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Abstract. With the emergence of Pretrained Language Models (PLMs)
and the success of large-scale PLMs such as BERT and GPT, the field of
Natural Language Processing (NLP) has achieved tremendous develop-
ment. Therefore, nowadays, PLMs have become an indispensable tech-
nique for solving problems in NLP. In this paper, we survey PLMs to
help researchers quickly understand various PLMs and determine the
appropriate ones for their specific NLP projects. Specifically, first, we
brief on the main machine learning methods used by PLMs. Second, we
explore early PLMs and discuss the main state-of-art PLMs. Third, we
review several Chinese PLMs. Fourth, we compare the performance of
some mainstream PLMs. Fifth, we outline the applications of PLMs.
Finally, we give an outlook on the future development of PLMs.
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1 Introduction

Pretrained Language Models (PLMs) are a new paradigm in Natural Language
Processing (NLP) [22]. As shown in Fig. 1, a PLM is a large neural network.
It is pre-trained on a large-scale text corpus through self-supervised learning
(which is used to learn common sense from a large corpus with nothing to do
with a specific downstream task). Pre-training can be regarded as regularisation
to prevent the model from overfitting small data [16]. After being pre-trained, a
PLM needs to be fine-tuned for a specific downstream task.

In early NLP tasks, low-dimensional and dense vectors are often used to
represent language’s syntactic or semantic features through various deep neural
networks [32]. However, since deep neural networks usually have many parame-
ters and the dataset used for training is limited, it may often lead to the phe-
nomenon of overfitting. Transfer learning can apply the knowledge learnt in the
source domain to the learning task in the target domain [40], alleviating the
pressure caused by limited manual annotation data. However, unlabelled data
is much larger than labelled data, so it is necessary to learn how to extract use-
ful information from unlabelled data. The emergence of self-supervised learning
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Fig. 1. The training process of a language model

and unsupervised learning solves this problem. Transformer [41] (a deep learning
model) is proposed to solve the problem of slow training and low efficiency of
Recurrent Neural Networks (RNNs) [36], and integrated with the self-attention
mechanism to achieve fast parallel effects. Since then, PLMs have entered a boom
phase. Large-scale PLMs such as BERT [11] and GPT [33] succeed greatly, and
various improvements to them have been made to solve various NLP tasks.

Although PLMs are crucial to NLP tasks, there are not many surveys for
helping researchers to quickly understand various PLMs from different view-
points and determine the appropriate ones for their specific NLP projects. To
amend this, in this paper, we provide a survey of PLMs. We found only two
surveys on PLM through Google scholar, although ours in this paper is unique
from them. The first one is provided by Li et al. [22], concerning the general task
definition, the mainstream architectures of PLMs for text generation, the usage
of existing PLMs to model different input data and satisfy unique properties in
the generated text, and several critical fine-tuning strategies for text generation.
However, they did not discuss the mainstream PLMs one by one as we do in this
paper. The second survey we found was provided by Qiu et al. [32] in 2020. They
comprehensively review PLMs, and, in particular, they systematically categorise
various PLMs. However, the survey was published in March 2020, so it does not
cover PLMs published afterwards, particularly Chinese PLMs in 2020 and 2021.
So, instead, we cover the recent two years, especially the Chinese ones.

The rest of this paper is organised as follows. Section 2 briefs three main
machine learning methods for training PLMs. Section 3 recalls early PLMs that
focus on word vectors. Section 4 reviews the second generation of PLMs, includ-
ing ELMo, BERT, GPT, and their derivatives. Section 5 briefs several Chinese
PLMs and compares them with several typical English PLMs. Section 6 lists the
main NLP tasks for which PLMs can be used and gives an application example
for each task. Finally, Sect. 7 summarises this paper with the future work.

2 Basic Machine Learning Methods for PLMs

This section will brief machine learning methods for PLMs: Long-Short Term
Memory (LSTM) [19], Attention Mechanism (AM) [6], and Transformer [41].
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2.1 Long-Short Term Memory

RNNs are often used to process sequence data such as machine translation and
sentiment analysis, but they are short-term memory networks. When faced with
a long enough data sequence, it is difficult to transmit the earlier information
to them later because RNNs may meet gradient disappearance in the reverse
transmission. LSTM is an improved RNN model. Based on RNN, an input gate,
a forgetting gate and an output gate are added to control and retain information,
which overcomes the limitation of short-term memory. The forget gate controls
how much of the unit status at the last moment can be retained to the current
moment. The input gate determines how much of the immediate status can be
input into the unit status. Finally, the output gate is responsible for controlling
how much of the unit status can be used as the current output value of the
LSTM. However, in both RNN and LSTM, much of the information carried by
the input word vector may be lost in the face of long sequences.

2.2 Attention Mechanism

AM sets a weight for all hidden states in the encoder and inputs the information
of the hidden states after the weighted summation to the decoder layer. AM pays
more attention to inputs relevant to the current task. The AM acts between
the encoder and the decoder. When RNNs are integrated with the attention
mechanism, they can predict a particular part of the output sequence and focus
their attention on a specific part of the input sequence to generate a higher
quality output. Thus, Yu et al. [49] integrated LSTM with an AM and two-way
LSTM for the Chinese question answering system, which solves the difficulties
caused by Chinese grammar, semantics and lexical limitations in the Chinese
question answering dataset. The AM+LSTM model retains the intermediate
outputs of the LSTM encoder on the input sequences and then trains the model
to selectively learn these inputs and associate the output sequences with the
model outputs.

Later on, a self-AM was proposed [41]. The self-AM acts on the encoder
or the decoder, and can connect longer-distance words in the same sentence.
General embedding methods, such as Word2Vec, need to be integrated with
context to clarify the semantics, and the sequence information of the sentence
is lost. Self-AM can effectively solve these problems. Moreover, self-AM replaces
the most commonly used loop layer in the encoder-decoder architecture with
multi-headed self-attention. Multi-headed attention focuses on information from
different representation subspaces in different positions, leading to a dramatic
improvement in training speed [24,27].

2.3 Transformer

Transformer [41] uses multiple encoders and decoders. The encoder contains
a self-attention layer and a feed-forward neural network in addition to the self-
attention layer and the feed-forward neural network. The advantage of the Trans-
former model is that it can solve the problems of slow training and low efficiency
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Fig. 2. Transformer architecture used by GPT and GPT-2

of the RNN model and use self-attention to achieve fast parallel effects. More-
over, it can deeply mine the characteristics of a Deep Neural Network (DNN)
to improve the efficiency and performance of the model. After the Transformer
model was proposed, PLMs entered a boom phase. Figure 2 shows the Trans-
former architectures used by GPT [33] and GPT-2 [34].

3 Early PLMs

From 2013 to 2021, PLMs have upgraded year by year. As early as 2013, Mikolov
et al. [28] proposed the first PLM, called Word2Vec, which generates word vec-
tors. According to the corpus, the optimised model trained expresses a word as
a vector quickly and effectively. After Word2Vec trains the word vector, each
independent word has a fixed dimension vector corresponding to its semantics.
The Word2Vec model is also a widely used word embedding model in sentiment
analysis with excellent analysis performance [1]. The Word2Vec model uses two
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algorithms for generating word vectors, Skip-Gram (SG) and Continuous Bag of
Words (CBoW). SG has a good performance on small training data, but CBoW
is also very efficient in big training data, and its accuracy rate for frequent words
is also higher than SG.

Later on, Pennington, Socher, and Manning [30] proposed GloVe to overcome
the shortcomings of Word2Vec: its vector dimensionality is low, and it cannot
completely cover the data in the corpus. Moreover, GloVe can be more gener-
alised than Word2Vec in the process of word embedding. However, GloVe uses
the matrix factorisation method and the method based on shallow windows. So,
it can contain local or global information of specific words in the corpus, which
is necessary for improving its performance.

Both Word2Vec and GloVe map the input to a fixed-dimensional vector rep-
resentation, so the generated word vectors are all context-independent. Thus,
they cannot handle linguistic phenomena like polysemous words. For example,
“open” has different meanings in “the door is open” and “the farm is in the open
countryside”. So, it is unreasonable that its word vectors for the two sentences
are the same. Moreover, these models are no longer needed in downstream tasks
because their computational efficiency usually is low.

4 Second Generation of PLMs

This section will review representative PLMs of second generation.

4.1 ELMo Model

To solve the problem of polysemy and understand complex context, in 2018,
Peters et al. [31] proposed ELMo (Embedding from Language Models). It learns
word vectors via the internal state of a deep bidirectional language model. It
extracts embeddings from a bi-directional LSTM pre-trained on a sizeable unsu-
pervised corpus. The resulting embeddings are derived from a weighted com-
bination of internal layers that can be easily applied to existing models. When
doing the downstream task, ELMo extracts word embeddings from a pre-trained
network corresponding to words from each layer of the network as new embed-
dings to be added to the downstream task. It is a typical PLM residing in
feature fusion. In many NLP tasks in different domains, ELMo performs very
well [3,15,47].

4.2 BERT Family

ELMo is a one-way language model, and its ability to model semantic informa-
tion is limited. To remove these limitations, Google AI launched pre-training
language model BERT (Bidirectional Encoder Representations from Transform-
ers) at the end of 2018 [11], which uses Masked Language Model (MLM) and
Next Sentence Prediction (NSP) for deep two-way joint training. The task of
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Fig. 3. Masked LM

MLM is to randomly erase one or several words in a given sentence and pre-
dict the erased words according to the remaining words. For the erased words,
MASK can replace 80% of cases; for any word, it can replace 10% of cases; and
for unchanged words, it can do 10% of cases. This is more conducive to the model
to grasp the context information. Figure 3 shows the MLM process. Moreover,
BERT uses NSP to capture the relationship between sentences [11]. Its perfor-
mance, ease of use and versatility surpass many models. The difference between
BERT’s pre-training and downstream specific task training is only the top-level
output layer, and it can be used in many tasks. BERT has achieved significant
improvements in 11 basic tasks in NLP.

The emergence of BERT has extensively promoted the development of the
NLP field. Since its emergence, researchers have proposed many improved mod-
els based on BERT. RoBERTa [23] uses a more extensive dataset, changes the
static mask to the dynamic mask, and cancels the NSP task. AlBERT [21] can
share parameters cross-layer, which significantly reduces parameters. It factors
Embedding into two smaller embedding matrices and changes the NSP task in
BERT to SOP (sentence-order prediction). XLNet [48] uses Permutation Lan-
guage Modeling (PLM), which can capture contextual information in the lan-
guage model and has apparent advantages over BERT in text generating tasks
with long document input. ELECTRA [7] replaces the MLM in BERT with
RTD (Replaced Token Detection), which solves the inconsistency between the
pre-training phase and the fine-tuning phase of MASK. ELECTRA is better
than BERT under the same computing power, data, and model parameters. It
is also better than RoBERTa and XLNet under the same amount of calculation.
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4.3 GPT Family

Although the unlabelled text corpus is rich, there is very little labelled data
for learning for specific tasks. To address the issue, in 2018, Radford et al. [33]
proposed the GPT (Generative Pre-trained Transformer) model. Its pre-training
includes two stages. The first stage is unsupervised pre-training, learning high-
capacity language models on a large number of text corpora. The unsupervised
pre-training in GPT mainly uses the decoder layer in the transformer; Fig. 2(a)
shows the process. First, the sum of the word vector and the position vector
is input. Then, after 12 layers of transformers, the predicted vector and the
vector of the last word are obtained. Finally, the word vector of the last word
will be used as the input of subsequent fine-tuning. The second stage is super-
vised fine-tuning, which adapts the model to discriminative tasks with labelled
data. GPT is the first model that integrates the modern Transformer architec-
ture and the self-supervised pre-training objective [45]. It surpasses the previous
model in various assessments of natural language reasoning, classification, ques-
tion answering, and comparative similarity.

In 2019, Radford et al. [34] proposed GPT-2 to predict the next word in
a sentence. GTP-2 can answer questions, summarise texts, and translate texts
without training in a specific field. However, GPT-2 still uses the one-way trans-
former mode of GPT with simple adjustments. Figure 2(b) shows the minimum
model of GPT-2. It puts layer normalisation before each sub-block and adds a
layer normalisation after the last self-attention. The training data of GPT-2 has
been greatly improved in quantity, quality, and breadth. However, the network
parameters have also increased, and the network parameters of the largest GPT-
2 has reached 48 layers. As a result, both Zero-Shot (especially the tiny dataset
Zero-Shot) and long text (long-distance dependence) perform well.

In 2020, Brown et al. [5] proposed GPT-3, which has 175 billion parameters.
GPT-3 has excellent performance on many NLP datasets, including translation,
question answering, and text filling. It is highly efficient, especially in text gener-
ation, and it is almost indistinguishable from a human-generated text. Although
GPT-3 has made significant progress, it does not follow the real intentions of
users very well, and it often produces unreal, harmful or unresponsive emotional
outputs. To remove this flaw, Open AI uses reinforcement learning from human
feedback to fine-tune GPT-3 - the resulting fine-tuned model is called Instruct-
GPT [29]. The three main steps of its training process are: 1) perform supervised
learning with a manually written demo dataset, 2) train the reward model RM
on this dataset, and 3) use RM as the reward function for reinforcement learning.
After over a year of testing, the experiments show that although InstructGPT
still has simple errors, compared with GPT-3, it reduces harmful output and
significantly improves its ability to follow user intentions.

5 Chinese PLM

This section will discuss important Chinese PLMs.
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5.1 PLMs from IFLYTEK and Harbin Institute of Technology

In 2019, Cui et al. [9] of IFLYTEK and Harbin Institute of Technology released
the Chinese PLM BERT-wwm based on the whole word mask. For Chinese, if
part of a complete word is masked, other parts of the same word also are masked.
Their experiments show that BERT-wwm outperforms BERT in various Chinese
NLP tasks. They also increase the training data level and the training steps to
upgrade BERT-wwm to BERT-wwm-ext. In addition, they also proposed a series
of Chinese PLMs based on BERT, such as RoBERTa [26], in the same year, which
achieved good experimental results. In 2020, Cui et al. [8] trained the Chinese
PLM XLNet-mid based on the XLNet open source code using large-scale Chinese
corpus. As a result, it surpassed the effects of BERT-wwm and BERT-wwm-
ext on most NLP tasks and achieved significant performance improvements in
machine reading comprehension tasks.

5.2 ERNIE Family from Baidu

In 2019, Zhang et al. [51] in Baidu released the Chinese PLM ERNIE, which has
a greatly enhanced general semantic representation ability by uniformly mod-
elling the grammatical structure, lexical structure, and semantic information in
its training data. Moreover, they use a higher quality Chinese corpus, making
ERNIE more effective on Chinese NLP tasks. Their experiments show that on 5
Chinese NLP tasks, ERNIE surpassed BERT. In December 2019, ERNIE topped
the list in the authoritative dataset GLUE (General Language Understanding
Evaluation) in the field of NLP.1 In 2020, Sun et al. [39] released ERNIE 2.0.
This model extracts more valuable information from the training corpus through
continuous multi-task learning. Their experiments show that ERNIE 2.0 outper-
forms BERT and XLNet on 16 tasks, including the English task on the GLUE
benchmark and several similar tasks in Chinese. In 2021, Sun et al. [38] released
ERNIE 3.0 by integrating autoregressive and autoencoder networks with gen-
eral semantic layers and task-related layers. Once the pre-training of the generic
semantic layer is completed, it is not updated anymore. Only task-dependent lay-
ers are fine-tuned when performing downstream tasks, significantly improving
efficiency. Their experiments show that the model outperforms state-of-the-art
models on 54 Chinese NLP tasks.

5.3 TinyBERT from Huawei

Large-scale PLMs such as BERT have huge parameters and complex comput-
ing processes, making it challenging to apply them on edge devices with limited
computing power and memory. To this end, many model compression techniques
have been proposed, mainly including quantisation [17], weights pruning [18], and
knowledge distillation [35]. In 2019, Huawei proposed TinyBERT [20], which
uses a new knowledge distillation method to perform transformer distillation

1 https://gluebenchmark.com/.

https://gluebenchmark.com/
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Table 1. Comparison of the characteristics of some pre-trained models

PLMs Characteristic

Learning method Language model Language type Params

Elmo [7] LSTM BiLM English 96M

GPT [33] Transformer Dec LM English 117M

BERT [11] Transformer Enc MLM English 110M

RoBERTa [26] Transformer Enc MLM+ RTD English 355M

ELECTRA [7] Transformer Enc MLM English 335M

BERT-wwm-ext [9] Transformer Enc PLM Chinese 108M

XLNet-mid [46] Transformer Enc MLM+ DEA Chinese 209M

ERNIE [51] Transformer Enc 95.06 Chinese 114M

in pre-training and task-specific learning stages. This two-stage learning frame-
work enables TinyBERT to acquire a general knowledge of “teacher” BERT
and task-specific knowledge. The research results show that although the size
of TinyBERT is only 13.3% of BERT, its computing speed is 9.4 times that of
BERT, and the testing effect on the GLUE benchmark is comparable to BERT.

5.4 WuDao Family from BAAI

In March 2021, the Beijing Academy of Artificial Intelligence (BAAI) released
large-scale Chinese PLM WuDao 1.0, called WenHui.2 It replaces the Trans-
former model in GPT with Transformer-XL [10], generating human-based text
and better maintaining content consistency. It can also learn concepts between
different modalities, overcoming the limitation of large-scale self-supervised
PLMs that do not possess such cognitive capabilities. Two months later, BAAI
released WuDao 2.0 with a parameter volume of 1.75 trillion.3 China’s first
trillion-level PLM with ten times the number of parameters than GPT-3. Wudao
2.0 can be applied not only to a single text field but also to the visual field. It
can generate pictures according to text, and it can also retrieve text according to
pictures. WuDao 2.0 achieved first place in 9 benchmarks in terms of precision.4

5.5 PLUG from Alibaba Dharma Academy

In April 2021, Alibaba Dharma Academy released the world’s largest Chinese
text PLM, PLUG (Pre-training for Language Understanding and Generation).5

According to the strengths of their NLU (Natural Language Understanding)

2 https://mp.weixin.qq.com/s/BUQWZ5EdR19i40GuFofpBg.
3 https://mp.weixin.qq.com/s/NJYINRt uoKAIgxjNyu4Bw.
4 https://wudaoai.cn/home.
5 https://m.thepaper.cn/baijiahao 12274410.

https://mp.weixin.qq.com/s/BUQWZ5EdR19i40GuFofpBg
https://mp.weixin.qq.com/s/NJYINRt_uoKAIgxjNyu4Bw
https://wudaoai.cn/home
https://m.thepaper.cn/baijiahao_12274410
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Table 2. Performance comparison of some pretrained models

PLMs Dataset Results

GLUE dev set SST-2 CMRC F1-score Accuracy GLUE

Elmo [7] � N/A N/A 71.2

GPT [33] � N/A 91.3 72.8

BERT [11] � N/A 94.9 82.1

RoBERTa [26] � N/A 96.7 88.1

ELECTRA [7] � N/A 97.1 89.4

BERT-wwm-ext [9] � 73.23 N/A N/A

XLNet-mid [46] � 66.51 N/A N/A

ERNIE [51] � N/A 97.8 91.1

language model StructBERT [44] and NLG (Natural Language Generation) lan-
guage model PALM [33], they jointly train NLU & NLG of PLUD. The joint
training makes PLUG understand an input text better and generate more rel-
evant content accordingly. It also uses more than 1TB of high-quality Chinese
training datasets, setting a new record for Chinese GLUE with a score of 80.614
on language understanding tasks. PLUD performs excellently in long text gener-
ation such as novel creation, poetry generation, and intelligent question answer-
ing. Its goal is to surpass humans in various tasks of Chinese NLP.

5.6 Comparison of Some Chinese and English PLMs

Table 1 and Table 2 compares some Chinese and English PLMs on datasets
GLUE/CLUE, MRPC, and SST-2. GLUE is a benchmark dataset for evalu-
ating and analysing the performances of various models in various existing NLU
tasks [42], and CLUE is a Chinese NLU evaluation benchmark [46]. The SST-2
(Stanford Sentiment Treebank v2) dataset consists of 215,154 phrases with fine-
grained sentiment labels from movie reviews [37]. MRPC (Microsoft Research
Paraphrase Corpus), introduced by Dolan et al. [13], is a corpus of 5,801 sentence
pairs collected from newswire articles.

6 Practical Applications of Pretrained Models

This section will briefly review the main NLP tasks that PLMs can be applied.

6.1 Sentiment Analysis

During the COVID-19 pandemic, it is critical to identify negative public senti-
ment characteristics and adopt scientific guidance to alleviate the public’s con-
cerns. To more accurately analyse the sentiment of online reviews, Wang et al.
[43] first uses unsupervised BERT to classify the sentiment of the collected text
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and then uses the TF-IDF algorithm to extract text topics. The accuracy of this
method outperforms all baseline NLP algorithms.

6.2 Named Entity Recognition

To solve the accuracy of biomedical nomenclature recognition in low-resource
languages and improve the efficiency of text reading, Boudjellal et al. [4] proposed
a model named ABioNER based on BERT. They first pre-trained AraBERT on
a general-domain Arabic corpus and a corpus of biomedical Arabic literature and
then fine-tuned AraBERT using a single NVIDIA GPU. Their test result values
demonstrate that building a monolingual BERT model on small-scale biomedical
data can improve understanding of data in the biomedical domain.

6.3 Summarisation

Liu, Wu, and Luo [25] proposed a method for summarising legal case documents.
First, they extract five key components of a legal case document. Thus, the text
summarisation problem becomes five text compression and integration problems
for sentences of five different categories. Then they fine-tune five models of PLM
GPT-2 for each key component. Next, they use the five fine-tuned models to
conduct text compression and integration for summarising each key component.
Finally, they put all the summaries of five key components together to obtain
the summary of the entire legal case document. They did lots of experiments to
confirm the effectiveness of their approach.

6.4 Question Answering

The current BERT-based question answering systems suffer several problems.
For example, a system of this kind may return wrong answers or nothing, cannot
aggregate questions, and only consider text contents but ignore the relationship
between entities in the corpus. As a result, the system may not be able to validate
its answer to a question. To address these issues, Do and Phan [12] developed
a question answering system based BERT and knowledge graph. They used
BERT to build two classifiers: (1) BERT-based text classification for content
information and (2) BERT-based triple classification for link information. Their
experiments show that their method significantly outperformed the state-of-the-
art methods in terms of accuracy and executive time.

6.5 Machine Translation

Zhang et al. [50] proposed a BERT-based method for machine translation, called
BERT-JAM. The proposed method has the following features. First, BERT-JAM
fuses BERT’s multi-layer representations into an overall representation that the
neural machine translation model can use. Second, BERT-JAM can dynamically
integrate the BERT representation with the encoder/decoder representations.



A Survey of Pretrained Language Models 453

Third, they fine-tune BERT-JAM using a three-phase optimisation strategy.
The strategy can gradually ablate different components to beat catastrophic
forgetting during fine-tuning. Their experiments show that the performance of
BERT-JAM on multiple translation tasks is state-of-the-art.

7 Conclusions

Before being fine-tuned, PLMs already perform very well. After fine-tuning, their
performances are even better, and the fine-tuned models are well-converged.
Therefore, PLMs have been used for many NLP tasks [2,11,14,48]. Thus, this
paper provides a survey on PLMs to help researchers quickly understand various
PLMs and determine which ones are appropriate for their specific NLP projects.
Specifically, we brief the main machine learning methods used by PLMs and
review early PLMs, main state-of-art PLMs, and several well-known Chinese
PLMs. Moreover, we compare the performance of some mainstream PLMs. In
addition, we list the main NLP tasks for which PLMs have been used and review
some state-of-art work for each task of them.

Although the emergence and application of PLMs have promoted the rapid
development of many NLP tasks, due to the complexity of natural language,
PLM technology still faces many challenges. First of all, the performance of
PLMs is far from reaching its upper limit. Longer training steps and larger
datasets could potentially improve its performance. Secondly, fine-tuning is
required when applying PLM to downstream tasks, but the fine-tuning is spe-
cific, which may result in low efficiency. When applying PLMs in specialised
fields such as biomedical science and law, PLMs may be susceptible to learning
and amplifying biases in datasets due to the specificity of datasets in specialised
fields. For example, a PLM may generate biases against age groups and gender.
Finally, there are many different languages, and many ways to express their lin-
guistic information. So, a single pre-trained language model cannot meet people’s
needs fully. Hence, multi-lingual PLMs and multi-modal PLMs have become a
particular focus of attention as it is vital to improve their performance to meet
various needs now and in the future.
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