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Abstract. Open relation extraction (ORE) aims to assign semantic
relationships between arguments, essential to the automatic construction
of knowledge graphs. The previous methods either depend on external
NLP tools (e.g., PoS-taggers) and language-specific relation formations,
or suffer from inherent problems in sequence representations, thus lead-
ing to unsatisfactory extraction in diverse languages and domains. To
address the above problems, we propose a Query-based Open Relation
Extractor (QORE). QORE utilizes a Transformers-based language
model to derive a representation of the interaction between arguments
and context, and can process multilingual texts effectively. Extensive
experiments are conducted on seven datasets covering four languages,
showing that QORE models significantly outperform conventional rule-
based systems and the state-of-the-art method LOREM [6]. Regarding
the practical challenges [1] of Corpus Heterogeneity and Automation,
our evaluations illustrate that QORE models show excellent zero-shot
domain transferability and few-shot learning ability.

Keywords: Open relation extraction · Information extraction ·
Knowledge graph construction · Transfer learning · Few-shot learning

1 Introduction

Relation extraction (RE) from unstructured text is fundamental to a variety of
downstream tasks, such as constructing knowledge graphs (KG) and comput-
ing sentence similarity. Conventional closed relation extraction considers only a
predefined set of relation types on small and homogeneous corpora, which is far
less effective when shifting to general-domain text mining that has no limits in
relation types or languages. To alleviate the constraints of closed RE, Banko et
al. [1] introduce a new paradigm: open relation extraction (ORE), predicting
a text span as the semantic connection between arguments from within a con-
text, where a span is a contiguous sub-sequence. This paper proposes a novel
query-based open relation extractor QORE that can process multilingual texts
for facilitating large-scale general-domain KG construction.
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Open relation extraction identifies an arbitrary phrase to specify a seman-
tic relationship between arguments within a context. (An argument is a text
span representing an adverbial, adjectival, nominal phrase, and so on, which
is not limited to an entity.) Taking a context “Researchers develop techniques
to acquire information automatically from digital texts.” and an argument pair
〈Researchers, information〉 , an ORE system would extract the span “acquire”
from the context to denote the semantic connection between “Researchers” and
“information”.

Conventional ORE systems are largely based on syntactic patterns and
heuristic rules that depend on external NLP tools (e.g., PoS-taggers) and
language-specific relation formations. For example, ClausIE [2] and OpenIE4
[10] for English and CORE [15] for Chinese, leverage external tools to obtain
part-of-speech tags or dependency features and generate syntactic patterns to
extract relational facts. Faruqui et al. [4] present a cross-lingual ORE system that
first translates a sentence to English, performs ruled-based ORE in English, and
finally projects the relation back to the original sentence. These pattern-based
approaches cannot handle the complexity and diversity of languages well, and
the extraction is usually far from satisfactory.

To alleviate the burden of designing manual features, multiple neural ORE
models have been proposed, typically adopting the methods of either sequence
labeling or span selection. MGD-GNN [9] for Chinese ORE constructs a multi-
grained dependency graph and utilizes a span selection model to predict based on
character features and word boundary knowledge. Compared with our method,
MGD-GNN heavily relies on dependency information and cannot deal with var-
ious languages. Ro et al. [12] propose sequence-labeling-based Multi2OIE that
performs multilingual open information extraction by combining BERT with
multi-head attention blocks, whereas Multi2OIE is constrained to extract the
predicate of a sentence as the relation. Jia et al. [7] transform English ORE into
a sequence labeling process and present a hybrid neural network NST, nonethe-
less, a dependency on PoS-taggers may introduce error propagation to NST.
Improving NST, the current state-of-the-art ORE method LOREM [6] works as
a multilingual-embedded sequence-labeling model based on CNN and BiLSTM.
Identical to our model, LOREM does not rely on language-specific knowledge
or external NLP tools. However, based on our comparison of architectures in
Sect. 4.1, LOREM suffers from inherent problems in learning long-range sequence
dependencies [16] that are basic to computing token relevances to gold relations,
thus resulting in less satisfactory performances compared with QORE model.

Inspired by the broad applications of machine reading comprehension (MRC)
and Transformers-based pre-trained language models (LM) like BERT [3] and
SpanBERT [8], we design a query-based open relation extraction framework
QORE to solve the ORE task effectively and avoid the inherent problems of
previous extractors. Given an argument pair and its context, we first create a
query template containing the argument information and derive a contextual
representation of query and context via a pre-trained language model, which
provides a deep understanding of query and context, and models the information
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interaction between them. Finally, the span extraction module finds an open
relation by predicting the start and end indexes of a sub-sequence in the context.

Besides introducing the ORE paradigm, Banko et al. [1] identified major
challenges for ORE systems, including Corpus Heterogeneity and Automation.
Thus, we carry out the evaluation on the two challenges from the aspects of
zero-shot domain transferability and few-shot learning ability, which
we interpret in the following. (a) Corpus Heterogeneity : Heterogeneous datasets
form an obstacle for profound linguistic tools such as syntactic or dependency
parsers, since they commonly work well when trained and applied to a specific
domain, but are prone to produce incorrect results when used in a different
genre of text. As QORE models are intended for domain-independent usage, we
do not require using any external NLP tool, and we assess the performances in
this challenge via zero-shot domain transferring. (b) Automation: The manual
labor of creating suitable training data or extraction patterns must be reduced
to a minimum by requiring only a small set of hand-tagged seed instances or a
few manually defined extraction patterns. The QORE framework does not need
predefined extraction patterns but trains on amounts of data. We conduct few-
shot learning by shrinking the size of training data for the evaluation of this
challenge.

To summarize, the main contributions of this work are:
– We propose a novel query-based open relation extractor QORE that utilizes

a Transformers-based language model to derive a representation of the inter-
action between the arguments and context.

– We carry out extensive experiments on seven datasets covering four languages,
showing that QORE models significantly outperform conventional rule-based
systems and the state-of-the-art method LOREM.

– Considering the practical challenges of ORE, we investigate the zero-shot
domain transferability and the few-shot learning ability of QORE. The experi-
mental results illustrate that our models maintain high precisions when trans-
ferring or training on fewer data.

2 Approach

An overview of our QORE framework is visualized in Fig. 1. Given an argument
pair and its context, we first create a query from the arguments based on a
template and encode the combination of query and context using a Transformers-
based language model. Finally, the span extraction module predicts a continuous
sub-sequence in the context as an open relation.

2.1 Task Description

Given a context C and an argument pair A = (A1, A2) in C, an open relation
extractor needs to find the semantic relationship between the pair A. We denote
the context as a word token sequence C = {xc

i}lci=1 and an argument as a text
span Ak = {xak

i }lak
i=1, where lc is the context length and lak

is the k-th argument
length. Our goal is to predict a span R = {xr

i }lri=1 in the context as an open
relation, where lr is the length of a relation span.
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Fig. 1. An overview of QORE framework

2.2 Query Template Creation

Provided an argument pair (A1, A2), we adopt a rule-based method to create
the query template

T = 〈s1〉A1 〈s2〉A2 〈s3〉 (1)

having three slots, where 〈si〉 indicates the i-th slot. The tokens filling a slot
are separators of the adjacent arguments (e.g., double-quotes, a comma, or
words of natural languages) or a placeholder for a relation span (e.g., a ques-
tion mark or words of natural languages). In this paper, we design two different
query templates: (1) the question-mark (QM) style TQM , taking the form of a
structured argument-relationship triple, and (2) the language-specific natural-
language (NL) style TNL, where each language has a particular template that
is close in meaning. (English: En, Chinese: Zh, French: Fr, Russian: Ru.)

TQM = “A1”?“A2” (2)

TNLEn = What is the relation from“A1”to“A2”? (3)

TNLZh = “A1”和“A2”的关系是? (4)

TNLFr = Quelle est la relation entre“A1”et“A2”? (5)

TNLRu = Kakoe otnoxenie imeet“A1”k“A2”? (6)
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2.3 Encoder

BERT [3] is a pre-trained encoder of deep bidirectional transformers [16] for
monolingual and multilingual representations. Inspired by BERT, Joshi et al.
[8] propose SpanBERT to better represent and predict text spans. SpanBERT
extends BERT by masking random spans based on geometric distribution and
using span boundary objective (SBO) that requires the model to predict masked
spans based on span boundaries for structure information integration into pre-
training. The two language models both achieve strong performances on the span
extraction task. We use BERT and SpanBERT as the encoders of QORE.

Given a context C = {xc
i}lci=1 with lc tokens and a query Q =

{
xq
j

}lq

j=1
with

lq tokens, we employ a pre-trained language model as the encoder to learn the
contextual representation for each token. First, we concatenate the query Q and
the context C to derive the input I of encoder:

I = {[CLS], xq
1, ..., x

q
lq
, [SEP ], xc

1, ..., x
c
lc , [SEP ]} (7)

where [CLS] and [SEP ] denote the beginning token and the segment token,
respectively.

Next, we generate the initial embedding ei for each token by summing its
word embedding ewi , position embedding epi , and segment embedding esi . The
sequence embedding E = {e1,e2, ...,em} is then fed into the deep Transformer
layers to learn a contextual representation with long-range sequence dependen-
cies via the self-attention mechanism [16]. Finally, we obtain the last-layer hid-
den states H = {h1,h2, ...,hm} as the contextual representation for the input
sequence I, where hi ∈ R

dh and dh indicates the dimension of the last hidden
layer of encoder. The length of the sequences I, E, H is denoted as m where
m = lq + lc + 3.

2.4 Span Extraction Module

The span extraction module aims to find a continuous sub-sequence in the con-
text as an open relation. We utilize two learnable parameter matrices (feed-
forward networks) fstart ∈ R

dh and fend ∈ R
dh followed by the softmax normal-

ization, then take each contextual token representation hi in H as the input to
produce the probability of each token i being selected as the start/end of relation
span:

pstarti = softmax(fstart(h1), ..., fstart(hm))i (8)

pendi = softmax(fend(h1), ..., fend(hm))i (9)

We denote pstart = {pstarti }mi=1 and pend = {pendi }mi=1.

2.5 Training and Inference

The training objective is defined as minimizing the cross entropy loss for the
start and end selections,

pk = pstartys
k

× pendye
k

(10)
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L = − 1
N

N∑

k

log pk (11)

where ysk and yek are respectively ground-truth start and end positions of example
k. N is the number of examples.

In the inference process, an open relation is extracted by finding the indices
(s, e):

(s, e) = argmax
s≤e

(pstarts × pende ) (12)

3 Experimental Setup

We propose the following hypotheses and design a set of experiments to exam-
ine the performances of QORE models. We arrange the hypotheses based on the
considerations as follows: (1) H1: By conducting extensive comparisons with the
existing ORE systems, we aim to analyze the advantages of QORE framework.
(2) H2 and H3: As stated in the Introduction, it is significant to evaluate an
open relation extractor on the challenges of Corpus Heterogeneity and Automa-
tion. Thus, we investigate the zero-shot domain transferability and the few-shot
learning ability of QORE models.

– H1: For extracting open relations in seven datasets of different languages,
QORE models can outperform conventional rule-based extractors and the
state-of-the-art neural method LOREM.

– H2: Considering the zero-shot domain transferability, QORE model is able
to perform effectively when transferring to another domain.

– H3: When the training data size reduces, QORE model shows an excellent
few-shot learning ability and maintains high precision.

3.1 Datasets

We evaluate the performances of our proposed QORE framework on seven public
datasets covering four languages, i.e., English, Chinese, French, and Russian
(denoted as En, Zh, Fr, and Ru, respectively). In the data preprocessing, we only
retain binary-argument triples whose components are spans of the contexts.

– OpenIE4En was bootstrapped from extractions of OpenIE4 [10] from
Wikipedia.

– LSOIE-wikiEn and LSOIE-sciEn [13] were algorithmically re-purposed from
the QA-SRL BANK 2.0 dataset [5], covering the domains of Wikipedia and
science, respectively.

– COERZh is a high-quality Chinese knowledge base, created by an unsuper-
vised open extractor [15] from heterogeneous web text.

– SAOKEZh [14] is a human-annotated large-scale dataset for Chinese open
information extraction.



76 H. Yang et al.

– WMORCFr and WMORCRu [4] consist of manually annotated open
relation data (WMORChuman) for French and Russian, and automatically
tagged (thus less reliable) relation data (WMORCauto) for the two lan-
guages by a cross-lingual projection approach. The sentences are gathered
from Wikipedia. We take WMORCauto for the training and development sets
while using WMORChuman as the test data.

3.2 Implementations

Encoders. We utilize the bert-base-cased or spanbert-base-cased language mod-
els as the encoders on English datasets (SpanBERT only provides the English
version up to now), and bert-base-chinese on Chinese datasets. Since there exist
few high-quality monolingual LMs for French and Russian, we employ a multi-
lingual LM bert-base-multilingual-cased on the datasets of the two languages.

Evaluation Metrics. We keep track of the token-level open relation extraction
metrics of F1 score, precision, and recall.

3.3 Baselines

In the experiments, we compare QORE models with a variety of previously
proposed methods, some of which were used in the evaluation of the SOTA open
relation extractor LOREM [6]. We denote the English (En) and Chinese (Zh)
extractors and the models capable of processing multilingual (Mul) texts using
the superscripts.

– OLLIEEn [11] is a pattern-based extraction approach with complex relation
schemas and context information of attribution and clausal modifiers.

– ClausIEEn [2] exploits linguistic knowledge about English grammar to iden-
tify clauses as relations and their arguments.

– Open IE-4.xEn [10] combines a rule-based extraction system and a system
analyzing the hierarchical composition between semantic frames to generate
relations.

– MGD-GNNZh [9] constructs a multi-grained dependency graph and predicts
based on character features and word boundary knowledge.

– LOREMMul [6] is a multilingual-embedded sequence-labeling method based
on CNN and BiLSTM, not relying on language-specific knowledge or external
NLP tools.

– Multi2OIEMul [12] is a multilingual sequence-labeling-based information
extraction system combining BERT with multi-head attention blocks.

4 Experimental Results

4.1 H1: QORE for Multilingual Open Relation Extraction

In H1, we evaluate our QORE models on seven datasets of different languages
(Tables 1 and 2) to compare with the rule-based and neural baselines. By con-
trast, QORE models outperform all the baselines on each dataset.
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Table 1. Comparison on English datasets. Bolds indicate the best values per dataset.
[Query templates: the question-mark (QM) style and the language-specific natural-
language (NL) style.]

OpenIE4En LSOIE-wikiEn LSOIE-sciEn

Model P R F1 P R F1 P R F1

OLLIE – – – 18.02 39.77 23.11 21.96 44.46 27.44
ClausIE – – – 28.78 36.24 31.14 37.18 46.58 40.13
Open IE-4.x – – – 32.06 40.79 34.70 37.73 48.07 40.88
LOREM 83.58 81.56 81.50 71.46 70.58 70.87 76.33 75.13 75.53

QOREBERT+QM 97.89 97.81 97.75 96.74 97.26 96.82 97.35 97.89 97.50
QOREBERT+NL 97.59 97.74 97.51 97.01 97.43 97.11 97.49 98.01 97.63
QORESpanBERT+QM 98.85 99.10 98.76 97.28 97.72 97.37 97.60 98.08 97.71
QORESpanBERT+NL 98.65 98.71 98.50 97.38 97.96 97.51 97.52 98.15 97.70

Table 2. Comparison on Chinese, French and Russian datasets

COERZh SAOKEZh WMORCFr WMORCRu

Model P R F1 P R F1 P R F1 P R F1

MGD-GNN 77.84 86.06 81.74 53.38 65.83 58.96 – – – – – –

LOREM 41.49 42.40 41.42 46.68 52.92 48.70 83.30 83.88 82.75 82.63 87.86 83.80

QOREBERT+QM 98.11 98.16 97.88 92.76 95.00 92.55 94.94 83.79 85.89 91.74 92.48 90.62

QOREBERT+NL 98.10 98.16 97.89 93.19 94.78 92.83 95.01 84.85 86.88 91.51 92.29 90.24

For OLLIE, ClausIE, Open IE-4.x, and MGD-GNN, their dissatisfactory
results are primarily due to the dependence on intricate language-specific relation
formations and error propagation by the used external NLP tools (e.g., MGD-
GNN utilizes dependency parser for constructing a multi-grained dependency
graph.). If we contrast with the SOTA method LOREM, the neural sequence-
labeling-based model outperforms the rule-based systems, but still cannot gain
comparable outcomes to our QORE models. In the following, we focus on com-
paring the architectures of QORE and LOREM.

LOREM encodes an input sequence using pre-trained word embeddings and
adds argument tag vectors to the word embeddings. The argument tag vectors
are simple one-hot encoded vectors indicating if a word is part of an argument.
Then LOREM utilizes CNN and BiLSTM layers to form a representation of each
word. The CNN is used to capture the local feature information, as LOREM con-
siders that certain parts of the context might have higher chances of containing
relation words than others. Meanwhile, the BiLSTM captures the forward and
backward context of each word. Next, a CRF layer tags each word using the
NST tagging scheme [7]: S (Single-word relation), B (Beginning of a relation), I
(Inside a relation), E (Ending of a relation), O (Outside a relation).

Advantages of QORE over LOREM. Our QORE framework generates an
initial sequence representation with word, position, and segment embeddings.
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Unlike the simple one-hot argument vectors of LOREM, QORE derives the argu-
ment information by creating a query template of arguments. We combine the
query with the context to form the input of encoder, and the encoder outputs a
contextual representation that we utilize to compute the relevance of each token
to a gold relation (Eqs. 8 and 9). Moreover, by employing the self-attention mech-
anism of a Transformers-based encoder, QORE has the benefit of learning long-
range dependencies easier and deriving a better representation for computing
relevances, which we interpret in the following. Learning long-range dependen-
cies is a key challenge in encoding sequences and solving related tasks [16]. One
key factor affecting the ability to learn such dependencies is the length of the
paths forward and backward signals have to traverse between any two input and
output positions in the network. The shorter these paths between any combi-
nation of positions in the input and output sequences, the easier it is to learn
long-range dependencies. Vaswani et al. [16] also provide the maximum path
length between any two input and output positions in self-attention, recurrent,
and convolutional layers, which are O(1), O(n), and O(logk(n)), respectively.
(k is the kernel width of a convolutional layer.) The constant path length of
self-attention makes it easier to learn long-range dependencies than CNN and
BiLSTM layers. Overall, QORE achieves substantial improvements over LOREM
due to the better sequence representations with long-term dependencies, a basis
of computing token relevances to gold relations.

In Table 1, if we concentrate on the BERT-encoded and SpanBERT-encoded
QORE models, we find that the results from the SpanBERT-encoded models are
relatively more significant than the BERT-encoded on all English datasets, which
is in line with the advantage of SpanBERT over BERT on the span extraction
task [8].

4.2 H2: Zero-shot Domain Transferability of QORE

A model trained on data from the general domain does not necessarily achieve an
equal performance when testing on a specific domain such as biology or literature.
In H2, we evaluate the zero-shot domain transferability of QORE by training
models on the general-domain LSOIE-wikiEn and testing them on the benchmark
of science-domain LSOIE-sciEn. We compare our QOREBERT+QM model with
BERT Tagger (non-query-based, performed by Multi2OIE). Table 3 illustrates
that when transferring from the general to science domain, QOREBERT+QM

decreases by F1 score (–0.15%) whereas BERT Tagger reduces by F1 (–14.58%).
The slighter decline in QORE’s performance shows that our model has superior
domain transferability.
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Table 3. Results of domain transfer

Model Train Test F1

BERT Tagger LSOIE-sciEn LSOIE-sciEn 74.53
QOREBERT+QM LSOIE-sciEn LSOIE-sciEn 97.50
BERT Tagger LSOIE-wikiEn LSOIE-sciEn 59.95 (−14.58)
QOREBERT+QM LSOIE-wikiEn LSOIE-sciEn 97.35 (−0.15)

4.3 H3: Few-Shot Learning Ability of QORE

For few-shot learning ability, we carry out a set of experiments with shrinking
training data to compare our QORE model with BERT Tagger (non-query-
based, performed by Multi2OIE) on LSOIE-wikiEn. Figure 2 indicates that by
reducing training samples to 50%, BERT Tagger declines by F1 (−2.75%) while
QOREBERT+QM achieves an even higher F1 (+0.26%). When reducing the
training set to 6.25%, QOREBERT+QM results in a decreased F1 (−1.28%)
totally compared with using the whole training set, whereas BERT Tagger
reduces by F1 (−7.02%) in total. The comparison results imply that our query-
based span extraction framework may bring more enhanced few-shot learning
ability to QORE model.

Fig. 2. Results of different training set sizes

5 Conclusion

Our work targets open relation extraction using a novel query-based extraction
framework QORE. The evaluation results show that our model achieves signifi-
cant improvements over the SOTA method LOREM. Regarding some practical
challenges, we investigate that QORE models show excellent zero-shot domain
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transferability and few-shot learning ability. In the future, we will explore fur-
ther demands of the ORE task (e.g., extracting multi-span open relations and
detecting non-existent relationships) and present corresponding solutions.
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