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Abstract. Recently, deep learning has been widely applied in the field
of recommender systems and achieved great success, among which the
most representative one is the Collaborative Filtering based Deep Neu-
ral Network. However, the input of such a model is usually a very sparse
one-hot coding vector of users and items. This makes it difficult for the
model to effectively capture the global features interaction between users
and items. What is more, it also increases the training difficulty, making
the model easily fall into a local optimum. Therefore, this paper pro-
poses a two-stage Integrating Global Features into Neural Collaborative
Filtering (GFNCF) model. To begin with, the AutoEncoder model with
sparse constraint parameters is used to accurately extract the global fea-
tures of users and items. Following that, the global features extracted
in the previous step are integrated into the neural collaborative filter-
ing framework as auxiliary information. It alleviates the sparse input
problem and integrates more auxiliary features to improve the learning
process of the model. Extensive experiments on several publicly available
datasets demonstrate the effectiveness of the proposed GFNCF model.

Keywords: Deep learning · Recommender system · Collabrative
filtering · AutoEncoder · Feature extraction

1 Introduction

Living in an “information society”, recommender systems greatly solve the prob-
lem of information overload [5]. The task of the personalized recommender sys-
tems is to recommend users potential interest items according to their pref-
erences, and the system has been widely applied in many fields such as news
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Memmi et al. (Eds.): KSEM 2022, LNAI 13369, pp. 325–336, 2022.
https://doi.org/10.1007/978-3-031-10986-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10986-7_26&domain=pdf
https://doi.org/10.1007/978-3-031-10986-7_26


326 L. He et al.

[3,6] and music [2,16]. Rating prediction is a main task in the personalized rec-
ommender systems. The key to the prediction is to model the characteristics of
users and items according to the rating interaction between them, and realize the
rating prediction of items (such as 1–5 stars) [19]. For recommender services, pre-
dicting users’ preference for pushed items through rating predictions can improve
users satisfaction effectively, and provide support for corporate decision-making
and bring huge economic benefits to the company.

In recent years, Collaborative Filtering, acts as one of the effective means
of rating prediction, has made big progress. Researchers applied all kinds of
deep learning technology to the Collaborative Filtering and made it success-
fully [11]. Deep Neural Network has been widely used to extract High-level fea-
tures in user-item interactive information [7,18]. The quality of these high-level
interactive features decides the performance of the model directly most of the
time. Although DNN has massive advantages in high-level features extraction
and parameters learning, the input feature vector of this type of model is often
extremely sparse due to the sparseness of the data in the recommender systems.
In this case, the optimization result of the model is easy to fall into a local
optimum, which affects the performance of the model.

Global features, known as the overall properties of the user image, are always
difficult to be captured effectively since most Collaborative Filtering models
based neural network ofter take the one-hot representation of users and items as
input for feature learning. Studies have shown some global features of users and
items can effectively improve the prediction accuracy of the model [13]. There-
fore, some recent methods use neighborhood information or global information
of users and items to replace one-hot representation to input into the neural
network model for feature extraction [1,4,17]. Although this type of model uses
neighborhood information or its own global information to enhance the interac-
tion capabilities of the model to a certain extent, it also weakens the ability of
user-project single interaction modeling.

Based on the considerations above, we find that alleviating the sparse input
feature problem and making full use of user item interaction information can
further improve the performance of the CF method. Therefore, this paper incor-
porates them into the proposed Integrating Global Features into Neural Collabo-
rative Filtering (GFNCF) model. First, for the sparse input feature problem, we
use an improved feature extraction method to extract the dense global feature
vector of users and items accurately, and then we use the extracted global fea-
ture vector as an additional input to fuse neural collaborative filtering [8] in the
framework, thus alleviating the training difficulty learning from sparse features
of the model. Moreover, the different features in the fused model are crossed and
combined through joint training, thereby effectively improving the accuracy of
the final rating prediction. The main contributions of our work are as follows :

– This paper introduces the sparsity constraint parameters into the
AutoEncoder-based collaborative filtering model to make the model more
adaptable to the sparsity characteristics of the data in the recommender sys-
tems, and to accurately extract the global features of users and items.
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– This paper integrates the global characteristics of users and items as auxiliary
information in the neural collaborative filtering framework, which effectively
expands the framework and further improves the performance of the method.

– This paper conducts extensive experiments on five real-world data sets to
prove the effectiveness of the proposed method.

2 Integrated Global Features Neural Collaborative
Filtering

The main process of our proposed method is shown in Fig. 1. It consists of two
parts, namely the extraction of global features and the integration of global
features. The extraction of global features part inputs the rating matrix of users
and items into the AutoEncoder to extract the global features of each entity (user
or item). These global features will be used for the global feature interaction
modeling. The integration of global features part integrates extracted global
features into the neural collaborative filtering model which makes the model
capture the interaction between users and items more accurately.

In general, our proposed GFNCF model is a model-based method, which
assumes that the rating data is generated by the model. To estimate the param-
eters in the model, existing methods generally adopt the method of optimizing
the loss function in machine learning. In this paper, we use point-wise loss as
the optimization loss function, that is, the parameters in the GFNCF model are
estimated by minimizing the square loss between predicted value and true value.

Fig. 1. The proposed method is divided into two parts.

2.1 Extraction of Global Features

Let M and N respectively represent the total number of users and items in
the recommender systems, then the users set and items set can be expressed
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as U = {U1, U2, ..., UM} and V = {V1, V2, ..., VN}. Construct a user-item rating
matrix R ∈ RM×N based on the explicit ratings feedback of users on items

Ru,i =
{

ru,i, if user u has rated item i
0 , otherwise

(1)

where ru,i represents the rating of user u on item i, u ∈ {1, 2, ...,M} and i ∈
{1, 2, ..., N}. Ru,i equals to 0 does not mean that user u has rated item i as 0.
It may because user u has not rated item i.

AutoEncoder is an unsupervised learning algorithm, mainly used for data
dimensionality reduction or feature extraction [10]. In order to extract the global
features of the item, the rating information of each item i is expressed as:

r(i) = (R1,i, R2,i, . . . , RM,i) (2)

Taking the use of a deep autoencoder to extract the global features of item
i as an example, the feature extraction process of this model can be defined as:

gf = gl

(
WT

l zl−1 + bl

)
(3)

where gl(·), Wl, bl represent the activation function, parameter matrix, and bias
vector of the l-th neural network, respectively, gf represents the extracted global
features of item i.

The process of reconstructing rating information through the global features
of item i can be defined as:

r̂(i) = g2l−1

(
WT

2l−1z2l−2 + b2l−1

)
(4)

where r̂(i) represents the rating information reconstructed from the global fea-
tures of item i. Then we input the items rating vector

{
r(i)

}N

i=1
set into deep

autoencoder model to obtain the reconstructed rating vector set. In order to
make the reconstructed rating vector as close as possible to the original rat-
ing vector in observed rating part, the following loss function is used as the
optimization target of the autoencoder model [7]:

min
θ

N∑
i=1

∥∥∥r(i) − h(r(i); θ)
∥∥∥2

O
+ λ‖θ‖2F (5)

where h(r(i); θ) represents the rating information of item i reconstructed by the
autoencoder, θ represents the parameters of the deep autoencoder model, and
the λ parameter is used to control the complexity of the model and prevent
over-fitting together. || · ||2O means that only the errors of the ratings observed
in the training set are considered.

It is widely acknowledged that the overall item rating quantity information
in the recommender system presents a long tail distribution [15]. For items with
sparse ratings, the integration of global features will provide effective additional
features for the model to fit these items and improve the learning process of
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the model. Therefore, we introduce a sparsity constraint parameter into the
AutoEncoder model for extracting global features, which can help the model
fit sparse items as much as possible, and provide effective auxiliary features for
sparsely rated items. We introduce the sparsity constraint parameter to obtain
the following loss function:

Loss =
N∑

i=1

α∑M
j=1 I

(
r
(i)
j �= 0

) ||r(i) − r̂(i)||2o + λ||θ||2F (6)

where I(X) is the indicator function. If x is true, then I(x) is 1, otherwise I(x)
is 0. It can be noticed that when the rating information of an item is sparse, the
model prediction is not accurate. The greater the error, the greater the penalty
for the model. α is a constraint factor, and the value is generally greater than 1.
By adjusting the value of α , we can control the degree to which the model tends
to fit sparse data well. λ is a regularisation parameter used to control model
complexity and prevent overfitting of the model.

2.2 Integration of Global Features

After extracting the global features of users and items, the global features are
transformed by Multi-Layer Perceptron (MLP ) to obtain the final features that
are concatenated into the neural collaborative filtering model for joint training.
The additional input information not only alleviates the problem of sparse input
features but also increases the ability of the neural collaborative filtering model
to capture global feature interactions. The overall GFNCF model is shown in
Fig. 2, which shows deep matrix decomposition model can be used to learn a
more accurate representation for both user and item using a deep neural network.
Therefore, similar to the network architecture in DeepCF, this paper uses a deep
matrix decomposition architecture for user and item representation learning in
GFNCF.

Figure 2 plots the three parts of the overall GFNCF model, namely the deep
matrix decomposition representation learning part, the MLP matching function
learning part, and the global feature integration part.

Representation Learning. In order to model a single user-item interaction
feature, we input users and items into deep matrix factorization through one-hot
encoding for representation learning. For the sake of generality, assume that the
input user is u and the item is i, which are encoded as xu and xi by one-hot
later. Let the latent vector of user u be denoted as pu, and the latent vector of
item i as qi. Since the neural network is used in the deep matrix factorization to
replace the linear embedding operation in the traditional matrix factorization,
the low-dimensional representation learning process of the user u is:

pu = aK = g
(
WT

KaK−1 + bK

)
(7)
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Fig. 2. The architecture of our proposed model.

where Wl, bl and al represent the weight matrix, bias vector and output value of
the l-th layer perceptron, respectively. g(·) is the activation function, this paper
uses the relu activation function.

In the same way, the low-dimensional representation learning process of item
i is:

qi = aK = g
(
WT

KaK−1 + bK

)
(8)

We use the element-wise product of the low-dimensional representation vectors
of users and items to calculate the feature vectors representing the learning part:

φMF = pu � qi (9)

where � represents element-wise product.

Matching Function Learning. CF methods based on matching function
learning usually use a linear embedding layer to learn low-dimensional latent
representations of users and items, and then use dense low-dimensional latent
representations to learn matching functions between users and items. We utilize
MLP to learn the matching function in the user-item feature interaction. We
assume P and Q respectively represent linear embedding layer parameter matri-
ces that map xu and xi to low-dimensional dense representations. Therefore, the
one-hot encoding of users and items in the embedding layer is converted into
low-dimensional dense representation. The part can be described as:

pu = PT xu (10)

qi = QT xi (11)
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In order to fully cross the features and enhance the model’s ability to model
user-item interaction characteristics, in this paper, the obtained low-dimensional
representation vectors of users and items are connected together and then sent
to MLP for matching function learning.

φMLP = aM = g
(
WT

HaH−1 + bH

)
(12)

Global Features Learning. Let pu
gf

and qi
gf

respectively represent the global
feature vector of user u and item i. In order to make the global features have
better expressive ability in the GFNCF model, the GFNCF model sends the
extracted global features into the MLP for feature transformation to transform
them into a global feature representation that is more suitable for the model.
The user’s global feature embedding part of the model is as follows:

pGF
u = aE = g

(
WT

L aL−1 + bL

)
(13)

The embedded part of the project’s global features is as follows:

qGF
i = aL = g

(
WT

L aL−1 + bL

)
(14)

Finally, the global characteristics of users and items are connected into a vector
representation:

φGF =
[

pGF
u

qGF
i

]
(15)

Fusion of Feature Vectors. The above three feature vectors express differ-
ent forms of feature representation. In order to obtain a more accurate joint
representation of user items, we need a strategy to fuse them so that they can
enhance as well as interacting with each other, thereby enhancing the expres-
sive ability of the model. The most common fusion strategy is to connect the
obtained multiple feature vector representations to obtain a joint representation,
and then input them into a fully connected layer for joint training. The fully con-
nected layer can assign different weights to each feature contained in the joint
representation. This adaptive combination of weight features makes the ultimate
calculated matching scores of users and items more accurate, so the final output
of the model in this paper is:

r̂u,i = WT
out

⎡
⎣ φMF

φMLP

φGF

⎤
⎦ + b (16)

where Wout represents the weight parameter of the output layer of the model.
During the training process of the model, this paper uses the mean square

error of the predicted rating r̂u,i and the true rating ru,i as the loss function to
calculate the back propagation as well as optimizing the network parameters.
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3 Experiments

3.1 Experimental Setup

Datasets. We evaluate our proposed models on five public datasets, i.e., movie-
Lens (ml-la, ml-1m, ml-10m), filmtrust and ciaodvd in Table 1. To verify the
effectiveness of the proposed model, this paper selects five publicly available
datasets in the real world.

Table 1. The statistics of datasets. #User represents the number of users, #Items
represents the number of items, #Ratings represents the number of ratings, #Sparsity
represents the sparsity of datasets.

Dataset #Users #Items #Ratings #Sparsity

ml-la 610 9724 100836 98.30%

ml-1m 6040 3706 1000209 95.53%

ml-10m 69878 10677 10000054 99.69%

ciaodvd 17615 16121 72665 99.97%

filmtrust 1508 2071 35497 98.86%

The statistical indicators of each dataset are given in Table 1. It is easy to
see from the statistical indicators that there are differences in the scale of each
dataset, therefore we can verify the universality of the model. In this paper, each
dataset is divided randomly at a ratio of 4:1 into training set and test set for
the following experiments.

Evaluation Metrics and Baselines. We compared the performance of our
proposed GFNCF model with following six algorithms, namely, UserCF [9], PMF
[14], DeepCF [8], NeuMF [4], DMF [18], BPAM [17].

Table 2. Comparison results on the public datasets evaluated by RMSE and MAE,
where the best result is in bold.

Dataset Measure UserCF PMF DeepCF NeuMF DMF BPAM GFNCF

ml-la RMSE 1.1072 0.9976 0.8727 0.8511 0.9004 0.8942 0.8409

MAE 0.8329 0.7746 0.6791 0.6602 0.6974 0.6891 0.6527

ml-1m RMSE 1.1777 0.9319 0.8837 0.8743 0.8816 0.9583 0.8647

MAE 0.8687 0.7345 0.6885 0.6864 0.6875 0.7479 0.6693

ml-10m RMSE 1.3105 0.9162 NA 0.8577 0.8684 0.9237 0.8327

MAE 0.9218 0.7207 NA 0.6576 0.6817 0.7259 0.6431

ciaodvd RMSE 1.3084 1.1947 1.0225 0.9507 1.0489 1.0241 0.9307

MAE 0.9158 0.8663 0.8374 0.7393 0.8104 0.7932 0.7255

filmtrust RMSE 1.0907 0.9724 0.8371 0.8002 0.87009 0.8212 0.7845

MAE 0.8164 0.7453 0.6487 0.6284 0.6887 0.6457 0.6074
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Parameter Settings. For the sake of fairness, we use the parameter settings
from the original model in the neural collaborative filtering part of the GFNCF
model whenever possible to assess the effectiveness of the proposed method.
Therefore, this paper utilizes Gaussian distribution (mean value is 0, standard
deviation is 0.01) to randomly initialize the model parameters, and uses mini-
batch gradient descent and Adam [12] algorithm to optimize the model. Set the
learning rate to 0.001 and the batch size to 1024 (set the batch size to 4096 on
the ml-10m large dataset to speed up training). In addition, this paper sets the
feature dimension size of users and items extracted from the neural collaborative
filtering model to 32. Silimar to latent factor model, we defaults that the global
features dimension of users and items is same. We set up different number of
layers in neural networks to transform global features and 2–3 layers in the neural
network can achieve great results.

3.2 Overall Comparison

This article uses root mean square error (RMSE) and mean absolute error (MAE)
to evaluate the performance of the prediction results. The smaller the values of
RMSE and MAE are, the better the performance is. The RMSE and MAE are
defined as follows:

RMSE =

√√√√ 7
N

∑
(u,i)∈R+

(ru,i − ru,i)
2

MAE =
1
N

∑
(u,i)∈R+

|ru,i − ru,i|
(17)

First, we can find that our proposed GFNCF method achieved an average
improvement of 1.8% compared with the sub-optimal method (NeuMF). Note
that NeuMF is a specific implementation under the neural collaborative filtering.
These experimental results proved that integrates global features to neural col-
laborative filtering can effectively improve the performance of the model. Com-
pared with DMF, the GFNCF model achieved a huge average improvement of
7.1% on all datasets. The main reason is that the GFNCF model adds auxiliary
information of global features and matching function learning part to enhance
the ability of model to capture the non-linear features of user-item interaction. In
addition, compared with the DeepCF method, the GFNCF method models the
user-item interaction information by combining the global features interactions
with user-item interactions, while DeepCF only utilizes global information for
modeling, ignoring the single interaction relationship between users and items.
As a result, GFNCF achieved an average improvement of 3.7% compared with
DeepCF. What’s more, the results on MovieLens datasets (ml-1a, ml-1m and
ml-10m) in Table 2 illustrates that as the data size and data sparsity increase,
the improvement effect achieved by the GFNCF method gradually increases
from 1.2% to about 3%. It shows that taking the global features as extra input
alleviates the problem of sparsity input and effectively improve the performance
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of the model. In general, GFNCF alleviates the sparse input feature problem
after fusing the global features and provides more feature information for model
training, which improves the model performance to a certain extent.

3.3 Detailed Model Analysis

Model Ablation Analysis. In the design of GFNCF, we integrate the global
features of users and items learned from the rating matrix into the existing
framework to train the network jointly. In order to verify the effectiveness of users
and items global features embedded in the model, we compared the model with
the following three model variants: GFNCF-UF (without users global features in
GFNCF), GFNCF-IF (without items global features GFNCF), NCF (GFNCF
without users and items global features). As shown in Table 3, we have the
following observation results: (1) The addition of items global features and users
global features in the five datasets has improved the effect of the algorithm to a
certain extent. (2) As the dataset changes, the optimizing degree on the model
slightly differentiates. (3) When the global features of users and items are added
at the same time, we have the best performance of the model. The reason for
above results is that the more the global features of the user and the item are
crossed and combined in the neural network, the better the learning process of
the model, which leads to the best performance of the proposed method.

Table 3. The comparison results of different variants of GFNCF model evaluated by
RMSE and MAE, and the best results are shown in bold.

Dataset Measure NCF GFNCF-UF GFNCF-IF GFNCF

ml-la RMSE 0.8521 0.8491 0.8445 0.8409

MAE 0.6602 0.6506 0.6511 0.6527

ml-1m RMSE 0.8743 0.8671 0.8705 0.8647

MAE 0.6864 0.6729 0.6788 0.6693

ml-10m RMSE 0.8577 0.8512 0.8453 0.8327

MAE 0.6576 0.6537 0.6489 0.6431

ciaodvd RMSE 0.9517 0.9438 0.9487 0.9307

MAE 0.7403 0.7332 0.7368 0.7255

filmtrust RMSE 0.8002 0.7973 0.7904 0.7845

MAE 0.6284 0.6184 0.6105 0.6074

Influence of Sparsity Constraint Parameters. We utilize the loss function
shown in Eq. 6 to extract the global features of users and items. The most impor-
tant parameter in this loss function is sparsity constraint parameters. By setting
different values of α, the degree to which the model tends to fit sparse data can
be controlled. We integrate the global features extracted from different values
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of α into the model for comparative experiments. As shown in Fig. 3, except
for the filmtrust dataset, all other datasets have the best RMSE performance
in the range of user α and item α between 4–6. On filmtrust dataset, the best
performance can be obtained when user α and item α are within the range of
2–4. Comparing the experimental results on the ml-1m and ml-10m datasets,
it can be seen that when the sparsity and the size of the dataset increases, the
proper enhancement of the sparsity constraint parameters of the AutoEncoder
can improve the model performance.

Fig. 3. RMSE index of the model after integrating global features extracted from
different α

4 Conclusion

This paper proposed an integrated global features neural collaborative filtering
model which captured both user-item and user-item global feature interaction
information and alleviated the sparseness problem of inputting feature vectors,
avoiding the model training fall into a local optimum. Meanwhile, the paper
utilized a kind of auxiliary information to develop another model with high
performance. It is worth mentioning that the method used to extract auxiliary
information should be as simple and effective as possible, so as to avoid adding
too much additional load to the integrated model. Experimental results showed
that the method in this paper has achieved certain advantages over traditional
methods on datasets of different scales. Moreover, with the increase of data
sparsity and data size, the advantages of this method become more apparent.
In the future, we will use more auxiliary information, such as user portraits,
comments, images and social information, as well as adding more data sources
to explore better feature extraction methods for further research.
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