
Towards Explainable Reinforcement
Learning Using Scoring Mechanism

Augmented Agents

Yang Liu, Xinzhi Wang(B), Yudong Chang, and Chao Jiang

School of Computer Engineering and Science, Shanghai University, Shanghai, China
{lliuyang,wxz2017,cydshu,superjiang}@shu.edu.cn

Abstract. Deep reinforcement learning (DRL) is increasingly used in
application areas such as medicine and finance. However, the direct
mapping from state to action in DRL makes it challenging to explain
why decisions are made. Existing algorithms for explaining DRL pol-
icy are posteriori, explaining to an agent after it has been trained. As
a common limitation, these posteriori methods fail to improve training
with the deduced knowledge. Face with that, an end-to-end trainable
explanation method is proposed, in which an Adaptive Region Scoring
Mechanism (ARS) is embedded into DRL system. The ARS explains
the agent’s action by evaluating the features of the input state that are
most relevant action before DRL re-learn from task-related regions. The
proposed method is validated on Atari games. Experiments demonstrate
that agent using the explainable proposed mechanism outperforms the
original models.

Keywords: Deep reinforcement learning · Explainable AI · Adaptive
region scoring mechanism

1 Introduction

In recent years, deep reinforcement learning (DRL) has achieved unprecedented
success in many practical applications [5]. DRL models train agents that process
continuous input information from the environment to learn and implement a
policy that maximizes the expected returns. This structure has proven to be
very effective. Unfortunately, both deep learning and reinforcement learning are
poorly explainable. It is not easy to understand how decisions are made, what
information is used, and why mistakes are made, all of which are necessary for
many real-world application fields, such as finance, medical care, and robotics.
This motivates the design of explainable DRL agents and modifying existing
architectures for easier explanation.

Conventional DRL algorithms have low explainability and process state fea-
tures uniformly at the beginning of training, which prevents the agent from
focusing on valuable features quickly. Researchers have noticed that the human

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Memmi et al. (Eds.): KSEM 2022, LNAI 13369, pp. 547–558, 2022.
https://doi.org/10.1007/978-3-031-10986-7_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10986-7_44&domain=pdf
https://doi.org/10.1007/978-3-031-10986-7_44


548 Y. Liu et al.

visual system cannot perceive and process all visual information presented at
once. Instead, we selectively focus on different parts of the visual input to collect
relevant information sequentially and attempt to combine each step of informa-
tion over time to construct an abstract representation of the entire input [11].
The emergence of a saliency map [8,10] proves that the deep learning model will
focus particular attention on a specific area when making decisions rather than
treating all input information equally. Part of the interpretive approach shifts
from trying to explain models that have been trained toward building models
that are self-explanatory [10]. First, self-explanatory methods can be embedded
in DRL models to generate saliency maps that relate to decisions generated dur-
ing the decision-making process without additional supervision. Second, since
the explanation is generated within the model, the agent can optimize the DRL
agent according to the explanation information it has generated during the train-
ing process.

When faced with large-scale or high-dimensional state-space tasks, DRL
agents can use a convolutional neural network (CNN) to extract the features of
the image state and then train the model on the extracted information through
reinforcement learning. However, the knowledge acquired by the agent consists of
all the features of the whole original image. The model cannot focus on valuable
feature information, and some critical information is lost in the forward propa-
gation process [9]. The same weight is applied to calculating each feature image,
but some features play a vital role in the image description, and the traditional
CNN algorithm cannot fully use key features at the beginning of training. This
paper proposes an evaluation mechanism to explain an agent’s decision and help
the agent focus on features with high policy value. This mechanism enables the
agent to learn the optimal policy accurately and quickly.

Inspired by the popularity of saliency map, a method called Adaptive Region
Scoring (ARS) is proposed to improve both the explainability and performance
of the DRL agent. The ARS method changes the architecture of the feature
extractor by incorporating a scoring module between each convolution layer. The
ARS generates the score maps by evaluating the task-related regions in the state.
The score maps can then be integrated to reveal how an agent makes decisions.
In addition, ARS merges the score maps with the original state representations
to optimize the training process.

The main contributions of this paper are highlighted as follows:

– A method is proposed to explain the actual rationale used in inference for
decision-making by generating score maps. We can understand how the agent
solves the task by analyzing the resulting score maps.

– The score maps are incorporated with the original unweighted representation
of states, forcing the agent to focus on task-related information, which can
effectively improve policy learning of the agent system.

– Experiments are conducted on the Atari platform. The experimental results
show that the ARS module can effectively improve policy learning. In con-
trast, previous posterior explanation approaches do not improve performance.



Towards Explainable Reinforcement Learning 549

2 Preliminaries

The standard DRL setting, where an agent learns to solve a sequential decision
problem, is modeled as a Markov decision process (MDP), which can be denoted
as (S,A,P(s, s

′
), ra(s, s

′
), γ). Here, S is a finite set of states, A is a finite set of

actions, P is the unknown state-transition probability function, ra(s, s
′
) is the

immediate reward associated with taking action a ∈ A while transitioning from
state s ∈ S to s

′ ∈ S, and γ ∈ [0, 1] is the discount factor that represents a
tradeoff between maximizing immediate returns versus future returns. The goal
of the agent is to identify a policy π to maximize its expected reward, where the
cumulative return at each time step is:

Rt =
∞∑

τ=t

γτ−trτ (1)

The purpose of policy gradient algorithms is to maximize the cumulative
expected rewards L = E[

∑
t r(st, at)]. The most commonly used gradient of

objective function L with baseline can be written in the following form:

∇θL =
∫

S

μ(s)
∫

A

∇θπθ(a|s)A(s, a) (2)

where S denotes the set of all states and A denotes the set of all actions. μ(s)
is an on-policy distribution over states. π is a stochastic policy that maps state
s ∈ S to action a ∈ A, and A is an advantage function.

Gradient-based actor-critic methods split the agent into two components: an
actor that interacts with the environment using policy πθ(a|s) and a critic that
assigns values to these actions using value function Vθ(s). Both the policy and
the value function are directly parameterized by θ. The policy and value function
is updated through gradient descent:

θt+1 = θt + ∇θt
(at|st)At(at|st) (3)

The advantage function represents how good a state-action pair is compared
with the average value of the current state, A(a|s) = Q(a|s) − V (s). The most
commonly used technique for computing the advantage function is generalized
advantage estimation (GAE) [6]. One very common style that can be easily
applied to A2C or any policy-gradient-like algorithm is:

At(at|st) = rt + γrt+1 + ... + γT−t+1rt+1 + γrT−tVsT
− V (st) (4)

where T denotes the maximum length of a trajectory but not the terminal time
step of a complete task, and γ is a discounted factor. If the episode terminates,
we only need to set V (st) to zero, without bootstrapping, which becomes At =
Rt − V (st). To ensure exploration early, the entropy regularization term H is
introduced into the policy gradient:

θt+1 = θt + ∇θt
logπθt

(at|st)At + β ∇θt
H(πθt

(st)) (5)

where β is a hyperparameter that discounts the entropy regularization.



550 Y. Liu et al.

3 Proposed Method

This section proposes and provides a comprehensive description of our novel
ARS algorithm. Traditional DRL agents rely on convolution and fully connected
components to process input information step by step. This structure does not
help people understand how the agents make decisions, what information they
use, and why they make mistakes, nor can it enable agents to make a timely
modification of their decisions based on the explanation information. First, the
ARS evaluates the action of agents and output explanation that humans under-
stand easily. Second, the agents utilize the evaluation results to modify their
actions to focus on task-related information.

Fig. 1. Overview of the proposed method.

3.1 Model Overview

The complete architecture is illustrated in Fig. 1. Our image encoder Ψθ is a
three-layer CNN interleaved with ReLU activation functions. The inputs to the
channel are the images where the preprocessing procedure follows [1] and hence
consists of a sequence of 4 frames stacked together, where each frame is 84×84 in
grayscale. We use 4 frames because a single image state in an Atari game is non-
Markovian. For example, the direction of an object’s movement is ambiguous
if we only see a single frame. As a built-in module, ARS calculates importance
scores for state sub-regions based on the results of each convolutional layer.
The results can be incorporated to generate saliency maps. Each score map is
combined with the original state representation, forcing the agent to focus on
task-relevant sub-regions during strategy learning.



Towards Explainable Reinforcement Learning 551

The policy network πθ and value network Vθ are encoded by multi-layer per-
ceptron (MLP) with parameter θ. The policy network is a 3-layer MLP with a
size of 64 for both hidden layers and a ReLU activation function. The output
layer of the policy network has 16 units, producing the mean and the standard
deviation for each action dimension. Before executing an action in the envi-
ronment, a Tanh activation function is applied to enforce action bounds in the
range of [−1, 1]. The value network is represented as a 2-layer MLP that outputs
a scalar value specifying the corresponding value of a state. The value network
uses a hidden layer size of 128 units with a ReLU activation function.

3.2 Adaptive Region Scoring Mechanism

At each time step t, an observation st ∈ R
H×W×C (here a sequence frames

stacked together of height H and width W ) is passed through the image encoder
Ψθ with parameters θ. The visual frame st is fed into the model and aims to
predict the action a (a ∈ A) taken by the agent. Our motivation is that the agent
should focus on the most relevant part of the observation, which is controllable
by the agent, to be able to classify the actions.

We determine whether each region in a H × W grid is useful for predicting
the agent’s action. The feature map On = ψn

θ (On−1) ∈ R
hn×wn×cn is computed

based on the observation st (O0 = st), where ψn
θ is the n-th convolutional layer

of Ψθ, n ∈ N represents the serial number of the ARS module, On ∈ R
hn×wn×cn

is the n-th feature map, cn denotes the size of the channel dimension and hn, wn

denotes the height and width dimensions. We estimate a set of feature vectors,
denoted On

i,j ∈ R
cn , for action classification from each grid cell (i, j) of the

convolutional feature map. The feature map are converted to hn ×wn vectors in
which each vector has cn dimension as follows:

On = [On
1,1, O

n
1,2, ..., O

n
i,j , ..., O

n
hn,wn ], On

i,j ∈ R
cn (6)

where On
i,j corresponds to the features extracted by ψn

θ at different image regions.
Then, tensor On is fed to the n-th ARS model to compute a score map that
describes the importance of the state feature vector at the corresponding loca-
tion. In other words, the input frame is divided into hn × wn regions, and the
ARS mechanism attempts to score their relevance.

The ARS module takes the n-th convolution features On as input to derive
the score maps mn ∈ R

hn×wn

as:

mn = Qn
ρ (On|Wn

ρ , Bn
ρ )

= [mn
1,1,m

n
1,2, ...,m

n
i,j , ...,m

n
hn,wn ],mn

i,j ∈ R
(7)

where Wn
ρ and Bn

ρ are parameters for the calculation, and function Qn
ρ includes

one convolution calculation with an 1 × 1 kernel whose stride is set to be 1.
Each element in mn corresponds to a spatial position on On and describes the
importance of the image feature vector at that position. The score maps mn

are then passed to the normalization layer to generate a meaningful probability
distribution over hn×wn regions. In the experiment, the softmax function is used



552 Y. Liu et al.

to implement the normalization layer. Let pn be denoted as the final probability
distributions after normalizing mn, which can be considered as the amount of
the importance of the corresponding vector mn

i,j among of hn × wn vectors in
the input image:

pn =
exp(mn

i,j)∑
i ′ ,j ′ exp(mn

i ′ ,j ′ )
,

= [pn
1,1, p

n
1,2, ..., p

n
i,j , ..., p

n
hn,wn ], pn

i,j ∈ [0, 1]

(8)

where pn ∈ R
hn×wn

is the counterpart of the learned probability distributions.
The ARS module attempts to identify which regions of On

i,j are important for the
agent in taking action. The degree of correlation between regions and decisions
is described by an probability of importance score pn

i,j , where pn
i,j ∈ [0, 1] denotes

the correlation of regions (i, j) of On
i,j for the agent taking action. A higher value

indicates that regions (i, j) of On is more important for the agent when taking
action.

The score map pn is used to visualize the decision-making basis of the agent.
The probability pn should be high only on regions (i, j) that are predictive of
the agent’s actions. The resulting score map pn can be bilinearly extrapolated
to the size of the input state st to obtain p̂n, which can then be overlaid on
top of the state to produce a high-quality heatmap that indicates regions that
motivate the agent to take action. Let sa

ARS be denoted as the final heatmap
that indicates relevant regions that indicate regions that motivate the agent to
take action a, p̂n be the converted score map for state st in module n. The state
is then weighted by the score map and passes through an Exponential Linear
Unit (ELU) activation function to produce a high-quality heatmap, which can
be denoted as:

sa
ARS =

1
N

ELU(
N∑

n=1

p̂n · st) (9)

where p̂n has values in the range [0, 1] with higher weights corresponding to
a stronger response to the input state. The ELU function has been chosen in
favour of the ReLU due to the dying ReLU effect. A visual representation of this
process is depicted in Fig. 3.

The score map pn can evaluate which positions in the current state represen-
tation are important. The representation On

i,j are linearly combined using the
score probabilities pn

i,j , each score map pn is broadcast along the channel dimen-
sion of tensor On and point-wise multiplied to produce the next result tensor
Ôn ∈ R

hn×wn×cn , which can be described as:

Ôn = pn · On (10)

The agent can learn to emphasize the high-scoring part of the input frame
based on the given state. Note that the ARS model is fully differentiable, which



Towards Explainable Reinforcement Learning 553

allows training the system in an end-to-end manner. After the score map linearly
weights the feature map vector set, the new vector set replaces the original vector
set. At this time, the agent will focus on the information of value from the feature
map to strengthen the influence of important features on the subsequent training.
This operation forces the agent system to locate the object of interest, and then
the final convolution features ON for consecutive frames are fed into different
multi-layer perceptron (MLP) to derive Vθ(st) and πθ(at|st):

Vθ = MLPvalue(ON ) ∈ R (11)

πθ = softmax(MLPpolicy(ON ) ∈ R
|A|. (12)

3.3 Training

The model is optimized with the standard cross-entropy loss Laction =
E[Lpolicy + Lvalue] with respect to the ground-truth action a∗ ∈ A that the
agent actually has taken. The cost function Laction is based on:

Lpolicy = −logπθ(at|st)(Rn
t − Vθ(st)) − αHt(πθ) (13)

Lvalue =
1
2
(Vθ(st) − Rn

t )2 (14)

Ht(πθ) = −
∑

a

πθ(a|st)logπθ(a|st) (15)

where Rt =
∑n−1

−=0 γirt+i + γnVθ(st+n) is the n-step bootstrapped return and α
is a weight for the standard entropy regularization loss term H(πθ). According
to this formulation, the score map Pn should be high only on regions (i, j) that
are predictive of the agent’s actions. Our formulation enables learning to localize
related regions in a self-supervised manner without any additional supervisory
signal.

Here, we adopt a few additional objective functions. We encourage the score
map to attain a high entropy by including a score entropy regularization loss,
Lent = −∑N

n H(Pn). This term penalizes overconfident score maps, making the
scores closer to uniform whenever actions cannot be predicted, and allows the
model to learn from unseen observations even when the score fails to perform
well at first. The entire training objective becomes:

Lall = Laction + λentLent (16)

where λent is a mixing hyperparameter.

4 Experiments and Results

In this section, we conduct experiments to evaluate the explanations and per-
formance of the proposed method. We trained the agent system with an A2C
algorithm on the Atari platform. The following subsections will cover details
about the environment and results.



554 Y. Liu et al.

Table 1. Hyperparameters of the experiments.

Hyperparameter Value Hyperparameter Value

Activation function ReLU Number of parallel environments 16

Roll-out Steps 5 Max grad norm 0.5

Optimizer RMSprop Value loss coefficient 0.5

Entropy coefficient 0.01 GAE coefficient 0.95

Seeds [10,100] Total frames 20000000

4.1 Settings

The proposed algorithm was tested on environments provided by the OpenAI
Gym library [12], specifically their NoFrameskip-V4 versions, which are very
challenging for reinforcement learning and provide a wide range of interesting
games that are useful as a standard test for evaluating the proposed algorithms.
The agent uses the game coding interface provided by the Gym platform to
obtain the dynamic pictures and scores to self-learn the game. To evaluate the
performance and verify that our algorithm can easily explain the agents, we
conducted experiments on 6 Atari games: Phoenix, Alien, Breakout, Seaquest,
Beamrider, Frostbite, MsPacman, and SpaceInvaders. All baseline agents were
trained using the publicly available code for A2C with the same hyperparameters
and model details. Details on the hyperparameter settings are shown in Table 1.

To extract convolutional features, we used three stacks of convolutions plus
ReLU activation layers with filters 32 8× 8, 64 4× 4, and 64 3× 3 and strides 4,
2, and 1. For the preprocessing step, we followed[4], in which each frame is con-
verted from RGB format into single-channel grayscale and downsampled from a
resolution of 210 × 160 to 84 × 84 via bilinear interpolation. In this way, to pre-
vent causing loss of information, the computational resources and duration of the
network training were reduced. At each time step, four consecutive preprocessed
frames were stacked along the channel dimension as input. During the training,
rewards were clipped in the range of [−1, 1]. To ensure stable learning, gradients
were clipped to a value of 0.5, the discount factor was set to γ = 0.99, and the
networks were trained for 2 million frames. All network weights were updated
by the RMSProp optimizer with a decay factor of 0.95 and momentum of 0.1.
The learning rate was 0.0002. Advantage actor-critic used entropy regularization
with weight 0.01. Training and testing for all the games were performed with
the same network architecture and hyperparameters.

4.2 Performance

For each environment, the agent was trained with different random seeds. We
recorded a smoothed curve for the agent’s episode rewards during training. The
reward curves in Fig. 2 show the mean score at every timestep. Experience was
collected in 16 threads that were executed 5 steps at a time under default hyperpa-
rameters, for a total of 80 environment frames between agent updates. We reported
the average score across 100 test episodes for the final performance evaluation.



Towards Explainable Reinforcement Learning 555

(a) Alien (b) BeamRider (c) Breakout

(d) MsPacman (e) Phoenix (f) SpaceInvaders

Fig. 2. Reward curves during training. Cumulative reward comparison on 6 Atari tasks.

Figure 2 shows the reward curves obtained during training. From these plots,
it can be seen that our ARS-A2C architecture, which is the baseline model with
an extra scoring module, performs well, while the A2C architecture achieves
worse rewards. Experimental results show that the ARS scoring module improves
the performance of the A2C algorithm. As the figure shows, the ARS-A2C algo-
rithm has a better learning effect than the A2C algorithm at the early stage of
training. The ARS-A2C agent can quickly obtain high scores, and its learning
performance tends to be stable and improves in later training. There is little
difference between the ARS-A2C algorithm and the A2C algorithm in the early
stage of training. However, as the training stage increases, the average reward
value of the ARS-A2C algorithm gradually exceeds that of the A2C algorithm,
which proves that the ARS-A2C algorithm still has better learning performance
than the A2C algorithm. We conclude that the ARS module helps the agent
focus on the important regions of the input image by scoring the regions, which
avoids incurring a higher calculation cost to process parts with low policy value.
Therefore, in the subsequent training process, there will be no significant vari-
ance. The change in the shaded area of the curve shows that ARS-A2C is better
than A2C in learning performance and obtains a more minor variance when
converging, which alleviates the volatility problem of the A2C algorithm to a
certain extent.

For comparisons, we use DQN [5], DDQN [3], A2C [4] (both with separate
and shared actor-critic networks), and PPO [7] algorithms. Table 2 shows that
ARS-A2C achieves better performances than other algorithms for all 6 games.
Compared with the best score of other algorithms, ARS-A2C achieves 7.0%
point improvement on Alien, 9.5% point improvement on Beamrider, 4.2% point
improvement on Breakout, 32.5% point improvement on MsPacman, and 3.5%
point improvement on Phoenix, 9.5% point improvement on SpaceInvaders.



556 Y. Liu et al.

Table 2. Performance comparison on 6 Atari tasks.

Environment Random DQN DDQN PPO A2C ARS-A2C

Alien 240 2391 2041 1970 2091 2560

BeamRider 264 3627 3172 2750 3164 3975

Breakout 3 518 520 417 435 542

MsPacman 150 3180 2960 2350 2880 4215

Phoenix 440 10840 12250 20840 22530 23340

SpaceInvaders 120 3929 3672 4855 4673 5320

The ARS explains the agent through the scoring mechanism and stabilizes
the training process to some extent. The learning performance of the agent with
ARS is better than the other algorithms, which proves that ARS can help the
agent process the game state information more accurately so that the agent can
make the optimal decision more quickly and efficiently.

4.3 Explanations

Although score maps may not explain the entire decision-making process, they
reveal some of the strategies used by the agent. To visualize the score map, we
displayed the original input frame and overlaid the score map, producing bright
areas indicating high scores and darker areas indicating low scores. Furthermore,
the range of score values indicated that as the training process proceeded, the
weight of the score graph for areas unrelated to the reward goal became very
close to zero, meaning that little information was “mixed” in these areas during
the summation process in Formula 10. The general pattern we observed is that
agents learned to focus on task-related regions in the scene. This usually means
that the agent received higher value rewards from the relevant region, which is
essential in calculating the value function.

(a) Alien (b) Beamrider (c) Breakout

(d) MsPacman (e) Phoenix (f) Spaceinvaders

Fig. 3. Game explanations. Areas related to the agent for decision making are shown
by adding the information from the scores map to the image, red regions corresponds
to high score while blue corresponds to low. (Color figure online)



Towards Explainable Reinforcement Learning 557

The score maps reflect the agent’s degree of attention to each area when
making decisions, including strengthening the tracking of targets and focusing
on multiple targets, which can help the agent better understand the spatial
information from the state input. Agents that have received ARS feedback also
show a higher level of ability in a multi-target environment. As shown in Fig. 3(f)
and Fig. 3(b), the agent determines whether the shield is protecting it by focusing
on the area above the spacecraft and firing at the enemy. Figure 3(e) shows
the ability of an agent trained using ARS to focus on multiple enemies in the
environment; the agent is concerned about the enemy plane and making life and
death decisions in the environment. Figure 3(d) and Fig. 3(a) show the ARS-A2C
agent’s score for its nearby environment. Figure 3(c) shows the agent repeatedly
orienting the ball to part of the brick wall in order to pass through it through
the tunnel.

The proposed method focuses on improving the ability of the agent to process
the input information. The ARS module scores the state, which is then combined
with the original input to produce a more meaningful state embedding so that the
agent can better understand the current input. This ability to better understand
input states allows the agents to make more informed decisions, which is essential
for any reinforcement learning task.

5 Conclusion

This paper explains the DRL model from the perspective of a built-in explainer
and explores how to use the explanation to improve the model’s performance.
An end-to-end trainable explanation method based on the A2C algorithm is pro-
posed, in which an Adaptive Region Scoring mechanism is embedded into the
agent. The proposed ARS approach embeds explainability into the agent system,
achieving clear information visualization and excellent performance. Experimen-
tal results show that the model with the ARS outperformed the baseline model
in various environments. In addition, the agent with ARS is proven to be capa-
ble of easily generating explanations, providing value for real-world applications.
In future work, we plan to use a post-hoc explanation method to optimize the
agents, and it will be interesting to integrate our ARS module with other DRL
models, such as SAC [2] and Proximal Policy Optimization [7].

Acknowledgement. This work is sponsored by Shanghai Sailing Program (NO.
20YF1413800).

References

1. Brockman, G., et al.: OpenAI gym. arXiv preprint arXiv:1606.01540 (2016)
2. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-

mum entropy deep reinforcement learning with a stochastic actor. In: International
Conference on Machine Learning, pp. 1861–1870 (2018)

http://arxiv.org/abs/1606.01540


558 Y. Liu et al.

3. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
Q-learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intel-
ligence, pp. 2094–2100 (2016)

4. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 1928–1937 (2016)

5. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

6. Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P.: High-dimensional
continuous control using generalized advantage estimation. In: 4th International
Conference on Learning Representations (2016)

7. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

8. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-
works: visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034 (2013)

9. Wang, X., Sugumaran, V., Zhang, H., Xu, Z.: A capability assessment model for
emergency management organizations. Inf. Syst. Front. 20(4), 653–667 (2018)

10. Wang, X., Yuan, S., Zhang, H., Lewis, M., Sycara, K.P.: Verbal explanations for
deep reinforcement learning neural networks with attention on extracted features.
In: 28th IEEE International Conference on Robot and Human Interactive Com-
munication, pp. 1–7 (2019)

11. Wang, X., Lian, L., Yu, S.X.: Unsupervised visual attention and invariance for
reinforcement learning. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6677–6687 (2021)

12. Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas, N.: Dueling
network architectures for deep reinforcement learning. In: International Conference
on Machine Learning, pp. 1995–2003 (2016)

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1312.6034

	Towards Explainable Reinforcement Learning Using Scoring Mechanism Augmented Agents
	1 Introduction
	2 Preliminaries
	3 Proposed Method
	3.1 Model Overview
	3.2 Adaptive Region Scoring Mechanism
	3.3 Training

	4 Experiments and Results
	4.1 Settings
	4.2 Performance
	4.3 Explanations

	5 Conclusion
	References




