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Abstract. The action recognition backbone has continued to advance.
The two-stream method based on Convolutional Neural Networks
(CNNs) usually pays more attention to the video’s local features and
ignores global information because of the limitation of Convolution ker-
nels. Transformer based on attention mechanism is adopted to capture
global information, which is inferior to CNNs in extracting local features.
More features can improve video representations. Therefore, a novel two-
stream Transformer model is proposed, Sparse Dense Transformer Net-
work(SDTN), which involves (i) a Sparse pathway, operating at low frame
rate, to capture spatial semantics and local features; and (ii) a Dense
pathway, running at high frame rate, to abstract motion information. A
new patch-based cropping approach is presented to make the model focus
on the patches in the center of the frame. Furthermore, frame alignment,
a method that compares the input frames of the two pathways, reduces
the computational cost. Experiments show that SDTN extracts deeper
spatiotemporal features through input policy of various temporal reso-
lutions, and reaches 82.4% accuracy on Kinetics-400, outperforming the
previous method by more than 1.9% accuracy.

Keywords: Transformer · Action recognition · Two-stream · Frame
alignment · Patch crop

1 Introduction

The development of computer technology has been applied in all aspects of
life [4–6,16,21,24]. With the diversification of content presentation forms on
social platforms, videos have progressively risen to prominence in our lives. Mil-
lions of videos are published on YouTube, TikTok, and other platforms on a daily
basis. Thus, understanding and analyzing the content of videos play a critical
role in video sharing and monitoring fields. Similarly, the explosive growth of
video streams has also posed a challenge to today’s video field research: how to
achieve high-precision video understanding under limited computational cost?

To reduce the computational task, a common practice in action recogni-
tion is generally used to sample specific frames from video, feed the sampled
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frame into the designed network, and finally perform action recognition [12].
The original intention of using a specific method to sample frames is to reduce
computational cost and redundant frames, making the network more suitable for
long-term motion. However, the details of changes between consecutive frames
will be inevitably ignored, as with random sampling and sparse sampling. The
latest two-stream methods [11,17] used different time resolutions for two path-
ways, which avoids the problem of missing essential frames and extracts features
more efficiently. Therefore, the two-stream method is more extensively utilized
in action recognition Convolutional Neural Networks.

The traditional two-stream method [27] feeds optical flow and RGB sepa-
rately for action recognition. Meanwhile, TSN [33], one of the variants of two-
stream, provided a novel idea to process long-term action recognition tasks by
segmenting in the temporal dimension. Of course, research on action recognition
is not limited to 2D, and even excellent results have been obtained using 3D
CNNs [18,20]. 3D CNNs will undoubtedly extract more spatiotemporal features
than 2D CNNs [28]. There are two types of cells in the primate visual system,
Parvocellular (P-cells) and Magnocellular (M-cells). Among them, M-cells are
interested in rapid time changes, and P-cells are sensitive to significant spatial
features [31]. SlowFast [11] obtained accurate spatiotemporal information more
efficiently by imitating two cells. However, due to the limitation of the size of
the convolution kernel, the two-stream network based on CNNs often cannot
effectively model the global features, resulting in the lack of feature diversity.

Transformer achieved excellent results in the field of Natural Language Pro-
cessing (NLP) [32]. In order to apply the Transformer to images, ViT [8] regarded
each image as consisting of many 16 × 16 patches. Video and NLP, as compared
to image, have a higher level of similarity, whether sequential or logical [26].
Therefore, the Transformer used in image is also suitable for video and can even
achieve better performance in video research. However, when Transformer pro-
cesses images, it often ignores the intrinsic structure information inside each
patch, resulting in the lack of local features [14].

To shed new light on studying the applicability of CNNs architecture on
Transformer, a two-stream Transformer architecture is proposed to combine local
and global features more effectively. Simultaneously, to achieve precision and
speed trade-off, we execute frame alignment operation to ensure that the Sparse
pathway’s input frames are the same as the Dense pathway’s input frames. Thus,
the frames feeding the Dense pathway do not need to be processed all at once,
reducing the Dense pathway’s computation cost. Patch crop, a new cropping
method, is also designed to focus on the center of videos.

Our contributions can be summarized as follows:

– A novel architecture, Sparse Dense Transformer Network(SDTN), is pro-
posed to combine two-stream method and Transformer, considerably enhanc-
ing action recognition performance.

– A new cropping approach with 16 × 16 as the basic unit, Patch crop, which
allows the network to pay more attention to the patches in the center of
videos.
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– Experiments demonstrate that SDTN achieves accuracy improvements on
Kinetics-400 and presented Light kinetics-400. Additionally, the frame align-
ment is leveraged as information aggregation method to improve the perfor-
mance of SDTN.

In the remainder of the paper, we first introduce related work in Sect. 2. In
Sect. 3, we illustrate the proposed model. Section 4 and Sect. 5 show the experi-
mental results and analyze based on them. Finally, the conclusion and outlook
are presented in Sect. 6.

2 Related Work

2.1 CNNs in Action Recognition

CNNs have long been the standard for the backbone architectures in action
recognition. Simonyan and Zisserman proposed two-stream architecture, whose
method is to combine RGB and optical flow for action recognition [27]. To some
extent, the computational cost of the optical flow is relatively expensive, and
researchers continue to do further research on this basis. Subsequently, TSN [33]
offered an exciting solution to advance our knowledge of long-term video action
recognition tasks: it segments the video into N clips in the time dimension; then,
each clip is input into the two-stream network, which is effectively improved the
accuracy of the action recognition in long-term videos. ECO [35] provided the
ECO-Full network based on TSN, which is also a parallel of two networks.

For 3D CNNs, C3D [28] is a pioneering work that has designed an 11-layer
deep network. R3D can be regarded as a combination of two outstanding research
of Resnet and C3D [15,30]. I3D [7] extended 2D CNNs to 3D CNNs and showed
that 3D CNNs extract features substantially more effectively than 2D CNNs.
Because 3D CNNs have a lot of parameters and high computational costs,
researchers are trying to lower their computational complexity to that of 2D
CNNs. As a result, P3D [25] and R(2+1)D [30] have been trying to replace 3D
CNNs with 2D CNNs and have achieved good results on large-scale datasets.
V4D [34] achieved accuracy improvements by adding the clip dimension to 3D
CNNs. The SlowFast networks [11], inspired by the biological research of retinal
ganglion cells in the primate visual system, found that combining multiple time
resolutions is helpful for accurate and effective action recognition in experiments.

2.2 Transformer in Action Recognition

Transformer initially achieved excellent performance in NLP, and later it was
introduced into computer vision.

Rohit Girdhar et al. [13] used Transformer structure to add the information
before and after the video to the final vector for classification and positioning.
Then, Vision Transformer (ViT) [8] proposed a brand new idea: can continu-
ous patches represent an image? In other words, ViT decomposes an image into
16 × 16 patches. Since then, ViT realized the transformation of the backbone
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of computer vision from CNNs to Transformer. The great success of the image
Transformer has also led to the research on the architecture of the action recog-
nition task based on the Transformer. VTN [23] proposed to add a temporal
attention encoder to pre-trained ViT, which performed well on action recogni-
tion datasets. ViViT [1] was based primarily on ViT and tried to solve the video
task completely using the Transformer architecture. ViViT studied four spatial
and temporal attention factor designs of the pre-trained ViT model, and recom-
mended a VTN-like architecture. The latest Video Swin Transformer [22] has
made the number of tokens less and less through multiple stages, and the recep-
tive field of each token has increased. So the computational cost of the Video
Swin Transformer is reduced, while the precision and speed are both improved.

3 Sparse Dense Transformer Network
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Fig. 1. Sparse Dense Transformer Network processes information with two differ-
ent time resolutions. The Sparse pathway and the Dense pathway carry out patch crop
operation simultaneously. After that, the frames of the two pathways undergo frame
alignment and then enter their respective networks. Finally, through max fusion, the
video-level prediction results are obtained.

Following the STAM [26], we use the idea of SDTN to simulate the P-cells and M-
cells of the biological vision system. As shown in Fig. 1, SDTN can be described
as a single stream structure with two different time resolutions as input. The
Sparse pathway samples informative frames with lower temporal resolution. The
Dense pathway is sampled at high temporal resolution and is sensitive to rapid
temporal changes. Meanwhile, we explore how SDTN can benefit from various
time resolutions, motivated by Coarse-Fine networks. Moreover, based on the
intuition that the action is more concentrated in the center of the video, SDTN
adopts a patch-based cropping method to make the pathway focus more on the
central patches of the input frame.
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In SDTN, we are confronted with two major challenges: (i) how to improve
the network’s accuracy while reducing the Dense pathway’s computational cost;
(ii) how to effectively integrate the information of the Sparse pathway and the
Dense pathway. First of all, to minimize the Dense pathway’s computational
cost, we propose frame alignment, which is a method of ensuring that the frames
sampled by the Sparse and Dense pathways are consistent, therefore reducing
the amount of computing on the Dense pathway. Furthermore, to assure the
accuracy of SDTN, we design different degrees of information fusion experiments
to contrast the impact of various methods of fusion.

3.1 Frame Alignment

Frame Alignment Frame Alignment Frame Alignment Frame Alignment

Fig. 2. Frame Alignment compares the sampled frames of the Sparse pathway and
the Dense pathway. In this way, the consistency of the processing information of the
Sparse pathway and the Dense pathway can be guaranteed. While ensuring the diversity
of network input information, it also reduces the computational cost of the Dense
pathway.

Specifically, SDTN aims to design a new two-stream Transformer architecture
while maintaining the original network features to show a speed-accuracy trade-
off. The Sparse and Dense pathways sample various amounts of frames from
the whole video. The input to each pathway is X ∈ R

H×W×3×F consists of F
RGB frames of size H ×W sampled from the video. During the learning process,
each pathway derives the preliminary inference results and finally applies fusion
approach to produce the video-level inference.

We expect the Dense pathway to assure excellent accuracy while operating
with a minimum computational cost. Therefore, we design frame alignment on
the original foundation to ensure the variety of the two networks’ input while
maintaining the consistency of the features.
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As shown in Fig. 2, the Sparse pathway of SDTN samples 16 frames, and the
Dense pathway samples 64 frames. Before input, we align the input frames of
two networks according to the frame id. The frames of the Dense pathway are
compared with the frames of the Sparse pathway before the input to determine
whether the two networks’ input is consistent. Accordingly, we reduce the input
into the Dense pathway following this comparison, reducing the computational
cost of SDTN.

3.2 Patch Crop

There should be a subject, a predicate, and an object in a sentence. If the
sentence is complicated, then there are attributives and complements. When the
Transformer processes a frame, it treats a frame as a complete sentence, with each
patch representing a word. To this end, we try to adapt essential human thinking
to the computer in this experiment. For example, when processing a sentence, we
give greater attention to the subject, predicate, and object. Similarly, we believe
that subjects, predicates, and objects in the image are made up of patches. Then,
based on the intuition that the behavior mainly occurs in the center of videos,
we consider the patches in the center of videos as the subject, predicate, and
object of this frame.

Patch
Crop

Fig. 3. Patch Crop. Sparse Dense Transformer Network is expected to focus more
on the frame’s center. To emphasize the significance of the center patches, we offer a
novel cropping approach based on the patch as a unit.

The Sparse pathway will pay greater attention to spatial features when we
utilize the Sparse pathway to simulate the P-cells in the visual neural network.
Based on the intuition that more actions occur in the center of the videos, we
hope that the Sparse pathway will focus on the center of the sampled frame for
learning. At the same time, the Dense pathway pays some attention to spatial
features while extracting temporal features, resulting in improved spatiotemporal
information fusion. Therefore, we propose a new crop method called Patch crop,
which allows the network to extract patch-based local features more effectively.
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We build SDTN on the idea of a frame that can be decomposed into many
patches of 16 × 16 in size. Each frame is scaled to 224 × 224, which means that
each frame will be divided into non-overlapping 196 patches. Then, on this basis,
we will first resize the frame (H × W ) to ((H + 2 × patch size) × (W + 2 ×
patch size)). Since the Transformer architecture cannot directly process frames,
2D CNNs are used to process the image into a feature map. The feature map
is then split into 256 patches, with the middle 196 patches being sampled, as
shown in Fig. 3.

These patches are linearly projected onto an embedding vector after being
flattened into vectors:

z
(0)
(p,t) = Ex(p,t) + epos

(p,t) (1)

Here x(p,t) ∈ R
3P×P is the input vector, and the embedding vector z(p,t) ∈

R
D is relevant to a learnable positional embedding vector epos

(p,t), as well as the
matrix E. The indices t, and p are the frame and patch index, respectively with
t = 1, . . . , F , and p = 1, . . . , N . When using the Transformer model for action
classification, we need to add a learnable classification token to the first position
of the embedding sequence z

(0)
(0,0) ∈ R

D.

q
(l,a)
(p,t) = W

(l,a)
Q LN(z(l−1)

(p,t) ) ∈ R
Dh (2)

k
(l,a)
(p,t) = W

(l,a)
K LN(z(l−1)

(p,t) ) ∈ R
Dh (3)

v
(l,a)
(p,t) = W

(l,a)
V LN(z(l−1)

(p,t) ) ∈ R
Dh (4)

Each pathway consists of L encoding blocks. At each block � ∈ {1, . . . , L}, and
head a ∈ {1, . . . ,A}, we compute a query, key, and value vector for each patch
based on the representation z

(�−1)
(p,t) encoded of the preceding block. Where LN()

represents LayerNorm [2]. The dimension of each self-attention head is set to
Dh = D/A.

α
(�,a)
(p,t) = SM

⎛
⎝q

(�,a)�

(p,t)√
Dh

·
[
k
(�,a)
(0,t)

{
k
(�,a)
(p′,t′)

}
p′=1,...,N
t′=1,...,F

]⎞
⎠ (5)

Self-attention weights α
(�,α)
(p,t) ∈ R

NF+F are computed by dot-product. Where
SM() represents the softmax activation function. Then, according to the research
of STAM, global attention is applied to frames to realize action recognition.
Finally, we utilize fusion method to combine the two networks’ scores to derive
the final prediction result. Formally, we employ the method of sampling and
feeding twice, and separate it into two network pathways for modeling:

SDTN(Fs, Fd) = G(Sp(Fs),Dp(Fd)) (6)

Here Fs stands for the Sparse frames sampled from the video, whereas Fd

stands for the Dense frames sampled. To generate scores, Fs and Fd use their
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respective processing methods and then are fed into Sp (the Sparse pathway) and
Dp (the Dense pathway). Based on the Sparse pathway and the Dense pathway
scores, the fusion function G predicts the probability of each action class in the
whole video. For G, we will utilize the commonly used max fusion.

4 Experiments

Implementation Details. SDTN comprises two parts: a Sparse pathway and
a Dense pathway. In our experiments, each pathway strictly follows the hierar-
chical structure of the original STAM consisting of a spatial transformer and a
temporal transformer. SDTN is one of the ViT family models and contains 12
Multi-head Self-Attention block layers, each with 12 self-attention heads. Among
them, SDTN uses the imagenet-21K pretraining provided by [32]. The temporal
transformer we employ only has 6-layers and 8-head self-attention since the time
information is extracted at a deep level.

For inference, we use different time resolutions in the entire video to sample
the frames twice and resize each frame so that the smaller dimension is 256.
Then we random crop all sample frames of the video to a size of 256 × 256; we
also apply random flip augmentation and auto-augment with Imagenet policy on
all frames. After that, we execute patch crop to sample the central 196 patches.
Finally, we use the same method for training and inference.
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Fig. 4. Top-1 Accuracy on Kinetics-400 for the SDTN(16+64) vs. other networks. In
terms of accuracy, SDTN is superior to previous architectures based on either CNNs,
Transformer, or CNNs+Transformer.

Datasets. Kinetics-400 is a large-scale action recognition dataset, ∼240 k train-
ing videos and 20 k validation videos in 400 human action categories [19]. To
further assess SDTN’s performance on Kinetics-400, we build a Light kinetics-
400 dataset based on Kinetics-400, allowing us to finetune our model according
to the Kinetics-400 data format. The Light kinetics-400 dataset contains 400
human action categories. Especially, only five videos for each action category
has been included to reduce the size of the dataset.
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Training. We follow STAM and optimize from this basis. For frame alignment
operation, we adjust the sampling rate and batch size of each network to be the
same.

5 Ablation Experiments

In this section, we provide the ablation experiments of SDTN on Kinetics-400
to evaluate the contributions of our two-stream Transformer architecture, frame
alignment, and patch crop.

Table 1. Different frames combination

Sparse pathway Dense pathway Top-1 acc Top-5 acc

16 frames 32 frames 81.93 95.52

32 frames 64 frames 81.68 95.34

16 frames 64 frames 82.45 95.66

The differences between various input frames are presented in Table 1. On
the Kinetics-400 dataset, we can observe that our SDTN performs best when
the Sparse pathway is 16 frames, and the Dense pathway input is 64 frames.
However, when the Sparse pathway is 16 frames, and the Dense pathway is
64 frames, the input strategy is more accurate than when the Sparse path is
32 frames. This is because the Sparse pathway pays more attention to spatial
information, and adding additional frames does not result in a significant increase
in spatial information. Conversely, redundant frames increase computational cost
and result in performance degradation.

On the Kinetics-400 dataset, we compare our approach with others. Table 2
indicates that, even when the number of GPUs is 4, each combination of input
frames in SDTN can enhance accuracy and exceed the baseline. In Fig. 4, our
model (82.45%) outperforms STAM’s previous state-of-the-art by 1.95%.

Although SDTN does not reach SOTA accuracy, it shows promise as an
effective Transformer model, that is, one that can explore the potential of a
novel backbone based on conventional deep learning frameworks.

We design different patch crop experiments on SDTN(16+64). All Pathway
means patch crop on the Dense pathway and the Sparse pathway simultaneously.
As shown in Table 3, the effect of patch crop on the Sparse pathway is better
than that on the Dense pathway, which is also constant with our intuition. The
Sparse pathway pays extra attention to spatial features, making it more suitable
for patch crop. Although the patch crop on the Dense pathway can exceed the
baseline, the improvement is not significant for comparing with patch crop on
the Sparse pathway. All Pathway performs well because in addition to extracting
more spatial features, it can also better integrate spatiotemporal information.
Actually, patch crop is more like extracting abstracts from a sentence.
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Table 2. Comparision with other model on Kinetics-400

Model Pretrain Top-1 acc [%] Top-5 acc [%] Param [M]

I3D [7] ImageNet-1K 72.1 90.3 25.0

X3D-M [10] – 76.0 92.3 3.8

ip-CSN-152 [29] – 77.8 92.8 32.8

ViT-B-VTN [23] ImageNet-21K 78.6 93.7 114.0

X3D-XL [10] – 79.1 93.9 11.0

SlowFast 16×8+NL [11] – 79.8 93.9 59.9

MViT-B, 32×3 [9] 80.2 94.4 36.6

TimeSformer-L [3] ImageNet-21K 80.7 94.7 121.4

MViT-B, 64×3 [9] – 81.2 95.1 36.6

ViViT-L/16x2 320 [1] ImageNet-21K 81.3 94.7 310.8

Swin-T [22] ImageNet-1K 78.8 93.6 28.2

Swin-S [22] ImageNet-1K 80.6 94.5 49.8

STAM(baseline) [26] ImageNet-21K 80.5 – 96.0

SDTN(16+32) ImageNet-21K 81.9 95.5 192.0

SDTN(32+64) ImageNet-21K 81.6 95.3 192.0

SDTN(16+64) ImageNet-21K 82.4 95.6 192.0

Table 3. Different patch crop pathway

Patch crop pathway Top-1 acc Top-5 acc

Dense pathway 82.11 95.50

Sparse pathway 82.31 95.65

All pathway 82.45 95.66

We compare the complete SDTN(16+64) with SDTN that only uses frame
alignment or patch crop in Table 4. As can be seen from the table, both frame
alignment and patch crop can enhance the accuracy of the network, surpassing
some of the existing Transformer architectures.

Table 4. Frame alignment vs patch crop

Method Top-1 acc Top-5 acc

Only frame alignment 82.15 95.48

Only patch crop 81.68 95.54

Full SDTN 82.45 95.66

In Table 5, we employ several fusion strategies in order to achieve the full
potential of SDTN(16+64). Among them, the weight fusion is inspired by Slow-
Fast networks [11]. The P-cells and M-cells are interested in spatial and temporal
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Table 5. Different fusion methods

Fusion method Top-1 acc Top-5 acc

AVG 79.51 94.23

Weight fusion 79.84 94.38

Max 82.45 95.66

features and account for ∼80% and ∼15–20% of the visual system, respectively.
Consequently, we apply this ratio to SDTN, which combines the Dense pathway
score of 20% and the Sparse pathway score of 80%.

The max fusion method is the most effective in experiments. That is because
different actions have different requirements for temporal and spatial features.
For example, recognizing some actions emphasizes spatial features, while others
pay more attention to temporal features. The max fusion will select recognition
results with more significant features and higher accuracy.

Table 6. Comparision on Light kinetics-400

Model Pretrain Top-1 acc Top-5 acc

STAM(baseline) ImageNet-21K 93.93 99.61

SDTN(16+32) ImageNet-21K 95.59 99.80

SDTN(32+64) ImageNet-21K 95.40 99.80

SDTN(16+64) ImageNet-21K 95.69 99.80

Finally, as shown in Table 6, we evaluate the performance of baseline and
SDTN on Light kinetics-400. It can be seen that when the size of the dataset
decreases, the accuracy of the network rises substantially. On Light kinetics-
400, the experimental results are consistent with the performance of SDTN on
Kinetic-400, indicating that the dataset and SDTN are competent for the task
of action recognition.

6 Conclusion

In this paper, a novel model Sparse Dense Transformer Network, a two-stream
Transformer architecture, was proposed for action recognition. Patch crop was
a new kind of cropping based on patch, which helps the network pays more
attention to the patch in the center of the image. Frame alignment was adopted
to assist the Dense pathway in selecting frames for input consistent with the
Sparse pathway, improving accuracy while reducing the computational cost. The
results of ablation experiments also show that the max fusion is the best fusion
method for SDTN. Through extensive experiments in benchmarks, SDTN shows
its superiority compared with the previous models, achieving 82.45% accuracy
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on the Kinetics-400. In the latter research, the extraction of local features for
the patch will be considered into two-stream Transformer network for action
recognition.
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