
Structural and Temporal Learning
for Dropout Prediction in MOOCs

Tianxing Han, Pengyi Hao(B), and Cong Bai

Zhejiang University of Technology, Hangzhou, China
{txhan,haopy,congbai}@zjut.edu.cn

Abstract. In recent years, Massive Online Open Courses (MOOCs)
have gained widespread attention. However, the high dropout rate has
become an important factor limiting the development of MOOCs. Exist-
ing approaches typically utilize time-consuming and laborious feature
engineering to select features, which ignore the complex correlation rela-
tionships among entities. For solving this issue, in this paper, we propose
an approach named structural and temporal learning (STL) for dropout
prediction in MOOCs. The multiple entities and the complex correlation
relationships among entities are modeled as a heterogeneous information
network (HIN). To take full advantage of the rich structural informa-
tion in the HIN, we present a hierarchical neural network, in which a
series of calculations are used to guide and learn the importance of intra-
correlation and inter-correlation. Besides, we fully exploit the temporal
features of user activities based on activity sequences. Finally, structural
and temporal features are fused to predict dropout. The experiments on
the MOOCCube dataset demonstrate the effectiveness of STL.

Keywords: Dropout prediction · Heterogeneous information network ·
Hierarchical neural network · Bi-LSTM · MOOCs

1 Introduction

In recent years, MOOCs have received widespread attention because they break
through the constraints of time and space [1]. However, some studies point out
that less than 10% of users can complete the courses they take and receive
the corresponding certificates [9], which has become a major obstacle to the
development of MOOCs. Therefore, it is extremely crucial to accurately identify
users who have a tendency to drop out early in their learning process, so that
timely and appropriate measures can be taken to keep them learning.

Most of the researchers viewed the dropout prediction as a binary problem
based on machine learning. They predicted whether a user would drop out by
modeling the user’s behaviors. For example, Chen et al. [2] combined decision
trees and extreme learning to make prediction. Jin et al. [10] calculated and
optimized the weights of training samples based on the definition of the max
neighborhood. Nitta et al. [13] extracted the relationship among users’ actions
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Memmi et al. (Eds.): KSEM 2022, LNAI 13369, pp. 300–311, 2022.
https://doi.org/10.1007/978-3-031-10986-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10986-7_24&domain=pdf
https://doi.org/10.1007/978-3-031-10986-7_24

STL 301

: :

: :

,

,

H
ierarchical neural netw

ork

Fig. 1. The architecture of the proposed approach

by tensor decomposition and transformer. Zhang et al. [19] analyzed users’ learn-
ing behavior and pointed out that introductory learning resources are beneficial
in guiding users and preventing them from dropping out. Feng et al. [5] pro-
posed a model that uses CNN to smooth the context and integrates the attribute
information of users and courses with an attention mechanism. However, such
researches use only user- or course-based statistics as contextual information.
They ignored the deep correlation relationships among entities, such as class-
mate relationships between users who have taken the same course, correlations
between courses taken by the same user, etc. These correlation relationships are
complex and diverse. If they can be explored to describe the features of users
and courses, the prediction of dropout will be more in line with the users’ reality.

Meta-path [20], a composite path connecting a pair of entities, through which
we can not only capture the rich and diverse structural and semantic informa-
tion in the network, but also introduce the prior knowledge. Therefore, it has
been widely applied to data mining related tasks such as node classification
[16], link prediction [3] and recommendation [4,7], but there is no research to
employ meta-path for dropout prediction as far as we know. The scenario in
which user learns in MOOCs typically contains three types of entities (i.e., user,
course, video) and rich semantic relations among entities (e.g., the elective rela-
tion between the user and the course, the subordinate relation between the video
and the course, the watching relation between the user and the video). Inspired
by meta-paths, we design multiple entity triads to explore the correlation rela-
tionships among entities, such as <user,course,user> and <course,video,user>.
<user,course,user> implies that two users have taken the same course, while
<course,video,user> indicates that a course is equipped with some videos, and
these videos have been watched by some users recently.

Based on such entity triads, we propose an approach named structural and
temporal learning (STL) for dropout prediction in MOOCs in this paper. On
the one hand, hierarchical neural network is proposed to extract the structural
information among users and courses according to the entity triples designed for

302 T. Han et al.

Table 1. Explanations of the main notations used in this paper.

Notation Explanation

tu, tc Triad sets for users and courses

<U, X, Y >, <C, X, Y > A triad set for users and a triad set for courses

N1
η (ui) Sampled first-order neighbors of ui based on triad η

N2
η (ui) Sampled second-order neighbors of ui based on triad η

R(ul2
i , ui|η) Non-normalized relevance score of ul2

i to ui

R′(ul2
i , ui|η) Normalized relevance score of ul2

i to ui

f(ul2
i) Relevance-guided embedding of ul2

i

fη(ui) Correlation-specific representation of ui based on triad η

˜ftu , ˜ftc Structural features of ui and cj

fS(ui, cj) Structural feature of user ui on course cj

A(ui, cj) Activity sequence of user ui on course cj

fT (ui, cj) Temporal feature of user ui on course cj

them. In this network, we use relevance calculation to assist in generating initial
representations of nodes, and then enable the network to automatically focus
on important neighbor nodes and correlations by intra-correlation calculation
and inter-correlation calculation. On the other hand, the activity information is
processed by Bidirectional Long Short-Term Memory (Bi-LSTM) [8] to extract
time-influenced temporal features. Finally, the structural features and temporal
features are fused to predict dropout. The proposed STL is evaluated on a public
real-world dataset called MOOCCube [18] and compared with several state-of-
the-art methods. The evaluations demonstrate the effectiveness of STL.

2 The Proposed Method

2.1 Problem Description

Given the video click stream data, we extract the set of users U , the set of
courses C and the set of videos V . If a user ui ∈ U takes a course cj ∈ C, the
purpose of our study is to predict whether ui will dropout from cj or not in the
future. Figure 1 illustrates the overall framework of the proposed model, which
includes structural feature extraction based on hierarchical neural network shown
in Fig. 2, and the temporal activity feature extraction based on Bidirectional
Long Short-Term Memory. The main notations used in this paper and their
explanations are presented in Table 1.

STL 303

＋

Fully connected

,

: :

× ×

Inter-correlation
Calculation

＋

•
•
•

: :

＋

Relevance
Calculation

•••

×

×

×

×
＋

Relevance
Calculation

•••

×

×

×

×

× ×

＋

•
•
•

＋

Relevance
Calculation

•••

×

×

×

×

＋

Relevance
Calculation

•••

×

×

×

×

Intra-correlation
Calculation

Intra-correlation
Calculation

Intra-correlation
Calculation

Intra-correlation
Calculation

Inter-correlation
Calculation

Fig. 2. The framework of hierarchical neural network

2.2 Hierarchical Neural Network

Since the complex correlation relationships among entities in MOOCs may affect
dropouts, a heterogeneous information graph G is constructed to model the
MOOCs scenario, and hierarchical neural network as shown in Fig. 2 is proposed
to extract the structural features among entities. The graph G contains a series
of user, course and video nodes based on the sets U , C and V , and the edges
between different types of nodes represent different meanings, e.g., user-course
edge represents the elective relationship, user-video edge represents the watching
relationship and course-video edge represents the subordinate relationship. Then
based on prior knowledge, a triad set tu = [t1u, . . . , tmu] with m triads for users
and a triad set tc = [t1c , . . . , tnc] with n triads for courses are designed. Each triad
η ∈ tu can be denoted as <U,X, Y >, where X = [x1, . . . , xnx

], Y = [y1, . . . ,
yny

] represent subsets of entities, nx and ny represent the number of elements in
X and Y , respectively. Similarly, each triad ξ ∈ tc can be denoted as <C,X, Y >.

We now present how to extract structural features by hierarchical neural
network. By taking a triad η ∈ tu as an example. First, we form a first-order
neighbor set N1

η (ui) for the target node ui by randomly sampling n1 nodes from
neighbor set X(ui). Let ul1

i be a node of N1
η (ui). For ∀ul1

i ∈ N1
η (ui), a subset of

the second-order neighbor set of ui : N1
η (ul1

i) is obtained by randomly sampling
n2 nodes from the neighbor set Y (ul1

i). By the above operation, we obtain the

sampled second-order neighbor set of ui: N2
η (ui) =

{
N1

η (ul1
i),∀ul1

i ∈ N1
η (ui)

}
.

Let ul2
i be a node of N2

η (ui).

304 T. Han et al.

• Relevance Calculation. To make a good input to hierarchical neural net-
work, we use HeteSim [14] to calculate the relevance score between ul2

i and ui:

R(ul2
i , ui|η) =

|TI
u

l2
i ∼ui

|
|O(ul2

i)||I(ui)|
, (1)

where TI
u

l2
i ∼ui

denotes the triad instances between ul2
i and ui following the

triad η, O(ul2
i) denotes the out-degree of ul2

i , and I(ui) denotes the in-degree
of ui. Note that it is unreasonable for R(ul2

i , ui|η) �= 1 if ul2
i is equal to ui. In

order to solve it, we normalize the equation using the cosine of the probability
distribution that ul2

i and ui arrive at the node xj of the set X.

R′(ul2
i , ui|η) =

R(ul2
i , ui|η)√

nx∑
j=1

P 2
(
ul2

i , xj

)
·
√

nx∑
j=1

P 2 (xj , ui)

, (2)

where P
(
ul2

i , xj

)
and P (xj , ui) denote the probability of starting from ul2

i to
xj and the probability of starting from xj to ui under the triad η, respectively.
Then the relevance-guided embedding f(ul2

i) ∈ R
1×dI can be obtained as

f(ul2
i) = Xavier(ul2

i) ∗ R′(ul2
i , ui|η). (3)

where Xavier(ul2
i) ∈ R

1×dI is a trainable parameter vector with dimensions dI

by the Xavier [6] initializer.
• Intra-correlation Calculation. Based on second-order neighbor set N2

η (ui)
and relevance-guided embedding f(ul2

i), the weight αη between ui and its sam-
pled neighbor ul2

i can be obtained by αη = softmax(v · tanh(f(ul2
i) · w1 + b1)),

where v, w1 and b1 are trainable parameters. Then the correlation-specific fea-
ture fη(ui) ∈ R

1×dI can be calculated as:

fη(ui) =
∑

u
l2
i ∈N2

η(ui)
(αη ∗ f(ul2

i)) (4)

• Inter-correlation Calculation. After iterating over the triad sets tu and
tc, respectively, we obtain the correlation features ftu

(ui) = ft1u
(ui) ⊕ · · · ⊕

ftm
u

(ui) and ftc
(cj) = ft1c

(cj) ⊕ · · · ⊕ ftn
c
(cj) for user-course pair(ui,cj), where

ftu
(ui) ∈ R

m×dI , ftc
(cj) ∈ R

n×dI (abbreviated as ftu
and ftc

) and ⊕ denotes
the concatenate operation. In order to incorporate multiple types of correlations,
we adopt self-attention [15] to calculate the attention value between each two
correlations. Firstly, Qu is calculated by Qu = σ(ftu

·wq+bq), Eu is calculated by
Eu = σ(ftu

·we+be), Zu is calculated by Zu = σ(ftu
·wz +bz), where Qu, Eu and

Zu ∈ R
m×da , dI<da, σ(·) is the sigmoid function with an output between 0 and

1, wq, we, wz, bq, be, bz are trainable parameters. Then the converged structural
feature f̃tu

∈ R
m×da for user ui is calculated as

STL 305

f̃tu
= softmax

(
QuET

u√
da

)
∗ Zu (5)

where ET
u denotes the transpose of Eu. Similarly, the converged structural fea-

ture f̃tc
∈ R

n×da for course cj is calculated as

f̃tc
= softmax

(
QcE

T
c√

da

)
∗ Zc (6)

where Qc, Ec and Zc ∈ R
m×da are obtained by feeding ftc

into three linear layers,
respectively and ET

c denotes the transpose of Ec. Additionally, in order to further
fuse the converged features, the final structural features fS(ui, cj) ∈ R

1×ds with
dimensions ds can be obtained by:

fS(ui, cj) = σ(δ(f̃tu
⊕ f̃tc

) · w2 + b2), (7)

where w2 and b2 are trainable parameters, δ(f̃tu
⊕f̃tc

) flattens matrix (f̃tu
⊕f̃tc

) ∈
R

(m+n)×da to a row vector with dimension R
1×(m+n)da . The overall flow of the

hierarchical neural network is given in Algorithm1.

Algorithm 1: Hierarchical neural network

Input: Graph G; the triad sets tu
and tc; sampling number n1, n2;
Output: structural feature fS(ui, cj)

1 for each η ∈ tu do
2 N1

η (ui) ← sample n1 nodes
3 from X(ui)
4 N2

η (ui) = {}
5 for each ul1 ∈ N1

η (ui) do
6 N1

η (ul1
i) ← sample n2 nodes

7 from Y (ul1
i)

8 add N1
η (ul1

i) to N2
η (ui)

9 end
10 for each ul2

i ∈ N2
η (ui) do

11 Calculate f(ul2
i) by Eq. (1, 2,

3)
12 end
13 Generate fη(ui) by Eq. (4)
14 end
15 ftu

← fη(ui),∀η ∈ tu

16 Generate f̃tu
by Eq. (5)

17 for each ξ ∈ tc do
18 N1

ξ (cj) ← sample n1 nodes
19 from X(cj)
20 N2

ξ (cj) = {}
21 for each cl1

j ∈ N1
ξ (cj) do

22 N1
ξ (cl1

j) ← sample n2

23 nodes from Y (cl1
j)

24 add N1
ξ (cl1

j) to N2
ξ (cj)

25 end
26 for each cl2

j ∈ N2
ξ (cj) do

27 Calculate f(cl2
j) by

28 Eq. (1, 2, 3)
29 end
30 Generate fξ(cj) by Eq. (4)
31 end
32 ftc

← fξ(cj),∀ξ ∈ tc

33 Generate f̃tc
by Eq. (6)

34 Generate fS(ui, cj) by Eq. (7)
35 return fS(ui, cj)

306 T. Han et al.

2.3 Temporal Activity Feature Extraction

Dropouts may exhibit dramatically different learning behaviors over time, espe-
cially in the early stage of his/her learning. Therefore, modeling users’ learning
behaviors based on temporal relationships is crucial to the dropout prediction.
In order to cope with it, a recurrent network, Bidirectional Long Short Term
Memory (Bi-LSTM) [8] is applied in our model to extract the temporal activity
feature fT (ui, cj) ∈ R

1×dt for user-course pair (ui, cj).
From the video click stream data, some statistical data can be extracted,

such as the number of times the user watches the video, the number of days the
user is active on the platform, and so on. In order to express the user’s activity
information, an activity sequence A(ui, cj) = [a1, · · · , ae, · · · , ad] is established
based on the data of first d days after ui started learning on cj , where ae is a
row vector containing a fixed number of types of activities.

In Bi-LSTM model, there is a forward LSTM network and a reverse LSTM
network that jointly capture the past and future contextual information. We
take the generation of activity feature he on e-th day as an example. For the
memory cell at the e-th day time step, the forget gate fe, the input gate ie and
the output gate oe are used to control the information flowing into and out of
the current memory cell. fe, ie, oe are calculated by the following equations,

⎧
⎪⎨
⎪⎩

fe = σ
(
wf · ae + w′

f · he−1 + bf

)

ie = σ (wi · ae + w′
i · he−1 + bi)

oe = σ (wo · ae + w′
o · he−1 + bo)

(8)

where wf , w′
f , wi, w

′
i, wo, w

′
o, bf , bi, bo are trainable parameters, he−1 represents

the value of previous hidden layer. Then the value of the current memory unit
Ce can be obtained by selectively forgetting the previous information and adding
the current information appropriately as Ce = fe ∗ Ce−1 + ie ∗ C̃e. Here C̃e =
tanh (wc · ae + w′

c · he−1 + bc) denotes alternate information for the current time
step, wc, w

′
c, bc are trainable parameters. Once the current memory cell Ce is

updated, the activity feature he for the e-th time step can be obtained as

he = oe ∗ tanh (Ce) . (9)

Similarly we can obtain the activity feature for each time step on the forward and
reverse LSTM networks:

−→
h = [

−→
h1, · · · ,

−→
he, · · · ,

−→
hd] and

←−
h = [

←−
h1, · · · ,

←−
he, · · · ,

←−
hd].

In addition, to further represent the temporal relationship of user activities, the
final temporal activity feature fT (ui, cj) is obtained by adding the forward and
reverse activity features and mapping them to a higher dimension,

fT (ui, cj) = tanh(w3(
−→
h +

←−
h) + b3). (10)

In the above equation, fT (ui, cj) ∈ R
1×dt , dt is the same as ds, w3 and b3 are

trainable parameters.

STL 307

2.4 Model Learning

Based on the set of users U and the set of courses C, if there exist K user-course
selective pairs, then the prediction score ŷk ∈ (0, 1) for whether a user ui dropout
from a course cj can be obtained by

ŷk = sigmoid(MLP (fS(ui, cj) ⊕ fT (ui, cj))), (11)

where the MLP (·) is the Multi-Layer Perceptron layer, sigmoid(·) is the sigmoid
layer with an output between 0 and 1. All the parameters in our model can be
trained by minimizing the following objective function:

Loss(Θ) =
∑

k∈[1,K]

[yk log (ŷk) + (1 − yk) log (1 − ŷk)] + λ||Θ||22, (12)

where Θ is the parameter set of proposed model, yk denotes the corresponding
ground truth of user ui in course cj and λ is the regularizer parameter.

3 Experiments

3.1 Dataset and the Definition of Dropout

The dataset used in this paper is from MOOCCube [18], a large-scale data
repository, which stores more than 700 courses, 38k videos and 200k students.
The user log file in MOOCCube records 4,873,530 video watch logs of 48,639
learners enrolled in 685 courses from 26 June 2015 to 16 April 2020.

It is difficult to define dropout, because the user can be inactive for a period of
time without dropping out of the course and continuing to learn later. Inspired by
[12], we introduce the concept of inactive period, i.e., the maximum of the period
between interactions and the inactivity period to the end of data collection.
According to the statistics for MOOCCube, over 95% of users who are inactive
for 365 days actually give up studying, 365 days is chosen as an inactive period
to consider dropping out. In addition, unlike assignments and exams, videos as
a core resource of MOOCs are widely available in different courses, so we give a
novel definition of dropout by combining inactive period and the percentage of
watched videos. Specifically, if a user ui has been inactive for more than 365 days
and has not watched 80% of the videos in a course cj , then this enrollment record
will be marked as “dropout”.

Based on the above definition, we obtained a dataset containing 232,864
enrollment records generated by 47,074 users in 556 courses. There are 220,045
enrollment records for dropouts. We divided the dataset into training and test
sets in the ratio of 7:3, with the same proportion of positive and negative samples.
In the following experiments, we use the user’s seven-day activity log to predict
whether the user will drop out in the future.

308 T. Han et al.

3.2 Evaluation Metrics and Implementation Details

Considering the highly unbalanced proportion of positive and negative samples in
the dataset, we use Area Under the ROC Curve (abbreviated as AUC) to depict
the ability of the model to distinguish between positive and negative samples
under different thresholds. AUC calculates a score for each sample based on how
close the model’s predicted probability value is to the true label, and the closer
the predicted value is to the true label, the higher the AUC is and the better
the model’s predictive power is.

Fig. 3. The effect of different sampling numbers

We implement the STL based on tensorflow. For our model, we design three
triads for users, including t1u:<user,course,user>, t2u:<user,video,course> and
t3u:<user,video,user> and two triads for courses, including t1c :<course,user,
course> and t2c :<course,video,user>. We randomly initialize the parameters with
the Xavier [6] initializer. Adam [11] optimizer with an initial learning rate of
1 × 10−3 is chosen to learn the parameters. Dropout rate is set to be 0.5 and reg-
ularization parameter λ is set to be 1 × 10−4 to avoid overfitting.

3.3 Parameters in Hierarchical Neural Network

In this subsection, we explore the effect of some parameters in hierarchical neural
network. For unobtrusive comparison, we only use hierarchical neural network to
extract structural features. Figure 3 illustrates the model performance with dif-
ferent number of aggregated neighbors, where the horizontal axis represents the
number of first-order neighbors n1 and the different colored dashes represent the
different number of second-order neighbors n2. In general, the performance of the
model steadily improves as the number of aggregated neighbors increases, which
indicates that the neighbor information is beneficial to enhance the embedding
representation of the target nodes, and the richer neighbor information helps
to characterize the nodes. However, it can be clearly observed that the growth
momentum of red line slows down significantly when n1 = 13, and the growth

STL 309

almost stops when n1 = 19. This suggests that as the number of neighbors
increases, the neighbor information gradually tends to saturate and may intro-
duce some noise information. Similar conclusions can be drawn on second-order
neighbors by comparing different folds. In order to keep a balance between accu-
racy and complexity, n1 = 19, n2 = 15 are chosen in the next experiments.

Table 2. Evaluation on several commonly used feature processing methods.

node

AUC(%) triad
Concat MaxPool Soft-Attention Self-Attention

MaxPool 83.35 80.53 81.92 83.98
Mean 83.18 82.5 82.88 83.96
Soft-Attention 83.26 82.54 82.95 84.61

In hierarchical neural networks, we enrich and enhance the node represen-
tations of users and courses by aggregating intra-correlation information from
different neighbor nodes and aggregating inter-correlation information from dif-
ferent triads. To explore the effectiveness of different feature processing meth-
ods, we evaluate MaxPool, Mean and Soft-Attention [17] for intra-correlation
calculation among nodes, and evaluate Concat, MaxPool, Soft-Attention and
Self-Attention for the inter-correlation calculation among triads. As can be seen
in Table 2, the combination of Soft-Attention and Self-Attention boosts the AUC
from 0.63% to 4.08% compared to other combinations. This suggests that Soft-
Attention can capture the importance of triad-based neighbors and aggregate
meaningful neighbor information, and on the other hand, the degree of depen-
dency between different triads can be captured by Self-Attention and thus give
us the enhanced representation of users and courses.

3.4 Comparison with Other Methods

To verify the validity of our method, we consider three versions of STL. They
are STL without structural feature, STL without temporal feature and STL
which uses both structural feature and temporal feature. They are compared
with machine learning based methods such as LR (Logistic Regression), RF
(Random Forest), GBDT (Gradient Boosting Decision Tree) and a deep learning-
based method named CFIN [5] that uses CNN to learn the representation of
each activity by leveraging its statistics, and uses soft-attention to learn the
importance of different activities by combining attribute information. For LR,
RF, GBDT and STL without structural feature, we use the activity sequence
A(u, c) extracted from the video click stream data as input. For CFIN, we extract
the activity matrix, statistics of activity matrix and the information of users and
courses from the video click stream data as input. For STL without temporal
feature, we obtain the relevance-guided embedding as input. To make a fair
comparison, the most suitable parameters are chosen for them. For RF, the

310 T. Han et al.

Table 3. Comparison with other methods.

Method AUC (%)

Logistic Regression 86.32

Random Forest 90.29

Gradient Boosting Decision Tree 91.34

CFIN [5] 90.43

STL without structural feature 90.62

STL without temporal feature 84.61

STL 92.04

number of trees in the forest is set to 500. For GBDT, the number of weak
learners is set to 200 and the maximum depth is set to 7, with a learning rate
of 0.1. For CFIN, it is trained by the Adam optimizer with a learning rate of
1 × 10−4 and an L2 regularization strength of 1 × 10−5.

The results are given in Table 3. STL without structural feature achieves an
AUC of 90.62%, second only to GBDT, while after adding structural features,
STL obtains an AUC of 92.04%, which increases by 0.7% to 5.72% compared
with LR, RF, GBDT and CFIN. Although STL is only 0.7% higher than GBDT
in terms of AUC, STL greatly outperforms GBDT in terms of time overhead.
Not only because GBDT is difficult to parallel the processing due to the depen-
dencies among weak learners, but also because GBDT requires the use of grid
search to find the optimal parameters. Meanwhile, STL is 1.61% higher com-
pared with CFIN. The reasons are that, STL enriches the representations of
users and courses by deep correlation relationships among entities, and extracts
temporal features from the activity sequence. Overall, our proposed STL obtains
optimal performance and has good generalizability.

4 Conclusion

In this paper, a general approach named structural and temporal learning (STL)
was proposed to improve dropout prediction on MOOCs. The multiple entities
and the complex correlation relationships among entities were modeled as a
heterogeneous information network (HIN). To take full advantage of the rich
structural information in the HIN, we designed multiple triples to represent the
correlation relationships between different entities and proposed a hierarchical
neural network in which relevance calculation, intra-correlation calculation and
inter-correlation calculation were jointly used to bootstrap and learn the impor-
tance of neighbor nodes and triads. Besides, we used Bi-LSTM to fully exploit the
temporal features of user activities based on activity sequences. Finally, struc-
tural and temporal features were fused to predict dropout. The experiments on
the MOOCCube dataset demonstrated the effectiveness of our proposed method.
In the future, we will deploy STL to the MOOCs platform and establish a com-
plete intervention mechanism for users.

STL 311

Acknowledgements. This work is supported by Natural Science Foundation of Zhe-
jiang Province of China under grants No. LR21F020002, and the First class undergrad-
uate course construction project in Zhejiang Province of China.

References

1. Blum-Smith, S., Yurkofsky, M.M., et al.: Stepping back and stepping in: facilitating
learner-centered experiences in MOOCs. Comput. Educ. 160, 104042 (2021)

2. Chen, J., Feng, J., Sun, X., Wu, N., Yang, Z., Chen, S.: MOOC dropout prediction
using a hybrid algorithm based on decision tree and extreme learning machine.
Math. Prob. Eng. 2019, 1–11 (2019)

3. Fan, H., Zhang, F., et al.: Heterogeneous hypergraph variational autoencoder for
link prediction. IEEE Trans. Pattern Anal. Mach. Intell. (2021). https://doi.org/
10.1109/TPAMI.2021.3059313

4. Fan, S., Zhu, J., et al.: Metapath-guided heterogeneous graph neural network for
intent recommendation. In: KDD, pp. 2478–2486 (2019)

5. Feng, W., Tang, J., et al.: Understanding dropouts in MOOCs. In: Proceedings of
the AAAI, vol. 33, pp. 517–524 (2019)

6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS, pp. 249–256 (2010)

7. Gong, J., Wang, S., et al.: Attentional graph convolutional networks for knowledge
concept recommendation in MOOCs in a heterogeneous view. In: ACM SIGIR, pp.
79–88 (2020)

8. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610
(2005)

9. He, J., Bailey, J., et al.: Identifying at-risk students in massive open online courses.
In: Proceedings of the AAAI, vol. 29 (2015)

10. Jin, C.: Dropout prediction model in MOOC based on clickstream data and student
sample weight. Soft. Comput. 25(14), 8971–8988 (2021)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
12. Moreno-Marcos, P.M., Munoz-Merino, P.J., et al.: Temporal analysis for dropout

prediction using self-regulated learning strategies in self-paced MOOCs. Comput.
Educ. 145, 103728 (2020)

13. Nitta, I., Ishizaki, R., et al.: Graph-based massive open online course (MOOC)
dropout prediction using clickstream data in virtual learning environment. In:
ICCSE, pp. 48–52 (2021)

14. Shi, C., Kong, X., et al.: HeteSim: a general framework for relevance measure in
heterogeneous networks. IEEE Trans. Knowl. Data Eng. 26(10), 2479–2492 (2014)

15. Vaswani, A., Shazeer, N., et al.: Attention is all you need. In: NeurIPS (2017)
16. Wang, X., Ji, H., et al.: Heterogeneous graph attention network. In: World Wide

Web, pp. 2022–2032 (2019)
17. Xu, K., Ba, J., et al.: Show, attend and tell: neural image caption generation with

visual attention. In: ICML, pp. 2048–2057 (2015)
18. Yu, J., Luo, G., et al.: MOOCCube: a large-scale data repository for NLP appli-

cations in MOOCs. In: ACL (2020)
19. Zhang, J., Gao, M., Zhang, J.: The learning behaviours of dropouts in MOOCs: a

collective attention network perspective. Comput. Educ. 167, 104189 (2021)
20. Zhao, J., Wang, X., et al.: Heterogeneous graph structure learning for graph neural

networks. In: Proceedings of the AAAI (2021)

https://doi.org/10.1109/TPAMI.2021.3059313
https://doi.org/10.1109/TPAMI.2021.3059313

	Structural and Temporal Learning for Dropout Prediction in MOOCs
	1 Introduction
	2 The Proposed Method
	2.1 Problem Description
	2.2 Hierarchical Neural Network
	2.3 Temporal Activity Feature Extraction
	2.4 Model Learning

	3 Experiments
	3.1 Dataset and the Definition of Dropout
	3.2 Evaluation Metrics and Implementation Details
	3.3 Parameters in Hierarchical Neural Network
	3.4 Comparison with Other Methods

	4 Conclusion
	References

