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Abstract. Since implicit neural representation methods can be utilized
for continuous image representation learning, pixel values can be suc-
cessfully inferred from a neural network model over a continuous spatial
domain. The recent approaches focus on performing super-resolution
tasks at arbitrary scales. However, their magnified images are often
distorted and their results are inferior compared to single-scale super-
resolution methods. This work proposes a novel CrossSR consisting of
a base Cross Transformer structure. Benefiting from the global inter-
actions between contexts through a self-attention mechanism of the
Cross Transformer, the CrossSR could efficiently exploit cross-scale fea-
tures. A dynamic position-coding module and a dense MLP operation
are employed for continuous image representation to further improve
the results. Extensive experimental and ablation studies show that our
CrossSR obtained competitive performance compared to state-of-the-art
methods, both for lightweight and classical image super-resolution.

Keywords: Super-resolution · Transformer · Arbitrary scale ·
Computer vision · Deep learning

1 Introduction

With the rapid development of deep learning and computer vision [7,13,20],
image super-resolution has shown a wide range of real-world applications, driv-
ing further development in this direction. Image super-resolution is a classical
computer vision task, which aims to restore high-resolution images from low-
resolution images. Generally, according to the manner of feature extractions,
image super-resolution methods can be roughly divided into two categories, i.e.,
traditional interpolation methods, such as bilinear, bicubic, and deep convolu-
tional neural network-based methods, such as SRCNN [6], DRCN [11], CARN
[2], etc. Image super-resolution methods based on CNNs have achieved progres-
sive performance. However, these methods cannot solve the problem of contin-
uous image representation, and additional training is required for each super-
resolution scale, which greatly limits the application of CNN-based image super-
resolution methods.
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Fig. 1. PSNR results v.s the total number of parameters of different methods for image
SR (×4) on Urban100 [9]. Best viewed in color and by zooming in. (Color figure online)

The LIIF [5] was proposed using implicit image representation for arbitrary
scale super-resolution, aiming to solve the continuous image representation in
super-resolution. However, the implicit function representation of MLP-based
LIIF [5] cannot fully utilize the spatial information of the original image, and
the EDSR feature encoding module used in LIIF lacks the ability to mine the
cross-scale information and long-range dependence of features, so although LIIF
has achieved excellent performance in arbitrary-scale super-resolution methods,
there is a certain gap compared with the current state-of-the-art single-scale
methods.

The currently proposed transformer [21] has attracted a lot of buzz through
remarkable performance in multiple visual tasks. The transformer is mainly
based on a multi-head self-attention mechanism, which could capture long-
range and global interaction among image contexts. The representative methods
employing transformers for single-scale image super-resolution are SwinIR [14]
and ESRT [17], which obtained superior performance than traditional deep neu-
ral networks-based methods.
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Fig. 2. The architecture of CrossSR is in the top, it consists of two modules: a trans-
former backbone for feature encoding and an continuous image implicit function repre-
sentation module. CTB is the inner structure of Cross Transformer Blocks, CEL is the
structure of Cross-scale Embedding Layer we proposed, the n and n/2 in Conv(n,n/2)
are the number of channels for input and output features.

This paper employs a novel framework of Cross Transformer for effective and
efficient arbitrary-scale image super-resolution (CrossSR). Specifically, CrossSR
consists of a Cross Transformer-based backbone for feature encoding and an
image implicit function representation module. The feature encoding module is
mainly based on the framework of Cross Transformer [23] with residual aggrega-
tion [16]. The Cross Transformer consists of four stages, and each stage contains
multiple cross-scale feature embedding layers and multiple Cross Transformer
layers. The image implicit function representation module is based on a modifi-
cation of LIIF [5]. Specifically, it includes a dynamic position encoding module
and a dense MLP module. Extensive experiments on several benchmark datasets
and comparisons with several state-of-the-art methods on image super-resolution
show that our proposed CrossSR achieves competitive performance with less
computing complex. The main contributions of our proposed method include
the following three aspects:

– Firstly, a novel image super-resolution network backbone is designed based on
a Cross Transformer block [23] combined with a residual feature aggregation
[16], and a new cross-scale embedding layer (CEL) is also proposed to reduce
the parameters while preserving the performance.

– A series of new network structures are designed for continuous image repre-
sentation, including dynamic position coding, and dense MLP, which could
significantly increase the performance of super-resolution.

– The experiments evaluated on several benchmark datasets show the effective-
ness and efficiency of our proposed CrossSR, and it obtained competitive per-
formance compared with state-of-the-art methods on image super-resolution.
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2 Proposed Method

2.1 Network Architecture

As shown in Fig. 2, our proposed CrossSR framework consists of two modules: a
transformer backbone based on Cross Transformer for feature extraction and a
continuous function expression module which utilize a dynamic position encoding
block (DPB) [23] and a dense multi-layer perception machine (dense MLP) to
reconstruct high quality (HQ) images at arbitrary scales.

Transformer Backbone: Convolutional layers operated at early visual process-
ing could lead to more stable optimization and better performance [25]. Given
an input image x, we can obtained the shallow feature through a convolutional
layer:

F0 = Lshallow(x) (1)

where Lshallow is the convolutional layer, F0 is the obtained shallow feature
maps.

After that, the deep features FLR are extracted through some Transformer
blocks and a convolutional layer. More specifically, the extraction process of the
intermediate features and the final deep features can be represented as follows:

Fi = LCTBi
(Fi−1), i = 1, 2, , , k (2)

FLR = LConv(Concat(F1, F2, , , Fk)) + F0 (3)

where LCTBi
denotes the i-th Cross Transformer block (CTB) of total k CTBs,

LConv is the last convolutional layer, Concat(·, ·) indicates cascading them on
the channel direction. Residual Feature Aggregation structure is designed by
cascading the output of the transformer block of each layer and passing through
a convolutional layer, thus, the residual features of each layer can be fully uti-
lized [16].

Continuous Function Expression: In the continuous function expression
module, a continuous image representation function fθ is parameterized by a
dense MLP. The formulation of continuous function expression is as follow:

FSR = fθ(vi, δx, dpb(δx)) (4)

where FSR is the high-resolution result that to be predicted, vi is the feature
vector for reference, and δx is the pixel coordinate information of the FSR, dpb(·)
means the dynamic position encoding block [23]. The reference feature vector vi

is extracted from the LR feature map FLR ∈ RC×H×W in its spacial location
δvi ∈ RH×W which is close to δx. fθ is the implicit image function simulated by
the dense multi-layer perception machine.

Loss Function: For image super-resolution, the L1 loss is used to optimize the
CrossSR as previous work [5,14,17,19] done,

L = |FSR − HR|1 (5)

where FSR is obtained by taking low resolution image as the input of CrossSR,
and HR is the corresponding high-quality image of ground-truth.
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Fig. 3. The architecture of Cross Transformer Layer (CTL) is on the left, SDA and LDA
are used alternately in each block. The a diagram on the right shows the architecture
of DPB. The middle figure b is the structure of the original MLP, and the rightmost
figure c is a schematic of part of the structure of the dense MLP. These three structures
contain a ReLU activation layer after each linear layer, which is omitted in the figure.

2.2 Cross Transformer Block

As shown in Fig. 2, CTB is a network structure consisting of multiple groups of
small blocks, each of which contains a Cross-scale Embedding Layer (CEL) and a
Cross Transformer Layer (CTL). Given the input feature Fi,0 of the i− th CTB,
the intermediate features Fi,1,Fi,2,,,Fi,n can be extracted by n small blocks as:

Fi,j = LCTLi,j
(LCELi,j

(Fi,j−1)), j = 1, 2, , , , n (6)

where LCELi,j
(·) is the j-th Cross-scale Embedding Layer in the i-th CTB,

LCTLi,j
(·) is the j-th Cross Transformer Layer in the i-th CTB.

Cross-scale Embedding Layer(CEL): Although Cross Transformer [23] elab-
orates a Cross-scale Embedding Layer (CEL), it is still too large to be directly
applied in image super-resolution. In order to further reduce the number of
parameters and the complex operations, a new CEL is designed based on four
convolutional layers with different convolutional kernel sizes. Benefiting from
each convolution operation with different kernel size is based on the result of
the previous convolution, the subsequent convolutions can obtain a substan-
tial perceptual field with only one small convolution kernel, instead of using a
32× 32 kernel as large as in Cross Transformer [23]. Moreover, to further reduce
the number of complex operations, the dimension of the projection is reduced
as the convolution kernel increases. This design could significantly reduce com-
putational effort while achieving excellent image super-resolution results. The
output feature of Cross-scale Embedding Layer (CEL) Fceli,j is formulated as:

Fi,j,l = LConvl
(Fi,j,l−1), l = 1, 2, 3, 4 (7)

Fceli,j = Concat(Fi,j,1, Fi,j,2, Fi,j,3, Fi,j,4) (8)

Cross Transformer Layer (CTL): Cross Transformer Layer (CTL) [23] is
based on the standard multi-head self-attention of the original Transformer
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Table 1. Quantitative comparison (average PSNR/SSIM) with state-of-the-art meth-
ods for lightweight image SR on benchmark datasets. The best results are highlighted
in red color and the second best is in blue.

Scale Method Params Set5 PSNR/SSIM Set14 PSNR/SSIM BSD100 PSNR/SSIM Urban100 PSNR/SSIM

×2 CARN [2] 1,592 K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256

LAPAR-A [12] 548 K 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283

IMDN [10] 694 K 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283

LatticeNet [18] 756 K 38.15/0.9610 33.78/0.9193 32.25/0.9005 32.43/0.9302

ESRT [17] 677 K 38.03/0.9600 33.75/0.9184 32.25/0.9001 32.58/0.9318

EDSR-baseline [15] 1,370 K 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272

EDSR-baseline-liif [5] 1,567 K 37.99/0.9602 33.66/0.9182 32.17/0.8990 32.15/0.9285

CrossSR (ours) 1,574 K 38.13/0.9607 33.99/0.9218 32.27/0.9000 32.63/0.9325

X3 CARN [2] 1,592 K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493

LAPAR-A [12] 544K 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523

IMDN [10] 703 K 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519

LatticeNet [18] 765 K 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538

ESRT [17] 770 K 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574

EDSR-baseline [15] 1,555 K 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527

EDSR-baseline-liif [5] 1,567 K 34.40/0.9269 30.37/0.8426 29.12/0.8056 28.22/0.8539

CrossSR (ours) 1,574 K 34.53/0.9283 30.53/0.8460 29.21/0.8082 28.64/0.8616

×4 CARN [2] 1,592 K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837

LAPAR-A [12] 659 K 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871

IMDN [10] 715 K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838

MSFIN [24] 682 K 32.28/0.8957 28.66/0.7829 27.61/0.7370 26.25/0.7892

LatticeNet [18] 777 K 32.30/0.8962 28.68/0.7830 27.62/0.7367 26.25/0.7873

ESRT [17] 751 K 32.29/0.8964 28.69/0.7844 27.66/0.7384 26.27/0.7907

ASSLN [28] 708 K 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962

EDSR-baseline [15] 1,518 K 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849

EDSR-baseline-liif [5] 1,567 K 32.24/0.8952 28.62/0.7823 27.60/0.7366 26.15/0.7879

CrossSR (ours) 1,574 K 32.46/0.8975 28.79/0.7856 27.70/0.7405 26.55/0.7995

layer. The main differences lie in short-distance attention (SDA), long-distance
attention (LDA), and dynamic position encoding block (DPB). The structure
of Cross Transformer is shown in the Fig. 3. For the input image, the embedded
features are firstly cropped into small patches to reduce the amount of opera-
tions. For short-distance attention, each G × G-adjacent pixel point is cropped
into a group. For long-distance attention, pixel points with fixed distance I are
grouped together, and then these different grouping features X are used as input
for long and short distance attention, respectively. The specific attentions are
defined as follows:

Attention(Q,K, V ) = Softmax(
QKT

√
d

+ B)V (9)

where Q,K, V ∈ RG2×D represent query, key, value in the self-attention module,
respectively. And

√
d is a constant normalizer. B ∈ RG2×G2

is the position bis
matrix. Q,K, V are computed as

Q,K, V = X(PQ, PK , PV ) (10)
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where X is the different grouping features for LDA and SDA, PQ, PK , PV are
projection matrices implemented through different linear layers.

Next, a multi-layer perception (MLP) is used for further feature transforma-
tions. The LayerNorm (LN) layer is added before the LSDA (LDA or SDA) and
the MLP, and both modules are connected using residuals. The whole process is
formulated as:

X = LSDA(LN(X)) + X (11)

X = MLP (LN(X)) + X (12)

2.3 DPB and Dense MLP

Dynamic Position encoding Block (DPB): Image super-resolution aims
to recover the high-frequency details of an image. And a well-designed spatial
coding operation allows the network to effectively recover the details in visual
scenes [26]. With the four linear layers of DPB, we expand the two-dimensional
linear spatial input into a 48-dimensional spatial encoding that can more fully
exploit the spatial location information, and such design could effectively reduce
structural distortions and artifacts in images. The network structure of DPB
is shown in Fig. 3.a, and the location information followed the DPB encoding
operation is represented as:

dpb(δx) = L4(L3(L2(L1(δx)))) (13)

where L1, L2, L3 all consist of three layers: linear layer, layer normalisation, and
ReLU. L4 only consists of one linear layer. Then, the DPB encoded spatial
information dpb(δx) and the original location information δx are cascaded and
input into the dense MLP to predict the high-resolution image as shown in Eq. 4.

Dense MLP: Considering that dense networks have achieved good results in
image super-resolution and the fascinating advantages of densenets: they reduce
the problem of gradient disappearance, enhance feature propagation, encourage
function reuse, and greatly reduce the number of parameters. We design a dense
MLP network structure, which connects each layer to each other in a feedforward
manner. As shown in Fig. 3.c, for each layer of Dnese MLP, all feature maps of
its previous layer are used as input, and its own feature map is used as input of
all its subsequent layers.

3 Experiment

3.1 Dataset and Metric

The main dataset we use to train and evaluate our CrossSR is the DIV2K [1]
dataset from NTIRE 2017 Challenge. DIV2K consists of 1000 2 K high-resolution
images together with the bicubic down-sampled low-resolution images under
scale ×2, ×3, and ×4. We maintain its original train validation split, in which
we use the 800 images from the train set in training and the 100 images from the
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Table 2. Quantitative comparison (average PSNR/SSIM) with state-of-the-art meth-
ods for classical image SR on benchmark datasets. NLSA [19] and SWIR [14] train
different models for different upsampling scales. The rest methods train one model for
all the upsampling scales. The best results are highlighted in red color and the second
best is in blue.

Dataset Method ×2 × × ×6 ×8 ×12

Set5 NLSA [19] 38.34/0.9618 34.85/0.9306 32.59/0.9000 – – –

SWIR [14] 38.35/0.9620 34.89/0.9312 32.72/0.9021 – – –

Meta-RDN [8] 38.23/0.9609 34.69/0.9292 32.46/0.8978 28.97/0.8288 26.95/0.7671 24.60/0.6812

RDN-LIIF [5] 38.17/0.9608 34.68/0.9289 32.50/0.8984 29.15/0.8355 27.14/0.7803 24.86/0.7062

CrossSR (ours) 38.32/0.9615 34.84/0.9305 32.73/0.9006 29.31/0.8396 27.37/0.7873 24.89/0.7090

Set14 NLSA [19] 34.08/0.9231 30.70/0.8485 28.87/0.7891 – – –

SWIR [14] 34.14/0.9227 30.77/0.8503 28.94/0.7914 – – –

Meta-RDN [8] 33.95/0.9209 30.56/0.8469 28.79/0.7869 26.52/0.6986 25.00/0.6383 23.16/0.5658

RDN-LIIF [5] 33.97/0.9207 30.53/0.8466 28.80/0.7869 26.64/0.7021 25.15/0.6457 23.24/0.5771

CrossSR (ours) 34.29/0.9240 30.76/0.8501 28.97/0.7914 26.77/0.7062 25.22/0.6498 23.36/0.5812

BSD100 NLSA [19] 32.43/0.9027 29.34/0.8117 27.78/0.7444 – – –

SWIR [14] 32.44/0.9030 29.37/0.8124 27.83/0.7459 – – –

Meta-RDN [8] 32.34/0.9012 29.26/0.8092 27.72/0.7410 25.91/0.6506 24.83/0.5952 23.47/0.5365

RDN-LIIF [5] 32.32/0.9007 29.26/0.8094 27.74/0.7414 25.98/0.6540 24.91/0.6010 23.57/0.5445

CrossSR(ours) 32.41/0.9022 29.37/0.8127 27.84/0.7465 26.06/0.6596 25.00/0.6062 23.62/0.5481

Urban100 NLSA [19] 33.43/0.9394 29.25/0.8726 26.96/0.8109 – – –

SWIR [14] 33.40/0.9393 29.29/0.8744 27.07/0.8164 – – –

Meta-RDN [8] 32.93/0.9356 28.85/0.8662 26.70/0.8017 23.99/0.6927 22.60/0.6182 20.99/0.5281

RDN-LIIF [5] 32.87/0.9348 28.82/0.8659 26.68/0.8036 24.20/0.7024 22.79/0.6334 21.15/0.5482

CrossSR (ours) 33.39/0.9393 29.31/0.8745 27.16/0.8164 24.59/0.7191 23.11/0.6496 21.37/0.5604

validation set for testing. Follows many prior works, we also report our model
performance on 4 benchmark datasets: Set5 [4], Set14 [27], B100 [3], Urban100
[9]. The SR results are evaluated by PSNR and SSIM metrics on the Y channel
of transformed YCbCr space.

3.2 Implementation Details

As with LIIF, we set the input patch size to 48 × 48. We set the number of
channels for the lightweight network and the classic image super-resolution task
to 72 and 288, respectively. Our models were trained by ADAM optimizer using
β1 = 0.9, β2 = 0.99 and ε = 10−8. The model of the lightweight network was
trained for 106 iterations with a batch size of 16, and the learning rate was
initialized to 1×10−4 and then reduced to half at 2×105 iterations. In contrast,
the classical network has a batch size of 8 and an initial learning rate of 5×10−5.
We implemented our models using the PyTorch framework with an RTX3060
GPU.
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Table 3. Comparison of PSNR (dB) of non-integer scales of different arbitrary scale
super-resolution methods

Params Set5 Set14

×1.6 ×2.4 ×3.1 x×1.5 ×2.8 ×3.2

Bicubic – 36.10 32.41 29.89 32.87 27.84 26.91

Meta-RDN [8] 21.4M 40.66 36.55 34.42 37.52 30.97 28.90

ArbRCAN [22] 16.6M 40.69 36.59 34.50 37.53 31.01 28.93

ArbRDN [22] 22.6M 40.67 36.55 34.43 37.53 30.98 28.90

RDN-LIIF [5] 21.8M 40.62 36.48 34.49 37.54 31.09 29.97

CrossSR(ours) 18.3M 40.73 36.62 34.70 37.54 31.28 30.18

3.3 Results and Comparison

Table 1 compares the performances of our CrossSR with 8 state-of-the-art light
weight SR models. Compared to all given methods, our CrossSR performs best
on the four standard benchmark datasets: Set5 [4], Set14 [27], B100 [3], Urban100
[9]. We can find a significant improvement in the results on Urban100. Specifi-
cally, a gain of 0.4 dB over EDSR-LIIF [5] on super-resolution for the Urban100
dataset is achieved. This is because Urban100 contains challenging urban scenes
that often have cross-scale similarities, as shown in the Fig. 4, and our network
can effectively exploit these cross-scale similarities to recover a more realistic
image. On other datasets, the gain in PSNR is not as large as the improvement
on the Urban100 dataset, but there is still a lot of improvement, all of which is
greater than 0.1 dB.

We also compared our method with the state-of-the-art classical image super-
resolution methods in Table 2. As can be seen from the data in the table, the
results of some current arbitrary-scale methods [5,8] are somewhat worse than
those of single-scale super-resolution [14,19]. Our CrossSR is an arbitrary-scale
method that simultaneously achieves results competitive with state-of-the-art
single-scale methods on different data sets in multiple scenarios, demonstrating
the effectiveness of our method.

In Table 3, we also compared the performance of some arbitrary-scale image
super-resolution models [8,22] with our CrossSR at different non-integer scales.
It can be found that the PSNR results of our model are consistently higher than
those of MetaSR and ArbRDN at all scales.

3.4 Ablation Studies

To verify the effectiveness of modified Transformer, DPB and Dense MLP, we
conducted ablation experiments in Table 4. Our experiments were performed on
the Set5 dataset for x2 lightweight super-resolution.
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Fig. 4. Visualization comparison with liif on dataset Urban at ×4 SR.

Table 4. Quantitative ablation study. Evaluated on the Set5 validation set for ×2
(PSNR (dB)) after 300 epochs.

Modified transformer DPB Dense MLP PSNR(dB)

× × × 37.92

� × × 37.97

× � × 37.93

× × � 37.96

� � � 38.01

As can be seen from the data in Table 4, the addition of the modified Trans-
former improved the test set by 0.05 dB compared to the baseline method, and
the addition of DPB and Dense MLP improved it by 0.01 dB and 0.04 dB respec-
tively. This demonstrates the effectiveness of the Transformer backbone, DPB
and Dense MLP.

4 Conclusions

In this paper, a novel CrossSR framework has been proposed for image restora-
tion models of arbitrary scale on the basis of Cross Transformer. The model
consists of two components: feature extraction and continuous function repre-
sentation. In particular, a Cross Transformer-based backbone is used for feature
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extraction, a dynamic position-coding operation is used to incorporate spatial
information in continuous image representation fully, and finally, a dense MLP
for continuous image fitting. Extensive experiments have shown that CrossSR
achieves advanced performance in lightweight and classical image SR tasks,
which demonstrated the effectiveness of the proposed CrossSR.
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