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Abstract. In the field of clustering, non-spherical data clustering is a
relatively complex case. To satisfy the practical application, the solution
should be able to capture non-convex patterns in data sets with high
performance. At present, the multi-prototype method can meet the for-
mer requirement, but the time cost is still high. This paper proposes
a new multi-prototype extension of the K-multiple-means type algo-
rithm, which aims to further reduce the computation time in processing
non-spherical data sets with a concise principle while maintaining close
performance. Compared with other methods, the method still adopts
the idea of multiple prototypes and uses agglomerative strategies in the
phase of class cluster connection. However, to reduce the amount of data
involved in the computation and the interference of incorrect partition,
the subclass data of the first partition is filtered. In addition, the agglom-
eration is divided into two stages: the agglomeration between prototypes
and the agglomeration between clusters, and two agglomeration modes
are provided to deal with different clustering tasks. Before updating the
means, the filtered data needs a quadratic partition. Experimental results
show that compared with the state-of-the-art approaches, the proposed
method is still effective with lower time complexity in both synthetic and
real-world data sets.

Keywords: Unsupervised learning · K-multiple-means · Clustering ·
Agglomerative strategies · Quadratic partition

1 Introduction

Clustering is one of the basic problems in data mining and unsupervised learning.
Under the assumption of data similarity, unlabeled data with high similarity are
grouped into the same class with the metrics selected by users. So far, all kinds of
clustering algorithms [1–7] emerge one after another, partition-based algorithm
[8–15] is an important role. Among them, K-means [16] as a hard partition
algorithm has become one of the most popular algorithms. In contrast, Fuzzy C-
means [17], as a variant of K-means, is representative of the soft partition class
algorithm. The latter has higher robustness because it takes into account the
overlap between subclasses and transforms category membership into a degree
of category membership.
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Although the K-means method performs well in spherical cluster data, lacks
applicability for non-spherical data sets. There are two main research ideas:
nonlinear clustering [26–30] and multi-prototype clustering [19–24,31,32]. The
fundamental principle of nonlinear clustering is to map the original data by
nonlinear technique and use the algorithms for clustering. For example, in ker-
nel clustering and spectral clustering, the former uses a kernel function to map
data into a certain feature space for a linear partition, and the latter uses low-
dimensional embedding of similarity matrix generated by original data to obtain
embedding vector for clustering. However, it is difficult to design suitable ker-
nel functions or construction data graphs for each clustering problem. Another
way is the multi-prototype method, which considers that each cluster can be
represented by multiple prototypes, to better adapt to non-spherical data sets.
Each prototype represents a subclass, which is still linear clustering. To achieve a
specified number of clusters, it is necessary to merge subclasses, and the merging
process is nonlinear clustering. At present, most methods adopt the aggregation
strategy, but the selection of an appropriate combination point is not easy, which
has a direct impact on the clustering effect. To merge multiple prototypes opti-
mally on the global, a graph-based multi-prototype clustering algorithm was
proposed. However, this method inevitably needs matrix calculation. When the
data scale is large, matrix decomposition, spectral analysis and other operations
can be very time expensive, so it needs further improvement. Aiming at the
above defects, this paper presents a new K-multi-means extension method. The
main contributions of this paper can be summarized as follows:

• To reduce the time cost of the algorithm and augment the feature of each
subclass, part of the data is screened according to the distance relationship
between the prototype and the data, so that the reserved data has better
representativeness.

• The method in this paper divides the agglomerative strategy into two stages
for decreasing the difficulty of the agglomeration: the merging between proto-
types and the merging between clusters. In addition, to enhance the robust-
ness of the algorithm, the proposed method provides two merging modes.

• The filtered data are likely to be partitioned incorrectly, so these data need
a quadratic partition to improve the clustering effect of the algorithm.

• Experimental results show that the proposed method has similar performance
to the state-of-the-art approaches with a lower time cost.

The remainder of this paper is organized as follows: Sect. 2 introduces the
related work in this field. In Sect. 3, this paper describes the principle of the new
k-multi-means extension and its computational complexity analysis. In Sect. 4,
the experimental results and analysis are reported. Finally, the paper is summa-
rized in Sect. 5.

2 Related Work

The multi-prototype method is an extension of traditional K-means to capture
the non-convex pattern of data sets. As shown in Fig. 1, the data in the figure
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(a) single-prototype (b) multi-prototypes

Fig. 1. The difference between single-prototype representation (a) and multi-prototypes
representation (b). The blue pentagrams are prototypes. (Color figure online)

should be divided into two classes. The traditional K-means method only ini-
tializes the corresponding number of prototypes. As the features of the data
cannot be captured, the data is incorrectly partitioned. The multi-prototype
method initializes multiple prototypes and distributes them in the data. The
data is divided into multiple independent subclasses, which can fully adapt to
the shape and distribution of the data and discover non-convex patterns in the
data.

Tao [19] generates multiple prototypes based on hierarchical subtractive clus-
tering and then merges them according to the relationship between region density
and subclass density of two subclasses. Liu et al. [20] proposed a simple multi-
prototype clustering algorithm, which used squared-error clustering for splitting
and then merged according to the density of overlapping regions of subclasses.
Luo et al. [21] divided the data based on the minimum spanning tree and then
merged the data according to the threshold value set by the user and the data
distribution of the two subclasses. Ben et al. [22] proposed a multi-prototype
method based on Fuzzy clustering. In the splitting stage, Fuzzy C-means and
intra-cluster nonconsistency values were used to perform iterative dichotomy
for subclasses, and then they were merged iteratively according to the overlap
degree between clusters. Liang et al. [23] proposed a multi-prototype algorithm
to deal with unbalanced distributed data. Reliable prototypes were obtained by
Fast Global Fuzzy K-means, and the best-M Plot method was used to divide
data. Finally, the grouping multi-center (GMC) algorithm is used to complete
the merging. Nie et al. [24] proposed the multi-prototype algorithm based on the
bipartite graph. Firstly, the distance relationship between the prototype and the
data were used to construct the bipartite graph to obtain its Laplace matrix,
and the clusters with a specified number were obtained by restricting the rank of
the Laplace matrix [25]. This method transforms the clustering problem into an
optimization problem, which is the state-of-the-art multi-prototype algorithm at
present because of its superior clustering effect and relatively low time complex-
ity.

The clustering effect of the agglomerative method heavily depends on the
subclass merging, if there is any error merging, all the subclasses of subsequent
merging will be wrong, so the selection of connection points is a challenging
problem. And the graph-based method can model the prototype and data glob-
ally, and delete part of the cut edges according to the feature matrix of the
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graph, which belongs to the split strategy. In the next section, this paper will
describes a clustering method using the aggregation strategy, which is close to
the state-of-the-art method and has a lower time overhead.

3 The Proposed Clustering Algorithm

3.1 The New K-Multiple-Means

The method in this paper also includes two stages of splitting and merging. In
the splitting stage, squared-error clustering is still used.

(a) Original (b) After screening

Fig. 2. Data filtering. The blue pentagram in the figure is the prototype, the red
square and green triangle are two classes of data, and the circle represents the data
division area. Figure (a) shows the original partition of the data, in which a red square
is incorrectly partitioned to the prototype on the right. Figure (b) shows the division
after screening, and the wrongly divided data has been eliminated. (Color figure online)

Due to the use of squared error clustering for division, the subclasses divided
may have two types of data in one subclass. If the merging is performed directly,
the accuracy will be greatly affected. Therefore, we have added a subclass data
screening link. For each subclass, only those data with small absolute distance
and large relative distance are retained, so that the retained data has a strong
membership property to the prototype. See Fig. 2. The absolute distance is the
distance between the data and the nearest prototype, and the relative distance is
the difference between the distance between the data and the closest prototype
and the distance between the next closest prototype. Denote ai as the i-th data
point, Cij is the j-th nearest prototype to the data point ai, d(ai, Cij) represents
the distance between ai and Cij , then the membership degree S(ai) of the data
point ai is defined in the Eq. (1)

S(ai) =
d(ai, Ci2) − d(ai, Ci1)

d(ai, Ci1)
(1)

After that, the median of all data points in the subclass is calculated, and only
data points whose membership degree is not lower than the median are allowed
to participate in the subsequent calculation.
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In the merging stage, a certain number of prototypes that are as dispersed as
possible are randomly selected as control points, and the remaining prototypes
are merged. The control points can cover most of the prototypes of the class and
naturally grow and expand according to the distance relationship between the
data points and the prototypes, thus forming several clusters. The remaining
prototypes require two rounds of voting to finally calculate which prototype
should belong. The first round of voting is to obtain the most likely connected
prototype of each data in the subclass, and calculate the connection probability
pij of the data point ai and its k nearest neighbors Cij (see Eq. (2)), if there is
a connection between the neighbors, that is, there are multiple neighbors that
belong to the same cluster, the probability is accumulated.

pij =
d(ai, Cik+1) − d(ai, Cij)

k ∗ d(ai, Cik+1) − ∑k
j=1 d(ai, Cij)

(2)

Then, the connection probability of each data point is counted, and the prob-
ability of belonging to the same cluster is accumulated. The ratio of the sum
of the connection probability of each cluster to the sum of the probability is
the probability that the non-control prototypes match the corresponding proto-
type. See Eq. (3), P (α, β) is the probability that the unmatched prototype α
merges with the prototype β, pi,β is the probability that the data point ai in the
unmatched prototype α is connected to the prototype β.The prototype with the
highest connection probability is selected for merging to complete the second
round of voting.

P (α, β) =
∑l

i=1 piβ
∑L

i=1 pij

(3)

If the non-control prototype matches the control point, it will be merged directly.
If it matches the non-control prototype, the two will be merged, and they will
be used as the new control point, and then continue to merge. Therefore, in the
process of merging non-control prototypes, the number of control prototypes will
increase. This operation is to avoid prototypes that do not completely cover all
clusters due to improper selection of control points. In addition, there may be
some control points that are not merged with the prototypes, and do not play the
role of control points. Therefore, when all non-control prototypes are completely
merged, the isolated control points that have not been merged are merged with
other control points, and the merging method is still using the second round of
voting above.

When the non-control points are completely matched, several larger sub-
clusters will be formed, usually, the number of clusters is greater than K. There-
fore, further merging is needed to make the number of clusters reach K. At this
time, the subclass cluster has formed a large scale, which contains rich cluster
correlation information, and the method in this paper uses this information to
merge. Referring to the relative inter-connectivity (Eq. (4)) and relative close-
ness (Eq. (5)) in the Chameleon algorithm [18] as the merging indicators, select
the cluster with the largest value of Eq. (6) to merge until K clusters. In the



626 J. Zhang

following equations, all connecting edges are included in the connecting edges
between each data point and its k nearest neighbors.

∣
∣EC{Ci,Cj}

∣
∣, S̄EC{Ci,Cj} is

the sum and expectation of the probability of all cutting edges of the cluster Ci

and the cluster Cj , |ECCi
|, S̄ECCi

are the sum and expectation of all cutting
edge probabilities inside the cluster Ci. |Ci| is the number of data points in Ci.

RI (Ci, Cj) =
2 ∗ ∣

∣EC{Ci,Cj}
∣
∣

|ECCi
| +

∣
∣ECCj

∣
∣ (4)

RC (Ci, Cj) =
(|Ci| + |Cj |) ∗ S̄EC{Ci,Cj}
|Ci| S̄ECCi

+ |Cj | S̄ECCj

(5)

f (Ci, Cj) = RI (Ci, Cj) ∗ RC (Ci, Cj)
α (6)

Generally speaking, the above merging methods can achieve good results, espe-
cially when the distribution of the dataset is unbalanced, it is easy to find scarce
classes with small sample sizes. However, when the data distribution is relatively
balanced, but there are outliers in a certain category, the above-mentioned merg-
ing method will cause a wide range of wrong connections, and individual outliers
may be classified into one category. To enhance the robustness of the algorithm,
our method provides an additional merging mode. First, merge small-scale clus-
ters according to the above indicators to form new clusters, until the current
number of clusters K ′ = K, if K ′ > K, continue to merge clusters according to
the indicators and don’t care about cluster size anymore. Also, merges between
new clusters are not allowed in merges. If K ′ > K, use the original merging
method to merge larger clusters or new clusters. The user can choose the merg-
ing method according to the characteristics of the dataset. If there is a lack of
understanding of the characteristics of the data set, a relatively stable merging
method with a better clustering effect can be selected through multiple exper-
iments. Hereinafter, the first merging mode is referred to as mode 1, and the
latter is referred to as mode 2.

(a) (b)

Fig. 3. The illustration of two merging modes. The graph meaning in the figure is
the same as that in Fig. 2, where the connecting line represents the merging of two
subclasses. In (a), merge only according to metrics, and small class clusters can be
found. In (b), there is an extreme case in which there are only two samples of subclasses,
so the subclasses with small scale are merged first to prevent the clusters combination
of different classes from leading to a large-scale wrong partition.
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After the cluster merging is completed, the data eliminated in the data screen-
ing stage needs to quadratic partition, and the wrongly divided data points are
corrected. Using the above-mentioned first-round voting method, since there
are only K clusters, the probabilities of the k nearest neighbors belonging to
the same category are superimposed, and divided according to the accumulated
probabilities, as shown in Eq. (7).

f (ai) = argmin
Cj

⎧
⎨

⎩
dis

⎛

⎝ai, argmax
C

⎧
⎨

⎩

˜l∑

j=1

p̄ij

⎫
⎬

⎭

⎞

⎠

⎫
⎬

⎭
, 0 < l̃ ≤ k (7)

In Eq. (7), p̄ij is the connection probability between data ai and a prototype Cj ,
C is a set of prototypes of a certain class, l̃ is the number of prototypes of the a
certain cluster.After the quadratic partition is over, the prototypes are updated
according to Cj = 1

l ∗ ∑l
i=1 aij , where aij represents the data ai divided into

Cj , after which the next iteration is performed until the algorithm converges.
See Algorithm 1 for a summary of the algorithm.

Algorithm 1 :The New K-Multiple-Means
Input: Data matrix A ∈ Rn∗d, cluster number K, prototype number m, merging mode
Output: K clusters
1: Initialize multiple-means Cj .
2: Picking some prototypes as the control points at random.
3: while not converge do
4: Partition all data by Squared-error clustering;
5: For each j, screen data of Cj with Eq. (1);
6: Merging the non-control points and outlying control points with Eqs. (2–3);
7: while the number of clusters is greater than K do
8: Merging the clusters with Eqs.(4–6) and selected merging mode;
9: end while

10: Quadratic partition for the filtered data with Eq. (7);
11: For each j,update Cj ;
12: end while

3.2 Computational Complexity

In this subsection, we will analyze the computational complexity of Algorithm
1. The time overhead of the initial partition of data is O(nmd), n is the number
of data, and d is the feature dimension of the data. The time complexity of the
data filtering is O(nm+ ñ2m), and ñ is the number of samples in the subclass. In
addition, the time cost of selecting prototypes as the control points is O(mm̃d),
and m̃ is the number of control points. The time overhead of the merging stage
includes non-control points merging and clusters merging, which is accumulated
to O(mñk2 +nm2 +nmk), where k is the number of neighbors. Quadratic parti-
tion requires O(nmk2) time cost. In summary, the total time complexity of the
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method in this paper is O(n(m2 + mk + mk2)t + ñ2mt + nmdt), and t is the
number of algorithm iterations.

When merging clusters, based on the k nearest neighbors distance relation-
ships, only the nearest three clusters are selected for each cluster to calculate
their weights respectively, and then they are merged according to the selected
merging mode. Therefore, the method not only learns useful information but
also eliminates the interference of errors, which further speeds up the running
speed while ensuring the effect.

4 Experiments

In this section, we show the performance of the new K-Multiple-Means method
on synthetic data and real benchmark datasets. For the convenience of descrip-
tion, the method in this paper is hereinafter referred to as nKMM.All the experi-
ments are implemented in MATLAB R2020a, and run on a Windows 10 machine
with 2.30 GHz i5-6300HQ CPU, 24 GB main memory.

4.1 Experiments on Synthetic Data

Performance Comparison. This subsection mainly shows that the nKMM
algorithm can process non-convex data sets, and its comparison method is
KMM1 There are two types of synthetic datasets used. The multi-prototype
approach can be fully adapted to non-spherical data, capturing non-convex pat-
terns. As shown in Fig. 4, the nKMM method can correctly partition the data
and has the same performance as KMM. Both methods initialize the same num-
ber of prototypes, i.e., m =

√
n ∗ K. The number of neighbors of nKMM is 5,

and the number of neighbors of KMM is appropriately adjusted according to the
data set. In addition, nKMM uses mode 1 for merging.

In the dataset Twomoons, the KMM algorithm incorrectly partitions the
data at the intersection of the two classes of data, and these data are outliers for
the subclass, and the KMM algorithm does not capture these subtle features.
The nKMM algorithm improves this situation by partitioning the peripheral
data twice.

Computation Time. Table 1 shows the specific information of the two
datasets, as well as the performance of the KMM and nKMM algorithms on
the two datasets. Since the number of iterations for each running of the algo-
rithm is different, there will be a large error in calculating the total running
time, so the average time of each iteration is calculated. In Table 1, the average
time of each iteration of the algorithm is calculated, and nKMM has less time
overhead than KMM.

1 https://github.com/CHLWR/KDD2019 K-Multiple-Means.

https://github.com/CHLWR/KDD2019_K-Multiple-Means
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(a) Twomoons (b) Circle (c) Twomoons

(d) Circle

Fig. 4. KMM:(a)(b), nKMM:(c)(d). In (a) and (c), the red points and blue pentagrams
are prototypes. (Color figure online)

Table 1. Statistics of synthetic datasets and run time of clustering algorithms (s).

Datasets Sample Features Clusters KMM nKMM

Twomoons 1000 2 2 0.146 0.11

Circle 3000 2 3 0.34 0.29

4.2 Experiments on Real Benchmark Datasets

Performance Comparison. To reflect the effectiveness of the method in this
paper, the same real data set and evaluation index [24] are directly used, and
other comparison algorithms are also the same.

Table 2. Statistics of real benchmark datasets and run time of multi-means clustering
algorithms (s).

Datasets Sample Features Clusters KMM nKMM

Wine 178 13 3 0.026 0.018

Ecoli 336 7 8 0.044 0.039

BinAlpha 1854 256 10 0.386 0.233

Palm 2000 256 100 0.819 0.430

Abalone 4177 8 28 1.237 0.718

HTRU2 17898 8 2 5.188 2.333

The experimental data includes Wine, Ecoli, Abalone, HTRU2, Palm, BinAlpha.
The specific information of the data set is shown in Table 2. In addition to KMM,
the comparison algorithms also include traditional K-means, SSC (Spectral Clus-
tering), KKmeans (Kernel-based Clustering), RSFKC (Fuzzy Clustering), CLR
(Graph-based Clustering), MEAP and K-MEAP (Exemplar-based Clustering).
Evaluation indicators used Accuracy (ACC), Normalized Mutual Information
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(NMI) and Purity. For different datasets, nKMM uses different merging meth-
ods and records stable experimental results. KMM and nKMM set the same
number of prototypes and neighbors, m =

√
n ∗ K, k = 5, the number of control

prototypes in nKMM is m̃ =
√

m ∗ K. In addition, mode 1 is used in Ecoli and
Abalone, and mode 2 is used for the other data sets. Since the K-means algo-
rithm is more sensitive to initialization, to reflect the effect of the method, it
is randomly initialized 100 times, and the average value of the evaluation index
is recorded. The specific experimental data are shown in Table 3. The results of
the CLR, MEAP and K-MEAP algorithms on HTRU2 are missing because the
complexity of these three algorithms on large-scale datasets is too high. As can
be seen from the table, nKMM achieves more than 90% of the performance of
KMM with lower time complexity and is better than other algorithms.

Table 3. Clustering performance comparison on real-world datasets (%).

Metric K-means SSC KKmeans RSFKC CLR MEAP K-MEAP KMM nKMM Percentage

Wine ACC 94.94 (±0.51) 66.85 96.06 (±0.32) 95.50 (±3.72) 93.25 94.94 48.31 97.19 (±1.41) 93.95 (±2.75) 96.67

NMI 83.23 (±1.53) 40.32 85.81 (±0.16) 84.88 (±4.57) 77.29 83.18 5.22 86.13 (±3.86) 81.21 (±5.03) 94.29

Purity 94.94 (±0.51) 66.85 96.06 (±0.32) 95.50 (±1.71) 93.25 94.94 48.31 95.76 (±1.41) 93.94 (±2.75) 98.10

Ecoli ACC 62.79 (±6.21) 59.82 34.52 (±1.16) 58.03 (±9.76) 52.38 42.55 74.10 78.85 (±4.46) 76.49 (±6.02) 97.01

NMI 53.44 (±3.10) 54.80 25.92 (±1.85) 51.64 (±16.65) 53.08 44.12 58.77 69.48 (±4.86) 67.11 (±4.87) 96.59

Purity 79.76 (±3.06) 82.33 61.30 (±3.00) 79.46 (±11.45) 79.76 42.55 80.41 82.37 (±3.95) 81.97 (±3.54) 99.51

BinAlpha ACC 64.88 (±3.34) 66.82 28.26 (±0.74) 59.11 (±9.87) 67.40 40.99 62.94 68.87 (±7.00) 70.78 (±7.14) 102.77

NMI 62.81 (±1.87) 70.01 20.99 (±0.38) 61.95 (±13.25) 71.05 41.03 60.96 72.94 (±7.05) 72.58 (±3.35) 99.51

Purity 72.33 (±2.82) 76.00 35.54 (±0.50) 71.19 (±11.96) 78.00 45.41 69.84 76.59 (±6.37) 76.18 (±4.83) 99.46

Palm ACC 63.65 (±3.45) 59.78 68.70 (±0.83) 71.13 (±6.80) 68.65 71.55 40.20 76.40 (±2.21) 84.65 (±1.70) 110.80

NMI 87.55 (±1.08) 79.98 89.06 (±0.68) 89.82 (±8.51) 90.27 90.60 71.23 92.30 (±0.94) 95.63 (±0.39) 103.61

Purity 71.80 (±2.81) 62.90 74.60 (±0.46) 76.11 (±7.44) 79.45 77.80 45.70 81.75 (±1.66) 87.46 (±1.23) 106.98

Abalone ACC 14.62 (±0.88) 13.96 14.79 (±0.26) 26.43 (±0.34) 19.12 (±1.88) 14.96 19.70 16.51 20.20 (±1.02) 19.01 (±1.43) 94.11

NMI 15.09 (±0.29) 14.37 14.76 (±0.14) 6.52 (±3.32) 15.07 7.53 15.52 16.03 (±1.75) 16.14 (±1.19) 100.69

Purity 27.36 (±0.63) 27.68 26.43 (±0.34) 19.89 (±2.08) 27.67 19.70 27.31 25.2 (±1.33) 25.02 (±1.13) 99.29

HTRU2 ACC 91.85 (±2.10) 92.22 59.29 (±1.20) 92.17 (±2.55) – – – 95.49 (±2.21) 92.79 (±3.71) 97.17

NMI 30.30 (±1.01) 34.90 7.97 (±0.56) 27.02 (±2.26) – – – 40.12 (±1.55) 35.80 (±22.20) 89.23

Purity 91.89 (±1.32) 93.35 90.84 (±0.78) 92.17 (±3.58) – – – 95.49 (±1.92) 93.66 (±2.42) 98.08

Computation Time. The computation time comparison between nKMM and
KMM is shown in Table 2. Synthetic datasets are inferior to real benchmark
datasets in terms of feature dimension and number of samples, it fails to fully
reflect the efficiency of the algorithm. In Table 2. The nKMM algorithm achieves
a similar performance to the KMM algorithm with relatively lower time com-
plexity and is even better than the KMM algorithm on Palm, which reflects that
nKMM is effective and efficient.

5 Conclusion

This paper proposes a new multi-prototype extension with agglomerative strate-
gies. The method filters the data after the first partition, only uses the data
with obvious subclass features for calculation, and then partitions the filtered
data twice. In addition, the method refines the previous agglomerative strategy,
innovatively divides the merging into two stages: prototype merging and cluster
merging, and provides two different merging modes for different datasets. The
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experimental results show that the nKMM can achieve similar performance to
the KMM with lower time complexity, and even achieve better results with half
the time overhead on individual data sets, demonstrating the method is effective
and efficient in this paper.
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