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Abstract. In this paper we put forward ε-MC nets, a novel succinct
rule-based representation scheme for large cooperative games. First, we
provide a polynomial algorithm that reaches the proposed representation
by exploiting the agents’ estimates over marginal contributions, along
with their acceptable information loss, ε, regarding these estimates. Then
we introduce the notion of equivalence classes of agents, and exploit it to
(i) obtain an even more compact representation; and (ii) derive new, pre-
viously unheld, beliefs over the value of unobserved agent collaboration
patterns. Moreover, we present theoretical and empirical results on the
information loss arising from this “representational compression”, and on
the degree of succinctness achieved. Notably, we show that an arbitrary
number of merges to reach the compressed representation, exhibits an
information loss that does not exceed ε. Finally, we provide theoretical
guarantees for the coalitional relative error and the Shapley value in the
ε-MC net with respect to the initial representation.

Keywords: Knowledge representation · Large coalitional games · MC
nets · Rule-based representation · Equivalent agents

1 Introduction

Coalitional games [2] capture settings where individuals need to form coalitions
in order to fulfil some complicated task, which they would not be able to accom-
plish on their own or to achieve better outcomes. As the number of individuals
scales up, the number of different possible coalitions one may participate in rises
exponentially. Thus, it is essential to find schemes for representing large coali-
tional games in an efficient way. Moreover, in large open multiagent systems,
we may have hundreds or thousands of agents which form coalitions in order to
perform complex tasks. In such large settings, it is unrealistic to assume that we
can have complete knowledge over every possible collaboration pattern between
the agents. As such, it is natural to assume that we have estimates over the value
of potential collaboration patterns. Fully representing such multiagent systems
can be extremely inefficient as the number of agents rises.
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In this light, we provide a novel representation that encodes the prior infor-
mation of the agents over the value of some observed collaboration patterns
in a succinct way. Specifically, we build on the celebrated MC-nets representa-
tion [3,6–8], and enhance it with the ability to exploit similarities among agent
collaboration patterns. To do so, we equip our scheme with an ε ∈ R

+ signi-
fying how far away from our perceived value of a collaboration pattern we are
willing to deviate in order to compress an original rule. Acknowledging that the
environment is not fully observable (i.e., the values of the rules of the initial rep-
resentation may be different than the true ones), allowing a deviation of at most
ε in order to compress the representation is a reasonable trade-off. The ε−MC
nets representation captures collaboration patterns with similar values among
similar agents; encodes them into compact rules; and retains the highly attractive
full expressiveness and conciseness properties of the MC net representation.1

As such, our contributions in this paper are as follows. First, we propose a
novel succinct representation scheme for (large) cooperative games. Then, we
provide an algorithm that compresses the original game to reach the ε−MC nets
representation; study its complexity; and provide theoretical results regarding:
(i) the information loss of the perceived value of agent collaboration patterns;
(ii) the relative error on the coalitional values; and (iii) the (estimated) Shapley
value [11] of the game after the representation’s compression, showing that they
are bounded by ε, and a value proportional to ε, respectively. We extend our
algorithm so that it exploits “equivalence classes” of agents in order to produce
an even more compact representation of the game, inspired by the original work
of [8]. This variant can also produce new, previously unknown, collaboration
patterns among agents. Finally, we conduct a systematic evaluation of our algo-
rithm, studying its behaviour in various realistic settings, and reporting on the
degree of succinctness achieved and other measures of interest. Our experimental
results confirm the effectiveness of our approach.

2 Preliminaries

Let N = {1, . . . , n} be a finite non-empty set of agents, with |N | = n. A coali-
tional game with transferable utility, also referred to as characteristic func-
tion game (CFG), is given by a pair 〈N, v〉, where N is a set of agents, and
v : 2N → R a characteristic function that maps each coalition S ⊆ N to a
real number [2]. The Marginal Contribution Networks representation [8] for a
CFG G = 〈N, v〉 is given by a set of rules of the form: Pattern → value.
A pattern consists of positive and negative literals, where each literal cor-
responds to some agent. The “positiveness” or “negativeness” of the literal
indicates that agent’s presence or absence in the pattern, respectively. A rule
r : p1 ∧ p2 ∧ · · · ∧ px ∧ ¬n1 ∧ ¬n2 ∧ · · · ∧ ¬ny → valr applies on a coalition
S ⊆ N , denoted by S |= r, iff each positive literal pi exists in S, i.e., pi ∈ S for
i = 1, . . . , x, and no negative literal nj exists in S, i.e., nj �∈ S for j = 1, . . . , y.
Given a coalition S, we can compute its utility by summing up the values of all
1 This work is an improved version of our earlier work presented in [13].
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the rules that apply to S: v(S) ≡ ∑
S|=r valr. [8] shows that (i) any CFG can be

represented by a set of such rules [8], and (ii) computing the Shapley values [11]
in an MC-net representation is easy.

3 The ε-MC Net Representation

Here we describe the ε−MC nets representation scheme. An ε-MC net constitutes
a compact set of rules based on an initial MC-net representation. The compact-
ness is achieved by merging patterns and regulating the rule-values accordingly.
Let N = {a1, · · · , an} be a set of agents (|N | = n) and L = {i,¬i ∀ai ∈ N} be
the set of literals corresponding to agents in N (|L| = 2 · n). Formally,

Definition 1 (ε−MC net Rule). An ε−MC net rule is of the form i ∧ CG →
val. Here i ∈ L is called the common literal and CG, the i’s collaborations
group, is of the form

{{∧
j∈L,j �=i j}, {∧

k∈L,k �=i k}, · · · }, and represents a set of
distinct collaboration patterns among agents in N \ {ai}. Each pattern p ={ ∧

j∈L,j �=i j
}

is a conjunction among a subset of literals in L; while an agent’s
positive and negative literals cannot both appear in the same p. val ∈ R expresses
the estimated value of the collaboration pattern between literal i and any pattern
of literals p ∈ CG. ε ∈ R

+ is a parameter denoting how far from the rule’s value
we are willing to depart in order to compress the representation.

Intuitively, the ε−MC net rule denotes that a collaboration between i and
any pattern of literals p in CG, has an expected value val. (Thus, in reality CG
is a disjunction ∨ of patterns.) Then, ε represents the margin of information loss
we are willing to accept in order to compress the representation; specifically, it
denotes the acceptable information loss for merging an MC-net rule with some
other rule (be that an MC-net or an ε-MC net one; this will be clarified in
what follows). Naturally, the larger the ε, the wider these margins are, and the
more compact the representation we obtain. Notice that any MC-net rule can be
trivially written as an ε-MC net rule (with one pattern p ∈ CG and an arbitrary
i as the common literal); while any ε-MC net rule can be rewritten as a collection
of MC-net rules (see e.g., Sect. 3.2 below).

The process of compressing an initial MC-net set of rules to a final set
of ε−MC nets rules works by progressively building the collaborations group
around some common literal, via merging rules. We distinguish two types of
merging: (a) the full-merge, and (b) the half-merge. The full-merge describes the
merge of two MC-net rules that produces a new ε−MC net rule. A full-merge
can occur if the rules share a common literal (indicating the presence or absence
of mutual agent) between the rules, and if the values of the two rules differ by at
most ε, where ε is the margin of information loss that we are willing to accept.
Formally, two MC-net rules r1 : Pattern1 → val1 and r2 : Pattern2 → val2,
where Pattern1 and Pattern2 are a conjunction of literals,2 can be full-merged
(CanFullMerge(r1, r2)) iff:
2 Note that a pattern may consist of only one literal, representing singletons, thus we

can assume that i → val ≡ i ∧ ⊥ → val, where ⊥ is the empty clause.
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Algorithm 1. Merging MC-net Rules
1: R ← initial set of MC-net rules of size m
2: R′ ← ∅
3: for r ∈ R do
4: CG ← ∅
5: VCG, min, max, avg ← valr
6: Remove r from R
7: for r′ ∈ R do
8: if CanFullMerge(r, r′) OR CanHalfMerge(r, r′) then
9: Insert valr′ in VCG

10: Insert non common literals in CG
11: Update min, max, avg variables
12: Rule r becomes: {common literal} ∧ CG → avg{VCG}
13: Remove r′ from R
14: end if
15: end for
16: Insert r in R′

17: end for
18: return R′

(I) i ≡ j, where i ∈ Pattern1 and j ∈ Pattern2. The two literals are identical if
they refer to the same agent, and they are both positive or both negative;

(II) |val1 − val2| ≤ ε, i.e., the values of the two rules are at most ε away.

The resulting ε−MC net rule is rmerged : lcommon ∧ CG → val1+val2
2 ,

where lcommon is the common literal, and CG = {Pattern′
1, Pattern′

2}, where
Pattern′

1 = Pattern1\{i} and Pattern′
2 = Pattern2\{j}. Similarly, given an

ε-MC net rule r : i ∧ CG → avg{VCG}, where CG is a set of patterns and
VCG is the set containing all the values of the rules merged so far to pro-
duce r, and their average value avg{VCG} is the value of r; and an MC-
net rule r3 : Pattern3 → val3, we say that r3 can be half-merged with r
(CanHalfMerge(r, r3)) iff:

(III) i ≡ j, where j ∈ Pattern3. The two literals are identical if they refer to
the same agent, and they are both positive or both negative; and

(IV) avg{VCG} − ε ≤ val3 ≤ avg{VCG} + ε; and
(V) maxv∈VCG v − ε ≤ avg

{
VCG ∪ {val3}

} ≤ minv∈VCG v + ε.

The resulting rule after the half-merge is: rmerged : i∧CG′ → avg
{
VCG∪{val3}

}
,

where CG′ ≡ CG∪{Pattern′
3}, and Pattern′

3 = Pattern3\{j}. (We discern two
sets of merging conditions, since we use different kind of rules in each case.)

Algorithm 1 illustrates a quadratic (in the number of rules) algorithm that
performs a series of full- and half-merges, compressing the initial set of MC-net
rules R to a succinct representation captured via R′ of ε−MC nets rules, with
|R′| ≤ |R| = m. Going through Algorithm 1, we see that the outer loop in line 3
needs exactly m iterations, where m is the size of the initial set of MC-net rules.
The inner loop in lines 7–15 needs at most m iterations; while the condition in
line 8 is trivial. As such the complexity of the algorithm is O(m2).
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In a nutshell, the ε-MC net representation has a number of desired properties.
First of all, it retains the fully expressiveness and the conciseness of the classic MC
nets representation, but is also able to form even more compact rules by performing
a series of merges between rules with similar values that contain common literals.
Moreover, note that the proposed representation applies to settings with uncer-
tainty by simply “paying” an additional information loss, which in any case never
exceeds ε, as we show in the next section. Another beneficial property of the ε-MC
net representation is that it allows us to exploit the common literal to prune the ini-
tial rule space while computing the coalitional values by disregarding rules where
their common literal is not part of the coalition of interest. Finally, our scheme
easily adopts a notion of equivalent classes of agents to not only further compress
the representation, but also to learn new rules from previously unheld information
that emerges through the compression process.

3.1 A Bound on the Values of ε−MC Nets Rules

Here we provide a bound that our representation guarantees on the maximum
information loss of any ε−MC nets rule with respect to its initial MC-net rule.
We show that due to the necessary conditions for full- and half-merge, the infor-
mation loss on the initial values is at most ε. Obviously this bound is tight.

Lemma 1. For any full-merge between two MC-net rules rx and ry producing a
new ε−MC net rule rz, it holds that: |valz − val| ≤ ε

2 , where val = {valx, valy}.
Proof. It is straightforward following condition (II).

Theorem 1. For any MC-net rule r̃ : i∧Patternj → val that is merged (either
full- or half-merged) in the process of reaching an ε-MC net rule rmerged : i ∧
CGmerged → vmerged, with CGmerged = {Patternj , Patternk, · · · , Patternx}
and vmerged = avg{VCGmerged

}, it holds that: |vmerged − val| ≤ ε.

Proof. All proofs can be found in https://rb.gy/aexgbt.

Note that since the coalitional utility is derived by summing the rules apply-
ing in the coalition at hand, a direct consequence of Theorem 1 is that the utility
of a coalition S is computed via the ε-MC nets rules, exhibits an information
loss equal at most to

∑
S|=r ε, where r is any ε-MC net rule that applies to S.

3.2 Decompression of the ε-MC Net Representation

Given an initial MC-net representation described by a set of rules R, we achieve
a compressed ε−MC net representation described by a set of rules R′ following
the merging rules detailed in the previous section. We can always decompress R′

into a set R̂ of classic MC-net rules (with |R̂| ≥ |R′| and |R̂| = |R|): R
compress−→

R′ decompress−→ R̂.
We present the process in order to be comprehensive and provide clar-

ity. Let an ε-MC net rule r′ : i ∧ CG → vr′ where CG = {pattern1,

https://rb.gy/aexgbt
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pattern2, · · · ,patternk}, which has been reached by the merges (both full- and
half-) over the rules in R. Any such ε−MC net rule r′ can then always be sub-
stituted by the rules in R̂:

R =

r1 : i ∧ pattern1 → val1
r2 : i ∧ pattern2 → val2

...
rk : i ∧ patternk → valk

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

k ; R̂ =

r̂1 : i ∧ pattern1 → vr′

r̂2 : i ∧ pattern2 → vr′

...
r̂k : i ∧ patternk → vr′

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

k

Hence R̂ is a decompressed set of rules such that |R| = |R̂|. Note that there
is exact correspondence between R and R̂, i.e., for each rule in R there is exactly
one rule in R̂ describing the same collaboration. We remind the reader that
according to Theorem 1 for any initial rule rj : i ∧ patternj → valj in R and
its corresponding decompressed rule r̂j : i ∧ patternj → v in R̂ it holds that
|v − valj | ≤ ε. Finally, notice that the decompressed representation is a classic
MC-net representation. A similar procedure can be applied in the variant with
equivalent classes, however, in this case we have that |R̂| ≥ |R|.

3.3 Relative Error Guarantees

Earlier we presented a theoretical bound on the absolute error, ε, between the
merged value and the value of an initial MC-net rule. However, this suggests
an a priori knowledge over the magnitude of the rule values, which may not
be always the case, especially in large cooperative environments. Instead, one
may find more beneficial to express a relative error, ε̃, on the coalitional values.
Thus, we now explore the relation between relative and absolute errors in order
to exploit the useful results previously obtained.

Assume we want to compress the initial MC-net representation into an ε-
MC net one, while the relative error of the coalitional values does not exceed
ε̃. The value of some S in the initial MC-net R is given by v(S) =

∑μS

i=1 valri

where μS is the number of rules that apply on S; similarly, in a decompressed
ε-MC net R′ the value of S is v′(S) =

∑μS

i=1 vr′
i
. Thus, for any S we demand

that
∣
∣
∣
v(S)−v′(S)

v(S)

∣
∣
∣ ≤ ε̃. Following Theorem 1, the absolute error between the two

coalitional values is: |v(S) − v′(S)| ≤ μS ·ε, and thus for the relative error it holds
that

∣
∣
∣
v(S)−v′(S)

v(S)

∣
∣
∣ ≤ μS

v(S) · ε, which does not exceed ε̃ if and only if ε ≤ v(S)
μS

· ε̃.
Thus, we need to find an acceptable information loss ε such that for any coalition
S it holds ε ≤ v(S)

μS
· ε̃; in other words any absolute error ε ≤ ε̃ · minS⊆N

v(S)
μS

.

3.4 Equivalence Classes of Agents

Here we discuss a variant of our representation that exploits not only (the pres-
ence or absence of) mutual agents (indicated via common literals), but also equiv-
alence classes of agents: agents in the same class may have similar behaviour, pref-
erences or properties. Such a variant can be very useful in partially observable
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environments, where we are aware of a subset of collaboration patterns, or in set-
tings where new agents arrive over time. Considering equivalences among agents
we manage to: (a) compress even more the representation compared to the initial
version; (b) extract underlying collaboration patterns that are “new”, as they could
not have been observed in the initial set of MC-net rules.

Definition 2 (Equivalent Agents). Given a set of agents N , and a similarity
metric s : N × N → [0, 1], two agents i and j are equivalent iff s(i, j) ≥ T , with
T a threshold in [0, 1].3

In this version, the rules take the form Ωequiv ∧ CG → val, where Ωequiv

is a set of equivalent agents (all as positive or all as negative literals) and it
substitutes the common literal of the initial representation. In words, a rule
Ωequiv ∧ CG → val is interpreted as: Our estimate of the collaboration between
any literal i ∈ Ωequiv with any pattern p ∈ CG is equal to val. We can easily
obtain the variant with the equivalence classes by slightly changing Algorithm 1.
That is, we simply need to check whether the rules r and r′ have agents in the
same equivalence class instead of just mutual agents (i.e., common literals). In
other words, we need to check if there exists a literal i in Ωequiv on rule r such
that any of the literals in rule r′ belongs in the same equivalence class. Such a
modification results to an increase in the computational complexity to O(n2·m2),
where n is the number of agents, and m is the size of the initial set of rules.4

Intuitively, in this version agents belonging in the same class are expected
to have similar behaviour, preferences or properties—for example, in a search
& rescue mission all firefighters comprise one equivalence class, while all nurses
another. We are thus able to obtain an estimate over the utility of a previously
unseen collaborative pattern based on our expectations that equivalent agents
behave similarly. Of course, there is a trade-off: to extract new patterns, we drop
our guarantees provided by our theoretical results.

Now, this variation may result in ambiguous ε−MC nets rules: depending on
the way agents’ equivalence is determined, we may end up producing overlapping
rules, i.e., multiple ε−MC nets rules may apply to the very same collaborative
pair. To overcome this ambiguity we set the post-merge estimate for a collabo-
ration pattern p to the average value of the rules that apply to p.

4 Shapley Values for ε-MC Nets

In this section we explore the concept of Shapley value in the ε-MC net represen-
tation, and provide theoretical guarantees on the error incurred. The Shapley
value [11] is a celebrated solution concept designed to capture the notion of
3 The threshold denotes the minimum similarity degree for two agents in order for

them to be equivalent, and depends on the problem at hand. In our experimental
evaluation we demonstrate how to employ specific correlation metrics to this purpose.

4 To ensure the practicality of the algorithm for large n and m, we note that our
implementation samples an agent in Ωequiv, and checks the conditions for mutual or
equivalent agents. Thus the complexity of our implementation, is O(n · m2).
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fairness in CFGs. Intuitively, it grants each player i a payment φi that is pro-
portional to her expected marginal contribution in the game. Given an MC-net
representation, we can compute the Shapley values of the agents.

Proposition 1 ([8]). The Shapley value of an agent in a marginal contribution
network is equal to the sum of the Shapley values of that agent over each rule.

Proposition 2. Proposition 1 holds for the ε-MC nets as well.

Next we compute the Shapley values of the agents over the rules in the ε-
MC net representation. Following [8], we distinguish two cases, considering (a)
positive literals and (b) mixed literals (both positive and negative).

Only Positive Literals. The Shapley value of any MC-net rule r : i ∧
Pattern → valr that contains only positive literals, is equal to val

m , where val
is the value of the rule and m is the number of literals in the pattern [8]. In a
ε-MC net rule r′, the Shapley value of an agent i depends on whether the agents
is the common literal in the rule. That is, in case i is the common literal in r′

then: φε,i,r′ =
∑

c∈CGr′
valr′
|c|+1 , while if i is in a pattern c within the collaborations

group, then: φε,i,r′ = valr′
|c|+1 .

Theorem 2. Given an ε-MC nets representation R′ with only positive literals,
for any agent i, we obtain an estimate φε,i =

∑
r∈R′

i
φε,i,r of the actual Shapley

value φi s.t.: |φi − φε,i| ≤ ∑
r∈Ri

ε
mr

, where Ri and R′
i are the subsets of rules

regarding agent i in the initial and the ε-MC net representation, respectively.

Mixed Literals. Inspired by [8], for rules that have mixed literals, we can
consider the positive and the negative literals separately. According to [8] in a
classic MC-net representation, if i is a positive literal, a rule r will apply iff i
occurs in a given permutation after the rest of the positive literals but before
any of the negative literals. Formally, let φi,r denote the Shapley value of i, pr

denote the cardinality of the positive set, and nr denote the cardinality of the
negative set, then: φi,r = (pr−1)!nr!

(pr+nr)!
· valr = valr

pr·(pr+nr
nr

) .

Similarly to the case with only positive literals, the Shapley value of an
agent i as positive literal in an ε-MC net rule depends on whether i is the
common literal. That is, if i is the common literal in ε-MC net rule r′ then
φε,i,r′ =

∑
c∈CGr′

valr′
pc·(pc+nc

nc
) where pc denote the cardinality of the positive set in

pattern c ∈ CGr′ , and nc denote the cardinality of the negative set in c ∈ CGr′ .5

Now if i is in pattern c within the collaborations group, then φε,i,r′ = valr′
pc·(pc+nc

nc
) .

For a given negative literal ¬i, the appearance of i in some pattern will be
responsible for cancelling the application of the rule if all positive literals come
before the negative literals in the ordering, and ¬i is the first among the negative
5 The cardinality of positive/negative sets in pattern c also considers the common

literal.
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literals. That is, let rule r : a ∧ b ∧ ¬i ∧ ¬j → val, i is responsible for canceling
the application of r in any permutation of some pattern where literals a and b
proceed the appearance of i, while j either appears after i or not at all. Therefore:
φ¬i,r = pr !(nr−1)!

(pr+nr)!
· (−valr) = −valr

nr·(pr+nr
pr

) .

Again, the Shapley value of an agent i as negative literal in an ε-MC net rule
depends on whether i is the common literal. That is, if i is the common literal
in ε-MC net rule r′ then φε,¬i,r′ =

∑
c∈CGr′

−valr′
nc·(pc+nc

pc
) ; while if i is in pattern c

within the collaborations group, then φε,¬i,r′ = −valr′
nc·(pc+nc

pc
) .

Theorem 3. Given an ε-MC nets representation R′ (with mixed literals), for
any agent i (appearing as a positive literal i, a negative literal ¬i, or both) we can
provide an estimate φε,i =

∑
r∈R′+

i
φε,i,r +

∑
r∈R′−

i
φε,¬i,r of the actual Shapley

value φi such that:

|φi − φε,i| ≤ ε ·
( ∑

r∈R+
i

1

pr · (
pr+nr

nr

) +
∑

r∈R−
i

1

nr · (
pr+nr

pr

)
)

where R′+
i ⊆ R′ and R′−

i ⊆ R′ are subsets of rules regarding agent i as positive or
negative literal in the ε-MC net representation R′. Respectively, R+

i ⊆ R and R−
i ⊆ R

are subsets of rules regarding agent i as positive or negative literal in the initial MC
net representation R.

5 Experimental Evaluation

Here we evaluate the performance of our algorithms via simulations. All exper-
iments ran on a PC with i5@2.2 GHz and 8 GB of RAM. The framework was
coded in Python 3.8. We used synthetic data, and the presented results are the
average values over 5 sets of experiments on settings with same properties wrt.
ε, and number of agents and rules used, as we explain immediately below.

5.1 ε-MC Nets with Mutual Agents

First we present experiments performed to evaluate our approach with mutual
agents (i.e., common literals), using synthetic data. We generated synthetic
data with varying number of agents n = {100, 200, 300} and rules m =
{n·(n−1)

2 , n·(n−1)
3 , n·(n−1)

4 }. In each dataset, every rule consists of a pair of agents,
(either as positive or negative literals, i.e. we have in total 2 ·n literals) randomly
selected out of

(
n
2

)
possible unordered pairs; and the rule’s value is drawn from

U(1, 200). For each 〈n,m〉 we generated 5 datasets, to a total of 45 datasets.
We ran our algorithm for each setting using different values of ε. We use the

reduction percentage (RP) to measure the compactness achieved in the ε−MC
nets representation by computing the number of rules comprising the new rep-
resentation compared to the initial MC-net one. Formally,

RP =
(
1 − #ε-MC nets rules + #un-merged rules

#initial MC-net-like rules

)
· 100%
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Figure 1a illustrates the results of applying Algorithm 1 on this set of exper-
iments. We can see that for ε fixed across different settings, the RP achieved
by our algorithm increases as the number of rules increases. Such a result
is expected, since when we have more rules it is more likely to find MC-net
rules that satisfy the conditions for merging, and thus the algorithm produces
more compact representations. Also, for the same number of MC-net rules, as ε
increases, we observe that the achieved reduction increases as well. This is due to
the fact that for greater values of ε, the conditions for merging are more relaxed,
and thus easier to be met. Indicatively, in settings with n = 300, m = 44850
and ε = 2 we get RP = 66.5%, while for n = 300,m = 44850, ε = 8 we achieve
RP = 85.1%. Note that for m = n·(n−1)

2 our algorithm always achieves RP
greater than 46%.

5.2 Mutual vs Equivalent Agents

We now compare the performance of our approach using only mutual agents
against its variant that considers equivalent agents, in terms of RP. Here we
generated 75 synthetic datasets, 5 for each 〈n,m〉 combination, following the
process described in the previous section; now n = 50, 100, 200, 300 and 400,
while m = n·(n−1)

2 , n·(n−1)
3 , and n·(n−1)

4 ; and again rule values are drawn from
U(1, 200). In order to determine equivalence among agents we adopted the follow-
ing scenario: agents participate in a ridesharing setting as drivers or commuters.
First, to determine the agents’ payoffs, we ran the “PK Algorithm” from [1],
which computes kernel-stable [2,12] payments for such scenarios. Specifically, for
each dataset we run the PK algorithm for a number of partitions depending on
the number of agents in the dataset. Each such partition consists of a randomly
sampled coalition S containing one driver (20% of agents are drivers) and 1 to 4
commuters, along with a set of singletons corresponding to the remaining agents.

In order to determine equivalent classes of agents, as soon as we have the
agents payoffs received in different sampled partitions, for every i, j pair we
build two ranking lists Mi and Mj respectively, as follows: For the kth sampled
partition π (with S ∈ π): (1) if {i, j} ⊆ S, then add i’s payoff according π in
the kth position of Mi and add j’s payoff according π in the kth position of Mj;
otherwise (2) i ∈ S and ∃ π′ such that j ∈ S′ and S \ {i} ≡ S′ \ {j} with
S′ ∈ π′, then add i’s payoff according π in the kth position of Mi and add j’s
payoff according π′ in the kth position of Mj. We then use the lists above by
applying the Kendall’s τ distance [9] and the Pearson Correlation Coefficient
(PCC) [4], and we consider agents i and j to be equivalent6 if it holds that
K(Mi,Mj) ≥ 0.97 and rMi,Mj

≥ 0.97. Figure 1b shows the results (average over
5 datasets with the same combination 〈n,m〉). We see that the algorithm that
takes advantage of equivalences consistently achieves manyfold greater reduction
than the algorithm with the mutual agents. Indicatively, for n = 300, m = 44850
and ε = 2 we achieve an RP = 81.45% compared to ∼66.5% for solely mutual
agents. Finally, the variant with equivalence classes achieves an RP up to 87.5%
6 We consider equivalences only on positive literals.
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for n = 400, m = 79800, ε = 3. This improvement is expected, since equivalences
allows us to exploit information not considered with mutual agents only.

Finally, our experiments confirm that the extra information on equivalences
among agents allows us to not only produce more succinct representations, but
to also learn new collaboration patterns. We show this through the NCP ratio:

NCP =
New collaboration patterns

Total number of collaboration patterns
· 100%,

Fig. 1. (a) RP for Algorithm 1 with only Mutual Agents. (b) RP per setting of “Mutual
vs Equivalent Agents”. (c) NCP per setting of “Mutual vs Equivalent Agents”.

where the denominator corresponds to the number of initial MC-net rules plus
the new collaborative pairs of agents that our algorithm produced, exploiting
equivalences among agents.7 Figure 1c shows the NCPs for every setting when we
employ the algorithm using equivalence classes of agents (averages are over the 5
different datasets for each combination 〈n,m〉). As the results show, for a given n,
the NCP is rising as ε rises. Intuitively, since for larger ε our algorithm achieves
more merges, and new collaboration patterns are discovered. Indicatively, in
settings with n = 400, m = 39900 and ε = 3, we achieve an NCP ∼80.95%.

6 Conclusions and Future Work

In this work we introduced a novel succinct representation for cooperative games.
This extends the work of [8] to have rules that include sets of agents, instead of
7 In case of ambiguities, we count the collaboration pattern once.
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just individuals. We formally defined the ε−MC nets rules, merging conditions,
and we proposed a polynomial algorithm for constructing such a representation.
Moreover, we provided theoretical bounds regarding the Shapley value, and the
absolute and relative error of the compressed representation wrt the initial one.
Then, as envisaged by [8], we considered equivalence classes of agents, and put
forward a variant of our algorithm which takes these into account, and which
can generate values for collaboration patterns that were initially unknown.

Future work will extend our algorithm to perform a backtracking technique.
That is, merges rejected at some point may become feasible due to equiva-
lent agents. One could also devise techniques to exploit the initial order of
rules, in the spirit of heuristics used in constraint satisfaction problems; explore
machine learning to extract the equivalent classes of agents, in terms of agents’
behaviour [10] or preferences [5].
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