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Abstract. Recently developed clustering-guided unsupervised methods
have shown their superior performance in the person re-identification
(re-ID) problem, which aims to match the surveillance images contain-
ing the same person. However, the performance of these methods is usu-
ally very sensitive to the change of the hyper-parameters in the clus-
tering methods, such as the maximum distance of the neighbors and
the number of clusters, which determine the quality of the clustering
results. Tuning these parameters may need a large-scale labeled valida-
tion set, which is usually not applicable in unlabeled domain and hard
to be generalized to different datasets. To solve this problem, we pro-
pose a Loose-Tight Alternate Clustering method without using any sen-
sitive clustering parameter for unsupervised optimization. Specifically,
we address the challenge as a multi-domain clustering problem, and pro-
pose the Loose and Tight Bounds to alleviate two kinds of clustering
errors. Based on these bounds, a novel Loose-Tight alternate clustering
strategy is adopted to optimize the visual model iteratively. Furthermore,
a quality measurement based learning method is proposed to mitigate
the side-effects of the pseudo-label noise by assigning lower weight to
those clusters with lower purity. Extensive experiments show that our
method can not only outperform state-of-the-art methods without man-
ual exploration of clustering parameters, but also achieve much higher
robustness against the dynamic changing of the target domain.

Keywords: Clustering-guided · Person re-identication · Unsupervised
optimization · Multi-domain clustering · Loose-Tight Alternate

1 Introduction

Person re-identification (re-ID) aims to match the surveillance images which con-
tain the same person. The recently developed supervised algorithms [15,17,26]
have achieved impressive performance based on convolutional neural networks.
However, the extremely high cost of labeling the dataset limits the scalability
of these methods. How to effectively learn a discriminative model on massive
unlabeled data has become a hot research topic in this field.
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Fig. 1. The influence of the clustering parameter on clustering-guided unsupervised
person re-ID tested on Market1501. (a): The F1 score of clustering results under dif-
ferent ε of DBSCAN. (b): The Rank-1 score of three methods under different ε of
DBSCAN. The ε corresponds to τ in UDA [14] and d in SPCL [6]. (c): Three types of
clustering criteria and the corresponding clustering results. The points in same color
means the samples share with the same identity.

Recently, some unsupervised domain adaptive re-ID solutions (UDA) [4,12,
14,24,25,30,31] have been proposed by transferring the prior knowledge learned
in labeled source datasets to another unlabeled target dataset. However, these
UDA methods still require a large amount of manually annotated source data.
In a more extreme configuration, some fully unsupervised methods [10,11,16,23]
are proposed to learn a high-performance discriminative model on the unlabeled
target dataset without using any labeled source data.

Most of state-of-the-art unsupervised methods [4,6,14,24,25] utilize cluster-
ing methods to obtain supervised signals from unlabeled instances. However,
according to our observation as shown in Fig. 1, the performance of these meth-
ods is usually very sensitive to the change of the clustering parameters, which
determine the quality of clustering results. For example, the maximum distance
between neighbors, ε, is the most important parameter in DBSCAN [2], which
affects the clustering results seriously. As shown in Fig. 1(a), the F1 score of
the clustering result is very sensitive to the change of ε. Figure 1(c) shows the
clustering results intuitively. Large ε corresponds to a loose clustering criterion
which may form large groups of instances, while small ε may cause small and
tight groups on the other hand. The key of these methods is to find the optimal
clustering result closest to the ground truth. Figure 1(b) further shows the per-
formance of the state-of-the-art unsupervised person re-ID methods SPCL [6],
SSG [4] and UDA [14], which are all based on DBSCAN [2]. It clearly shows that
their performance is very sensitive to ε. In particular, the changes of ε may lead
to the collapse of the SPCL [6], which has much higher peak accuracy than the
others. These methods [4,6,14] usually report the best performance using the
optimal ε, which actually needs large labeled validation set for careful tuning
and is difficult to be generalized to different datasets.

To address above problems, we propose a Loose-Tight Alternate Clustering
(LTAC) framework to learn from noisy pseudo-labels and alleviate the sensitiv-
ity of clustering parameters. Distinct from traditional DBSCAN based cluster-
ing method, we do not configure the optimized ε at first, which is usually hard to
tune. We go another way by modeling the challenge as a multi-domain clustering
problem and define the loose and tight bounds of the clustering criteria to reduce
one kind of clustering errors respectively. Then a novel Loose-Tight Alternate
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Clustering strategy is proposed to run the loose and tight clustering alternately
to optimize the visual model gradually. Moreover, we propose a Quality Measure-
ment based Learning method to further reduce the side-effects of the clustering
errors.

Main contributions of this paper are as follows:

– We propose the Loose and Tight Bounds of the clustering criteria in the
multi-domain clustering problem to reduce two kinds of clustering errors.

– We propose a novel Loose-Tight Alternate Clustering strategy (LTAC) for
unsupervised person re-ID by generating two types of pseudo-labels alter-
nately based on the Loose and Tight Bounds to optimize the visual model
gradually.

– A Quality Measurement based Learning method is proposed to reduce the
side-effect of the pseudo-label noise by assigning smaller weight to those clus-
ters with lower purity.

– Comprehensive experiments are conducted and show that our method can not
only outperform state-of-the-art methods without manually configured sensi-
tive clustering parameters, but also achieve much higher robustness against
dynamic change of target domain.

The rest of this paper is organized as follows. In Sect. 2, we discuss some
related work. In Sect. 3, we introduce the details of the Loose-Tight Alternate
Clustering method for unsupervised person re-ID namely LTAC. After that, we
provide the experimental evaluations of the proposed method in Sect. 4. Finally,
we conclude our work in Sect. 5.

2 Related Work

2.1 Clustering-Guided Unsupervised Person re-ID

One of the most popular way to tackle unsupervised person re-ID is the clustering-
guided framework, which utilizes pseudo-labels based on clustering results.
PUL [3] selects samples close to the cluster centroid for training gradually.
BUC [10] proposes a bottom-up clustering approach to gradually merge samples
into one identity. HCT [23] improves the distance measurement of BUC by using
an unweighted pair-group method with arithmetic means. However, the changes
of merging steps significantly impact the final performance of BUC and HCT.
MMT [5] softly refines the pseudo-labels via mutual mean-teaching, which needs
auxiliary models and is sensitive to the k value of K-means. Some methods have
verified the effectiveness of DBSCAN [2] in clustering. UDA [14] proposes a vanilla
self-training framework with DBSCAN. SSG [4] generates multiple clusters from
global body to local parts using DBSCAN. SPCL [6] creates more reliable clusters
gradually by tuning the maximum neighbor distance ε of DBSCAN to a tight or
loose criterion manually to mitigate the effects of noisy pseudo-labels. However,
these methods are sensitive to the ε. Most of the above clustering-guided methods
are somewhat sensitive to the parameters of the clustering algorithms they use.
Our method chooses the time-tested clustering algorithm DBSCAN for clustering
and tries to alleviate the sensitivity to the ε.
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Fig. 2. The overview of the Loose-Tight Alternate Clustering method. The Loose Bound
and Tight Bound are applied as clustering criteria alternately. The Bound-Approaching
Loss narrows the gap between these two bounds, and the Noise-Mitigating Loss assigns
higher weight to purer clusters during training to reduce the side-effects of clustering
errors.

2.2 Camera-Aware Unsupervised Person re-ID

A key challenge in unsupervised person re-ID is the cross-camera scene variation.
HHL and ECN [29,30] generate new fake images in the style of each camera for
each sample and then enforce the camera-invariance to each person image and
its corresponding camera-style transferred images. [12] imposes the neighbor-
hood invariance constraint for inter-camera matching and intra-camera match-
ing separately to improve the vanilla neighborhood invariance. [19] proposes a
camera-aware similarity consistency loss which imposes the pairwise similarity
distribution invariance upon cross-camera matching and intra-camera matching
to alleviate the cross-camera scene variation. These methods play exemplary
roles in leveraging the camera information. Our method further explores the
integration of camera information with clustering-guided framework.

3 Methodology

3.1 Problem Definition

Under the setting of fully unsupervised person re-ID, a dataset Xt is provided
that contains Nt images without any identity annotations. In addition, the num-
ber of cameras Nc and the camera-ID of each image (i.e. C = {ci}Nt

i=1, ci ∈
[0, Nc)) is available. The goal is to learn a re-ID model on Xt, which aims to
search for the images containing the same person as that in the query image.

As a popularly used unsupervised technique, clustering based pseudo-label
methods achieve state-of-the-art performance in unsupervised person re-ID
[4,6,14]. Performing a certain clustering mechanism such as DBSCAN on the
pedestrian images collected from multiple cameras is the key step in this kind of
methods. Due to the visual diversity of different cameras, the distances of inter-
camera and intra-camera image pairs vary a lot. The images from the same cam-
era with similar background and lightness tend to have much smaller distance
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than those from different cameras. The diversity of the distance brings new chal-
lenges to the traditional clustering method, which usually cheats each instance
equally. We address the challenge of clustering multi-camera pedestrian images
as a Multi-domain Clustering problem, where each camera can be viewed
as a different domain with specific visual style. How to effectively integrate the
diversity of domains into the clustering method is one core task addressed in
this paper.

3.2 Loose and Tight Clustering Bounds

Most of state-of-the-art unsupervised person re-ID algorithms [4,6,14,24] are
based on the DBSCAN [2] clustering algorithm to achieve great performance
advances. However, as the most important parameter in DBSCAN, the maximum
distance between neighbors (ε) affects the clustering results seriously. As shown
in Fig. 1(b), the performance of the models are very sensitive to the changing
of ε.

There are two kinds of errors while conducting DBSCAN: the Mix Error
and Split Error as shown in Fig. 1(c). In particular, applying a large ε may
yield a loose clustering introducing the Mix Error, where the images with large
distance from different identities are mixed into one cluster. On the contrary,
using a small ε may yield a tight clustering causing the Split Error, where the
images with the same identities may be separated. Most of the DBSCAN based
pseudo-label methods need a large labeled validation set for careful tuning of ε
and are difficult to be generalized to different datasets.

Since the optimal ε is not easy to decide according to unlabeled data, we
go another way to solve the problem by seeking the proper bounds of clustering
criteria. As observed in the research [27], the most similar image pairs in the same
camera are very possible from the same person, which are usually sampled from
the continuous frames of the camera. On the other hand, while only considering
the cross-camera image pairs, the most similar ones also tend to be from the
same person who walks across different cameras. Based on these observations,
we define two bounds of distance, the Loose Bound and Tight Bound , for
clustering criteria. Specifically, the Tight Bound is defined as the average distance
of intra-camera nearest neighbors:

εT =
1
Nt

Nt∑

i=1

min dr(xi, xia),∀xia ∈ Ci, xia �= xi (1)

Ci is the set of images that are captured from the same camera with xi and the
dr(·) is the popular and effective jaccard distance computed with k-reciprocal
encoding [27]. On the other hand, the Loose Bound is defined as the average of
the smallest distance between cross-camera images.

εL =
1
Nt

Nt∑

i=1

min dr(xi, xie),∀xie /∈ Ci (2)
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While adopted as the hyper-parameter of the maximum neighboring distance
in DBSCAN, the Tight Bound εT is small enough to tightly group those positive
intra-camera matchings, leading to small Mix Error and large Split Error. On
the other hand, the Loose Bound εL is large enough for DBSCAN [2] to group the
instance loosely, which may lead to small Split Error and large Mix Error. How
to balance these two opposite bounds makes up the core task in the following
presented Loose-Tight Alternate Clustering model.

3.3 Loose-Tight Alternate Clustering

While performing clustering according to the Tight Bound εT and the Loose
Bound εL respectively, two types of pseudo-labels can be achieved based on the
tight and loose clustering results. The re-ID model can learn useful knowledge
from both types of supervised signals. However, overfitting to any kind of pseudo-
labels will limit the final performance of the re-ID model. As shown in Fig. 2,
we train the re-ID model with these two types of pseudo-labels alternately to
avoid the model being biased towards each kind of pseudo-labels. The detail of
the alternate clustering method is shown in Algorithm 1.

Algorithm 1. Loose-Tight Alternate Clustering
Input: unlabeled dataset Xt.

1: Initialize : T : total iterations , I : current number of iterations , Ψ: the visual
model needed to optimize, E: learning epochs in each iteration.

2: I ← 0
3: while I < T do
4: Compute the Tight Bound εT according to Eq. (1)
5: Compute the Loose Bound εL according to Eq. (2)
6: if I%2 == 0 then
7: M ← DBSCAN with εT
8: else
9: M ← DBSCAN with εL

10: end if
11: Train Ψ based on M by minimizing Lt (Eq. (6)) for E epochs
12: I ← I + 1
13: end while
14: return Ψ

In particular, the clustering result in each iteration of clustering is defined
as:

M = {Mk|0 ≤ k < n} (3)

where n is the number of clusters, k is the cluster-ID, and Mk is the kth cluster.
By assigning the pseudo-label of each sample as its cluster-ID, the re-ID model
can be trained with the cross-entropy loss, which is formulated as follows:

Ltc = −
n−1∑

k=0

∑

xi∈Mk

log(
eVkfi

∑n−1
j=0 eVjfi

) (4)
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where Vk is the centroid vector of the kth cluster Mk and fi is the feature vector
of the instance xi. After learning from an instance xi, the centroid of the kth

cluster will be updated by Vk ← (Vk + fi)/2.
By minimizing the loss Ltc, the visual feature of an instance is dragged to the

centroid of the cluster it belongs to, and pushed away from other clusters. In this
way, while using the Loose Bound as the clustering criterion, the feature vectors
of the instances, which have lower possibility to come from the same person, are
pushed away. Meanwhile, the cross-camera images with relative smaller distance
are mixed together, which may help to reduce the cross-domain diversity of
visual styles. Furthermore, while using the Tight Bound, the feature vectors of
intra-camera images with smaller distance are dragged together, which have high
possibility to share the same identities. By alternately using these two kinds of
bounds, the model can compress the Split Error and Mix Error alternately.

The Loose Bound and the Tight Bound are re-calculated in each iteration
(Line 4 and 5 of Algorithm 1) and adapt to the visual diversity of different cam-
eras. Larger gap between these two bounds indicates the larger domain diver-
sity of this classic Multi-domain Clustering problem. Thus, reducing the gap
may reduce the diversity and help improve the accuracy of the clustering. Moti-
vated by this analysis, we propose a simple Bound-Approaching Loss (BAL) to
narrow the gap between two bounds by minimizing the difference between the
intra-camera nearest neighbor distance and the inter-camera nearest neighbor
distance:

Lba =
∑

i

max( min
xi◦xj

d(xi, xj) − min
xi•xk

d(xi, xk), 0) (5)

where d(·) is the simple Euclidean distance. xi ◦ xj denotes that xi and xj are
from different cameras, while xi•xk denotes that they are from the same camera.

The cross-entropy loss Ltc and the Bound-Approaching Loss Lba are com-
bined together as follows to optimize the visual model, as used in the Line 11 of
Algorithm 1.

Lt = Ltc + Lba (6)

Furthermore, to facilitate calculating the distance of intra-camera and inter-
camera image pairs, we maintain an instance memory bank I that stores the
feature of each sample. During the back-propagation in each iteration, we update
the memory bank for the training sample xi through

I[i] = (I[i] + fi)/2 (7)

where I[i] is the memory of xi in the i-th slot, fi is the feature of xi.

3.4 Quality Measurement Based Learning

During the training in each iteration, the cross-entropy loss Ltc of Eq. (4) is used
to optimize the visual model based on the pseudo-labels, which are the cluster
IDs achieved by the clustering algorithm. The quality of the clustering results
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determines the correctness of the pseudo-labels. In order to make the model learn
more knowledge from more reliable pseudo labels, we further extend this loss to
the following Noise-Mitigating Loss to consider the quality of each cluster and
assign higher weight to the pseudo-labels of purer clusters:

Lnm = −
n−1∑

k=0

Wk

∑

xi∈Mk

log(
eVkfi

∑n−1
j=0 eVjfi

) (8)

where Wk indicates the quality measurement of the kth cluster Mk. To obtain
Wk, we first compute the intra-cluster dissimilarity ai and the inter-cluster dis-
similarity bi for ∀xi ∈ Mk by:

ai =
1

Nk − 1

∑

xj∈Mk

j �=i

dr(xi, xj) (9)

bi =
1

Nt − Nk

∑

xo /∈Mk

dr(xi, xo) (10)

where Nk is the size of the cluster Mk, Nt is the size of the whole dataset, dr(·) is
the jaccard distance computed with k-reciprocal encoding [27]. Then the quality
score of Mk is then defined as the average silhouette coefficient of the samples
within Mk, which is formulated as follows:

Qk =
1

Nk

∑

xi∈Mk

bi − ai

max{ai, bi} (11)

Furthermore, we normalize the quality score of each cluster via the exp maximum
and minimum normalization:

Wk =
eQk − min

j=1..n
(eQj )

max
j=1..n

(eQj ) − min
j=1..n

(eQj )
+ α (12)

where α is the positive constant to prevent the weight of the cluster with the
lowest quality score from being set to zero. α is set as 0.01 in all experiments. By
using this quality measurement Wk, the clusters that have higher intra cohesion
and outer separation from other clusters will be assigned with higher weight
when updating the parameters of the visual model. In this way, the negative
effects of the noise in pseudo-labels can be further mitigated.

By combining the Bound-Approaching Loss Lba with the Noise-Mitigating
Loss Lnm, the complete loss function is defined as follows:

L′
t = Lba + Lnm, (13)

which aims to narrow the gap between the Loose and Tight Bounds and mit-
igate the pseudo-labels noise. Accordingly, the loss function Lt in Line 11 of
Algorithm 1 can be replaced with L′

t here to enhance the performance of the
learnt model.
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4 Experiments

4.1 Datasets and Evaluation Protocol

Market1501. Market1501 [9] is a large scale person re-ID benchmark that con-
tains 32,688 images of 1501 identities captured by 6 cameras. Specifically, 12,936
images of 751 identities are provided for training and the rest 19,732 images of
750 identities are for testing.

MSMT17. MSMT17 [18] is a newly released benchmark that contains 126,411
images of 4,101 identities collected from 15 non-overlapping camera views. It
contains 32,621 images of 1,041 identities for training. The query contains 11,659
images of 3,060 identities and the gallery includes 126,441 images.

Evaluation Protocol. We utilize the Cumulative Matching Characteristic (CMC)
curve and the mean average precision (mAP) to evaluate the performance of the
proposed method. Furthermore, we report the Rank-1, Rank-5, Rank-10 scores
to represent the CMC curve.

4.2 Implementation Details

We adopt the ResNet-50 [7] pre-trained on ImageNet [1] as the backbone of
our model. The input image is resized to 256 × 128. The mini-batch size is
64. Random cropping, flipping, and random erasing [28] are adopted as data
augmentation strategies. The SGD optimizer is used with the learning rate as
3.5 × 10−3. Furthermore, each re-ID model is trained for 60 iterations. During
each iteration, 800 epochs are executed.

4.3 Ablation Studies

Effectiveness of Alternate Clustering. To prove the necessity and importance of
clustering with the Loose Bound εL and Tight Bound εT , we conduct experiments
which only utilize εL or εT to cluster. The re-ID model is trained based on the
vanilla cross-entropy loss Ltc (Eq. (4)). The experimental results are reported in
the Table 1. When clustering only with εL, the clustering criterion is too loose,
resulting in a lot of samples being grouped into one cluster. In this case, the
Mix Error of pseudo-labels is pretty high, leading to the collapse of the re-ID
model. When clustering only with εT , the clustering criterion is tight and the
samples in each cluster are possibly fewer. In this case, the clustering accuracy
will be higher, and the re-ID model can learn more useful knowledge from these
kinds of pseudo-labels. However, the tight clustering criterion may not be able
to group those positive inter-camera matchings into the same cluster, limiting
the further improvement of the re-ID model. By training with these two types of
pseudo-labels alternately (LTAC), the re-ID model is able to learn more useful
knowledge and avoids being biased towards either of the two kinds of pseudo-
label noise. Furthermore, we illustrate the number of clusters during training
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Table 1. Ablation studies of the proposed method on Market-1501 and MSMT17.
LTAC L means the model only using the Loose Bound, and LTAC T means only
using the Tight Bound. Ltc,Lba and Lnm are the three loss functions described in
Eqs. 4, 5 and 8 respectively.

Methods Market-1501 MSMT17

mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

LTAC L + Ltc 3.1 9.8 21.3 27.7 1.8 6.9 12.3 15.8

LTAC T + Ltc 61.8 81.4 89.7 92.6 15.0 40.1 50.9 55.2

LTAC + Ltc 69.5 86.6 93.6 95.8 17.7 42.7 53.3 57.9

LTAC + Ltc + Lba 72.4 88.3 94.8 97.3 18.1 45.6 57.0 62.1

LTAC + Lnm 70.7 87.9 94.2 95.9 19.4 47.6 58.2 63.3

LTAC + Lnm + Lba 73.2 89.3 95.4 97.3 21.5 51.2 61.6 67.1

Table 2. Comparison with state-of-the-arts fully unsupervised person re-ID methods
on Market1501 and MSMT17. “None” means using the model pretrained on Imagenet.
Bold indicates the best and underlined the runner-up. ∗ denotes using the back-bond
method Resnet-50 like us.

Methods Market-1501 MSMT17

Source mAP Rank-1 Rank-5 Rank-10 Source mAP Rank-1 Rank-5 Rank-10

OIM [20] None 14.0 38.0 58.0 66.3 None – – – –

BUC [10] None 38.3 66.2 79.6 84.5 None – – – –

SSL [11] None 37.8 71.7 83.8 87.4 None – – – –

MMCL [16] None 45.5 80.3 89.4 92.3 None 11.2 35.4 44.8 49.8

HCT [23] None 56.4 80.0 91.6 95.2 None – – – –

IICS [21]∗ None 67.1 85.5 – – None – – – –

SPCL [6] None 73.1 88.1 95.1 97.0 None 19.1 42.3 55.6 61.2

Ours None 73.2 89.3 95.4 97.3 None 21.5 51.2 62.7 67.1

on Market-1501 in Fig. 3(a). It can be observed that the quantity of clusters is
closer to ground-truth identities when training with LTAC using both Loose and
Tight Bounds.

Effectiveness of the Bound Approaching Loss. To evaluate the effectiveness of
the Bound-Approaching Loss, we train the re-ID model in four different settings
as reported in the last 4 rows of Table 1. It can be observed that no matter
we train the re-ID model with the traditional cross-entropy loss (Ltc) or the
quality weighted loss (Lnm), adding the Bound-Approaching Loss Lba can lead
to a further improvement on both two large-scale benchmarks. Furthermore, we
illustrate the dynamic changes of the gap between the bounds during training
on Market-1501 in Fig. 3(b). When we train the re-ID model with Lba, the gap
between εL and εT decreases to zero gradually. This proves that the Bound-
Approaching Loss can reduce the visual diversity of different cameras signifi-
cantly.
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Effectiveness of Quality Measurement based Learning. We evaluate the effective-
ness of the Noise-Mitigating Loss Lnm used in the Quality Measurement based
Learning as described in Sect. 3.4 on Market-1501 and MSMT17. The experimen-
tal results are reported in the Table 1. It can be observed that training the re-ID
model with the Noise-Mitigating Loss Lnm leads to a higher performance than
training the re-ID model with the traditional cross-entropy loss (Ltc). Specifi-
cally, the mAP improves from 72.4% to 73.2% and 18.1% to 21.5% when training
on Market-1501 and MSMT17. The improvement is more obvious on MSMT17,
since it is more challenging and the scale of pseudo-labels noise is larger. This
proves the effectiveness of the Quality Measurement based Learning to mitigate
the negative effects of pseudo-label noise.

Fig. 3. Result of LTAC on Market-1501. (a): The dynamic changes of cluster numbers.
LTAC L means only using the Loose Bound εL and LTAC T means only using the
Tight Bound εT . GT indicates the ground-truth cluster number. (b): The distance
between εL and εT . LTAC w/o L ba means training without using Lba.

4.4 Comparison with State-of-the-Art Methods

Our method is compared with state-of-the-art fully unsupervised re-ID methods
in Table 2, which shows that LTAC can achieve the best performance in all cases.
It is interesting to observe that the superiority of our method is more obvious
in the larger dataset MSMT17, which verifies the better generalization ability
of our method. Furthermore, we also test the performance in the unsupervised
domain adaptation (UDA) scenario, where the models are transferred from a
labeled source domain to an unlabeled target domain. Table 3 shows the com-
parison results with state-of-the-art UDA methods. Our method outperforms all
UDA methods using DBSCAN (e.g. SSG [4], MMT [5,6] SPCL [6]). More impor-
tantly, our method doesn’t require any manual tuning of the sensitive clustering
parameters, so it is more robust and competitive in real-world applications.

4.5 Robustness Evaluation

To further evaluate the robustness of our method, we design and implement sev-
eral experiments to simulate the dynamic changing of the target domain. Specif-
ically, we randomly select some different cameras in the dataset and augment
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Table 3. Comparison with state-of-the-arts unsupervised domain adaptive person re-
ID methods on Market1501 and MSMT17. Bold indicates the best and underlined the
runner-up.

Methods Market-1501 MSMT17

Source mAP Rank-1 Rank-5 Rank-10 Source mAP Rank-1 Rank-5 Rank-10

PAUL [22] MSMT17 40.1 68.5 82.4 87.4 Market – – – –

ECN++ [31] MSMT17 – – – – Market 15.2 40.4 53.1 58.7

SSG∗ [4] MSMT17 – – – – Market 13.2 31.6 - 49.6

DG-Net++ [32] MSMT17 64.6 83.1 91.5 94.3 Market 22.1 48.4 60.9 66.1

D-MMD [13] MSMT17 50.8 72.8 88.1 92.3 Market 13.5 29.1 46.3 54.1

MMT-dbscan∗ [5,6] MSMT17 75.6 89.3 95.8 97.5 Market 24.0 50.1 63.5 69.3

SPCL [6] MSMT17 77.5 89.7 96.1 97.6 Market 26.8 53.7 65.0 69.8

Ours MSMT17 80.4 92.8 97.2 98.0 Market 26.0 56.1 67.5 72.4

Table 4. Robustness comparison between our method and SPCL. “Supervised” means
supervised learning as the upper bound. “Noise/x” indicates the noise is added to x
cameras. “Improvement” means the improvement of our method relative to SPCL.

Methods Market-1501

Noise/0 Noise/2 Noise/4 Noise/6

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Supervised 82.2 91.8 78.8 90.4 68.8 83.8 65.2 82.3

SPCL [6] 73.1 88.1 65.9 82.7 46.9 67.9 41.4 62.7

Ours 73.2 89.3 65.3 84.5 49.4 73.4 44.6 68.8

Improvement(%) 0.14↑ 1.36↑ 0.91↓ 2.18↑ 5.33↑ 8.1↑ 7.73↑ 9.73↑
Methods MSMT17

Noise/0 Noise/5 Noise/10 Noise/15

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Supervised 44.5 70.5 30.3 56.4 21.2 42.6 17.4 39.8

SPCL [6] 19.1 42.3 9.1 21.3 4.8 11.4 4.8 11.8

Ours 21.5 51.2 15.9 39.6 8.4 23.3 9.2 26.7

Improvement(%) 12.57↑ 21.04↑ 74.73↑ 85.92↑ 75.00↑ 104.39↑ 91.67↑ 126.27↑

the images with randomly selected noise generated by the imgaug library [8]. We
utilize four types of weather noise including clouds, fog, snow, and rain. Table 4
shows the comparison results with the state-of-the-art unsupervised method
SPCL [6] under different experimental settings. As the number of polluted cam-
eras increases, the performance of all methods declines. However, the perfor-
mance of our method outperforms SPCL [6] with a large margin, especially
in the case with the highest ratio of noise. In particular, when we randomly
select six cameras of Market1501 for noise augmentation, our method achieves
68.8% Rank-1 precision while SPCL [6] only achieves 62.7% Rank-1 precision.
When we randomly select five cameras of MSMT17 for noise augmentation,
our method achieves 15.9% mAP and 39.6% Rank-1, which exceeds SPCL [6]
by 6.8% and 18.3% respectively. The experimental results in Table 4 illustrate
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that our method is more robust than SPCL [6]. As we calculate the clustering
parameters based on the statistics of unlabeled data without manually setting
clustering parameters, our method is more applicable to complex and dynamic
realistic scenes.

5 Conclusion

In this paper, we proposed a Loose-Tight Alternate Clustering framework which
explores the Loose Bound and Tight Bound in multi-domain clustering, and
learns from two types of pseudo-labels alternately. The two bounds were obtained
on the basis of the inter-camera nearest neighbor distance and the intra-camera
nearest neighbor distance. A Bound-Approaching Loss was further proposed to
narrow the gap between these two bounds to reduce the domain diversity. Fur-
thermore, a Quality Measurement based Learning method was introduced to
mitigate the negative effects of the pseudo-label noise. Experiments on two large
benchmarks demonstrated the applicability, competitiveness and robustness of
our method.
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