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Abstract. Community detection is an important method to reveal the
characteristics of complex systems, which usually requires the system to
meet the conditions of close connections within communities but sparse
connections between communities. In view of this, community detection
has been proven to be an NP-hard problem. Multi-objective evolution-
ary algorithm (MOEA) is an indispensable aspect of multi-layer network
community detection. However, most MOEA-based multi-layer network
detection algorithms only take the acquired prior information as the
network preprocessing method and ignore its full utilization in optimiza-
tion, resulting in the accuracy of network partition cannot be guaranteed.
To this end, this paper proposes a multi-objective community detection
algorithm based on multi-layer network reduction (MOEA-MR). Specif-
ically, we use the non-negative matrix factorization method to generate
the consistent prior information layer of multi-layer network. Based on
this, a network reduction strategy based on node degree is constructed
to recursively reduce the size of the prior information network. In addi-
tion, in the evolution process, we consider using the multi-layer network
similarity to correct the mis-divided nodes in the local reduction com-
munity. Compared with other advanced community detection algorithms,
the experimental results on the real-world and synthetic multi-layer net-
works proved the superiority of MOEA-MR.

Keywords: Multi-layer network reduction · Community detection ·
Multi-objective evolution · Consensus prior information · Dice similarity

1 Introduction

A variety of complex systems in the real world can be modeled as complex
networks [1,2]. The traditional single-layer network can no longer meet the
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requirement of the existing research which focuses on diversified entities, so
the multi-layer network with richer attributes has gradually become a research
hotspot [3]. Community detection is essential to the understanding of the infor-
mation and function of networks. Its overall goal is to divide a network into
multiple clusters (communities). Many existing community detection algorithms
focus on the topology of network, and require the sparse connections of intra-
cluster but dense connections of inter-cluster. The current single-layer network
clustering methods are relatively mature. For example, Girvan et al. propose
the GN algorithm, which applies the concept of modularity function to network
clustering for the first time [4]. Louvain algorithm obtains the network clustering
results by optimizing the modularity repeatedly [5]. However, due to the com-
plex characteristics of multi-layer networks, the single-layer network clustering
methods applied on multi-layer networks have suboptimal performance.

Therefore, multi-layer network community detection algorithms based on dif-
ferent strategies were proposed in the past few years. Since the process of commu-
nity detection is an NP-hard problem and Pareto optimal framework can provide
a set of optimal compromise solutions based on optimization goals, the optimiza-
tion algorithm has received great attention. According to the number of opti-
mization goals, these algorithms can be divided into two types: single-objective
optimization and multi-objective optimization. For single-objective optimization
methods, only one objective function is selected for optimization in the iterative
process. For example, GACD algorithm obtains good clustering results by opti-
mizing modularity [6]. Pizzuti et al. implement network clustering by optimizing
the fitness function [7]. For multi-objective methods that consider multiple objec-
tive functions simultaneously, the multi-objective evolution algorithm (MOEA)
is strongly competitive in optimization calculations. For example, MOGA-Net
algorithm introduces two functions (i.e., the community score and community
fitness) for optimization calculation [8]. Moreover, Shi et al. use the concept
of inter-objective correlation to develop a multi-objective optimization frame-
work [9]. Furthermore, MOGA-@Net algorithm takes the structure of community
and the similarity of nodes into consideration in order to obtain a high-quality
solution [10]. Compared with single-objective optimization algorithms, multi-
objective methods perform better because they focus on the links between the
inter-community and intra-community simultaneously. However, the individual
length of network code is proportional to the number of network nodes, which
means that the search space of MOEA increases exponentially. What’s more,
they usually only take the topology information of network into full considera-
tion without paying attention to the prior information.

To address the above problems, this paper proposes a multi-objective evolu-
tionary algorithm based on multi-layer network reduction (MOEA-MR), which is
used for community clustering in multi-layer networks. In the proposed MOEA-
MR, a reduction strategy is used for network processing, which is based on the
network consensus prior information layer, and the repairing strategy in the opti-
mization process further improves the quality of network division. Specifically,
the main contributions of this paper can be summarized as follows:
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– The symmetric non-negative matrix factorization method is suggested for bet-
ter applying the prior information of multi-layer networks. With this strategy,
we obtain the non-negative low-dimensional representations of each network
layer, and fuse them into a consensus prior information representation to
enable clustering interpretation.

– A network reduction strategy based on the node degree is proposed for com-
plex network clustering to reduce the computational complexity effectively.
Specifically, local communities can be transformed into nodes of reduced net-
work during the optimization, which is gainful for improving the scalability
of large-scale multi-layer network.

– A network repairing strategy is proposed to correct the misidentified nodes
after multi-layer network reduction, which helps improve the accuracy of clus-
tering result.

The rest of the paper is organized as follows. Section 2 introduces the related
work. The proposed MOEA-MR method is described in detail in Sect. 3. After
that, Sect. 4 compares our proposed algorithm with several advanced network
clustering methods. Finally, Sect. 5 gives a summary of this paper.

2 Related Work

The main goal of community detection is to divide a network into different sub-
graphs, among which the internal connections are maximized while the external
links are minimized. In complex networks, these subgraphs are also called com-
munities. Unlike single-layer networks, each layer of multi-layer network repre-
sents a kind of relationship. This means that we need to consider the information
of different layers when clustering the network, and find a final partition that is
most suitable for each layer of multi-layer network. An example of multi-layer
network clustering is provided in Fig. 1.
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Fig. 1. Illustration of multi-layer networks with 8 nodes given in three different layers
(i.e., G1, G2, and G3). Two different color communities (i.e., C1, C2) can be identified
in all layers.

For better multi-layer network clustering, several standard functions are pro-
posed to measure the link density of inter-community and intra-community.
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Here we formulate the multi-layer network clustering into a two-objective
clustering optimization problem, utilizing ratio cut (RC) and kernel k-means
(KKM) [11] as the objective function. Given a multi-layer network G = (V,Em)
(m = 1, ...,M), where M represents the total number layers of multi-layer net-
work and Em denotes the edge set of the mth layer. Moreover, V = {vi}Ni=1

indicates a set of nodes shared by all layers in G. The adjacency matrix of mul-
tilayer network is expressed as: A(m) ∈ RN∗N

+ (m = 1, ...,M). The definition of
bi-objective minimization problem is shown in Eq. (1).

min

⎧
⎨

⎩

KKM = 2(N − c) − ∑c
i=1

L(Vi,Vi)
|Vi|

RC =
∑c

i=1

L(Vi,V i)
|Vi|

(1)

where c is the number of multi-layer network division. L (Vi, Vi) and L
(
Vi, V i

)

represent the internal and external connection density in the same community
i, respectively. KKM means the density of intra-community, and RC denotes
the density of inter-community. So far, KKM and RC have broad applications
in MOEA algorithm and achieve a good performance. Therefore, we also adopt
the same functions as optimization objectives.

3 Proposed Method

In this section, we present a detailed introduction of the proposed MOEA-MR.
First, owing to the fact that the construction of multi-layer network consensus
information and the network reduction method are essential to MOEA-MR, we
describe them in Sect. 3.1 and 3.2 in detail respectively. After that, we explain the
community repairing strategy based on the similarity information in Sect. 3.3,
which is used to modify and simplify the dis-divided nodes in the local net-
work. Section 3.4 demonstrates the genetic operators. Finally, the comprehensive
framework of MOEA-MR is illustrated in Sect. 3.5.

3.1 Consensus Information Layer Construction

The difference between multi-layer network and single-layer network is that the
former has more complex features, and the noise produced by different layers
can lead to a poor clustering result. Existing research has proved that the accu-
racy of clustering results can be significantly improved after integrating the net-
work prior information [12]. However, most semi-supervised optimized clustering
methods only focus on single-layer networks. Therefore, we propose a concept of
multi-layer network optimization clustering based on the prior information.

Up to now, the symmetric non-negative matrix factorization method has been
successfully applied to network clustering problem [13], so our work also takes
the idea into consideration to obtain the prior information of multi-layer net-
works. Firstly, each network layer is denoised by calculating its non-negative low-
dimensional representation. After that, we fuse the low-dimensional representa-
tions of all layers into a common consensus information layer, which is applied



A MOEA Based on Multi-layer Network Reduction 145

to subsequent optimization process to improve the effectiveness of MOEA-MR
algorithm. In particular, given a network represented by an N-layered adjacency
matrix (A1, A2, ..., An), Eq. (2) is utilized to get the consensus information layer
of the multi-layer network.

Acons =
∑n

i=1 A(i) + γH(i)H(i)T

n(1 + γ)
(2)

where γ represents a constant. For each network layer i, we have the following
constraints: A(i) ≈ HHT ,H > 0 and HTH = I. We interpret Acons as the con-
sensus information matrix of extracting potential communities shared by the
multilayer network and apply it to the clustering coding.

3.2 Network Reduction Strategy

To reduce the computational complexity of algorithm, a network reduction strat-
egy is proposed to reduce the network scale during the process of optimization.
Moreover, when the network topology is used for multi-objective network cluster-
ing based on genetic operations, some nodes are always in an indivisible group.
Therefore, we can regard these indivisible nodes as a whole in the calculation,
which will remain unchanged even in the later optimization.

The description of network reduction process proposed in this paper is given
as follows. Considering that the network degree is an important feature of net-
work adjacency matrix, our reduction strategy takes the node degree as an impor-
tant division criterion. At first, the node with the largest degree is selected as an
initial node after calculating degrees of all nodes in a network. Then we divide
the initial node and its neighbors into a tentative community, and check all the
nodes in it. Note that the node in the tentative community will be removed if
the external connections number is more than half degree of itself. Finally, the
tentative community after inspection can be guaranteed as a strong community,
and all components in the tentative community are reduced to one node. Check-
ing all remaining nodes of network until they have been completely represented
as the reduced community.
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Fig. 2. Illustration of reduction strategies. (a) v5 is selected due to its largest node
degree. (b) The tentative community determined by v5 contains {v1,v2,v3,v4,v5,v6}.
(c) Delete v6 from the subgraph. (d) The subgraph C′ consists {v1,v2,v3,v4,v5} is
compressed into one node based on the reduction strategy.
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Figure 2 gives an example about representing the main idea of prereduc-
tion process, which considers a network with 8 nodes. First, the tentative com-
munity {v1,v2,v3,v4,v5,v6} depicted in Fig. 2(b) is obtained based on v5. Then,
v6 is eliminated because the links between this node and tentative subgraph
{v1,v2,v3,v4,v5,v6} are less than half of its degree, as shown in Fig. 2(c). Finally,
by merging {v1,v2,v3,v4,v5} into one node, Fig. 2(d) shows the reduced network
{C ′,v6,v7,v8}.

3.3 Network Repairing Method

There are some reduced networks being found incorrect in the iterative evolution.
To put it simply, the reduced network may find some nodes do not belong to
itself, which is prone to lead to the poor performance of MOEA-MR. In order
to settle this problem, we propose a reduced network repairing strategy based
on the similarity prior information to correct the mis-divided nodes.

The similarity index of node is one of the most powerful indicators to evaluate
the connectivity strength with node pairs. In order to preserve the structural
characteristics of multi-layer networks, Dice index [14] based on the connections
of all layers is determined to calculate the similarity prior information of multi-
layer network, which can be depicted in Eq. (3).

Ds =
2 × Neighbourscom (vi, vj)

Deg (vi) + Deg (vj)
(3)

where Neighbourscom (vi, vj) indicates the links of common neighbors of nodes
vi and vj , and Deg (vi) means the degree of node vi. It can be seen that the
equation mentioned above considers the neighbors information of all layers when
calculating the neighbor links of nodes.
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Fig. 3. Illustration of network repairing method. (a) The Dice similarity of v1 and two
local reduced network (e.g., C′, C′′). (b) The repairing results corresponding to the
local network C′ and C′′ with threshold σ = 0.2.

After obtaining the similarity prior information of multi-layer network, the
steps of the reduced network repairing strategy in this paper perform as follows.
Specifically, for each community in the reduced network, checking whether the
nodes it contains are selected in the same community with their most similar
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neighbor. If not, the nodes verified are mis-divided and need to be moved to
other appropriate community. What’s more, we give a threshold σ to judge the
similarity of the node pairs, which means only the first σ% of node similarities
are taken into consideration. In that case, we need to give up those smaller
similarity value. Figure 3 shows the repairing strategy based on the reduced
network with 8 nodes, and threshold σ is equal to 0.2. After repairing, the
final reduced network changes to {v1,v6,v7,v8} and {v2,v3,v4,v5}. By correcting
the mis-divided nodes in reduction network, the quality of the final community
division is greatly improved.

3.4 Encoding Method and Genetic Operators

This paper adopts the locus-based encoding method. In this coding method, each
chromosome gene corresponds to a network node, and the gene value represents a
neighbor of the node. In other words, there is a connection between nodes vi and
vj if the ith gene value is j, and they are also in the same clustering. Figure 4(a)
shows the locus-based encoding method with 7 network nodes, and Pop1 repre-
sents the corresponding gene value. Different from the label-based coding, the
method mentioned above does not need to define the number of communities
beforehand, which greatly reduces the search space but also conducives to the
genetic operator operation in the evolution.
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Fig. 4. Illustration of genetic operators. (a) The complex network used for the crossover
operation and its two locus-based encoding individuals. (b) The value of offspring
individual New is determined by Rand. If Rand = 1, the offspring chooses the value
of Pop2, otherwise Pop1 will be taken into consideration. (c) The mutation operation
adopts the V ector selected randomly in range of [0,1], in which the gene value of node
is mutated to the index of its adjacent node if the value of corresponding vector is less
than 0.1. (d) The newly mutated individual New′ and its structure.

Genetic operators are important for exploration and exploitation of MOEA.
In this paper, we use the uniform crossover and neighborhood-based mutation
to improve the population diversity. The former is adopted because of its ran-
domness. Specifically, we select parents to crossover and generate the offspring
by randomly yielding a set of binary values, which own the same length with
population. If the binary value is 0, the first parent is selected, otherwise, the
second is selected. At the same time, the local information is taken into neighbor-
based mutation, which selects the neighbors of parent-population for mutation
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according to the predefined mutation probability. The illustration of crossover
and mutation operators is shown in Fig. 4.

3.5 General Framework of MOEA-MR

The proposed MOEA-MR utilizes a decomposition-based genetic algorithm
framework (MOEA/D) [15], in which the multi-objective optimization prob-
lem is disassembled for a set of single-objective sub-problems according to the
Tchebycheff definition in Eq. (4).
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Fig. 5. The flow chart of the proposed MOEA-MR algorithm with four main steps.

min gte (x | w, z∗) =
2

max
i=1

{wi · (|Fi(x) − z∗
i |)} (4)

where w = (w1, w2) with the constraints ‖w‖2 = 1, w1, w2 > 0. z∗ = (z∗
1 , z

∗
2) is

a reference point and z∗
i is the minimal value of the ith objective function.

Figure 5 shows the overall flow of our proposed MOEA-MR algorithm with
the following four main steps. At the beginning, the consensus information layer
of a multilayer network is generated by exploiting the non-negative matrix fac-
torization technology. Next, compressing the consensus information layer into
a reduction network with the reduction strategy. At the third step, the pop-
ulation is initialized based on the locus-based encoding method. Meanwhile,
the reference point z∗ assigned by using the minimal values of KKM and RC
is prepared for clustering. Finally, for each individual population, applying the
uniform crossover and neighborhood-based mutation stagey to generate offspring
chromosome. If the Tchebycheff value of offspring chromosome performs better
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than any existing chromosomes, the latter will be replaced. In particular, the
repairing strategy suggested above is applied to correct misidentified nodes in
the reduced network until reaching the maximal iteration of MOEA-MR.

4 Experiment

4.1 Experimental Design

Datasets and Comparison Algorithms. We test all algorithms on synthetic
datasets and real-world datasets, where the former is produced based on the
multilayer LFR benchmark (mLFR) [3]. Compared with other forms, the mLFR
benchmark can control the community structure by adjusting the node degrees
and the mixing parameters (μ) in multilayer networks. The value of μ ranges
in (0, 1), and the larger the μ value is, the more complex the community struc-
ture is. In addition to synthetic networks (e.g., Sdata1, Sdata2 and Sdata3),
the real-world networks we consider include five different types and sizes (i.e.,
SND [16], MPD [16], WBN [16], CoRA [16], CiteSeer [16]). The basic description
of datasets is listed in Table 1. What’s more, the performance of MOEA-MR is
compared with other classic community detection algorithms, namely, MOEA-
MultiNet [17] (based on MOEA), GMC [19] ( based on multi-view clustering),
S2-jNMF [3], COMCLUS [18] and CSNMF [13] (based on matrix factorization).

Table 1. The description of synthetic networks and real-world networks.

Network Layers Nodes Ground truth

SND 3 71 3

MPD 3 87 6

WBN 10 279 10

CoRA 2 1662 3

CiteSeer 2 3312 3

Sdata1 2 1000 6

Sdata2 3 5000 10

Sdata3 3 10000 16

Evaluation Metrics and Parameter Settings. To evaluate the quality of
network clustering, this paper adopts two widely-used indicators, namely Nor-
malized Mutual Information (NMI) [13] and Adjusted Rand Index (ARI) [13].
Both synthetic network and real-world networks can evaluate the similarity
between the ground truth and division detected by algorithms. NMI and ARI
use the value range from [0, 1]. If NMI(A,B) = 0, the division A and B are
completely different; if NMI(A,B) = 1, the division A is the same with B,
so ARI does. In the proposed MOEA-MR, the number of iterations is fixed as
200, which is the same as chromosomes, and σ value is set to 30%. It is worth
remarking that all algorithms attain the mean value based on 10 dependent runs.
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Table 2. Comparisons of several algorithms on real-world and synthetic networks.
Note that ∗ means that the algorithm failed to run on this network.

Network Algorithms MOEA-MR MOEA-MultiNet S2-jNMF CSNMF ComClus GMC

SND NMI 0.727 0.437 0.582 0.681 0.555 0.597

ARI 0.772 0.201 0.452 0.493 0.481 0.428

MPD NMI 0.588 0.494 0.516 0.504 0.421 0.451

ARI 0.499 0.385 0.396 0.397 0.365 0.248

WBN NMI 0.457 0.309 0.347 0.436 0.343 0.164

ARI 0.237 0.142 0.191 0.225 0.167 0.048

CoRA NMI 0.723 0.317 0.719 0.514 0.471 0.519

ARI 0.768 0.243 0.626 0.491 0.447 0.526

CiteSeer NMI 0.301 ∗ 0.149 0.237 0.182 0.042

ARI 0.265 ∗ 0.147 0.207 0.119 0.012

Sdata1 NMI 1 ∗ 0.924 0.962 0.943 0.954

ARI 1 ∗ 0.858 0.894 0.722 0.915

Sdata2 NMI 1 ∗ 0.827 0.980 0.965 0.903

ARI 1 ∗ 0.716 0.991 0.748 0.999

Sdata3 NMI 1 ∗ 0.452 0.946 0.894 0.999

ARI 0.954 ∗ 0.074 0.874 0.814 0.963

4.2 Experimental Result

In this section, the experiment results of all algorithms mentioned on real-
world networks and synthetic networks are shown in Table 2. The experimental
results demonstrate that the averaged NMI and ARI of MOEA-MR on Sdata1
and Sdata2 are 1, which means the real partition can be detected. Compared
with other algorithms, the accuracy of MOEA-MR on the real-world network
increased by nearly double on average. In addition, the performance of MOEA-
MultiNet that uses the genetic algorithm framework is not good. This is because
the traditional genetic algorithm is prone to fall into the local optimum and the
search speed is very slow. Different from the framework mentioned above, the
proposed MOEA-MR treats the local community as a node for calculating, which
greatly reduces the search space in the large-scale networks, and the subsequent
repairing strategy has further improved the accuracy of network division.

It is also shown that GMC has a better performance than MOEA-MR on
Sdata3. That’s probably due to the node degrees of mLFR network obey the
power-law distribution, which makes it difficult to generate the dense local com-
munities when the structure is fuzzy. Given that, we can conclude that for the
most datasets, the proposed MOEA-MR is superior to other algorithms in terms
of NMI and ARI, which also means that MOEA-MR is more competitive than
other algorithms in detection performance.
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4.3 Parameter Analysis

Figure 6 provides the experimental results of 10 independent runs based on 4
algorithms with varying similarity thresholds and mixing parameters. For syn-
thetic networks, the larger the mixing parameter is, the fuzzier the network struc-
ture is. Figure 6 presents that MOEA-MultiNet algorithm is the most unstable,
whereas the proposed MOEA-MR algorithm is completely opposite. In particu-
lar, when μ > 0.4, the stability of MOEA-MR begins to decrease. What’s more,
compared with other options, the similarity threshold σ should also be relatively
moderate like the μ value. It is obvious that σ = 0.3 has the best experimental
effect on the algorithm. In short, the results mentioned above prove the influ-
ence of parameter settings on the experimental performance and MOEA-MR is
superior to other methods on the synthetic dataset.
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Fig. 6. The experimental result with different μ and σ values on synthetic networks
implemented in 4 algorithms.

5 Conclusion

This paper proposed the MOEA-MR for community clustering in multi-layer
complex networks. In MOEA-MR, the non-negative matrix factorization is used
to generate the consensus prior information layer of multi-layer network. On
this basis, a network reduction method based on the node degree is suggested
to compress the size of common network in advance. After that, MOEA-MR
adopts an algorithm framework based on MOEA/D, and formulates a repairing
strategy based on the network similarity to correct the mis-divided nodes in
the local network. The extensive results show the effectiveness of MOEA-MR
on the network clustering problem based on the bi-objective optimization. In
the future, it is desirable to consider extending the network reduction to cluster
detection based on more targets owing to the multi-layer network structure is
more complicated in reality.
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