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Abstract. LSTM’s special gate structure and memory unit make it suit-
able for solving problems that are related to time series. It has excellent
performance in the fields of machine translation and reasoning. However,
LSTM also has some shortcomings, such as low parallelism, which leads
to insufficient computing speed. Some existing optimization ideas only
focus on one of the software and hardware. The former mostly focuses on
model accuracy, and CPU accelerated LSTM doesn’t dynamically adjust
to network characteristics; While the latter can be based on the LSTM
model structure. Customized accelerators are often limited by the struc-
ture of LSTM and cannot fully utilize the advantages of the hardware.
This paper proposed a multi-layer LSTM optimization scheme based on
the idea of software and hardware collaboration. We used the pruning by
row scheme to greatly reduce the number of parameters while ensuring
accuracy, making it adapt to the parallel structure of the hardware. From
the perspective of software, the multi-layer LSTM module was analyzed.
It was concluded that some neurons in different layers could be calculated
in parallel. Therefore, this paper redesigned the computational order of
the multilayer LSTM so that the model guaranteed its own timing prop-
erly and it was hardware friendly at the same time. Experiments showed
that our throughput increased by 10x compared with the CPU imple-
mentation. Compared with other hardware accelerators, the throughput
increased by 1.2x-1.4x, and the latency and resource utilization had also
been improved.

Keywords: LSTM · Software and hardware cooperation ·
Parallelism · RNN · NLP

1 Introduction

With the fast advances in Information technologies [1–3] and big data algorithms
[4–6], NLP (natural language processing) is a fast growing area with the power-
ful recurrent neural network (RNN) [7] that is more sensitive to temporal tasks.
However, the problem of gradient explosion or gradient disappearance occurs
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when the neural network is too deep or has too much temporal order. So, RNN
can learn only short-term dependencies. To learn long-term dependencies, the
long short-term memory network LSTM [8] emerged based on RNNs. LSTM
uses unique gate structure to avoid RNN-like problems by forgetting some infor-
mation. LSTM has a wide range of applications in NLP, especially in the field of
machine translation, where it is much more effective than RNN. Although the
special “gate” of LSTM solves the problem that RNN cannot learn long-term
dependencies, it also strengthens the data dependency between modules, leading
to its high requirement for temporality. It causes LSTM’s low parallelism.

Many optimizations for LSTMs have also emerged. Some optimization mod-
els [9–11] tended to optimize for model accuracy, and most of them ignored
model training speed and model size. There were also some optimizations to
accelerate the inference speed of the model by hardware accelerators [12–14].
FPGA became the primary choice for hardware-accelerated LSTMs due to their
excellent performance in accelerating CNNs. [15] accelerated the LSTM model
characteristics by designing custom accelerators. By analyzing the LSTM model,
implementing each module in hardware, and designing custom hardware struc-
ture to complete the acceleration according to the model characteristics.

Based on the idea of hardware-software collaborative optimization, this paper
presents a modular analysis and collaborative design of LSTM. By implementing
pruning, quantization, and improved data flow, the network optimization is car-
ried out in collaboration with hardware and software to maximize parallelization
while ensuring normal timing and no data dependencies. The contributions of
this article are:

1) The pruning method in this paper uses pruning by row, by which the
final pruning result can ensure the same number of elements in each row and
prepare for the parallelism design of the hardware. 2) In this paper, we propose
a method for optimizing neural networks based on collaborative ideas of hard-
ware and software, and a specific design on a multilayer LSTM model. 3) The
modularity analysis of LSTM from a software perspective concludes that it is
possible to compute some cells in different layers in parallel. Based on this, the
computational order of the multilayer LSTM is redesigned in this paper so that
the model is hardware-friendly while properly ensuring its timing.

The rest of the paper is organised as follows: Sect. 2 describes the related
work; Sect. 3 introduces the idea of software and hardware co-optimization of the
LSTM and the implementation details in software; Sect. 4 describes the design
of the corresponding hardware structure based on the optimization effect on the
software; The results and analysis of the experiments are presented in Sect. 5.
Section 6 concludes this paper.

2 Related Work

Machine learning [16,17] have been widely applied in various areas and appli-
cations, such as finance [18,19], transportation [20], and tele-health industries
[21]. The optimization problem [22,23] of neural networks is top-rated, and it
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is divided into two main directions including, optimizing network models and
designing hardware accelerators.

The design of hardware accelerators can be divided into two main categories.
One category is for data transmission. Three types of accelerators were designed
by [14] for different data communication methods. The first one was to stream all
data from off-chip memory to the coprocessor. This had high performance but was
limited by the off-chip memory bandwidth. The second one used on-chip memory
to store all the necessary data internally. This scheme achieved a low off-chip mem-
ory bandwidth, but it is limited by the available on-chip memory. The third one
balanced the former two options to achieve high performance and scalability.

The other category focused on computational processes. Paper [24] proposed
a hardware architecture for LSTM neural networks that aimed to outperform
software implementations by exploiting their inherent parallelism. Networks of
different sizes and platforms were synthesized. The final synthesized network ran
on an i7-3770k desktop computer and outperformed the custom software network
by a factor of 251. Paper [25] proposed an fpga-based LSTM-RNN accelerator
that flattened the computation inside the gates of each LSTM, and the input
vectors and weight matrices were flattened together accordingly. Execution was
pipelined between LSTM cell blocks to maximize throughput. A linear approx-
imation was used to fit the activation function at a cost of 0.63% error rate,
significantly reducing the hardware resource consumption.

Optimizing network models and designing hardware accelerators could have
the effect of optimizing the network, but they only considered one optimiza-
tion direction. The former only considered the optimization of the network and
ignores the reconfigurable design of hardware. The latter focuseed on hardware
design without considering the characteristics of the network itself, and there
was no synergistic design between software and hardware.

3 LSTM Software and Hardware Co-optimization

Our design is based on both of the software dimension and the hardware dimen-
sion, considering how to design to make it hardware friendly when optimizing the
algorithm. And when designing the hardware architecture, consider how to adapt
the hardware architecture to better support the software algorithm. In this paper,
we propose the idea of software and hardware co-optimization. It is a spiral opti-
mization method that considers the software optimization method while adjust-
ing the software optimization and hardware structure with feedback according to
the characteristics of the target hardware structure. The software optimization is
combined with the hardware design to design the hardware structure supporting
the above model from the hardware perspective while the structure of the neural
network model and the number of parameters are reasonably designed.

3.1 Approach

In this paper, we discuss on that neural network algorithms and hardware
architectures interact with each other in the computational process with a



684 Q. Chen et al.

considerable degree of collaboration. Therefore, software optimization needs to
combine with hardware optimization. Often, the number of model parameters
is too large for the hardware, and it is necessary to determine whether direct
deployment to the hardware is feasible before performing the analysis. If the
model parameters put too much pressure on the computational resources of the
hardware, the number of model parameters can be reduced using pruning. There
are various pruning methods, and while reducing the number of parameters, it
is necessary to choose a pruning method that is more compatible with hardware
storage and computation. If the transfer pressure of data in each computing
module is too high, the data can be quantized to relieve the transfer pressure.

After compressing the model, we need to analyze the model as a whole. From
a software perspective, the algorithms and data flow between different modules
are analyzed. The relationship between the modules also needs to be sorted.
From the hardware perspective, the data dependencies of each module of the
model are analyzed, and which parts can be optimized by parallelization, data
flow design, and pipeline design are considered. It is worth noting that these two
tasks are carried out at the same time. While considering algorithm optimiza-
tion and tuning the model structure, one needs to consider how to tune it to
make it hardware-friendly. While considering hardware optimization, one needs
to consider how to tune the algorithm and structure to make it decoupled and
design hardware structures with higher parallelism and lower latency. Finally,
the model structure and hardware architecture have good adaptability through
the collaborative design of hardware and software.

3.2 Model Compression

With the development of neural networks, the accuracy of model is no longer
the only metric to evaluate a model, and researchers are increasingly focusing
on other metrics of the model in the application domain, such as model size,
model consumption of resources, etc. [26]. While pruning and quantization as the
common methods for model compression, their algorithms are being optimized
as the demand expands. [27] proposed a deep compression by designing a three-
stage pipeline: pruning, trained quantization and Huffman coding. Combining
multiple compression methods onto a neural network, it was finally demonstrated
experimentally that the requirements of the model were reduced by a factor of
35× to 49× without the accuracy loss.

Pruning: Network pruning is one of the commonly used model compression algo-
rithms. In the pruning process, we can construct redundant weights and keep
important weights according to certain criteria to maintain maximum accuracy.
There are many pruning methods, and they each have their focus. Since the
computation process of LSTM contains a large number of matrix vector multi-
plication operations, this paper focuses on the pruning operation of the weight
matrix of LSTM. The pruning method in this paper is the less common pruning
by row, which differs from the general pruning by threshold method in that the
selection of pruning range by row is changed. It takes a row of the weight matrix
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as a whole and selects a threshold for pruning according to the percentage of a
row, and by this way, the final pruning result can ensure a consistent number of
elements in each row. In the hardware implementation of matrix operations for
high parallelism in computation, we expand the matrix by rows and compute
it in parallel from row to row. The idea of hardware-software collaboration is
fully reflected here. The accuracy of the model was degraded after pruning, so
retraining was performed after pruning as a way to improve the accuracy. It
is worth noting that the pruned parameters can easily be added with an offset
value, which will cause the pruning effect to be lost without doing something
during the retraining process. Therefore, we add a mask matrix during retraining
to ensure that the 0 elements of the weight matrix are not involved in training
before the weight matrix is involved during retraining. The shape of the mask
matrix is the same as that of the weight matrix. When the element value of
the weight matrix is 0, the element value of the mask matrix for the position is
also 0.

Fig. 1. Pruning by row and its benefit for parallel processing.

Figure 1(a) shows the matrix of memory gate Oi’s weights in a certain neuron.
Figure 1(b) shows the result map Oa

i after unbalanced pruning while Fig. 1(c)
is the result map Ob

i after pruning by row. After pruning the weight matrix,
we assign each row of the matrix to different PEs for parallel computation.
Figure 1(d) and Fig. 1(e) are the running times of several PEs after the two
pruning, respectively, and we can see that the unbalanced pruning Fig. 1(d) will
result in a different amount of data per row, which leads to a large difference in
the elapsed time between the parallel PEs.
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The total elapsed time will be determined by the computation time of the
most loaded PEs, while the other PEs will have different degrees of waiting,
which leads to a decrease in running efficiency. The total time is five clocks.
While pruning by row makes each row have the same amount of data, parallel
PEs do not experience waiting, making the overall operation efficiency guaran-
teed to be high. With the guarantee that all rows require the same clock cycle,
the total time is only three clock cycles.

Quantification: Quantification is another universal approach to model com-
pression. In general, when a well-trained model infers, the model can deal with
some input noise. It means that the model can ignore all non-essential differ-
ences between the inference and training samples. To some extent, low precision
can be considered as a source of noise that provides non-essential differences.
Therefore, theoretically, the neural network can give accurate results even if the
data precision is low. At the same time, neural networks may occupy a large
amount of storage space. This means that the network requires not only a large
amount of memory but also a large number of computational resources during
operation. This problem also provides the need for quantification.

The parameters of the LSTM weight matrix are 32-bit single-precision
floating-point numbers. The memory requirement is very large when the net-
work size is large, and the computation of floating-point numbers requires a lot
of hardware resources. [28] used a linear quantification strategy for both weights
and activation functions. The authors analyzed the dynamic weight range of
all matrices in each LSTM layer and explore the effect of different quantifica-
tion bits on the LSTM model. In this paper, we quantify float-32 to fixed-8.
Although a certain amount of accuracy is lost, multiple data can be read at a
time for processing, which substantially improves the efficiency of computing.

By compressing the model, we greatly reduce the number of parameters and
computational effort. It is worth noting that when choosing the pruning method,
we abandoned the method with a higher compression rate and chose row pruning
which is more convenient for hardware computation, which paves the way for
the following hardware design.

4 Hardware Design

There are many hardware designs for LSTM, but most of them did not con-
sider the characteristics of the hardware structure afterward in the process of
software optimization. Therefore, the final design of the hardware structure was
often limited by the characteristics of the model and data. In this paper, we take
into account the design characteristics of the hardware structure in the process
of model compression and choose a compression method that is more compati-
ble with our hardware design to ensure hardware friendliness to the maximum
extent.
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Fig. 2. Overall architecture diagram

4.1 Overall Structure

The overall architecture of the hardware is shown in Fig. 2. The entire hardware
architecture consists of the controller, the input and output buffers, BRAM,
and LSTM computation blocks. The ARM core controls the overall flow of the
model by transmitting instructions to the hardware’s controller. In addition,
the parameters and input data required for the operation are pre-processed by
model compression and stored in BRAM. The controller accepts instructions
from the ARM core and then coordinates and calls other areas according to
the instructions. The input and output buffer temporarily stores the data in the
BRAM to reduce the data transfer latency of the LSTM computation block. The
LSTM computational block implements the computational logic of multi-layer
LSTM. Each neuron in this unit corresponds to and implements the computa-
tional flow of a single neuron in the LSTM algorithm, while the LSTM neurons
are densely connected by input and output ports to implement the data path
between neurons.

4.2 Compute Optimization

The main computations of LSTM cells are four matrix multiplications, activation
functions, dot-product, and addition. Our optimization scheme focuses on matrix
multiplication, which accounts for a large part of the overall compute. We block
the matrix by rows and perform the input in parallel. In matrix computation, the
internal loop is unrolled when the elements of multiple rows are simultaneously
assigned to different PE. Since the pruning by row in model compression allows
the same number of elements in each row of the weight matrix, it ensures that
the data assigned to different PEs in different rows have the same computation
time. After computing finishes, PE can proceed directly to the next cycle without
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waiting for other PEs. Given the limited resources on the hardware, the number
of parallel PEs can be fine-tuned according to the application scenario. If PE
resources are sufficient, we reduce the time complexity to O(N) in an ideal case.

The computation process of an LSTM cell is shown in Fig. 3. On the left is
the processed weight matrix. We divide it into rows and assign them to differ-
ent PEs. And on the top is the input vector x and the previous neuron input
ht−1. After the input parameters(ht−1, xt, ct−1) enter LSTM cell, ht−1, xt first
carry out matrix multiplication and addition operations with the four weight
matrices(Wf , Wi, Wc,Wo) and then obtain the intermediate results(it, ft, gt,ot)
after σ and tanh activation functions. The compute process of LSTM includes
cell state ct and hidden state ht. The cell state ct is obtained from the dot prod-
uct of it and gt plus the dot product of ft and another input parameter ct−1,
while the hidden state ht is the result of ct after tanh and then dot product
with ot. The computation of input parameters and weight matrix is the most
time-consuming portion of the entire procedure. Since the four matrix calcula-
tions are independent, this paper replicates the input parameters so that the
four matrix operations are no longer limited by the transmission delay of the
input parameters and are computed simultaneously, which reduces the overall
computation time.

Fig. 3. Computational process of a single LSTM neuron.

4.3 Data Flow Optimization

We analyze the data flow between each neuron in the layer dimension and time
dimension of the LSTM. The LSTM of the same layer is executed sequentially
in 2 dimensions on the CPU, which leads to low parallelism of the model. In
the hardware implementation, the strong timing of the LSTM results in a par-
allel strategy that can only be carried out in two separate dimensions includ-
ing, between different layers of the same sequence, such as Layer1 1, Layer2 1
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and Layer3 1; And between different times of the same layer, such as Layer1 1,
Layer1 2 and Layer1 3.

Fig. 4. Multi-layer LSTM data stream (take 3 layers as an example).

The distinction between hardware and software implementations inspires us.
Hardware LSTMs often choose to implement each cell computation in turn and
spread it out to match the rich hardware resources, while software calls the same
cell module in turn. This difference in implementation brings a new perspective
on the data flow. As shown in Fig. 4, when the first time step of the first layer
LSTM is computed at t0 moment, the output h0 at the moment t0 is passed
to the second time step of the first layer and the first time step of the second
layer LSTM after completion of the computation. After that, at t1 moment,
the first time step of the second layer LSTM and the second time step of the
first layer LSTM can compute simultaneously, and so on. Thus some cells of
LSTM can compute in parallel to achieve acceleration, which is similar to the
acceleration idea of the pulsating array [29]. After optimizing the computational
order, we can observe that the overall model is more parallelized. As a result,
we can adjust the timing of the cells that satisfy the computational prerequisites
at the same moment in the hardware implementation. Figure 5(a) shows the
timing diagram before the adjustment, where the whole computation process
took nine clock cycles, while in Fig. 5(b), the computation process took only five
clock cycles after the adjustment. For this stepwise computation order, Layer1 3,
Layer2 2, and Layer3 1, which are in different layers, start running at the same
time because they satisfy the computation prerequisites at the same time, thus
satisfying the two parallel strategies at the same time.
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Fig. 5. Pipeline structure of multi-layer LSTM.

5 Experimental Results and Analysis

We implemented the LSTM neural network on the MNIST [30] dataset using
the pytorch framework. The LSTM neural network was trained on the MNIST
dataset, which consists of four main components: the training set, the test set,
the validation set images and the label information. There are 55,000 images in
the training set, each with a size of 784 (28*28); 55,000 labels in the training
set, each label being a one-dimensional array of length 10; 10,000 images in the
test set and 5,000 images in the validation set.

The experimental results showed that the accuracy before pruning reached
95.75%. After pruning the weight matrix, the compression rate reached 21.99×,
but as we were pruning uniformly by row, this inevitably led to the loss of valid
parameters and the accuracy dropped to 68%, such a reduction in accuracy is
unacceptable. We therefore retrained after the pruning was completed, and the
final accuracy was 96%. Finally, we had completed the effective compression of
our model.

We implemented the LSTM computation process on Vivado High-Level Syn-
thesis V2020.2 and the results are shown in Table 1. The device we chose was the
XC7Z020, and in order to make the best use of hardware resources, we explored
the relationship between the size of the weight matrix and the consumption of
hardware resources and its percentage of the total amount of each resource. It
is clear from Table 1 that when the size of the weight matrix is 32× 18, the per-
centage of BRAM 18 K, DSP and FF usage is small, but the LUT usage reaches
27132, accounting for 51% of the total resources.

As the size of the weight matrix increases, all the hardware resources increase
with it, except for FF, whose percentage did not change much. Among them,
BRAM 18 K increases the most, directly from the initial 34% to 103%. As the
scale increases to 64 × 256, the resources required for BRAM 18 K exceed the
total resources available from the hardware. When the model size is 50× 200,
the proportion of each resource is more reasonable.
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Table 1. Hardware resource usage for different model sizes

Matrix size BRAM 18K DSP FF LUT

32 × 18 48 (34%) 26 (12%) 12768 (12%) 27132 (51%)

50 × 200 66 (47%) 99 (45%) 28728 (27%) 30324 (57%)

64 × 256 144 (103%) 130 (59%) 24472 (23%) 37242 (70%)

We compared the hardware resource consumption before and after opti-
mization and computed the percentage of total resources on the hardware
accounted for by LUT, FF, DSP, and BRAM 18 K. Before optimization, LUT
and BRAM 18 K account for a large proportion of the hardware resource con-
sumption, accounting for 52% and 34% of the total number of resources, respec-
tively. Due to the use of various hardware optimization schemes, the latency
is reduced while the consumption of various resources is significantly increased.
Since LSTM compute contains many matrix multiplications, our optimized DSP
has the largest increase in consumption with 40%, accounting for 70% of the
total DSP resources.

6 Conclusion

In this paper, we proposed the method of optimizing neural networks based on
the idea of hardware-software collaboration for multilayer LSTM. The selection
of the pruning scheme and the corresponding hardware design in this paper fully
reflected the idea of hardware-software collaboration. After analyzing the data
flow and data dependency of the LSTM, we redesigned the computational order
of the multilayer LSTM to parallelize the serial computation of some neurons.
The final experiment proved that our solution had 10× the throughput of CPU
and improved in terms of throughput, latency, and resource utilization compared
to other hardware accelerators.
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