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Abstract. Broad Learning System (BLS), a type of neural network with
a non-iterative training mechanism and adaptive network structure, has
attracted much attention in recent years. In BLS, since the mapped fea-
tures are obtained by mapping the training data based on a set of random
weights, their quality is unstable, which in turn leads to the instability
of the generalization ability of the model. To improve the diversity and
stability of mapped features in BLS, we propose the BLS with Hybrid
Features (BLSHF) algorithm in this study. Unlike original BLS, which
uses a single uniform distribution to assign random values for the input
weights of mapped feature nodes, BLSHF uses different distributions
to initialize the mapped feature nodes in each group, thereby increas-
ing the diversity of mapped features. This method enables BLSHF to
extract high-level features from the original data better than the orig-
inal BLS and further improves the feature extraction effect of the sub-
sequent enhancement layer. Diverse features are beneficial to algorithms
that use non-iterative training mechanisms, so BLSHF can achieve better
generalization ability than BLS. We apply BLSHF to solve the problem
of air quality evaluation, and the relevant experimental results empiri-
cally prove the effectiveness of this method. The learning mechanism of
BLSHF can be easily applied to BLS and its variants to improve their
generalization ability, which makes it have good application value.
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1 Introduction

In recent years, deep learning technology has made breakthroughs in many
fields [7,19]. Here we mainly focus on deep neural networks in deep learning.
The complex connection between neurons and hidden layers enables the related
model to extract multi-levels of feature information from the original data. Based
on the extracted feature information, the model can construct the relationship
between the feature description of training samples and their labels for predicting
the labels of new samples. Traditional neural networks generally use the iterative
training mechanism. Specifically, they first calculate the prediction error of the
model based on the initialization parameters and training samples and then use
the error back-propagation method to iteratively fine-tune all the weights in the
neural network to make the prediction error of the model reach an acceptable
threshold. This process is time-consuming, and the demand for hardware com-
puting resources is huge. For example, GPU is often necessary for deep model
training. This makes it difficult to train and deploy related models on-site in
many scenarios with limited computing power.

To alleviate the defects of traditional neural networks, neural networks using
non-iterative training mechanisms have attracted more and more attention in
recent years [2,17]. This kind of neural network has one thing in common, that
is, some parameters in the neural network remain unchanged in the subsequent
model training process after initialization, and the parameters to be calculated
only need to be solved at one time. Compared with traditional neural networks,
this training method undoubtedly greatly improves the learning efficiency of the
model. Relevant representative algorithms include Random Vector Functional
Link network (RVFL) [16], Pseudo-Inverse Learning (PIL) [8], Extreme Learning
Machine (ELM) [9], Stochastic Configuration Network (SCN) [14], and Broad
Learning System (BLS) [3]. This study mainly focuses on BLS.

BLS is an upgraded version of RVFL proposed by Chen et al. in 2017 [3]
which has two obvious characteristics. First, BLS uses a non-iterative train-
ing mechanism, which makes it very efficient in training. Second, the network
structure of BLS has flexible scalability. Specifically, the number of its mapped
feature nodes and enhancement nodes can be dynamically increased or pruned
according to different tasks. After two feature mappings of the mapped feature
layer and the enhancement layer, the different classes of the original data can be
linearly separable in a high-dimensional space, and then the parameters of the
model can be solved based on the ridge region theory. The universal approxima-
tion capability of BLS has been proved in [4]. Thanks to the excellent perfor-
mance of BLS in multiple scenarios and a relatively complete theoretical foun-
dation, it quickly attracted the attention of researchers. Improved BLS-based
algorithms and applications are constantly being proposed. Related represen-
tative works include fuzzy BLS [6], recurrent BLS [15], weighted BLS [5], BLS
with Proportional-Integral-Differential Gradient Descent [21], dense BLS [20],
multi-view BLS [13], semi-supervised BLS [18], etc.

Although the above-mentioned BLS and its variants have shown great poten-
tial in many scenarios, their model performance is still expected to be further
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improved. Because we found that their input parameters are randomly generated
based on a uniform distribution. BLS grouped the mapped feature nodes at the
beginning of the design, but few studies use different distributions to initialize
different groups of mapped feature nodes. In the early research of Cao et al., they
found that for RVFL, using different distribution functions to initialize the input
weights will have different effects on the performance of the model [1]. Moreover,
using uniform distribution to initialize the input weights cannot always guaran-
tee that the model has good generalization ability. Later, they further studied
and found that in ensemble learning scenarios, using multiple distributions to
initialize the sub-models can effectively improve the generalization ability of the
final model [12].

Inspired by the above work, in this study, we propose to use multiple distri-
bution functions to initialize different groups of mapped feature nodes, thereby
enhancing the diversity of mapped features. We call this method: BLS with
Hybrid Features (BLSHF). For many machine learning algorithms, the more
diverse the features, the better the generalization ability of the model. BLSHF
uses multiple distributions to initialize input weights in the mapped feature layer,
which can obtain multi-level feature abstractions from the original data, and
indirectly improves the diversity of enhancement features. Abundant features
help the model to better mine the mapping relationship between the original
feature description of the training samples and their labels, thereby improving
the generalization ability of the model.

The contributions of this study can be summarized as follows.

– A novel BLS algorithm with hybrid features (i.e., BLSHF) was proposed in
this study, which can greatly improve the diversity of the mapped features
and enhancement features.

– The idea of BLSHF can be easily transferred to other BLS algorithms to
further improve the performance of related models.

– To verify the effectiveness of BLSHF, we applied it to build an air quality
prediction model. Extensive experimental results on two public air quality
evaluation data sets show that BLSHF can achieve better generalization abil-
ity than BLS. The air quality prediction model based on BLSHF also provides
a feasible solution for real-world related scenarios.

The remainder of this study is organized as follows: Sect. 2 briefly reviews the
learning mechanism of BLS and related work. Details of the proposed BLSHF
are presented in Sect. 3, followed by experimental results and analysis in Sect. 4.
We conclude this study in Sect. 5.

2 Related Work

In this section, we review the training mechanism of BLS and the existing liter-
ature related to this study. As mentioned in Sect. 1, BLS is a feedforward neural
network that uses a non-iterative training mechanism, and its basic network
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structure is shown in Fig. 1. Note that here we use the version that does not
directly connect the input and output layers.

It can be observed from Fig. 1 that BLS is a four-layer neural network: input
layer, mapped feature layer, enhancement layer, and output layer. In this study,
we denote the input weights between the input layer and the mapped feature
layer as W input, the weights between the mapped feature layer and the enhance-
ment layer as W enhance, and the output weights between the mapped feature
layer and the enhancement layer and the output layer as W output.

The mapped feature layer performs the first feature mapping on the original
data transmitted from the input layer by groups and then concatenates the fea-
tures extracted from all groups as input and transmits them to the enhancement
layer for the second feature mapping. Then, the mapped feature and enhance-
ment feature are connected to obtain the final feature matrix, which will be used
to calculate the output weights (i.e., W output) based on the ridge regression
theory. Different from traditional neural networks, the training process of BLS
is completed at one time, so it is called a neural network with a non-iterative
training mechanism.

Fig. 1. Network structure of BLS.

In the above model training process, the input weights between the input
layer and the mapped feature layer (i.e., W input) are randomly generated
according to a uniform distribution, and these parameters will remain unchanged
in the subsequent model training process.

According to [1], using different distribution functions to initialize input
weights will have different effects on the performance of non-iterative neural net-
works. BLS groups different mapped feature nodes in the mapped feature layer
but does not use diversified strategies to initialize different groups of mapped
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feature nodes. Therefore, the original BLS model may still face the problem of
failing to achieve optimal performance in some specific scenarios.

Liu et al. found that if multiple distributions are used to initialize the sub-
models separately, and then the ensemble learning mechanism is used to integrate
their prediction results, the prediction ability of the final model can be effectively
improved [12].

Inspired by this idea, we try to use different distributions to initialize different
groups of mapped feature nodes in BLS to get a model with better generalization
ability.

3 The Proposed Method

The core idea of the method proposed in this study is to initialize different groups
of mapped feature nodes in the BLS with different distributions to obtain multi-
levels of feature extraction. Diversified feature expression and fusion can allow
the model to better mine the relationship between the original features of train-
ing samples and their label, and then obtain a model with better generalization
ability. We call the proposed method: BLS with Hybrid Features (BLSHF).

The network structure of BLSHF is shown in Fig. 2. Except that the ini-
tialization of mapped feature nodes is different from the original BLS, other
parts are the same. Note that for the consideration of control variables, we do
not group enhancement nodes here. In other words, in the enhancement layer,
we use a uniform distribution to generate random parameters for enhancement
nodes in accordance with BLS. According to Fig. 2, we can easily implement the
BLSHF algorithm. Its pseudo-code is shown in Algorithm 1.

It can be observed from Algorithm 1 that the difference between our proposed
BLSHF algorithm and BLS is that we use different distribution functions to
initialize mapped feature nodes to obtain more diverse features.

Universal Approximation Property of BLSHF: As mentioned above, if we
reduce the number of the distribution function that initializes random param-
eters to 1 (i.e., the Uniform distribution), BLSHF will degenerate into BLS.
In other words, BLSHF only improves the generalization ability of the model
by increasing the diversity of mapped features and enhancement features, and
does not significantly modify the network architecture or non-iterative training
mechanism of the original BLS. The universal approximation property of BLS
has been proven in [4]. Therefore, one can infer that the proposed BLSHF also
has the same approximation property.

In the next section, we will empirically prove the effectiveness of this approach
through experiments on air quality assessment.

4 Experimental Settings and Results

In this section, we evaluate the performance of the proposed BLSHF algorithm
on two real-world air quality index prediction problems.
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Fig. 2. Network structure of BLSHF.

These two data sets describe the urban air pollution in Beijing and Oslo in
a specific period, respectively. As shown in Table 1, the Beijing PM 2.5 data set
contains 41,757 samples, and each sample has 11 attributes, which depict the
values of related indicators that may lead to a specific PM 2.5 value. Similarly,
the Oslo PM 10 data set contains 500 samples, and each sample has 7 attributes,
which depict the values of related indicators that may lead to a specific PM 10
value. Information about the specific meaning of each attribute of the sample
can be viewed from the data source: Beijing PM 2.5 [11] and Oslo PM 101.
This study focuses on the modeling and performance evaluation of the proposed
method on these two data sets.

In our experiment, we set the number of mapped feature nodes to 6, and the
number of feature window to 3, which corresponds to three different distribu-
tion functions, namely: Uniform distribution, Gaussian distribution, and Gamma
distribution. The number of enhancement nodes is set to 41. The activation func-
tions of BLS and BLSHF are uniformly selected as the Sigmoid function.

For each data set, we split it into a training set and a testing set according
to 7:3. Root Mean Square Error (RMSE) and Normalized Mean Absolute Error
(NMAE) are chosen as the indicator to evaluate the performance of the model.
The smaller these two indicators are, the better the model performance is. They
can be calculated according to the following equations.

RMSE =

√
√
√
√

N∑

i=1

(y∗
i − yi)2

N
(1)

1 http://lib.stat.cmu.edu/datasets/.

http://lib.stat.cmu.edu/datasets/
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Algorithm 1: BLSHF Algorithm
Input: Training data X, activation functions φ1(�) and φ2(�) for the mapped

feature layer and the enhancement layer, respectively.
Output: All parameters of the BLSHF model.
Randomly assign the values of W input i for the i-th group of mapped feature
nodes under the i-th distribution.
Use φ1(�) to project and get the mapped feature of the i-th group of mapped
feature nodes Z i. Specifically, Z i = φ1(X ∗ W input + β input), where
β input is the thresholds of mapped feature nodes.
Concatenate the mapped features of all groups: Z = [Z 1, . . . , Z k], where k is
the number of the groups.
Randomly assign the values of W enhance for the enhancement nodes under
the uniform distribution.
Use φ2(�) to enhance the mapped feature by the enhancement layer:
H = φ2(Z ∗ Wenhance + β enhance), where β enhance is the thresholds of
enhancement nodes.
Calculate the output weights W output = [Z|H]+Y , where Y is the real label
matrix of the training samples.
Return: Input weights of mapped feature nodes in each group (i.e., W input),
input weights of enhancement feature nodes (i.e., W enhance), and the output
weights W output.

Table 1. Details of experimental datasets

Dataset Number of attributes Number of samples

Beijing PM 2.5 11 41757

Oslo PM 10 7 500

NMAE =
MAE(y∗

i , yi)
1
N

∑N
i=1 |yi|

(2)

where y∗
i is the predicted label of the model for the i-th sample, yi is the real

label of the i-th sample, and N is the number of samples. MAE(�) means the
mean absolute error.

The experimental results of BLS and BLSHF on two air quality prediction
data sets are shown in Table 2. For ease of comparison, we have bolded better
metrics.

It can be observed from Table 2 that the BLSHF model can achieve lower
prediction errors on all data sets than the BLS model, which implies that the
proposed BLSHF model has better generalization ability than the original BLS
model. This experimental phenomenon verifies a consensus in the field of machine
learning: the diversification of data features helps the model to better learn the
implicit patterns in the data.

In addition, we can also observe an interesting experimental phenomenon,
that is, the training time of the BLSHF model is shorter than that of the
BLS. This phenomenon may be because the sampling efficiency of the partial
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distribution function is higher than that of the Uniform distribution, thus
improving the training efficiency of the overall model. However, this is only a
speculation, and we will analyze this in more depth from a mathematical point
of view in the future.

To show our experimental results more clearly, we visualized them separately,
namely: Figs. 3–8. From these visualized figures, it can be intuitively found that
our proposed BLSHF algorithm can not only achieve lower prediction errors than
BLS, but also have faster training efficiency.

For the above experimental phenomenon, a speculative explanation is given
here: using different distribution functions to initialize mapped feature nodes can
allow the model to extract more diverse features, which is beneficial to improve
the generalization ability of the model. Therefore, the prediction error of the
BLSHF model is lower than that of the BLS.

Table 2. Details of experimental results

Dataset Performance BLS The proposed BLSHF

Beijing PM 2.5 Training RMSE 0.0731 0.0716

Testing RMSE 0.0741 0.0726

Training NMAE 0.5349 0.5275

Testing NMAE 0.5378 0.5286

Training time 0.0669 0.0434

Oslo PM 10 Training RMSE 0.1506 0.1471

Testing RMSE 0.1768 0.1585

Training NMAE 0.2173 0.2127

Testing NMAE 0.2408 0.2252

Training Time 0.0493 0.0401

Fig. 3. RMSE of BLS and BLSHF models on Beijing PM 2.5 dataset.
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Fig. 4. NMAE of BLS and BLSHF models on Beijing PM 2.5 dataset.

Fig. 5. Training time of BLS and BLSHF models on Beijing PM 2.5 dataset.

Fig. 6. RMSE of BLS and BLSHF models on Oslo PM 10 dataset.
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Fig. 7. NMAE of BLS and BLSHF models on Oslo PM 10 dataset.

Fig. 8. Training time of BLS and BLSHF models on Oslo PM 10 dataset.

5 Conclusions

To improve the feature extraction capability of BLS, we innovatively design
an improved BLS algorithm called BLSHF. Different from the original BLS,
BLSHF uses multiple initialization strategies for each group of mapped feature
nodes, which enables them to provide more diverse features for model learning.
The diversity of mapped features further improves the diversity of enhancement
features. The diversity of features helps the algorithm to better mine the internal
patterns of the data, resulting in a model with better generalization ability.

BLSHF also inherits the non-iterative training mechanism of BLS, so it has
the advantages of extremely fast training speed and low hardware computing
power requirements. We apply BLSHF to model two real-world air pollution
assessment problems, and the experimental results show that it can achieve
better generalization ability than the BLS model. The air pollution perception
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model based on BLSHF also provides a new idea for real-world air quality mon-
itoring research.

However, the current version of the BLSHF algorithm is still a shallow feed-
forward neural network. Even if we have improved the feature extraction capa-
bility of the original BLS, the existing solution may still be stretched in the face
of complex datasets such as ImageNet [10]. In the future, we will consider using
BLSHF as a stacking unit to build a more complex neural network to solve the
modeling problem of complex scenarios.
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