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Abstract. Complex Question Answering (CQA) over Knowledge Base
(KB) involves transferring natural language questions to a sequence of
actions, which are utilized to fetch entities and relations for final answer.
Typically, meta-learning based models regard question types as stan-
dards to divide dataset for pseudo-tasks. However, question type, man-
ually labeled in CQA data set, is indispensable as a filter in the sup-
port set retrieving phase, which raises two main problems. First, preset
question types could mislead the model to be confined to a non-optimal
search space for meta-learning. Second, the annotation dependency makes
it difficult to migrate to other datasets. This paper introduces a novel
architecture to alleviate above issues by using a co-training scheme fea-
turedwith self-supervised mechanism formodel initialization. Ourmethod
utilizes a meta-learning classifier instead of pre-labeled tags to find the
optimized search space. Experiments in this paper show that our model
achieves state-of-the-art performance on CQA dataset without encoding
question type.

Keywords: Meta-learning · Few-shot · Reinforcement learning ·
Question answering · Knowledge graph

1 Introduction

Knowledge-base question-answering (KBQA) task is defined as using facts stored
in a knowledge base (KB) [9] to find the answer to a factoid question, which
involves mapping natural-language questions to logical forms (annotations)
including action sequences and programs that can be directly executed on a
KB to retrieve answers [2,17]. Among the subfields of this topic, complex ques-
tion answering (CQA) [16], different from multi-hop question answering, requires
sophisticated operations such as set union and intersection, counting, min/max
to be executed to obtain answers. In particular, this paper will focus on a CQA
dataset [16], in which questions are classified into seven types. For instance, ques-
tions in the ‘Simple’ category only need ‘select’ to yield answers, while questions
in the ‘Quantitative Reasoning’ category demand a sequence of ‘select’, ‘union’
and ‘count’ actions to return the answer.
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Fig. 1. The architecture of MACL

To solve KBQA problem, one-size-fits-all models-e.g., forward neural net-
work, reinforcement learning, etc.-are regular approaches, which fit the training
set with single one model and predict on questions of all types [1,2,4,16,21].
However, if questions have great diversity in logics or sentence structures, tacit
knowledge may vary across them, leading to bias in predictions for one-size-fits-
all model. To address this challenge, a neural program induction (NPI) approach
is taken by Complex Imperative Program Induction from Terminal Rewards
(CIPITR) [15]. Nevertheless, CIPITR still trains one one-size-fits-all model for
seven question types each on CQA dataset instead of equipping the model with
the ability to adapt to a certain form when faced with different kinds of ques-
tions.

In 2020, a new learning algorithm named MetA Retrieval Learning
(MARL) [6] is proposed, in which a retriever and a programmer is jointly trained
in two stages. The programmer is optimized in the stage one by meta-learning
with retriever parameter fixed. In the second stage, the programmer will not be
updated while the difference between support set used and not used can measure
the effectiveness of the retriever, thus the retriever can be advanced by the rein-
forcement learning with the final reward offered by the programmer. In this way
the retriever is encouraged to provide more accurate support set that is beneficial
to the meta-task, rather than teacher forcing method in S2A, MARL is featured
with this weak supervised training process. Besides, S2A employ multiple-round
conversation as context, aiming to answer context-dependent questions. By com-
parison, questions in MARL are all single-round and KB can directly present
the answer.

MARL achieves state-of-the-art performance at the time of publication, but
this method cannot be well extended to other question answering datasets except
CQA. It requires the question set to have accurate category labels which relies
on expensive labor cost. This will also cause another problem that the algorithm
limits the search space of the support set by filtering it with question type,
whereas question with diverse types may also contribute valuable information.

To alleviate the above issues, this paper proposes a new architecture named
MetA Classify Learning (MACL) – a model that utilizes a self-learning classifier
instead of pre-labeled tags to find the most reasonable search space for support
sets. Considering that the classification results could also participate in parame-
ter updating as a part of the overall model adaptation, we extend the structure
of MARL from two-stage joint training to three-stage joint training of retriever,
programmer and classifier.
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Fig. 2. Answer optimization stage

The classifier is used to predict the label of each question. As mentioned
above, in order to reduce the bias introduced by manual labels, we do not use
the question type of CQA data set. Instead, we cluster the unlabeled original
data to obtain a rough classification as the pseudo-truth. Based on that, we train
a classifier as a part of the model, which specifies the search space for meta-
learning support set extraction. The parameters of classifier would be updated
through reinforcement learning.

The retriever is a question selector that finds similar samples from a group
of questions. KB artifacts (i.e., entities, relations, and types) and semantic sim-
ilarity are used to measure the similarity between main question and support
question. In each epoch, the whole data set is split into different groups accord-
ing to the prediction results of the classifier, then the retriever would search
similar samples in the same category for the primary question. The extracted
questions together construct the support set for the pseudo task. During the
training phase, reinforcement-learning [20] uses rewards from primary question
along with pseudo-task to optimize the retriever.

The programmer is an answer generator. In the first step, the program-
mer encodes the problem into a sequence of actions. In the second step, these
sequences are sent to the interpreter and executed to get the final answer in
the knowledge base. Finally, the generated answers are evaluated on the ground-
truth to produce rewards. Meta-learner trains the programmer to learn fast
adaptation to a new primary question that has not been seen before.

The training process is divided into three stages, namely answer optimiza-
tion stage, search optimization stage and space optimization stage. During these
phrases, the programmer, the retriever and the classifier are updated respectively
when the parameters of other modules remain fixed. Specially, the programmer is
adapted by the meta-learning while the other two are updated by reinforcement-
learning.

We evaluated our approach on a large complex QA data set named CQA [16].
MACL does not use manual category labels for dataset, which greatly reduces
reliance on human labour. Therefore, this method can now be migrated to other
datasets more easily. In terms of performance, our approach is superior to the
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Fig. 3. Search optimization stage

standard imitation learning or RL-based models and achieves state-of-the-art F1
score compared to previous methods on out-of-question-type setting.

2 MACL

The task studied in this paper is Complex Question Answering (CQA) based
on Knowledge Base (KB). We see this as a sequence-to-sequence learning task.
The question is first transformed into a series of actions, then the triples are
extracted from the knowledge base by the actions to obtain the final answer.
We tackle this problem with few-shot meta-learning for classifier to decrease the
reliance on data annotation and improve the transferability of the model. In this
paper, we regard answering a single complex question as a separate task. Our
goal is to train a self-learning model that can quickly adapt to new tasks. For this
purpose, we leverage a meta-learner to complete each task. Specifically, for each
primary question qpri, we first assign a category label to it by classifier. Following
that, the most similar N samples with the same category are retrieved to form
a support set Sqpri . Next, Question is decoded by the programmer to obtain the
reward signal telling whether the programmer yields the correct answer. In the
end, training rewards Rtrain from support set and testing rewards Rtest from
primary question are used to evaluate and update the model. The whole model
is iteratively trained in three stages until the global optimal solution is obtained.

2.1 Overview of the Framework

Our architecture for few-shot learning of CQA is illustrated in Fig. 1. Our model
adopts a three-stage joint optimization structure. Each stage consists of three
working components, classifier, retriever and programmer. In the answer opti-
mization stage, the parameters of BiLSTM-based programmer is updated by
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Fig. 4. Space optimization stage

the meta-learning. In the search optimization stage, the retriever based on Deep
Structured Semantic Model (DSSM) method [7] is revised by the reinforcement-
learning. In the space optimization stage, the parameters of previous modules
are fixed and relevant rewards will renew the classifier, which is employed by the
LSTM.

2.2 Algorithm

As shown in lines 3 to 9 in Algorithm 1, the programmer is trained by the
approach of meta reinforcement learning (meta-RL) in the first stage. Similar to
MARL, the gradient-based meta-learning method is employed to solve the meta-
RL problem in this procedure. As the meta task is formulated in a RL setting,
the vanilla policy gradient (VPG) [18] is performed to retrieve the optimal policy
and Monte Carlo integration (MC) [5] strategy is applied for approximation.

For each primary question qpri in training dataset, a support set Sqpri con-
sisting of N secondary questions would be obtained after the classifier and the
retriever are executed. Next, the primary question qpri and the support set Sqpri

together are considered as a meta-task. In the meta-training stage, each sec-
ondary question will produce K trajectories with probabilities, based on which
the expectation of final reward on answering the secondary question can be cal-
culated (Fig. 2). The sum of the rewards is subsequently utilized to adapt θ to
θ′,

LSqpri =
∑

qi∈Sqpri Eτ∼π(τ |qi,θ)[R(τ)] (1)

θ′ ←− θ + η1∇θLSqpri (2)
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During meta-test stage, another K trajectories of the primary question will
be generated by programmer with θ′. The expectation of the reward, regarded
as the evaluation of adapted parameter θ′, is meant to be maximized. Thus, the
base θ is further updated by this objective:

Lqpri = Eτ∼π(τ |qpri,θ′)[R(τ)] (3)

θ ←− θ + η2∇θ

∑
qpri∈Qpri

Lqpri (4)

To be more specific, the meta-learned policy is achieved by the Reptile meta-
learning algorithm [Nichol and Schulman, 2018].

During the second stage, the retriever is updated by a reinforcement learning
approach, represented in lines 10–20. First, each primary question directly yields
the answer and corresponding reward through the model optimized in the stage
1. Second, following the probability of each secondary question being selected, M
support sets are sampled from Qs. Based on each support set, θ can be adapted
to θ′

m, as the adaptation of θ to θ′ in stage 1 (Fig. 3).

L
S

qpri
m

=
∑

qi∈S
qpri
m

Eτ∼π(τ |qi,θ)[R(τ)] (5)

θ′
m ←− θ + η1∇θLS

qpri
m

(6)

For each θ′
m, a trajectory corresponding to the primary question can be

obtained and then a reward R(τ∗
m

′) can be calculated.

τ∗
m

′ ←− decode(π(τ |qpri, θ
′
m)) (7)

After that, the difference between R(τ∗
m

′) and R(τ∗) can be regarded as the
evaluation of the significance of support set, which is exploited to update the
retriever.

L′
qpri = E

S
qpri
m ∼P (Sqpri |φ)[R(τ∗

m
′) − R(τ∗)] (8)

φ ←− φ + η3∇φ

∑
qpri∈Qpri

L′
qpri (9)

Following that, space optimization stage will be performed. It is noted that
support sets will be retrieved under two different circumstances for each primary
question. The first type of support sets will be generated by retriever without the
information of question type. In other words, the filter module in the retriever
will not work in this condition such that all the questions in support dataset
will be input into DSSM module. In contrast, for the retrieval of another kind of
support set, the classifier C will first categorize all the questions, based on which
DSSM will filter out question that has distinct type from the primary question
(Fig. 4).
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Algorithm 1. The MACL algorithm
Input: Support dataset Qs, Training dataset Qtrain, step size η1, η2, η3, η4

Parameter: a classifier C (LSTM) with parameter ξ, a retriever R (DSSM) with
parameter φ, a programmer P (LSTM) with parameter θ
Output: The parameters ξ∗, φ∗, θ∗

1: Initialize ξ ←− ξ0, φ ←− φ0, random initialize θ
2: while not converged do
3: for Qpri sampled from Qtrain do
4: for qpri ∈ Qpri do
5: Retrieve Sqpri from Qs with ξ and φ
6: θ′ ←− θ + η1∇θ

∑
qi∈S

qpri Eτ∼π(τ |qi,θ)[R(τ)]
7: Lqpri = Eτ∼π(τ |qpri,θ′)[R(τ)]
8: θ ←− θ + η2∇θ

∑
qpri∈Qpri

Lqpri

9: for Qpri sampled from Qtrain do
10: for qpri ∈ Qpri do
11: τ∗ ←− decode(π(τ |qpri, θ)), Compute R(τ∗)
12: Sample support sets M with ξ and φ
13: for S

qpri
m ∈ M do

14: θ′
m ←− θ + η1∇θ

∑
qi∈S

qpri
m

Eτ∼π(τ |qi,θ)[R(τ)]

15: τ∗
m

′ ←− decode(π(τ |qpri, θ
′
m)), Compute R(τ∗

m
′)

16: L′
qpri = E

S
qpri
m ∼P (S

qpri |φ)
[R(τ∗

m
′) − R(τ∗)]

17: φ ←− φ + η3∇φ

∑
qpri∈Qpri

L′
qpri

18: for Qpri sampled from Qtrain do
19: for qpri ∈ Qpri do
20: Sample support sets M0 with φ
21: for S

qpri
m0 ∈ M0 do

22: θ′
m0 ←− θ + η1∇θ

∑
qi∈S

qpri
m0

Eτ∼π(τ |qi,θ)[R(τ)]

23: τ∗
m0

′ ←− decode(π(τ |qpri, θ
′
m0)), Compute R(τ∗

m0
′)

24: Sample support sets M1 with ξ and φ
25: for S

qpri
m1 ∈ M1 do

26: θ′
m1 ←− θ + η1∇θ

∑
qi∈S

qpri
m1

Eτ∼π(τ |qi,θ)[R(τ)]

27: τ∗
m1

′ ←− decode(π(τ |qpri, θ
′
m1)), Compute R(τ∗

m1
′)

28: R0 = E
S
qpri
m0 ∼P (S

qpri |φ)
R(τ∗

m0
′)

29: L′′
qpri = E

S
qpri
m1 ∼P (S

qpri |ξ,φ)
[R(τ∗

m1
′) − R0]

30: ξ ←− ξ + η4∇ξ

∑
qpri∈Qpri

L′′
qpri

31: return ξ, φ, θ

After support sets are produced with these two approaches, θ will adapted to
θ′

m0
and θ′

m1
respectively. The rewards of programmer in these two parameters

answering primary question – this is R(τ∗
m0

′) and R(τ∗
m1

′)– will have a difference,
which represents the effect of classifier.

R0 = E
S

qpri
m0 ∼P (Sqpri |φ)R(τ∗

m0

′) (10)

L′′
qpri = E

S
qpri
m1 ∼P (Sqpri |ξ,φ)

[R(τ∗
m1

′) − R0] (11)
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The difference will subsequently be applied to update the parameter of Clas-
sifier with reinforcement learning.

ξ ←− ξ + η4∇ξ

∑
qpri∈Qpri

L′′
qpri (12)

2.3 Objective Function with Reinforcement Learning

Among all procedures, it is worth mentioning that the parameters of DSSM and
LSTM for classifier are updated by the final rewards, which are simply values
without gradient. Hence, it is vital to design reasonable objective functions to
combine rewards and the output of models, in which case the loss can back-
propagate and the gradient descent can be operated.

For the DSSM part, the loss function is designed as Eq. (8) such that:

L′
qpri = E

S
qpri
m ∼P (Sqpri |φ)[R(τ∗

m
′) − R(τ∗)]

=
M∑

m=1

[R(τ∗
m

′) − R(τ∗)] · Pφ(Sqpri
m )

=
M∑

m=1

[R(τ∗
m

′) − R(τ∗)] ·
N∏

n=1

Pφ(qn) (13)

In the above result, Pφ(qn) is the output of the DSSM. Compared with the
original loss function as the Eq. (14), in our model there are no clearly defined
positive and negative samples. Instead, we have rewards representing the con-
tribution of the candidates. Hence, the model is encouraged to choose better
support sets by maximizing the objective function (13 ).

LDSSM = − log
∏

(Q,D+)

P (D+|Q) (14)

where D+ are positive responses

Similar to DSSM, the objective function of LSTM for classification are rea-
sonably adjusted from its original form.

L′′
qpri = E

S
qpri
m1 ∼P (Sqpri |ξ,φ)

[R(τ∗
m1

′) − E
S

qpri
m0

R(τ∗
m0

′)]

=
M∑

m1=1

[R(τ∗
m1

′) −
M∑

m0=1

R(τ∗
m0

′) · Pφ(Sqpri
m0

)] · Pφ,ξ(Sqpri
m1

)

�
=

M∑

m1=1

R∗ ·
N∏

n=1

Pφ(qn) · Pξ(qn) (15)

Except for Pξ(qn), the rest part, which is approximately regarded as the label
value in the common multi-label classification task, decides the direction Pξ(qn)
is expected to be optimized.
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3 Evaluation

In this section, we describe our experimental settings and results on the large-
scale CQA dataset [16]. During the experiments, our model is evaluated against
with three baselines. In addition, we conduct ablation experiments to investigate
the capability of the classifier and the effect of the cluster.

3.1 CQA Dataset

The CQA dataset is generated from the Wikidata KB [19] through a semi-
automated process with manual labour. It contains 944K/100K/156K train-
ing/validation/test question-answer pairs respectively. There are seven question
categories in CQA dataset which are described as follows:

– Simple Question can be answered with one hop in the knowledge graph.
– Logical Reasoning Question requires several logical deduction over mul-

tiple tuples in the knowledge graph.
– Quantitative Reasoning Question requires a large amount of quantitative

reasoning which includes max, min, at least/at most/approximately/equal to
N, etc.

– Comparative Reasoning Question requires a comparison between entities
based on certain relations which include sort and more/less operations.

– Verification (Boolean) Question needs to judge whether the question is
correct and return answer of Boolean data type.

– Quantitative (Count) Question requires quite a few quantitative reason-
ing steps which involve standard aggregation count functions.

– Comparative (Count) Question requires a comparison between entities
based on certain relations and count operations.

For questions whose types are “Verification”, “Quantitative (Count)” and
“Comparative (Count)”, we use “accuracy” as the evaluation metric while “F1
measure” demonstrates the performance of other kinds.

3.2 Comparison Methods

In this paper, several baseline methods on the CQA dataset are applied for
comparison, including HRED+KVmem [16], CIPITR [15] and a variant of
MARL [6] named MARL (no-type). MARL proposed a novel meta-learning
based algorithm for few-shot CQA task. In MARL, a retrieval model and a
programmer model are trained jointly with weak supervision. To evaluate the
performance of MARL when the question types are not given, we implemented
MARL (no-type) which retrieves similar questions as support data from all ques-
tion types.

To validate the benefits of each module in MACL, we conducted ablation
experiments about the variants of our model. To verify the effect of clustering,
we trained a model named MACL (no-cluster). In MACL (no-cluster), each
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question in CQA dataset is randomly assigned a type rather than being assigned
by the clustering result. Similar to MACL, the labeled questions in MACL
(no-cluster) are used to pretrain the classifier. Another model MACL (no-
classifier) is trained for exploring the benefits of the classifier. In this model,
question type is annotated based on the clustering result in the beginning and
would not be updated in the rest process. Besides, we trained the model named
MACL (random) to verify the whole effectiveness of cluster and classifier. In
MACL (random), we removed the classifier in MACL and randomly initialized
the type of questions in CQA dataset. Notably, the number of question types by
random initialization is the same as those based on the clustering result.

Table 1. Experimental results on the CQA test dataset. For each category, best result
is bolded and second-best result is underlined.

Question category HRED
+KVmem

CIPITR MARL
(no-type)

MACL
(no-cluster)

MACL
(no-classifier)

MACL
(random)

MACL

Simple 41.40% 41.62% 85.62% 85.00% 84.94% 85.02% 85.98%

Logical reasoning 37.56% 21.31% 79.68% 79.25% 78.57% 78.79% 80.22%

Quantitative reasoning 0.89% 5.65% 44.09% 44.97% 44.95% 44.23% 45.65%

Verification (Boolean) 27.28% 30.86% 84.99% 85.35% 85.45% 85.32% 85.84%

Comparative reasoning 1.63% 1.67% 61.75% 62.52% 61.92% 61.61% 61.56%

Quantitative (count) 17.80% 37.23% 62.17% 62.23% 62.21% 62.17% 62.25%

Comparative (count) 9.60% 0.36% 39.69% 39.59% 39.71% 39.42% 40.29%

Overall macro F1 19.45% 19.82% 65.43% 65.56% 65.39% 65.22% 65.97%

Overall micro F1 31.18% 31.52% 76.06% 75.80% 75.66% 75.64% 76.50%

3.3 Implementation Details

In MACL, the classifier is pre-trained to speed up the convergence of the full
model. To generate the pseudo label for the pre-training of classifier, we adopted
K-Means [12] clustering algorithm to cluster questions in CQA dataset. We
averaged the embedding representations of each word in a question to obtain
the question embeddings and considered it as K-Means input. Specifically, we
exploited 50-dimensional GloVe word vectors [14] learned from web crawled data
for word embeddings. To determine the value of k in K-means, we calculated the
clustering result with SSE, which is defined as the sum of the squared distance
between centroid and each member of the cluster. On top of that, elbow method
were utilized to select the best k value. Based on the changes in SSE with vary-
ing k, we chose k = 3 as the number of groups and then annotated the questions
into 3 categories.

MACL was implemented in PyTorch. Reptile [13] was employed to simplify
the implementation of MAML [3] and avoid the calculation of second-order
derivatives which requires magnificent computing expenses. During the stages of
retriever and classifier learning, RL-based model optimized the non-differentiable
objective by combining the traditional loss function with the rewards, in which
the baseline C was imported to reduce the variance and C was set to 1e − 3.
We fixed the step size η1 = 1e − 4 in the meta-training stage for all the learning
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stages. In contrast, different learning rates were set for the meta-test in varying
stages. During the answer optimization stage, we let η2 = 0.1 for the gradient
descent. For search optimization stage, the initial learning rate η3 was set to
1e − 3 and AdaBound [11] was applied to update the φ with the reward derived
from programmer. In the space optimization stage, the Adam optimization algo-
rithm [10] optimized ξ and the learning rate was set as η4 = 1e−3. Additionally,
the number of N for searching the top-N support questions in meta-training
stage was set to 5. In the training of MACL, apart from the natural language
questions, the entity, entity type and relation in the question were also encoded
as the part of input. The batch size was set to 1 and our model converged on
the validation set at round 80 epochs.

3.4 Performance Evaluation

In this part, we compare the proposed method with baseline algorithms described
in Sect. 3.2 and offer further analysis. Table 1 presents the performance compar-
ison on the CQA dataset. From the results, we can observe that our model
MACL outperforms all the baseline models and achieves the state of the art
performance. This is thanks to the fact that the classifier in MACL can be
dynamically updated and provide the optimal search space for meta-learning.
To understand the impact of each part in MACL on performance, we conducted
additional experiments on CQA dataset and the results are shown in Table 2.
The results demonstrate that the overall micro F1 of MACL (no-cluster) is 0.70%
less than that of MACL, which implies the cluster result could pre-train the
classifier and make it reach the optimal state sooner. The MACL (no-classifier)
achieves 75.66% F1 score, which is 0.84% less than the micro F1 of MACL. It
proves that even though the question type is effectively initialized, classifier still
needs updating to group the questions better. The MACL (random) performs
the worst among the three variants, illustrating that the cluster operation and
the classifier updating are all necessary for better performance.

Table 2. Ablation study on the CQA test dataset.

Models Overall micro F1

MACL 76.50%

- cluster −0.70%

- classifier −0.84%

- cluster&classifier −0.86%

4 Related Work

CQA. For CQA task, HRED+KVmem [16] is proposed together with CQA
dataset by Saha et al. In this model, the current sentence and context is first
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encoded into a vector by a hierarchical encoder-decoder. Then the most relevant
memory is retrieved by a key-value memory network. Finally, the model decode
the relevant memory and generate the question answer. CIPITR [15] adopts aux-
iliary rewards to strengthen training signal which can alleviate extreme reward
sparsity. Meanwhile, to generate semantically reasonable programs for a certain
question, it designs high-level constraints.

Meta-learning. The Meta-learning approaches is proposed for training a base
model on a variety of learning task, making new learning task rapidly adapted
with only a small number of training instances [3]. In question-answer domain, a
method called PseudoTask MAML (PT-MAML) use the top-K relevant examples
to build support task for each question in the training dataset [8]. Furthermore,
S2A [4] utilizes a retriever to form support sets and update it and the program-
mer separately. Aiming to update the retriever better, MARL [6] construct a
jointly trained structure with reinforcement learning. However, their methodol-
ogy heavily relies on the information of question type. To make the model more
universal, we propose a three-stage loop-learning structure including a classifi-
cation module which can be jointly adapted in the process.

5 Conclusion

In this paper, we propose a self-classified meta-reinforcement learning method
for complex question answering over KB. Our model is capable of effectively
adapting to new questions based on the most similar questions retrieved from a
reasonable search space. To obtain the optimal search space boundary, the model
constructs a semi-supervised classifier to assign each question a label. Thus, our
model addresses two essential challenges – the significant distributional biases
presented in the dataset, and the high cost associated with manual labelling
of question type. When evaluated on the large-scale complex question answer-
ing dataset CQA without question types, our model achieves state-of-the-art
performance with overall macro and micro F1 score of 65.97% and 76.50%. In
the future, we plan to extend the model to other domains that refers to meta-
learning.
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