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Abstract. Link prediction is a challenging task in complex networks
and data mining. Its primary purpose is to predict the possibility of
links in the future. Link prediction has many application scenarios, such
as product recommendations on e-commerce platforms, friend mining on
social platforms, etc. Existing link prediction methods focus on utilizing
neighbor and path information, ignoring the contribution of link forma-
tion of different node importance. For this reason, we propose a novel link
prediction method based on node importance. The importance of node
is calculated by using the topology structure of the directed network and
the path information between nodes, and a graph convolutional network
model suitable for directed graphs is designed. The importance of nodes is
used to control the model to aggregate the neighbor information, thereby
generating the vector representation of the node and obtaining the pre-
diction score through the multi-layer perceptron (MLP). We investigate
the proposed method and conduct extensive experiments on 6 real-world
networks from various domains. The experiments results illustrate that
the proposed method outperforms existing state-of-the-art methods.

Keywords: Link prediction · Graph convolutional networks · Data
mining

1 Introduction

Link prediction aims to predict the possibility of a connection between two
nodes that have not yet generated edges through the existing information of the
network, including but not limited to network structure, node attributes, edge
attributes, etc. Link prediction has many practical application scenarios, such as
product recommendations on e-commerce platforms [13] and friend relationship
mining on social platforms [1].

The existing link prediction methods can be roughly divided into two cate-
gories [7]: heuristic-based methods and learning-based methods. Heuristic meth-
ods often use a limited variety of network features to predict, for example, the
common neighbor (CN) index, which argues that the more shared neighbors
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between two nodes, the more likely it is to generate link. Therefore, it is based
on the shared information between nodes as a feature. Based on this idea, sev-
eral other similar indicators are derived, including the Salton index [9], Jaccard
[16], etc. These methods are still very popular in link prediction due to their
advantages of low computational complexity and strong interpretability. How-
ever, because these methods usually only consider a limited number of specific
network characteristics, they lack universality for networks of various types. For
example, the common neighbor index has good performance in social networks.
However, it performs poorly in biological networks [23].

With the rapid development of machine learning [12,18,20], more and more
scholars consider utilizing the deep learning for link prediction. The methods of
deep learning do not specify characteristics of the network but use the strong
fitting ability to learn the characteristics of the network automatically. Theoret-
ically, they can adapt to networks of various types, not limited to a specific type
of network. Zhang et al. [33] combine link prediction with the graph classification
task of deep learning. Graph convolutional networks (GCNs) [5,11,17,28,37] are
specially used to deal with graph-related tasks [15,22]. Zhang et al. [34,35] pro-
posed a novel graph convolutional network and used it to replace multi-layer
perceptron for link prediction, which achieved better results. Cai et al. [6] went
further by converting the subgraph to be predicted into a line graph. In this
way, the link will be converted into a node, and the graph classification task will
be converted into a node classification task, further reducing the computational
overhead.

However, most methods ignored the difference in the contribution of the
links formed by nodes of different importance. For example, in social networks,
opinion leaders can influence the attitudes of ordinary users more, resulting in
more links. Therefore, it can be considered that the important information of
the node has a significant influence on link formation.

In order to use the importance information of nodes to improve the accuracy
of link prediction, we propose a link prediction method based on the node impor-
tance (LPNI) in this paper. We examine the network from two different perspec-
tives, defining the global and local importance of nodes. The global importance
represents the node’s importance for the entire network, while the local impor-
tance represents the node’s importance for different nodes in the local curtain
scope. The local importance of nodes constitutes the local importance matrix.
We use it to construct a Laplacian matrix which is suitable for directed graphs
and further design a graph convolutional network model suitable for directed
graphs. After the graph convolutional network, the node vector representation
containing the importance information is obtained, and we utilize the MLP to
calculate the prediction result. We investigate the proposed method and con-
duct extensive experiments on 6 real-world networks from various domains. The
experiments results illustrate that the proposed method outperforms existing
state-of-the-art methods.

The rest of the paper is organised as follows. In Sect. 2, we state some relevant
prerequisites for link prediction tasks. In Sect. 3, we detail the proposed method.
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In Sect. 4, we present our experiments and analyze the experimental results.
Finally Sect. 5 gives some concluding remarks with possible future directions.

2 Preliminaries

Given a network G(V,E), V = {v1, v2, · · · vN} denotes the set of nodes of the
network, where N represents the number of nodes, and E = {e1, e2, · · · eM}
denotes the set of edges of the network, where M represents the number of edges.
A pair of nodes can also represent the edges of the network, that is, e = {vx, vy}
represents the edge between node vx and vy. We focus on the simple directed
networks, which satisfy the following four conditions:

(1) There are no self-loop edges. That is, there will be no edges such as e =
{vx, vx} in the network.

(2) There are at most two edges in different directions between nodes. That is,
for any two edges, there will be no situation where ei = ej = {vx, vy}.

(3) There is a directionality between the edges, that is, {vx, vy} �= {vy, vx}.
(4) There can be weights on the connected edges. If there is an unweighted

network, the weight of all existing connected edges is 1.

The task of link prediction is to give a network G, the predict method f
assigns a score for certain unconnected nodes. The highest probability of node
pair is connected.

3 Method

3.1 Global and Local Node Importance

The symbol IG(vx) is used to represent the global importance of node vx, that
is, the importance of the node vx to the entire network. IG ∈ R

N represents the
vector of the global importance of all nodes.

In some cases, the global importance of a node cannot well reflect the indi-
vidual importance of different nodes. For example, in a scientist cooperation
network, the data mining network includes a sub-network for link prediction.
Experts of the link prediction sub-network usually have a more substantial
influence in the field and do not necessarily significantly influence the whole
data mining field. Therefore, The local importance of a node represents the
importance of a node in a specific local range of the network. Since mining sub-
nets is cumbersome, in order to simplify the representation of this information,
the symbol IL(vx, vy) is used to represent the importance of node vy in the
directed graph to the node vx, that is, the local importance of the node. There-
fore, in this paper, the local importance of a node refers to the relative impor-
tance between two nodes. Our study is based on directed networks, therefore,
IL(vx, vy) �= IL(vy, vx). And the IL ∈ R

N×N represents the local importance
matrix formed by all node pairs.
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The research of Zareie et al. [32] shows that the influence of a node is related
to the positions of the node and the neighbor nodes in the network. Therefore, we
use the k-shell decomposition algorithm [8] to divide the network into different
sub-networks. The nodes in each sub-network have their corresponding ks values.
The larger the value, the closer the distance to the network core. By examining
the ks value of the node itself, calculate the node’s global importance with the
ks value of the neighbor node. Use the notation ks(vx) to denote the ks value
of node vx.

It is considered that the neighbor nodes also represent the important infor-
mation of the node to a certain extent. Therefore, we further examine the ks
value of neighbor nodes. The Shannon entropy of the distribution of ks values
of neighbor nodes is calculated as representing the diversity of neighbor nodes.
The calculation formula of neighbor diversity of node vx is as follows

diversity(vx) = −
∑

k

p(k) · log p(k) (1)

the above formula means to traverse all possible k values, where p(k) represents
the probability that the ks value of the neighbor node is k.

Consider a situation where two nodes vx and vy, have three neighbor nodes
with different ks values. For example, the neighbor ks values of node vx are 1, 2,
3, and the neighbor ks values of node vy are 4, 5, 6, and Eq. 1 calculates that the
neighbor diversity values of nodes vx and vy are the same. Therefore, it is not
only necessary to consider the diversity of neighbor nodes, but also to measure
the ks value of neighbor nodes. Consider using the mean ks value of neighbor
nodes to construct the global importance of node. The formula for calculating
the mean ks value of neighbors of node vx is as follows:

mean ks(vx) =

∑
vy∈Γ (vx)

ks(vy)

d(vx)
(2)

where d(vx) represents the degree of node vx. Γ (vx) represents the set of neighbor
node.

The global importance calculation formula of node vx is as follows:

IG(vx) = ks(vx) · diversity(vx) · mean ks(vx) (3)

Note that in the process of calculating the global importance of nodes, we
deliberately ignore the direction of the link for simplicity.

The theory of small-world networks [3] argues that some people who do
not know each other in social networks can be linked together through a very
short chain of acquaintances. It can be considered that the shorter the chain
of acquaintances, the greater the probability that two people know each other,
so we consider computing the local importance by computing the shortest path
between two nodes. Define a specific path between nodes vx and vy as

pathvx,vy
= {v1, e1, v2, e2, · · · , el−1, vl} (4)
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where ei = {vi, vi+1}.
In a directed graph, the path is also directed. That is pathvx,vy

�= pathvy,vx
.

The definition symbol |path| represents the length of the path, that is, the num-
ber of nodes on the path, and the distance between two nodes is defined as the
length of the shortest path. The normalized global importance of all nodes on
the shortest path are multiplied together as the local importance of nodes:

IL(vx, vy) =
∏

vz∈pathvx,vy

IG−norm(vz) (5)

where IG−norm(vz) = IG(vz)/max{IG(v)}. If there are multiple shortest paths,
choose the one with the largest local importance.

Therefore, it can be seen that all node pairs constitute a local importance
matrix IL ∈ R

N×N , where N represents the count of node.

3.2 GCN with Local Node Importance

Considering the excellent performance of graph convolutional networks on graph-
related tasks, we combine node importance information with graph convolutional
networks (GCN). Existing graph convolutional network models usually have two
combination forms for this kind of data structure. The first is to use each row
of the nodes’ local importance matrix as the attribute vector of the node, and
the second is to use the nodes’ local importance matrix as a special adjacency
matrix that controls the calculation process of the information aggregation stage.
Adopting the second form brings the following advantages:

1. Decouple the attribute information of the node from the scale of the network.
That is, the dimension of the attribute vector of the node will not change
with the scale of the network.

2. The graph convolutional network model can learn the information of neighbor
nodes farther away, which alleviates the over-smoothing problem [19] to a
certain extent and reduces the training parameters.

Inspired by the literature [21], we regard matrix IL as the adjacency matrix
of the network to construct the Laplacian matrix of the graph convolutional
network. First, insert the auxiliary node vξ into the adjacency matrix, and let
all nodes generate reciprocal links with it, so that the network is transformed
into a strongly connected network, the weight from other nodes to the auxiliary
node vξ is α, and the weight from the auxiliary node to other nodes is 1/N .
The weight of other links is reduced by (1 − α) times. Use the symbol ĨL ∈
R

(N+1)×(N+1) to denote the local importance matrix after inserting auxiliary
node. The calculation formula is as follows:

ĨL =
(

(1 − α)IL α1
1
N 1 0

)
(6)

This operation makes the local node importance matrix of the network aperi-
odic and irreducible, achieving Perron’s theorem’s precondition [14]. Using Per-
ron’s theorem, the left eigenvector π̃ ∈ R

N+1 that owns all positive entries can be
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obtained. We can decompose the π̃ vector into two parts, namely π̃ = {πL, πξ},
πL ∈ R

N represents the approximation of the Perron vector composed of N
nodes in the original network, and πξ ∈ R

1 represents the Perron vector part of
the auxiliary node. Diagonalize the πL vector to get ΠL ∈ R

N×N . And use ΠL

to construct a Laplacian matrix suitable for directed graphs:

L = E − 1
2
(Π

1
2
L · IL · Π

− 1
2

L + Π
− 1

2
L · IT

L · Π
1
2
L ) (7)

The definition symbol Â is expressed as:

Â =
1
2
(Π

1
2
L · IL · Π

− 1
2

L + Π
− 1

2
L · IT

L · Π
1
2
L ) (8)

We define our graph convolutional network model as two convolutional layers:

Z = f(X, I) = Softmax(ÂReLU(ÂXW 0)W1) (9)

where Z ∈ R
N×d is the vector representation matrix of nodes. X ∈ R

N×3

represents the matrix formed by the attribute vector of the node. We use the
three-dimensional vector formed by the out-degree dout(vx) and in-degree din(vx)
and the global importance IG(vx) as the attribute vector of the node vx. W 0 ∈
R

3×h and W 1 ∈ R
h×d represent trainable parameters, respectively. The details

of process of the graph convolutional network are shown in Fig. 1.

Fig. 1. Details of process of the graph convolutional network.

3.3 Make Prediction

The traditional method of the dot product of the node vectors in the undirected
graph is not applicable because of the link direction. Consider using a multi-
layer perceptron to splice the vectors of the two nodes so that the splicing result
[zvx

||zvy
] �= [zvy

||zvx
], so the direction information is preserved. Our method

computes the prediction score using a multi-layer perceptron of the form:
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ŷ = Softmax(
[
zvx

||zvy

]
W ) (10)

where ŷ is the prediction result vector, the first element represents the existing
possibility of a link, and the other element represents the non-existing possibility
of a link. W ∈ R

d×2 is a trainable parameter. And we utilize the cross entropy
as our loss function.

loss =
∑

n

∑

i

−yi log ŷi +
μ

2n
(W + W 0 + W 1) (11)

where n is the sample size, yi represents the ith element of the label vector
y ∈ R

2 , μ is index of weight decay to alleviate overfitting.

4 Experiments

4.1 Evaluation Indicators

The evaluation indicators used in the experiments are listed below.
(1) AUC. Each time an edge is randomly selected from the test set and then
randomly selected another edge from the non-existent test set. After n times
independent comparisons in this way, if there are n′ times, the score value in the
test set is greater than the non-existing edge score. There are n′′ times the two
scores are equal, and then the AUC calculation formula is:

AUC =
n′ + 0.5n′′

n
(12)

(2) ACC (Accuracy). The accuracy is the proportion of correct predictions (both
true positives and true negatives) among the total number of cases examined.
The formula is

ACC =
TP + TN

TP + TN + FP + FN
(13)

where TP = True positive; FP = False positive; TN = True negative; FN =
False negative.

4.2 Baseline Methods

To verify the model’s effectiveness, we use the following baseline methods to
compare with our proposed method in experiments. To thoroughly verify the
performance of the proposed method, these baselines are also divided into two
categories, namely graph convolutional methods, and heuristic methods.

(1) DCN [36]: Directed version of CN index.
(2) DAA [36]: Directed version of AA index.
(3) DRA [36]: Directed version of RA index.
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(4) Cheb [11]: A spectral-based graph convolutional network proposed by Def-
ferrard et al. This model uses Chebyshev polynomials to achieve fast local-
ization and low complexity, hence the name Chebyshev network.

(5) GCN [17]: A spectral-based graph convolutional network proposed by Kipf
and Maxwell. This model is further simplified on the basis of Chebyshev
network to form a classic graph convolutional network.

(6) GAT [28]: A spatial-based graph convolutional network proposed by
Veličković et al. The model combines the attention mechanism [27] with
the graph convolutional network to extract more critical information.

(7) GIN [31]: A spatial-based graph convolutional network proposed Xu et al.
From the perspective of Weisfeiler-Lehman test, Xu et al. considered the
expressive ability of graph neural network, and proposed this model with
the same powerful ability as Weisferler-Lehman test in theory.

(8) DiGCN [26]: A spectral-based graph convolutional network for directed
graphs proposed by Tong et al. This model utilizes the idea of Inception
[25] and is the latest graph convolutional network for link prediction.

4.3 Datasets

Comparative experiments are carried out on 6 real datasets of different scales in
various fields, namely:

(1) High-school (HIG) [10]: A social network from a high school
(2) C.elegans (C-ele) [29]: A neural network of the nematode C.elegans, node

representation in the network Neurons, edges represent information trans-
mission between neurons.

(3) SmallW (SMW) [24]: A social network within a company, the nodes in
the network are represented by users, edges represent the message passing
between nodes.

(4) SmaGri (SMG) [4]: A citation network in which nodes represent papers and
edges represent citations.

(5) Political blogs (PB) [2]: An American political blog network, where nodes
in the network represent Blog page, the edge represents the hyperlink jump
relationship existing between blogs.

(6) Air traffic control (ATC) [24]: An aviation network from the US Flight Con-
trol Center. The nodes in the network represent airports or service centers,
and the edges represent recommended routes (Table 1).

4.4 Experiment Settings

We divide the edge set of the network into the training set and test set, and the
division ratio is 10%. That is, the number of test edges accounts for 10% of the
total number of edges. All existing edges have positive labels. Then randomly
sample the same number of negative edges from the non-exiting edge of network,
and their labels are negative.
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Table 1. Statistical properties of the datasets. |V | represents the number of nodes,
|E| represents the number of edges, ρ represents the density of the network, 〈k〉out
represents the average out degree, and cc represents the clustering coefficient of the
network.

Name |V | |E| 〈k〉out ρ cc Type

HIG 70 366 5.228 0.0758 0.3624 Social network

C-ele 131 764 5.832 0.0449 0.1495 Neural network

SMW 181 756 4.176 0.0232 0.3426 Social network

SMG 1024 4919 4.803 0.0047 0.154 Citation network

PB 1224 19025 15.543 0.0127 0.2184 Hyperlink network

ATC 1226 2615 2.133 0.0017 0.0404 Aviation network

The number of layers of all the above graph convolutional networks is set to
2, the vector representation dimension of nodes is 16, the dropout rate during
training is set to 0.5.

The dimension of the representation vector is 16, and the feature of the node
is a 2-dimension vector composed of the in-degree and out-degree of the node. We
set α = 0.05 and the hidden layer dimension h = 32 and d = 16 in experiments.

4.5 Results and Analysis

All results are the average of 10 independent experiments. The experiment results
are shown in Table 2 and Table 3, the proposed method represented by “LPNI.”
The highest value is shown in bold characters.

Table 2. The AUC results of experiments.

Method HIG C-ele SMW SMG PB ATC

DCN 0.5123 0.7212 0.8714 0.6865 0.8836 0.5455

DAA 0.5185 0.7188 0.8734 0.6845 0.8815 0.5452

DRA 0.5185 0.7173 0.8716 0.6835 0.8771 0.5472

Cheb 0.5790 0.7291 0.8778 0.7799 0.8640 0.6318

GCN 0.6420 0.7444 0.8323 0.7541 0.8949 0.6393

GAT 0.6788 0.7086 0.8296 0.6722 0.8139 0.6361

GIN 0.6508 0.6905 0.6987 0.7068 0.8507 0.5677

DiGCN 0.7129 0.7812 0.9118 0.8847 0.8942 0.6278

LPNI 0.7411 0.8147 0.9143 0.8909 0.8986 0.6518

Heuristic methods include DCN, DAA, and DRA, which only have ranking
results and cannot define a threshold for calculating the ACC value. Therefore,
their ACC results are not available in Table 3.
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Table 3. The ACC results of experiments.

Method HIG C-ele SMW SMG PB ATC

Cheb 0.5778 0.6932 0.8043 0.6962 0.7661 0.5471

GCN 0.6587 0.7292 0.7776 0.6792 0.8191 0.6363

GAT 0.6841 0.6786 0.7651 0.6265 0.7561 0.6259

GIN 0.6207 0.6734 0.6603 0.6601 0.7612 0.5761

DiGCN 0.7127 0.7448 0.8428 0.8079 0.8103 0.6388

LPNI 0.7241 0.7622 0.8603 0.8179 0.8274 0.6495

As can be seen from Table 2 and Table 3, our proposed method outperforms
other baseline methods in two evaluation metrics and in all datasets, proving that
considering the information of node importance in link prediction can improve
the prediction accuracy.

As can be seen from Table 2, comparing the graph convolutional network-
based methods (such as LPNI, DiGCN [26], and Cheb [11]) with traditional
heuristic methods (such as DCN [36], DAA [36], and DRA [36]), it can be found
that the graph convolutional network-based prediction methods show higher
accuracy in various types of networks, indicating that methods based on graph
convolutional networks can capture the characteristics of different types of net-
works and are suitable for different types of networks.

As shown from Table 2 and Table 3, DiGCN [26] has the highest prediction
accuracy compared with all baseline methods. DiGCN also uses the PageRank
algorithm to calculate the personalized PR value of nodes, which can be regarded
as a node importance value, which indicates that considering the importance
information of nodes can improve the link prediction accuracy. However, its
accuracy is lower than that of the LPNI method, indicating our node importance
information is more effective.

5 Conclusion

This paper proposed a novel link prediction method that utilizes the node impor-
tance information. We conducted many experiments on 6 real networks from
various fields and compared them with other baseline methods. The results sug-
gested that our method can work directly on the directed graph in the link
prediction tasks. Our method outperforms all baseline methods, including the
traditional heuristic methods and graph convolutional network based methods.

In our experiments, the datasets we used are static. That is, the time when
the link is generated is ignored. The research work of Xia et al. [30] shows
that considering the time when the link appears has a positive impact on the
prediction accuracy, so we consider utilize the time information in future work
to improve the link prediction accuracy further. In addition, Zhang et al.’s [33]
research uses subgraph sampling for link prediction, which significantly reduces
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the computational complexity. Therefore, our further work will also consider
using subgraph sampling technology to reduce the model under the premise
of complete node importance information to reduce the computational cost of
training.
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