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Abstract. Automatic detection and segmentation of thyroid nodules
is crucial for the identification of benign and malignant nodules in
computer-aided diagnosis (CAD) systems. However, the diverse sizes of
thyroid nodules in ultrasound images, nodules with complex internal tex-
tures, and multiple nodules pose many challenges for automatic detection
and segmentation of thyroid nodules in ultrasound images. In this paper
we propose a multi-task network based on Trident network, called MTN-
Net, to accurately detect and segment the thyroid nodules in ultrasound
images. The backbone of MTN-Net can generate scale-specific feature
maps through trident blocks with different receptive fields to detect thy-
roid nodules with different sizes. In addition, a novel semantic segmen-
tation branch is embedded into the detection network for the task of
segmenting thyroid nodules, which is also valid for the complete segmen-
tation of nodules with complex textures. Furthermore, we propose an
improved NMS method, named TN-NMS, for combining thyroid detec-
tion results from multiple branches, which can effectively suppress falsely
detected internal nodules. The experimental results show that MTN-Net
outperforms the State-of-the-Arts methods in terms of detection and
segmentation accuracy on both the public TN3K dataset and the public
DDTI dataset, which indicates that our method can be applied to CAD
systems with practical clinical significance.
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1 Introduction

Thyroid nodule is a common clinical problem [1] and its incidence rate has risen
rapidly worldwide. Ultrasound imaging technology has the characteristics of non-
invasive, non-radioactive, convenient and inexpensive [2]. It is the primary tool
for the diagnosis of thyroid nodule diseases. The diagnosis of thyroid nodules
in ultrasound images depends on experienced clinicians [3]. However, due to
the low contrast and low signal-to-noise ratio of ultrasound images, it hinders
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clinicians from making effective diagnosis. In order to solve this problem, more
and more computer-aided diagnosis(CAD) systems are developed to assist in the
diagnosis of thyroid diseases. In traditional CAD systems, the Region of Interest
(ROI) of nodules is first defined manually by the clinicians, which is very time
consuming and highly dependent on the clinicians’ experience, and then the
nodules are segmented based on the ROI. Therefore, automatic detection and
segmentation of thyroid nodules is essential for CAD systems. The detection
of thyroid nodules is used to predict the bounding boxes of nodules, and then
automatic segmentation of nodules is performed based on the bounding boxes,
which can effectively reduce the workload of clinicians.

In recent years, many deep learning methods have been proposed and applied
to the detection and segmentation of thyroid nodules in ultrasound images.

Thyroid Nodule Detection Methods. Thyroid nodule detection models in ultra-
sound images can be divided into two types: two-stage models and one-stage
models. In order to obtain higher detection precision, the two-stage models
are usually applied to the detection of thyroid nodules. Li et al. [4] proposed
an improved Faster R-CNN [12] for thyroid papillary carcinoma detection. By
using the strategy of layer concatenation, the detector can extract the features
of surrounding region around the cancer regions, which improves the detection
performance. Liu et al. [5] replaced the layer concatenation strategy with Feature
Pyramid Network(FPN) [13] and added it to Faster R-CNN [12] to construct a
multi-scale detection network, which can extract the features of nodules with
different scales. Abdolali et al. [6] replaced the network backbone from Faster
R-CNN [12] to Mask R-CNN [14] with higher performance, using a well-designed
loss function and transfer learning strategy to achieve high accuracy on a small
dataset. These two-stage detection models mentioned above can obtain high
precision in thyroid nodule detection, but the detection speed is lower than the
one-stage models. In order to detect thyroid nodules with different scales, Song
et al. [7] utilized a multi-scale SSD [15] model with spatial pyramid module to
achieve high detection accuracy. To fully extract multi-scale features from fea-
ture maps, shahroudnejad et al. [8] constructed a one-stage model with FPN for
detecting and classifying pyramid nodules, which can extract global and local
information from feature maps. The above detection methods fully extracted
thyroid nodule features at different scales by adding modules that extract multi-
scale features, such as the connection between low-level and high-level layers,
and FPN, thereby improving the accuracy of detecting thyroid nodules.

Thyroid Nodule Segmentation Methods. Ying et al. [9] proposed a cascaded con-
volutional neural network that first segmented the Region of Interest(RoI) con-
taining thyroid nodules, and then used a VGG network to accurately segment
thyroid nodules on the basis of RoI. Wang et al. [10] constructed a cascade seg-
mentation network based on DeepLabv3plus [16]. The rough location of nodules
was first obtained, and then the nodules were segmented accurately based on the
rough location, which eliminated the influence of the area around the nodules on
the segmentation results, and thus obtained more accurate segmentation results.
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To remove the mistake recognition of non-thyroid areas as nodules, Gong et al.
[11] embedded a priori guided feature module of thyroid region into the nodule
segmentation model for the first time, which improved the accuracy of nodule
localization and enhanced the segmentation performance of thyroid nodules. The
above-mentioned thyroid nodule segmentation methods first remove the influ-
ence of irrelevant regions, and then perform further segmentation on the Region
of Interest(RoI), thus reducing the false recognition of non-nodular regions as
nodules.

Although many deep learning methods have been applied to the detection
and segmentation tasks of thyroid nodules, most of them only complete one
of the two tasks. Only a few methods can detect and segment thyroid nodules
simultaneously. Among them, thyroid nodule detection methods achieve high
accuracy while maintaining high efficiency, but there are still many problems
in detecting thyroid nodules with extreme sizes, nodules with complex internal
texture, and multiple nodules. It leads to missed detection of small nodules,
false detection of intermediate nodules, and false detection of tissue similar to
nodules as nodules. In addition, thyroid nodule segmentation method achieves
high accuracy while there are still many challenges to be solved in becoming a
real-time system.

To address the above problems, we propose a multi-task thyroid nodule detec-
tion and segmentation model based on Trident network [17], called MTN-Net. It
is embedded with a novel semantic segmentation branch for accurate segmenta-
tion of thyroid nodules, and it includes an improved NMS algorithm, called TN-
NMS, for combining the thyroid nodule detection results from multiple branches.
Therefore, MTN-Net achieves significant effects on the detection of thyroid nod-
ules with different sizes and thyroid nodules with complex internal texture, and
effectively suppresses the false detection of intermediate nodules in large nodules.

The main contributions of this paper can be summarized as follows:

– We propose a multi-task network based on Trident network [17] for the detec-
tion and segmentation of thyroid nodules in ultrasound images, which can
generate specific scale feature maps through trident block [17] with different
receptive fields. So it is effective in detecting thyroid nodules with different
sizes.

– A novel semantic segmentation branch based on FCN [18] is embedded into
the detection network to complete the segmentation task of thyroid nodules,
which is valid for completely segmenting the thyroid nodules with complex
texture.

– We propose an improved NMS algorithm called TN-NMS to fuse the detec-
tion results from multiple branches, which can successfully suppress the false
detection results of internal nodules in large nodules.

The rest of this paper is as follows: we first describe the details of our proposed
model and the feature generation in Sect. 2. We then introduce the experimental
setup and results in Sect. 3. Finally, we conclude our work and indicate future
directions in Sect. 4.
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2 Method

2.1 Overall Architecture

The proposed MTN-Net is a multi-branch two-stage thyroid nodule detection
and segmentation model based on Trident network [17]. Figure 1 illustrates the
overall architecture of our proposed MTN-Net. The network is composed of
backbone, extended Faster R-CNN head, and TN-NMS algorithm. We adopt
ResNet-101 with trident blocks as the backbone, in which the conv4 x stage
consists of trident blocks containing three branches. It can fully extract the multi-
scale features of thyroid nodules in ultrasound images, and thus contributing
to the detection of thyroid nodules with different sizes. Additionally, we add
a novel semantic segmentation branch to the extended Faster R-CNN head to
accomplish the thyroid nodule segmentation task. Finally, an improved NMS
algorithm called TN-NMS is used to combine the detection results of thyroid
nodules from multiple branches.

Ultrasound images of thyroid nodules are input to the backbone to generate
feature maps with different receptive fields. They are then fed into the extended
Faster R-CNN head to produce the corresponding detection and segmentation
results, which are eventually combined by the TN-NMS algorithm to generate
the output results.

Fig. 1. The architecture of proposed MTN-Net. MTN-Net is comprised of backbone
(ResNet-101 with trident blocks), extended Faster R-CNN head, and TN-NMS algo-
rithm.
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2.2 Semantic Segmentation Branch

We use a novel semantic segmentation branch based on FCN [18] to segment thy-
roid nodules. This semantic segmentation branch is embedded into the Faster
R-CNN detection head and parallel to the bounding-box classification and regres-
sion. In addition, we add an RoIAlign [14] layer in Faster R-CNN head to remove
the rough space quantization of RoIPool [19], which can improve the accuracy of
mask prediction at pixel level. The extended Faster R-CNN head is displayed in
Fig. 2. Different from the existing extended Faster R-CNN heads mentioned in
[14], our extended Faster R-CNN head has a novel semantic segmentation branch
capable of segmenting thyroid nodules with complex textures more completely.
We add four convolution layers before the deconvolution layer of the semantic
segmentation branch to fully obtain the features in the Region-of-Interest(RoI),
so as to completely segment the nodules with complex internal texture. Mean-
while, we add Lmask to the loss function. For some predicted boxes that do
not contain thyroid nodules, the proposed semantic segmentation branch can
suppress some incorrectly detected boxes through Lmask.

Fig. 2. The architecture of our extended Faster R-CNN head, in which a novel seman-
tic segmentation branch is embedded to complete the segmentation task of thyroid
nodules.

2.3 TN-NMS

NMS is utilized to merge the detection results from multiple branches in Trident
network [17]. It is described as [20]:

Si =

{
Si, iou (M, bi) < Nt

0, iou (M, bi) ≥ Nt

(1)
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Fig. 3. The results of a thyroid nodule with complex internal texture being correctly
detected (yellow) and incorrectly detected (red and green) along with their confidence
scores. Since the iou (0.03) of the red and yellow boxes, as well as the iou (0.11) of
the green and yellow boxes, are much smaller than the threshold 0.5, the results of
incorrect detections cannot be suppressed using the NMS algorithm (as shown in (c)).
In contrast, the niou (1.0) of the red box and the yellow box, as well as the niou (1.0) of
the green box and the yellow box exceed the threshold 0.9, so the TN-NMS algorithm
can successfully suppress the bounding boxes of these false detections (as shown in (d))
(Color figure online)

Algorithm 1: TN-NMS

Input: Boxes = {b1, ..., bN}, Scores = {s1, ..., sN},
Nt1 , Nt2 ;
Boxes is the list of detection boxes from three branches;
Scores contains corresponding detection scores from three branches;
Nt1 is the NMS threshold;
Nt2 is the nIoU threshold;

Output: R is the merged result from three branches;
Scores is the scores corresponding to the detection boxes in the merged
result;

1 begin
2 R ← {}
3 while Boxes �= empty do
4 m ← argmax {Scores}
5 M ← bm
6 R ← R ⋃ M; Boxes ← Boxes − M
7 for bi in Boxes do
8 if iou (M, bi) ≥ Nt1 or niou (M, bi) ≥ Nt2 then
9 Boxes ← Boxes − bi

10 Scores ← Scores − si
11 end

12 end

13 end
14 return R, Scores

15 end
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The input data in Eq. 1 consists of an ordered list of detection boxes Boxes
with scores Scores and a threshold Nt. Si represents a re-scoring function, M
is the box with the highest score in Boxes, bi indicates the currently selected
box in Boxes, iou denotes the intersection area divided by the union area of two
boxes, Nt is a threshold indicating whether the currently selected box bi should
be removed. NMS starts by selecting the bounding box M with the highest score
in Boxes, calculates the iou of the remaining bounding boxes bi in Boxes and
M, then deletes the bounding box bi whose iou is greater than the threshold Nt,
which is usually set to 0.5. However, the area of intermediate nodules detected by
mistake is usually much smaller than that of large nodules, resulting in the iou of
their corresponding bounding boxes less than 0.5, and thus the NMS algorithm
is unable to suppress the results of these false detections, as shown in Fig. 3(c).
Therefore, in order to suppress the bounding box of these intermediate nodules,
we propose a new calculation method for thyroid nodule detection, named niou,
which represents the intersection region of bi and M divided by the region of bi.
It is described as:

niou (M, bi) =
M ∩ bi

bi
(2)

The niou calculated by the bounding box of incorrectly detected nodules and
correctly detected nodules is usually equal to or close to 1.0, so that the results
of incorrect detection above the threshold 0.9 are successfully suppressed, as
shown in Fig. 3(d). Meanwhile, we add niou to the NMS algorithm and propose
an improved NMS algorithm, named TN-NMS, which is used to combine the
detection results of three branches and is described as:

Si =
{

Si, iou (M, bi) < Nt1 and niou (M, bi) < Nt2

0, iou (M, bi) ≥ Nt1 or niou (M, bi) ≥ Nt2
(3)

where Nt1 and Nt2 are thresholds that determine whether the currently selected
bounding box bi should be removed from Boxes. The detailed process of TN-
NMS is shown in Algorithm 1. In each step of TN-NMS, the scores of all detection
boxes that overlap with M are updated, then the detection boxes with a score of
0 are removed from Boxes, hence the computational complexity of each step of
TN-NMS is O(N), where N is the number of detection boxes in Boxes. Therefore,
for N detection boxes in Boxes, the computational complexity of the TN-NMS
algorithm is O(N2), which is the same as that of the NMS algorithm.

2.4 Loss Function

As shown in Fig. 1, the proposed network is a multi-task network, whose loss
function combines the loss of classification, bounding box regression and seg-
mentation. In order to improve performance, we add weighting factors to the
loss function of each task. Therefore, the total loss function on each Region of
Interest(RoI) is defined as follows:

Ltotal = λcls ∗ Lcls + λbox ∗ Lbox + λmask ∗ Lmask (4)
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where Lcls, Lbox, Lmask indicate classification loss, bounding box regression
loss and mask segmentation loss respectively. λcls, λbox, λmask are weighting
factors of each component. We use the cross entropy loss function to calculate the
classification loss of thyroid nodules, and utilize the smooth L1 loss for boundary
box regression. The definitions of these two tasks are the same as those defined
in [19]. Besides, we adopt the binary cross entropy loss to calculate the mask
segmentation loss defined on the foreground proposals. Therefore, the loss of
mask segmentation task is defined as follows:

Lmask = − 1
n2

∑
0≤i,j≤n

BCE
(
yij , y

∗
ij

)
(5)

where n is the length and width of each mask, yij is the predicted value and
y∗
ij is the growth truth of each class. Furthermore, weighting factors can help

optimize the performance of classification, detection and segmentation tasks.

3 Experiments

3.1 Dataset and Preprocessing

We evaluated the proposed architecture on the public thyroid nodule region
segmentation dataset called TN3K provided in [11], which contains 3493 ultra-
sound images obtained from 2421 patients. In addition, we compare the perfor-
mance of our proposed method with State-of-the-Arts methods on the public
DDTI dataset [21]. It contains 347 thyroid ultrasound images from 299 patients
with thyroid disease, annotated by radiologists for thyroid nodule segmenta-
tion results. All the cases in the DDTI dataset are from the IDIME Ultrasound
Department, one of the largest imaging centers in Colombia.

In order to adopt these two datasets to thyroid nodule detection and seg-
mentation, we add the bounding box annotation for object detection. Besides,
we use the operation of adaptive histogram equalization for each image to trans-
form the gray level of the image, so as to improve the contrast of the image. In
addition, we perform data augmentation operations on the preprocessed images
used for training, including random mirror flip, random left-right flip, random
clipping, random sharpening, random increase or decrease of image contrast.

3.2 Implementation Details

The proposed network is implemented in PyTorch 1.8.1. The experimental codes
are modified on the basis of Detectron2 [22], and many default configuration
parameters are used for model training and inference. The model is trained on
two NVIDIA Tesla P100 GPUs with a batch size of 16, and the backbone of
the network is pre-trained on MS-COCO [23]. In our experiments, Nt1 and Nt2

in TN-NMS are set to 0.5 and 0.9 respectively, and λcls, λbox, λmask of loss
function are set to 2, 5 and 2 respectively. Moreover, the model is trained with
the stochastic gradient descent optimizer and the learning rate of warmup and
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cosine annealing for 50 epochs, whose learning rate increases linearly to 0.05 in
the first 1000 iterations, then decreases gradually in the form of cosine annealing.
The total time of model training is 20 h, and the inference time of each image is
0.85 s.

3.3 Evaluation Metrics

For the evaluation, in order to accurately quantify the performance of our model,
standard COCO metrics including AP (Average Precision), AP50 and metrics
for evaluating the Average Precision of objects with different size, including APS

(less than 32 × 32), APM (from 32 × 32 to 96 × 96), APL (greater than 96 × 96)
are used as evaluation metrics. Since the smallest thyroid nodule contained in
the DDTI dataset are larger than 32 × 32 pixels in size, APS cannot be used as
an evaluation metric for the DDTI dataset. Therefore, we measure the thyroid
nodule detection and segmentation performance of AP , AP50, APM , APL on
the DDTI dataset.

3.4 Ablation Study

In order to validate the performance of our proposed architecture, the evalua-
tion metrics of detection and segmentation are used to quantify the comparison
between our proposed model and baseline model. The baseline is Trident network
with a mask prediction branch proposed in [14], which includes a 2×2 decon-
volution layer with stride 2 and a 1 × 1 convolution layer for predicting mask.
Baseline/ResNet-101 backbone refers to the baseline network with ResNet-101
as the backbone. Then we respectively add semantic segmentation branches and
TN-NMS algorithm on baseline, which is denoted as bNet+S and bNet+T.

Table 1. Ablation studies on the detection of thyroid nodules.

Model TN3K DDTI

AP AP50 APS APM APL AP AP50 APM APL

Baseline/ResNet-101 backbone 54.7 85.7 32.8 47.3 61.1 49.0 85.1 42.0 57.2

bNet+S 54.9 86.6 30.6 47.2 62.5 49.8 87.2 43.7 57.5

bNet+T 54.7 86.6 36.7 48.0 61.6 49.7 85.5 43.0 57.4

Ours 55.2 87.1 34.4 48.2 62.8 51.3 88.7 45.4 57.8

As shown in Table 2, bNet+S improves 1.2% and 1.0% on APL for nodule
segmentation on TN3K and DDTI, respectively, which indicates that semantic
segmentation branche has high performance in segmenting large nodules. From
Table 1, we can see that bNet+T has a 3.9% and 0.4% improvement on APS and
APL for TN3K and 0.2% improvement on APL for DDTI, respectively, which
demonstrates that the TN-NMS algorithm improves the detection performance
of large and small nodules by suppressing the internal nodules in large nodules.
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Table 2. Ablation studies on the segmentation of thyroid nodules.

Model TN3K DDTI

AP AP50 APS APM APL AP AP50 APM APL

Baseline/ResNet-101 backbone 56.2 84.6 32.0 50.1 61.7 46.7 84.3 41.1 53.2

bNet+S 56.5 85.6 31.4 50.0 62.9 47.7 85.5 43.4 54.2

bNet+T 56.3 85.4 36.0 50.6 62.5 47.0 84.4 41.3 53.6

Ours 56.8 86.9 35.5 50.8 62.9 49.0 86.6 44.7 54.4

When both are added into baseline, MTN-Net greatly enhances in all evaluation
metrics compared to baseline. However, the APS of MTN-Net is lower than
that of bNet+T. We consider that the semantic segmentation branch focuses
too much on large nodules, and thus has lower performance on the detecting
and segmenting small nodules, there by leading to the lower performance of
MTN-Net than that of bNet+T.

3.5 Comparisons Against State-of-the-Arts Methods

We compared our framework MTN-Net with several state-of-the-art approaches,
including Mask R-CNN [14], Cascade Mask R-CNN [24], Mask Scoring R-CNN
[25], PointRend [26]. Mask R-CNN is a commonly used two-stage detection and
segmentation model. And Cascade Mask R-CNN is a multi-head model based
on Cascade R-CNN, which has higher detection accuracy than Mask R-CNN.
Besides, Mask Scoring R-CNN adds a branch for scoring masks on the basis
of Mask R-CNN, which enhances the accuracy of segmentation. Furthermore,
PointRend is optimized for image segmentation at the edges of objects, resulting
in better performance at the hard-to-segment edges of objects.

Table 3. Performance comparison of thyroid nodule detection on TN3K and DDTI.

Model TN3K DDTI

AP AP50 APS APM APL AP AP50 APM APL

Mask R-CNN 52.1 84.5 28.3 45.2 59.5 45.1 82.8 38.2 53.5

Cascade Mask R-CNN 53.9 84.8 31.0 47.1 61.3 47.5 84.3 43.0 54.0

Mask Scoring R-CNN 53.1 84.4 37.3 45.6 62.0 47.6 83.4 39.4 57.1

PointRend 54.5 85.0 37.1 47.3 61.3 47.4 82.0 40.0 56.1

Ours 55.2 87.1 34.4 48.2 62.8 51.3 88.7 45.4 57.8

Quantitative Analysis on TN3K. Tables 3 and 4 demonstrate the quantitative
comparison results between our MTN-Net and other SOTA models on the public
TN3K dataset. MTN-Net greatly improves AP , AP50, APM , and APL against
other SOTA models. However, the performance in detecting and segmenting
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Table 4. Performance comparison of thyroid nodule segmentation on TN3K and DDTI.

Model TN3K DDTI

AP AP50 APS APM APL AP AP50 APM APL

Mask R-CNN 54.4 84.5 30.0 48.3 60.7 42.6 80.2 36.4 49.7

Cascade Mask R-CNN 55.5 84.7 31.6 49.8 62.0 45.6 84.4 41.0 51.0

Mask Scoring R-CNN 55.1 84.6 37.5 49.5 61.1 46.1 82.9 41.5 51.9

PointRend 56.2 85.8 36.5 50.3 62.3 46.4 81.0 39.5 53.2

Ours 56.8 86.9 35.5 50.8 62.9 49.0 86.6 44.7 54.4

Fig. 4. Qualitative comparison of our MTN-Net and SOTA models. Among them,
Baseline, Our MTN-Net, Mask R-CNN, Cascade Mask R-CNN (yellow) are imple-
mented based on Detectron2, and Mask Scoring R-CNN and Point Rend (green) are
implemented based on MMDetection [27] (Color figure online)
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small nodules (less than 32 × 32 pixels) is inferior to Mask Scoring R-CNN
and Point Rend. Since the appearance and texture of some small nodules are
extremely similar to the surrounding tissues, MTN-Net is prone to mis-detect
other tissues and organs as small nodules. Nevertheless, MTN-Net has high accu-
racy on both APM , and APL, which indicates its remarkable competitiveness in
detecting and segmenting medium and large nodules.

Quantitative Analysis on DDTI. As shown in Tables 3 and 4, MTN-Net exceeds
other SOTA models in the above metrics on the DDTI dataset. For thyroid
detection, it increases 3.8%, 4.4%, 2.4%, and 0.7% for AP , AP50, APM , and APL,
respectively. For thyroid segmentation, the increases are 2.4%, 2.2%, 3.2%, and
1.2% for AP , AP50, APM , and APL, respectively. This demonstrates that MTN-
Net has an excellent performance in both nodule detection and segmentation
when the nodule size is larger than 32 × 32 pixels.

Qualitative Analysis. Figure 4 illustrates the qualitative comparison results
between our MTN-Net and other SOTA models. The first column of Fig. 4 shows
that MTN-Net can successfully exclude false-positive detection results. And the
second column of Fig. 4 illustrates that MTN-Net is able to accurately detect
and segment multiple thyroid nodules. In addition, the third column of Fig. 4
displays that MTN-Net is significantly competitive in the detection of small nod-
ules. Furthermore, the fourth column of Fig. 4 indicates that MTN-Net can not
only completely segment large nodules with complex texture, but also effectively
suppress internal nodules.

4 Conclusion

In this paper, we proposed a two-stage network for thyroid nodule detection
and segmentation in ultrasound images. Our network is built on Trident net-
work, which is capable of precisely detecting thyroid nodules with diverse sizes.
The semantic segmentation branch added to the network is effective for fully
segmenting large nodules with complex textures. In addition, we proposed an
improved NMS algorithm to fuse the detection results from multiple branches,
and it is useful to suppress the false detection of internal nodules. Consequently,
our network achieves a remarkable competitiveness in detecting thyroid nodules
with diverse sizes, segmenting completely nodules with internal texture, and sup-
pressing incorrectly detected internal nodules. Experimental results demonstrate
the effectiveness of the proposed method against other state-of-the-art methods.
In the future, we will utilize self-supervision methods to further reduce the false
positive rate of our model for thyroid nodule detection and segmentation in
ultrasound images.
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