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Abstract. As a novel and economic transportation way, ride-sharing has
attracted more and more passengers and drivers to participate. How to
match passengers with drivers efficiently has become a key issue. Specifi-
cally, drivers are usually heterogeneous with different costs, and they may
behave strategically (e.g. reveal their private cost information untruth-
fully) in order to make more profits. Drivers’ strategic behavior may lead
to inefficient matching, and thus result in the loss of social welfare of ride-
sharing platform and drivers. In this paper, we intend to solve this issue
by designing an incentive-compatible and efficient mechanism, which can
match passengers with drivers and determine the payments to drivers in
order to maximize the social welfare while ensuring drivers reveal their
cost information truthfully. Specifically, we design an order matching algo-
rithm with a branch and bound based route planning algorithm to acceler-
ate the matching process. Meanwhile, we compute the payments to drivers
based on the second pricing mechanism. In so doing, we propose a second
pricing based ride-sharing mechanism (SPRM), which satisfies incentive
compatibility, individual rationality, budget balance and computational
efficiency. We further run extensive experiments to evaluate our mecha-
nism based on the real Manhattan taxi order data and vehicle fuel con-
sumption data. The experimental results show that SPRM can guaran-
tee drivers’ profits and improve the ratio of drivers’ participation and the
ratio of served orders, and eventually achieve greater social welfare than
two typical benchmark approaches, GPri and ND.

Keywords: Ride-sharing · Mechanism design · Incentive
compatibility · Order matching · Pricing

1 Introduction

The increased amount of vehicles results in serious traffic congestion in the urban
transportation system [4]. However, these vehicles are not utilized well when
providing riding service. Actually, a vehicle usually carries only 1.6 passengers
on average [5]. To relieve the traffic pressure, crowdsourcing based ride-sharing
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methods are proposed, and more and more companies (e.g. Didi Chuxing and
Uber) have entered this market to increase vehicle seat usage. As more and more
passengers and drivers participate in such a business, the ride-sharing platform
needs to match riding orders with drivers efficiently and determine the payments
to drivers to incentivize them to provide the riding service.

In this paper, we assume that the platform charges up-front fares to passen-
gers when they submit the riding orders. Note that it could be problematic to
require passengers to bid for vehicles and this kind of mechanism may not work
well in the practical application [10]. Therefore, we adopt the up-front fares and
do not consider the strategic bidding behavior of passengers. The platform deter-
mines the up-front fares according to the pick-up and drop-off locations, current
demand and supply and so on. Passengers then determine whether to accept
the up-front fares or not. Then the same as some existing works [14,17], we
assume that the ride-sharing platform adopts an auction mechanism to deter-
mine the matching between the orders and drivers. Specifically, the platform
publishes the orders to available drivers, and then drivers compete with each
other by bidding their costs for serving orders. The cost depends on several fac-
tors, such as fuel cost, vehicle wear, maintenance cost and so on. The platform
then matches orders with drivers and makes the payments to drivers. However,
drivers are usually self-interested, and they may untruthfully report their costs
to make more profits. Drivers untruthfully revealing their cost information may
lead to inefficient order matching, and then reduce the overall social welfare of
drivers and the platform. Moreover, the mechanism may need to match a large
number of incoming orders with thousands of feasible vehicles. Therefore, the
mechanism should be computationally efficient, Therefore, we need to design an
efficient mechanism that incentivizes drivers to bid truthfully to maximize the
social welfare.

In more detail, we design an efficient mechanism to match orders with drivers
to maximize the social welfare of the platform and drivers. This paper advances
the state of art in the following ways. We design an approximated order matching
algorithm with a branch and bound based route planning algorithm to accelerate
the matching process, and then compute the payments to the drivers based on
the second pricing mechanism. In so doing, we design a second pricing based ride-
sharing mechanism, which is named SPRM. We prove that this mechanism can
satisfy incentive compatibility, individual rationality, budget balance1 and com-
putational efficiency. We run extensive experiments to evaluate our mechanism
based on the real Manhattan taxi order data and vehicle fuel consumption data.
We find that SPRM can make greater social welfare than two typical benchmark
approaches, GPri [17] and Nearest Dispatching (ND). The experimental results
also show that SPRM can guarantee the drivers’ profits and improve the ratio
of drivers’ participation and the ratio of served orders.

1 Incentive compatibility means that drivers have no incentive to strategically manipu-
late their costs to increase their profits. Individual rationality means that the driver’s
profits are not negative. Budget balance means that the profits of the platform are
not negative.
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The rest of the paper is structured as follows. In Sect. 2, we introduce the
related work. In Sect. 3, we describe the basic settings of this paper. In Sect. 4, we
introduce the proposed mechanism in detail, and in Sect. 5, we experimentally
evaluate the proposed mechanism. Finally, we conclude in Sect. 6.

2 Related Work

There exist plenty of works on investigating the issues of the crowdsourcing
based ride-sharing systems, such as minimizing the total traveling distance
[3,8], maximizing the ratio of served orders [13,15], maximizing the platform’s
profits [16] and so on. Furthermore, there exist some works using auction based
methods to match orders with drivers. In [1], the ride-sharing platform proposes
an auction-based mechanism to maximize its own profits. In [6], the authors
propose a heuristic algorithm to determine ride-sharing travel plan dynamically
and use VCG mechanism to determine the payments of participants. In [7], a
second-price sealed auction mechanism is proposed to do the order matching
to increase the ratio of served orders and minimize the traveling distance. In
[17], an auction-based method is proposed to balance the supply and demand
of drivers and passengers. Furthermore, there exist some works on investigating
travel expenses of passengers [2], such as that in [10], a pricing algorithm is pro-
posed for passengers based on their riding demands, and an online mechanism
is proposed to encourage passengers to report information truthfully.

However, to the best of our knowledge, existing works usually ignore the
profits of vehicle drivers, which may result in drivers refusing to provide the
ride-sharing service if they make a loss in this business. Therefore in this paper,
we propose an incentive-compatible mechanism to maximize the social welfare
of the platform and the drivers, in order to ensure that both sides are willing to
participate in the ride-sharing business.

3 Basic Settings

In this section, we first describe how the ride-sharing system works in this paper,
and then give the relevant symbols and definitions. Finally, we provide a formal
definition of the problem.

We first introduce how the online ride-hailing system works. When a passenger
sends the riding orders to the platform, the platform computes the up-front fare
charged to the passenger. Then the platform puts the orders where the passengers
have accepted the fares into the order pool and publish these orders to the online
drivers. The driver will bid on the feasible orders, and then the platform matches
the orders according to the drivers’ bids and compute the payments to drivers.

3.1 Symbols and Definitions

We model the order matching process as a one-side reverse auction which runs
in a set of time slot T = {1, 2, · · · , T}. Drivers will run on a road network to
serve orders following travel plans. The related concepts are defined as follows.
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Definition 1 (Order). Order o ∈ O is defined as a tuple (lso, l
e
o, t

s
o, wto, dro,

no, fo), where O represents the set of orders. lso and leo represent the departure
and destination of order o respectively, tso is the earliest time when order o leaves
lso, wto is the maximum time that order o is willing to wait after tso, and dro
indicates the maximum detour ratio that passengers can tolerate for order o,
no is the number of passengers in order o, fo is the up-front fare charged to
passengers by the platform.

We use dis(lso, l
e
o) to represent the shortest distance between lso and leo. Note

that passengers will withdraw their orders if the actual departure time tso is
more than tso + wto. Furthermore, order o has a certain detour tolerance where
passengers hope that the trip distance cannot exceed (1 + dro) · dis(lso, l

e
o).

Definition 2 (Driver). Driver d ∈ D is defined as a tuple (θd,Od), where θd =
(lsd, l

e
d, [t

s
d, t

e
d], cd, nd) is the driver’s type, which is the private information known

by himself. In more detail, lsd and led represent the driver’s origin and destination
respectively. [tsd, t

e
d] is the driving time interval, where tsd and ted represent the

earliest time to leave lsd and the latest time to reach led. cd is the unit cost,
and nd is the maximum number of passengers that the vehicle can carry, Od

represents the set of orders allocated by the platform to driver d, where Od ⊆ O.
Furthermore, we use Θ = {θ1, θ2, · · · , θ|D|} to denote the set of private types of
all drivers, and use Θ−d to denote the set of private types of all drivers excluding
driver d. We use V to represent the average driving speed.

Definition 3 (Travel Plan). tpd is defined as the travel plan of driver d, which
is a sorted sequence of nodes l1d → l2d → · · · → l

|tpd|
d , where lkd(k = 1, 2, 3, ..., |tpd|)

is the origin or destination of the order allocated to driver d (that is lkd ∈ {lso |
o ∈ Od} ∪ {leo | o ∈ Od}).

Note that the travel plan is dynamically changed when a new order is
inserted. We use distpd

(lu, lv) to represent the actual traveling distance between
lu and lv on the travel plan tp, and disd(tpd) is the traveling distance of driver
d at location ld following travel plan tpd:

disd(tpd) = dis(ld, l1d) +
|tpd|−1∑

k=1

dis(lkd , lk+1
d ) (1)

Now drtpd
(o) is the actual detour ratio of order o under travel plan tpd:

drtpd
(o) = distpd

(lso, l
e
o)/dis(lso, l

e
o) − 1 (2)

According to the above definition, if the driver’s travel plan is feasible, the
following conditions should be satisfied:

(1) ∀o ∈ Od, we have lso ≺ leo for lso and leo in tpd.
(2) ∀o ∈ Od, we have distpd

(lsd, l
s
o) ≤ (to

s − tsd) · V .
(3) ∀o ∈ Od, we have drtpd

(o) ≤ dro.
(4) ∀o ∈ Od, we have distpd

(lsd, l
e
d) ≤ (ted − tsd) · V .

(5) The number of passengers in the vehicle does not exceed nd.
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The above condition 1 means that the driver needs to pick up and drop off
passengers according to the origin and destination of the order. Condition 2 and
3 mean that the travel plan should satisfy the order’s detour ratio and waiting
time. Condition 4 means that the driver must arrive at the destination on time.
Condition 5 means that the number of passengers in the vehicle must meet the
seat limit. The travel plan that satisfies the above five conditions is called a
feasible plan. We use Fd to represent the set of all feasible plans of the driver.

3.2 Social Welfare

In the ride-sharing system, driver d may not strategically report the type infor-
mation such as departure lsd, destination led, travel time [tsd, t

e
d], and vehicle seat

number nd since the platform can use some technical manners to prevent such
misreporting (e.g. acquiring vehicle’s location using GPS, computing the remain-
ing available seat capacity according to vehicle type and current served orders).
However, the driver can misreport the unit cost cd to make more profits since
the ride-sharing platform cannot verify the driver’s cost information.

According to Eq. 1, the cost of driver d following travel plan tpd is
costd(tpd) = cd · disd(tpd), and its profit is:

ud = pd − costd(tpd) (3)

where pd is the payment received from the platform. The platform makes profits
through the difference between the passengers’ up-front fares and the payments
to drivers:

UP =
∑

d∈W
(

∑

o∈Od

fo − pd) (4)

where W ⊆ D is the set of drivers serving orders. Now, the social welfare of the
platform and the drivers is:

SW = UP +
∑

d∈W
ud =

∑

d∈W
(

∑

o∈Od

fo − costd(tpd)) (5)

3.3 Problem Formulation

Based on the above description, we give the problem formulation of this paper.

Definition 4 (Order Matching for Maximizing Social Welfare). Given
the set of orders O and the set of drivers D, the platform determines the order
matching to maximize the social welfare SW , while ensuring that the driver
d ∈ W who gets the order can successfully serve the order, i.e. the travel plan of
each driver is feasible (tpd ∈ Fd 	= ∅).

Definition 5 (Driver Pricing). The platform needs to determine the payment
to driver d ∈ W according to the order matching result, the set of orders O and
the set of private types Θ̂ submitted by all drivers, satisfying incentive compati-
bility, individual rationality and budget balance.
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4 Mechanism Design

We now design a Second-Pricing based Ride-sharing Mechanism (SPRM) to do
the order matching and pricing, which is shown in Algorithm 1. Line 2 in Algo-
rithm 1 uses the order matching algorithm to allocate the orders to drivers. For
each matched pair (o, d∗) in M, SPRM uses the second price pricing algorithm
to compute the payments to driver d∗ in line 3 to 5. In the following, we will
introduce the order matching algorithm and driver pricing algorithm in detail.

4.1 Order Matching Algorithm

The order matching algorithm of SPRM mechanism is shown in Algorithm 2.
Specifically, line 2 sorts the orders according to the descending up-front charged
fares, and in lines 3 to 6, the sorted orders are matched one by one. In the
matching process, the driver with the lowest additional travel cost is selected to
ensure the maximum social welfare.

Algorithm 1. Second-Pricing based Ride-sharing Mechanism
Input:

the set of orders O, the set of drivers D
Output:

the set of drivers W who obtain the orders, and the corresponding set of payments
P

1: Initialize:W ← ∅, P ← ∅;
2: M =Order Matching(O, D);
3: foreach matched pair (o, d∗) ∈ M do
4: Second pricing((o, d∗), D, W, P);
5: end
6: return: W, P;

Algorithm 2. Order Matching Algorithm: Order Matching(O,D)
Input:

the set of orders O, the set of drivers D
Output:

the set of matched pairs M
1: Initialize: M ← ∅;
2: Sort the orders in O in descending up-front fares to get O′;
3: foreach o ∈ O′ do
4: d∗, Δcosto,d∗ ← Select Best Driver (o, D);
5: M ← M ∪ {(o, d∗)};
6: return: M;
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Driver Selection Algorithm. In the order matching, we select the driver
with the lowest additional travel cost from the feasible set of drivers to server
the order. For serving order o, the additional travel cost for driver d is:

Δ cos to,d = ĉd · (disd(tpd ∪ {lso, l
e
o}) − disd(tpd)) (6)

where tpd ∪ {lSo , leo} is the new travel plan after adding the departure and desti-
nation of order o into the original travel plan of driver d.

The driver selection algorithm is shown in Algorithm 3. For a certain order
o ∈ O, line 3 will determine whether driver d ∈ D can pick up the passengers on
time and whether the driver can arrive at the destination on time. Then line 5
will reschedule the route according to the departure and destination of order o
and the driver’s current travel plan tpd. The route planning algorithm adopts a
branch and bound based method, which will be introduced in the below. Lines
6 and 7 can find the best driver d∗ matched with order o.

In the above route planning problem, we design a branch and bound based
route planning algorithm to reschedule the travel plan. The algorithm will recurse
all possible travel plans, and we will use pruning to eliminate nonviable branches.
There are pruning operations at each recursion step to ensure that the current
travel plan is feasible to reduce the searching cost and accelerate the route plan-
ning. The travel cost pruning is used to eliminate the recursive branch whose
current cost has exceeded the optimal cost. The travel plan feasibility pruning
use the five conditions of a feasible plan to prun the current travel plan by
selecting the branches that can form a feasible plan. The time complexity is
equivalent to the time complexity of recursive searching, with O(�2) in the worst
case, where � = maxd∈Dt

{|tpd|}.

Algorithm 3. Driver Selection Algorithm: Select Best Driver(o,D)
Input:

order o, the set of orders D
Output:

driver d∗ with the lowest additional travel cost Δcost∗

1: d∗ ← NULL, Δcost∗ ← ∞;
2: foreach d ∈ D do
3: if dis(lsd, l

s
o) ≤ (t

s
o − tsd) · V and

dis(lsd, l
s
o) + dis(lso, l

e
o) + dis(leo, l

e
d) ≤ (ted − tsd) · V then

4: tp∗ ← ∅, cost∗ ← ∞, S ← (∅, tpd, {lso, l
e
o}, ld, t, nd, 0);

5: Use the Branch and Bound based Route Planning Algorithm to reschedule
the travel plan;

6: if tp∗
d �= ∅ and Δcost∗ > costd(tp

∗
d) − costd(tpd) then

7: d∗ ← d, Δcost∗ ← costd(tp
∗
d) − costd(tpd);

8: end
9: end

10: end
11: return: d∗, Δcost∗;
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4.2 Driver Pricing Algorithm

After matching orders with drivers, the platform needs to compute the payments
to drivers, which is based on second pricing, as shown in Algorithm 4.

For a matching pair (o, d∗), the platform will temporarily delete the driver
d∗ with the lowest additional travel cost, and find driver d′ with the lowest
additional travel cost from the remaining drivers in line 1 of Algorithm 4, and
then the platform will use Δcosto,d∗ ≤ fo to determine whether the driver exists
(line 2). If it exists, Δcosto,d∗ is taken as the payment to driver d∗. Furthermore,
the platform will allocate order o to driver d∗. Finally we update the driver’s
travel plan tpd∗ and the current number of passengers nd∗ .

4.3 Theoretical Analysis

SPRM mechanism can satisfy the typical economic properties: incentive com-
patibility, individual rationality and budget balance, and can guarantee compu-
tational efficiency.

Theorem 1. SPRM can guarantee incentive compatibility.

Proof. We use Myerson theorem [9] to prove that SPRM can guarantee incentive
compatibility. According to Myerson’s theorem, a mechanism is incentive com-
patible if and only if the mechanism can satisfy the following two conditions:

1) The order matching algorithm is monotonic: If the private cost
information ĉd revealed by driver d can help him to get the order, driver d
can get the order with the lower cost information ĉ′

d (i.e. ĉ′
d ≤ ĉd).

Algorithm 4. Pricing Algorithm: Second pricing((o, d∗),D,W,P)
Input:

a matched pair (o, d∗) ∈ O×D, the set of drivers D, the set of drivers W who obtain
orders, and the set of payments P

Output:
the updated set of drivers W who obtain orders, and the updated set of payments P

1: d′, Δcosto,d′ ← Select Best Driver(o, D\{d∗});
2: if Δcosto,d∗ ≤ fo and Δcosto,d′ ≤ fo then
3: if d∗ ∈ W then
4: pd∗ ← pd∗ + Δcosto,d′ ;
5: else
6: pd∗ ← Δcosto,d′ ;
7: W ← W ∪ {d∗}, P ← P ∪ {pd∗};
8: end
9: Od∗ ← Od∗ ∪ {o}, nd∗ ← nd∗ − no, update tpd∗ ;

10: end
11: return: W, P;
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2) The payments to driver is critical price: The payment to the driver
is the maximum payment. In other words, if driver d reveals the private cost
information ĉd untruthfully, and his additional travel cost is more than pd,
he will not obtain the order.

We now prove that our mechanism can satisfy the above two conditions.
Obviously, the order matching algorithm is monotonic since the driver selection
algorithm chooses the driver with the lowest additional travel cost. When driver
d reveals lower cost information, driver d will be the optimal driver again. Then
the payment to the driver calculated by the second-price pricing is the critical
price. When the cost ĉd revealed by the driver is too high to make Δcosto,d′ <
Δcosto,d∗ , the driver selection algorithm will choose driver d′ instead of driver
d, which causes driver d to be unmatched with order o. According to Myerson’s
theorem, SPRM can guarantee incentive compatibility. Theorem 1 is proved.

Theorem 2. SPRM can guarantee individual rationality.

Proof. We need to prove that the profit of driver d is non-negative. Due to the
monotonicity of the driver selection algorithm, there is Δcosto,d′ ≥ Δcosto,d∗

in each round of order matching, where the driver’s profit is ud∗ = pd∗ −
costd∗(tpd∗) =

∑
o∈Od

(Δcosto,d′ − Δcosto,d∗) ≥ 0. Theorem 2 is proved.

Theorem 3. SPRM can ensure the budget balance of the platform.

Proof. We now prove that the profit of the platform is non-negative. In line
6 of Algorithm 4, we have Δcosto,d′ ≤ fo, and the platform’s profit is Up =∑

d∈W(
∑

o∈Od
fo − pd) =

∑
d∈W

∑
o∈Od

(fo − Δcosto,d′) ≥ 0. Theorem 3 is
proved.

Theorem 4. SPRM satisfies computational efficiency.

Proof. We now prove SPRM can be executed within a polynomial time. During
each round of order matching, the worst time complexity of the driver selection
algorithm for a single order is O(|D| · �2). Then the total time complexity is
O(|O| · |D| · �3). Theorem 4 is proved.

5 Experimental Analysis

In this section, we evaluate our mechanism based on the Manhattan taxi order
data set, which has been widely used by related works [1,11–13].
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Fig. 1. Orders on weekdays and weekends Fig. 2. Unit travel fare

5.1 Data Set and Characteristics

In this section, we introduce the data set and describe how to extract the charac-
teristics of the data, which will be used to generate data for running experiments.

Order Data Set. We collect a data set of taxi orders on Manhattan Island in
June 2016 from New York City Taxi and Limousine Commission.2 Each order
data includes the latitude and longitude of the departure and the destination,
the departure time, the travel time, the fare and the travel distance.

Fuel Consumption Data Set. We collect the urban vehicle fuel consumption
data of type M1 and M2 from China Automobile Fuel Consumption Query
System3 of the Ministry of Public Information of China.

Order Data Cleaning. We find that the number of orders on weekdays and
weekends varies greatly over time, as shown in Fig. 1. For consistency, we use
the order data of weekdays to extract the traveling characteristics.

Extracting Passenger Pricing Rules. We compute the average unit travel
fare per hour, where f

k
is the average unit travel fare in k-th hour. The dynamics

of unit travel fare is shown in Fig. 2.

Clustering Road Network Nodes. We use K-Means algorithm to cluster 4573
nodes on Manhattan network into 40 regions according to the frequency of depar-
ture and destination in the order data set. We use Rs = {Rs

1, R
s
2, · · · , Rs

40} to
represent 40 regions of the origin of the order data, and Re = {Re

1, R
e
2, · · · , Re

40}
to represent 40 regions of the destination of the order data.

5.2 Experiment Settings

Data Generation and Experimental Parameters. We select the peak
period from 19:00 to 20:00 on weekdays as the time period We use time slot
Δt = 5min to divide one hour into 12 time slots, and each order contains only
one passenger. We set the average vehicle speed to be 7.2 mph. We randomly
selects a node from Rs

u and Re
v respectively as the departure node lso and desti-

nation node lse of order o, and then uses fo = f
20 ·dis(lso, l

e
o) to calculate the trip

2 http://www.nyc.gov/html/tlc/html/about/trip record data.shtml.
3 http://chaxun.miit.gov.cn/asopCmsSearch.

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://chaxun.miit.gov.cn/asopCmsSearch
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fare of order o. In addition, the maximum waiting time wto is randomly selected
from {5 min, 10 min, 15 min, 20 min}, and the detour ratio dro is randomly
selected from {0.25, 0.50, 0.75, 1.00}. Since the unit cost and fuel consumption
data are not in the same magnitude, we use a factor 2.5/6.8/1.64 to scale the
fuel consumption data to the taxi rate in New York City. Besides, we randomly
select the time slot as the driver’s departure time, randomly select a value from
[10 min, 60 min] as the length of the travel time interval, and randomly select
the node as the driver’s departure point. The capacity of vehicle seats is set to 4.

Benchmark Approaches and Metrics. In this paper, we choose two typi-
cal benchmark approaches, which are GPri [17] and Nearest Dispating (ND).
GPri uses a greedy algorithm to match orders and uses a uniform pricing rule
for drivers. The nearest dispatching (ND) algorithm is adopted by major ride-
sharing platforms such as Uber, which selects the nearest available driver to
serve the new order. We run experiments to evaluate our mechanism against
these two approaches in terms of the following metrics.

– Ratio of participated drivers which refers to the ratio of the number of
drivers who serve orders to the total number of drivers.

– Average profits of participated drivers which refer to the ratio of the
cumulative profits of drivers serving orders to the total number of such drivers.

– Ratio of served orders which refers to the ratio of the number of served
orders to the total number of orders.

– Average order payments which refer to the ratio of the total payments of
the matched orders to the number of orders.

– Average random travel distance which refers to the ratio of the total
driving distance of drivers who are currently not serving any orders to the
total number of drivers.

– Social welfare which refers to total profits of the platform and drivers.

5.3 Experimental Results

The experiments are run on a machine with AMD Ryzen7 4800H processor. The
experiment increases the number of drivers from 500 to 2500. For each number of
drivers, the experiment is repeated 10 times and we compute the average results.

We first analyze the ratio of participated drivers. According to Fig. 3, we
find that the pricing rules of GPri and ND will cause a large number of drivers
to refuse to provide services. Compared with SPRM, the participation ratio is
reduced by about 20% and 11% respectively. When the total number of vehicles
increases, the number of drivers serving orders has increased from 450 to 1000,
and then become saturated. Because more vehicles are involved in the business,
but with limited incoming orders, the driver maybe not willing to participate
since it cannot get enough orders. From Figs. 4 and 5, we find that the average

4 The reason of 2.5/6.8/1.6 being used is because (1) The basic unit rate in New York
City is 2.5 dollars per mile; (2) The average fuel consumption of New York City taxis
is 6.8 liters/100 km; (3) 1.6 is the factor converting from miles to kilometers.
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profits and ratio of served orders who provide ride-sharing services under GPri
and ND are also lower than SPRM, where the average profits are only about
27% and 45% of SPRM and the ratio of served orders is only about 44% and
57% of SPRM.

Fig. 3. Ratio of partici-
pated drivers

Fig. 4. Average profits of
participated drivers

Fig. 5. Ratio of served
orders

From Fig. 6, we can see that compared with SPRM, the average order pay-
ments of GPri and ND has been reduced by about 43% and 29% respectively.
SPRM can make drivers obtain more orders, which can improve the average
profits of drivers. From Fig. 7, we can find that as the number of vehicles
increases, the average random travel distance of SPRM and ND vehicles gradu-
ally increases, and GPri does not increase or decrease monotonously. We believe
this is caused by the drivers’ participation. Comparing Fig. 3 with Fig. 7, we
can see that as the number of vehicles increases, the drivers’ participation ratio
and the average random travel distance is opposite. The decreased participation
ratio of drivers leads more drivers to travel randomly on the road, resulting in
increased average random travel distance.

From Fig. 8, we can find that as the number of vehicles increases, the social
welfare of three mechanisms increases. SPRM can make about 70% and 65%
higher welfare than GPri and ND mechanisms. Furthermore, the social welfare
of SPRM increases significantly until the number of drivers is saturated. This
is because when the number of vehicles increases until 1500, more orders are
matched, and thus the social welfare grows faster.

Fig. 6. Average order
payments

Fig. 7. Average random
travel distance

Fig. 8. Social welfare
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6 Conclusion

In this paper, we designed an order matching and pricing mechanism which
is incentive compatible, to maximize the social welfare of the platform and
drivers. Specifically, we designed a second pricing based ride-sharing mecha-
nism (SPRM), where we implemented an efficient order matching algorithm
including branch and bound based route planning algorithm to accelerate the
matching process and compute the payments to drivers based on second pric-
ing rule. We proved that SPRM can satisfy incentive compatibility, individual
rationality, budget balance and computational efficiency. Furthermore, we run
extensive experiments to evaluate our mechanism based on the real Manhattan
taxi order data. We found that SPRM can guarantee the driver’s profits, achieve
a better ratio of participated drivers and the ratio of served orders, and eventu-
ally achieve greater social welfare than two typical benchmark approaches, GPri
and ND.
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