a1, a2, a3}, where a1 means that the platform
matches an order with a vehicle, a2 means that the vehicle is stationary, and a3

means that the platform dispatches an idle vehicle to an adjacent zone.

Reward: The reward r is the profit of the passengers and the platform when the
action is taken. Note that the reward is 0 when the vehicle’s action is stationary
and negative (caused by the vehicle’s travel cost) when the vehicle’s action is
dispatched. The reward value r is calculated as: r = valo − CΘ(o), where valo
is the passenger’s value for an order o and CΘ(o) is the cost required for the
vehicle Θ(o) to complete the order o. For an order which lasts for T time steps,

the cumulative reward Rγ is: Rγ =
T−1∑
t=0

γt r
T , where γ is a discount factor that

decreases the impact of the past rewards, and is set to 0.9.
In this paper, we solve the MDP by using value iteration. The platform

collects historical matching data to construct a historical state transition tuple
D = {(si, ai, ri, si

′)}, which means that the agent acts ai in the state si to

294 S. Xu et al.

obtain an instant reward ri and transfer to the next state si
′. Since different

types of vehicles may have different unit travel cost, we use cost c to represent
the type information of the vehicle, and therefore the state transition information
of the same type of vehicle constitutes a value function data set. Referring to
existing work [13], we assume that the online policy generating the state transfer
data remains constant during the phase of learning the value function. In the
following, we will omit the policy parameter π. State transition involves three
actions, which are matching orders, stationery and idle vehicle dispatching.

When the action is to match an order, the vehicle receives an immediate reward
Rγ and makes a state transfer. The Temporal difference (TD) update rule is:

V (s) = V (s) + α [Rγ + γV (s′) − V (s)] (3)

where s = (t0, g, c) is the state of the vehicle at the current time step, s′ =
(t3, gld, c) is the state of the vehicle after completing the matching order, in
which t3 is the time step when the passenger reaches the destination and gld is
the index of the order destination zone.

When the action is being stationary, the immediate reward of the agent is 0.
The TD update rule is:

V (s) = V (s) + α [0 + γV (s′′) − V (s)] (4)

Since the vehicle takes a stationary action, the position of the vehicle does not
change, i.e., s′′ = (t1, g, c).

When the action is to dispatch idle vehicle, we construct a virtual order where
the value is 0, the origin of the order is g, and the destination of the order is one
of the neighboring zones of g. The TD update rule is:

V (s) = V (s) + α
[
Rγ

′ + γV (s′′′) − V (s)
]

(5)

where s′′′ = (t2, g′′′, c) is the state of the vehicle after the dispatching is com-
pleted, in which t2 is the time step when the idle vehicle is dispatched to the
destination, g′′′ ∈ gnear is a neighboring zone of g.

Next, we describe how to compute the vehicle value function V . The platform
first collects historical state transfer data, and then uses a dynamic programming
based value iteration algorithm to backward recursively calculate value V (si) in
each state to obtain the vehicle value function V (s). The details are shown in
Algorithm 1.

4.2 Order Matching and Idle Vehicle Dispatching Algorithm Based
on Value Function

After obtaining the vehicle value function, we now describe how to use this
function to design the order matching and idle vehicle dispatching algorithm.
The order matching and idle vehicle dispatching problem to maximize the social
welfare is actually a bipartite graph maximum weight matching problem. At each
time step t, the set of orders Ot and the set of vehicles Vt are two disjoint sets

A Ride-Hailing Order Matching and Dispatching Algorithm 295

Algorithm 1: Dynamic Programming based Value Iteration Algo-
rithm(DPVI).
Input: History state transfer tuple D = {(si, ai, ri, si

′)}, where each state
si = (ti, gi, c) consists of the current time step, geographic zone index
and cost of the vehicle.

Output: Vehicle value function V
1 Initialize: ∀s, V (s) ← 0, N (s) ← 0;
2 for t = T − 1 to 0 do
3 Dt ← {(si, ai, ri, si

′)|∀si = (ti, gi, c), ti = t};
4 foreach (si, ai, ri, si

′) ∈ Dt do
5 N (si) ← N (si) + 1;

6 V (si) ← V (si) + 1
N(si)

(
γΔt(ai)V (si

′) + Rγ (ai) − V (si)
)

7 end

8 end
9 return V

of vertices of the bipartite graph. The weight of edge 〈o, v〉 is the difference ΔV
of the value of vehicle v after completing order o, which is: ΔV = γΔto,vV (s′)−
V (s) + Rγ , where s is the state when the vehicle v is matched with the order
o and s′ is the state when the vehicle v delivers the passenger corresponding
to the order o to the destination, Δto,v is the time required for vehicle v to
complete this trip, and Rγ is the cumulative reward. The details of the value
function-based order matching and idle vehicle dispatching algorithm are shown
in Algorithm 2, which is named VFOMIVD for short.

In Algorithm 2, line 1 initializes the set of matched orders Ow, the matching
result Θ, the social welfare SW . For each time step of order matching and idle
vehicle dispatching, lines 3 and 4 initialize the set of orders Ot and vehicle set Vt.
The order collection Ot contains orders submitted by passengers at the current
time step and orders that have not been matched in previous steps and are still
within the maximum waiting time. The vehicle set Vt includes vehicles that are
not serving orders at the current step, i.e., idle vehicles. Lines 5 to 17 construct
the bipartite graph. For each matching pair 〈o, v〉, the platform calculates the
difference ΔV and use it as the weights of the edges of the bipartite graph.

Note that only the matching pair 〈o, v〉 with ΔV > 0 is inserted into the
bipartite graph, while if vehicle v cannot serve the passenger corresponding to
order o within the maximum waiting time, its corresponding ΔV = 0. For each
idle vehicle v, the platform fictitiously creates several virtual orders o′ from the
current location of vehicle v to its neighboring zone g ∈ gnear. In so doing,
the algorithm combines the order matching and idle vehicle dispatching as a
whole. In the order matching, the platform calculates the difference ΔV ′ of its
corresponding state value and insert it into the bipartite diagram. In lines 18,
the platform solves the bipartite graph using the Kuhn-Munkres algorithm [8].
Line 19 calculates the social welfare for the current time step, and lines 20 to 22
record the results for the current time step. Finally, the platform updates the

296 S. Xu et al.

Algorithm 2: Value Function based Order Matching and Idle Vehicle Dis-
patching Algorithm(VFOMIVD).
Input: Iterate through the set of orders O, the set of vehicles V, and the

vehicle state value function V .
Output: The set of matched orders Ow, matching result Θ, social welfare SW .

1 Initialize: Ow ← ∅, Θ ← ∅, SW = 0 ;
2 for t = 0 to T do
3 Ot ← {o ∈ O|tr

o + tw
o ≤ t + Δt};

4 Vt ← select empty vehicles (V, t);
5 Initialize the bipartite graph G = (Ot, Vt, E);
6 foreach 〈o, v〉 ∈ Ot × Vt do
7 calculate the state value difference ΔV corresponding to 〈o, v〉;
8 if ΔV > 0 then
9 assign the weights of edges 〈o, v〉 to ΔV and insert them into the

bipartite graph;

10 end
11 foreach v ∈ Vt do
12 foreach g ∈ gnear do
13 calculate the difference ΔV ′ of the state value of the vehicle v from

the current position to the neighboring zone g ;
14 if ΔV ′ > 0 then
15 assign the weights of edges 〈o′, v〉 to ΔV ′ and insert them into

the bipartite graph G;

16 end

17 end
18 Ow

t , Θt, Vt ← KM (G);
19 SWt ← calculate social welfare (Ow

t , Θt);
20 Ow ← Ow ∪ Ow

t ;
21 Θ ← Θ ∪ Θt;
22 SW ← SW + SWt;
23 Update vehicle trip information in Θt;
24 O ← O\Ow

t ;

25 end
26 return Ow, Θ, SW

trips of the vehicles that have been matched with orders and eliminates the set
of orders Ow

t that have been matched from the set of orders O.

5 Experimental Analysis

In this section, we run experiments to evaluate the proposed algorithm based
on the real taxi order data in New York city, which has been used by a large
number of related works [9,13,15].

A Ride-Hailing Order Matching and Dispatching Algorithm 297

(1) Order Data. We collect taxi order data on Manhattan Island in June 2019
from New York City Taxi and Limousine Commission (TLC).3 Each taxi
order data contains departure and destination locations, order starting time,
trip fare and trip mileage.

(2) Map Data: We use Manhattan taxi zone map provided by TLC as the map
data, and we number each zone.

(3) Fuel Consumption Data. We cannot find the travel cost data of New York
taxis. Instead, we collect the urban vehicle fuel consumption data of type
M1 and M2 from China Automobile Fuel Consumption Query System4 of
the Ministry of Public Information of China to compute the vehicle cost in
the below.

(4) The Shortest Path Cache. To ensure that the distance between any two
nodes can be quickly queried during experiments, we pre-build the cache of
the shortest path matrix and the shortest path distance matrix.

(5) Order Data Processing. We remove some orders with noises (i.e. orders with
invalid fares, zero trip milage and so on). We eliminate the order data in
those isolated zones. We count the number of orders per hour each day and
we find that the number of orders on weekdays and weekends varies greatly
over time. For consistency, we use the order data of weekdays (20 days in
total) in the evaluation.

5.1 Experimental Settings

The number of orders for each hour of a weekday is also significantly different,
and the performance of the algorithm in the peak period is more important.
Furthermore, a large number of order data in the peak time period is also helpful
to generate the vehicle value function. Therefore, we choose the time period
(19:00 to 21:00) in the weekday for the evaluation. We now compute the average
number of order data from 19:00 to 21:00 in these 20 days, and randomly choose
the average number of one day as the order input. For other parameters, we set
the length of each time step as 60 s. The maximum waiting time for passengers
is chosen randomly from {3 min, 4 min, 5 min, 6 min, 7 min, 8 min}. The average
vehicle travel speed Vavg is set to 7.2 mph. For each vehicle, the unit travel cost is
randomly selected from {6, 8, 10}×2.5/6.8/1.6$/km.5 The initial location of the
vehicle is randomly selected in Manhattan taxi zone map. In the experiments,
we try different numbers of vehicles, which is increased from 1500 to 3000. For
each experiment, we repeat it for 10 times and compute the average result.

3 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
4 https://yhgscx.miit.gov.cn/fuel-consumption-web/mainPage.
5 The basic fare of New York taxi is 2.5$ per mile, the average fuel consumption is

6.8 L per one-hundred kilometres according to the above fuel consumption data, and
1.6 is the converting factor between mile and kilometre.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://yhgscx.miit.gov.cn/fuel-consumption-web/mainPage

298 S. Xu et al.

5.2 Evaluation of Order Matching and Idle Vehicle Dispatching
Algorithm

In this section, we evaluate the proposed VFOMIVD algorithm against some
benchmark algorithms.

Benchmark Algorithms and Metrics

(1) mdp [13]. The mdp algorithm also utilizes the vehicle value function to guide
the order matching, but its vehicle state does not consider the variability of
vehicles in terms of cost and also does not consider the dispatching of idle
vehicles.

(2) mT-Share [7]. The mT-Share algorithm intends to minimize the vehicle
travel cost. The order matching in the mT-Share algorithm uses a greedy
algorithm to match orders with vehicles with the least extra cost.

(3) Nearest-Matching. The Nearest-Matching algorithm is widely used in
industry (i.e., Uber), where the platform matches orders with the nearest
vehicles.

(4) Greedy&GPri [16]. The Greedy&GPri algorithm greedily matches orders
with vehicles with the highest social welfare iteratively and adopts a critical
value-based pricing algorithm. The reason of choosing this greedy method is
that existing research has showed that greedy method can perform well in
the crowdsourcing tasks [12].

In terms of the evaluation metrics, in addition to the social welfare, we also
investigate service ratio, which is the ratio of the number of matched orders to
the total number of orders submitted by passengers.

Analysis of Experimental Results

The experimental results are shown in Fig. 1(a). We find that as the number of
vehicles increases, the social welfare increases since more orders are served. We
find that VFOMIVD algorithm achieves the highest social welfare. We also find
that greedy based method Greedy&Gpri can perform well. We also look into the
service ratio in Fig. 1(b). We find that the VFOMIVD algorithm achieves the
maximum service ratio. Although the service ratio of algorithms such as mdp is
close to that of the VFOMIVD algorithm when the number of vehicles increases,
the social welfare of the VFOMIVD algorithm is still the largest. This may imply
in our algorithm, vehicles are more likely to converge to zones where more social
welfare is generated.

A Ride-Hailing Order Matching and Dispatching Algorithm 299

Fig. 1. Experiments of order matching and idle vehicle dispatching algorithm.

5.3 Evaluation of Idle Vehicle Dispatching

In this section we further analyze the effectiveness of the idle vehicle dispatching
algorithm. In order to evaluate the performance of the idle vehicle dispatch-
ing algorithm, we combine different benchmark dispatching algorithms with the
order matching module of VFOMIVD to generate the benchmark algorithms.

Benchmark Algorithms and Metrics

1. VFOM. We remove the idle vehicle dispatching module of VFOMIVD algo-
rithm (lines 12 to 19 in Algorithm 2) and keep the order matching module.

2. VFOM-RD. This algorithm adds random dispatching into VFOM algo-
rithm, which randomly dispatches idle vehicles to their neighboring zones.
Random dispatching has been used in related works [16].

3. VFOM-ND. It adds the nearest dispatching to the VFOM algorithm, which
is a common dispatching algorithm used by companies (e.g., Uber) to dispatch
idle vehicles to the nearest neighboring zone [3].

In addition to evaluating the performance on social welfare and service ratio,
we consider one more metric to evaluate the idle vehicle dispatching algorithm,
which is the platform operating cost, consisting of the costs of all served orders
and idle vehicles travelling to dispatched zones over the whole time steps.

Analysis of Experimental Results

The experimental results are shown in Fig. 2(a). We find that VFOMIVD algo-
rithm achieves the largest social welfare. As the number of vehicles increases,
the social welfare obtained by all algorithms increases. We also find that the
social welfare of VFOM algorithm (where no dispatching algorithm is used) and
VFOM-RD is similar. This may imply that random dispatching is not beneficial
for the utilization of idle vehicles. From Fig. 2(b), we find that the VFOMIVD
algorithm achieves the maximum service ratio. This means that after using the
proposed dispatching algorithm, the platform can serve more orders, and thus
can achieve the maximum social welfare. From Fig. 2(c), we find that the plat-
form operating cost of the VFOMIVD algorithm is higher than the VFOM algo-
rithm. However, from Figs. 2(a) and 2(b) we find that the social welfare and

300 S. Xu et al.

service ratio of the VFOMIVD algorithm are higher. This may imply that the
increased operating cost of our algorithm is caused by dispatching idle vehicles
to zones with more riding demands, and thus can serve more orders and bring
more social welfare.

Fig. 2. Experiments of idle vehicle dispatching.

In summary, we find that because VFOMIVD algorithm takes into account
the spatio-temporal value of vehicles and dispatches vehicles to zones where more
vehicles are needed, it can utilize idle vehicles to serve more riding orders, and
thus can increase social welfare.

6 Conclusion

In this paper, we proposed an order matching and idle vehicle dispatching algo-
rithm to maximize the long-term social welfare in the ride-hailing system. By
considering the impacts of current order matching and idle vehicle dispatching
decisions on the future rounds, we design a vehicle value function, which can
characterize the ability of the vehicle to make social welfare in the future spatio-
temporal state. Based on the vehicle value function, we design the order matching
and idle vehicle dispatching algorithm. Finally, we run extensive experiments to
evaluate the proposed algorithm. The experimental results show that our algo-
rithm can help online ride-hailing platforms to dispatch idle vehicles efficiently
to improve the utilization of idle vehicles, and thus can increase the service ratio
and social welfare.

Acknowledgement. This paper was funded by the Shenzhen Fundamental Research
Program (Grant No. JCYJ20190809175613332), the Humanity and Social Science
Youth Research Foundation of Ministry of Education (Grant No. 19YJC790111),
the Philosophy and Social Science Post-Foundation of Ministry of Education (Grant
No. 18JHQ060) and the Fundamental Research Funds for the Central Universities
(WUT:2022IVB004).

References

1. Cao, B., Hong, F., Wang, K., Xu, J., Zhao, L., Fan, J.: Uroad: an efficient method
for large-scale many to many ride sharing matching. J. Comput. Res. Dev. 56(4),
866 (2019)

A Ride-Hailing Order Matching and Dispatching Algorithm 301

2. Cheng, P., Feng, C., Chen, L., Wang, Z.: A queueing-theoretic framework for vehicle
dispatching in dynamic car-hailing. In: 35th International Conference on Data
Engineering, pp. 1622–1625 (2019)

3. Garaix, T., Artigues, C., Feillet, D., Josselin, D.: Optimization of occupancy rate in
dial-a-ride problems via linear fractional column generation. Comput. Oper. Res.
38(10), 1435–1442 (2011)

4. Haliem, M., Mani, G., Aggarwal, V., Bhargava, B.: A distributed model-free ride-
sharing approach for joint matching, pricing, and dispatching using deep reinforce-
ment learning. IEEE Trans. Intell. Transp. Syst. 22, 1–12 (2021)

5. Holler, J., et al.: Deep reinforcement learning for multi-driver vehicle dispatch-
ing and repositioning problem. In: 2019 IEEE International Conference on Data
Mining, pp. 1090–1095 (2019)

6. Liang, E., Wen, K., Lam, W.H., Sumalee, A., Zhong, R.: An integrated reinforce-
ment learning and centralized programming approach for online taxi dispatching.
IEEE Trans. Neural Netw. Learn. Syst. 1 (2021)

7. Liu, Z., Gong, Z., Li, J., Wu, K.: Mobility-aware dynamic taxi ridesharing. In: 36th
International Conference on Data Engineering, pp. 961–972 (2020)

8. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math. 5(1), 32–38 (1957)

9. Sharma, S.K., Routroy, S., Yadav, U.: Vehicle routing problem: recent literature
review of its variants. Int. J. Oper. Res. 33(1), 1–31 (2018)

10. Shou, Z., Di, X., Ye, J., Zhu, H., Zhang, H., Hampshire, R.: Optimal passenger-
seeking policies on e-hailing platforms using Markov decision process and imitation
learning. Transp. Res. Part C Emerg. Technol. 111, 91–113 (2020)

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

12. Tong, Y., She, J., Ding, B., Chen, L., Wo, T., Xu, K.: Online minimum matching
in real-time spatial data: experiments and analysis. Proc. VLDB Endow. 9(12),
1053–1064 (2016)

13. Xu, Z., et al.: Large-scale order dispatch in on-demand ride-hailing platforms: a
learning and planning approach. In: 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 905–913 (2018)

14. Yi, X., Yongxin, T., Wei, L.: Recent progress in large-scale ridesharing algorithms.
J. Comput. Res. Dev. 57(1), 32 (2020)

15. Zhao, H., Xiao, M., Wu, J., Liu, A., An, B.: Reverse-auction-based competitive
order assignment for mobile taxi-hailing systems. In: 2019 Database Systems for
Advanced Applications, pp. 660–677 (2019)

16. Zheng, L., Cheng, P., Chen, L.: Auction-based order dispatch and pricing in
ridesharing. In: 35th International Conference on Data Engineering, pp. 1034–1045
(2019)

	.26em plus .1em minus .1emA Vehicle Value Based Ride-Hailing Order Matching and Dispatching Algorithm
	1 Introduction
	2 Related Work
	3 Basic Settings
	4 The Algorithm
	4.1 Vehicle Value Function
	4.2 Order Matching and Idle Vehicle Dispatching Algorithm Based on Value Function

	5 Experimental Analysis
	5.1 Experimental Settings
	5.2 Evaluation of Order Matching and Idle Vehicle Dispatching Algorithm
	5.3 Evaluation of Idle Vehicle Dispatching

	6 Conclusion
	References

