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Abstract. Word sense disambiguation (WSD) is a very critical yet chal-
lenging task in natural language processing (NLP), which aims at identi-
fying the most suitable meaning of ambiguous words in the given contexts
according to a predefined sense inventory. Existing WSD methods usually
focus on learning the semantic interactions between a special ambiguous
word and the glosses of its candidate senses and thus ignore complicated
relations between the neighboring ambiguous words and their glosses,
leading to insufficient learning of the interactions between words in con-
text. As a result, they are difficult to leverage the knowledge from the
other ambiguous words which might provide some explicit clues to iden-
tify the meaning of current ambiguous word. To mitigate this challenge,
this paper proposes a novel neural model based on memory enhancement
mechanism for WSD task, which stores the gloss knowledge of previously
identified words into a memory, and further utilizes it to assist the disam-
biguation of the next target word. Extensive experiments, which are con-
ducted on a unified evaluation framework of the WSD task, demonstrate
that our model achieves better disambiguation performance than the
state-of-the-art approaches (Code: https://github.com/baoshuo/WSD).

Keywords: Word sense disambiguation · Gloss information · Memory
mechanism · Memory enhancement

1 Introduction

Word sense disambiguation (WSD) aims at identifying the most suitable sense of
an ambiguous word in its given context, which is a classical and challenging task
in the natural language processing (NLP) area. Specifically, WSD is an essential
and critical component in broad NLP applications, such as text classification
[19], machine translation [7] and dialogue tasks [12]. Numerous WSD solutions
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have been introduced, which can be generally categorized into knowledge-based
and supervised methods.

Knowledge-Based Methods try to fully utilize the knowledge in lexical knowl-
edge bases such as WordNet and BabelNet [17,24]. They either consider the
overlap and similarity between the context and glosses of each ambiguous word’s
senses, or construct a graph for all candidate senses in the context and employ
graph-based algorithms. Although knowledge-based methods are flexible and
have achieved successes in WSD task, they usually show inferior performance
than their supervised counterpart.

Supervised Methods treat WSD as a classification task, and these methods
rely on the semantically-annotated corpus for training the classification mod-
els. Recently, the effectiveness of supervised methods have been demonstrated
in WSD task [9,21]. Particularly, the methods based on neural models have
achieved exceptional successes, and show great potentials for addressing the
WSD task [5,11]. To be specific, early neural WSD methods leverage neural
sequence models, such as LSTM and Seq2Seq, to disambiguate target words.
They focus on learning interactive relations between senses of ambiguous words
and their context only [10,22]. Although those neural WSD methods could model
the dependencies between the candidate senses and the context, they fail to con-
sider the valuable lexical knowledge employed by the knowledge-based counter-
part. Aiming at addressing this deficiency, some works attempt to leverage lexical
knowledge to optimize supervised neural methods [5], which incorporate the gloss
knowledge together with the context into neural WSD models. Although they
break the barriers of supervised methods and knowledge-based ones, they mostly
model glosses and context with two independent encoders. These approaches
unable to capture the glosses-context interactions to strengthen the represen-
tations of each other. Therefore, some works propose to learn sense and con-
text representation interactively by generating sense-level context for WSD task
[16,26]. However, these methods only show marginal improvements. The possi-
ble reason is that they merely focus on the learning of the glosses of the target
ambiguous word and the context, while neglecting the glosses of the other neigh-
boring ambiguous words. In real scenarios, when human identify an ambiguous
word, it is natural to utilize the gloss information of the previously identified
senses of its neighboring words. However, such practice has not been modeled
by existing methods.

As well known, when a person reads a sentence containing multiple ambigu-
ous words, he will memorize the identified senses of ambiguous words, and uti-
lize the sense knowledge to assist the disambiguation of the following words.
As shown in Table 1, the context contains three ambiguous words, i.e., monitor,
table, and mouse. According to their order in the context, once the senses of
monitor and table are identified, their corresponding glosses, i.e., Gs1 for mon-
itor and Gs2 for table, will be memorized and utilized to identify the sense of
the following ambiguous word, i.e., mouse. With the context and the glosses of
identified neighboring ambiguous words, a person can identify the right sense
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Table 1. Ambiguous words in context and their sense glosses. The ellipsis “...” indicates
the remainder of the gloss.

Context He looks at the monitor on table and operate it with a mouse

Gloss Monitor g1: electronic equipment that is used to check the quality or

g2: someone who supervises (an examination)

Table g1: a set of data arranged in rows and columns

g2: a piece of furniture having a smooth flat top that is usually ...

Mouse g1: any of numerous small rodents

g2: a hand-operated electronic device

easily, i.e., Gs2 for mouse. However, existing methods neglect to consider the
knowledge from the identified ambiguous words and fail to introduce a suitable
mechanism to store them to help the disambiguation of the following words.
As a result, the interactions between the glosses of identified ambiguous word’s
senses and the current ambiguous word are missing, which inevitably hurt the
performance on WSD task. To this end, how to enhance the learning on the
interactions between identified glosses and current ambiguous word is critical
for the further performance improvement.

To overcome these limitations, we propose a novel WSD model based on
memory enhancement mechanism. Intuitively, memory mechanism can simulate
the human reading behaviors to store and memorize the known information, and
infer the unknown information [18]. It provides us with the flexibility and capa-
bility to capture interaction enhancement between previously identified glosses
and the current ambiguous word in our model. Specifically, we first encode the
context of the target word and each candidate gloss of the target word by the
context-encoder unit and the gloss-encoder unit, respectively. Next, we propose a
memory-enhancement unit to enhance the learning of the current target word by
making interactions with the glosses of the identified neighboring words stored
in the memory previously. Then, we introduce a prediction unit to score each
candidate sense of the target word to select the right sense, which is stored into
the memory and is employed to enhance the learning of the following ambiguous
words.

We summarize the contributions of this paper as follows:

• We propose a novel model for WSD task, i.e., word sense disambiguation
based on memory enhancement mechanism (MEM). As far as we know, this
is the first work to leverage memory mechanism to model and enhance the
interactions between target ambiguous words and the previously identified
ones.

• We propose a memory enhancement mechanism, which stores the gloss knowl-
edge of previously identified words in a memory, and utilizes the memory to
enhance the representation of the next ambiguous word.

• Experiments on the real-world dataset demonstrate that the proposed model
achieves better performance than the compared state-of-the-art benchmarks.
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2 Related Word

2.1 Knowledge-Based WSD

Knowledge-based approaches rely on the lexical knowledge to justify the right
sense of ambiguous word, which can be categorized into similarity-based meth-
ods and graph-based ones. The similarity-based methods usually consider the
similarity between the context and the sense information, such as the gloss of
the candidate sense, and adopt the sense with the highest similarity as the right
one [2,3]. The graph-based methods usually build a graph based on the context
and semantic relations retrieved from a lexical knowledge base, then evaluate the
importance of each candidate sense to identify the right one [1,20,24]. Although
knowledge-based approaches are flexible and show better performance on the
coverage rate, they are hard to achieve satisfied performance on precision as the
supervised approaches.

2.2 Supervised WSD

Supervised approaches treat WSD task as a classification problem, which are
trained on the sense-annotated corpus. In recent years, the methods based on
neural models have shown great potentials to address the classification problem.
Unlike knowledge-based approaches, some supervised methods succeed to achieve
excellent performance by utilizing sense embedding and contextual embedding,
instead of lexical information in knowledge bases [10,14,22]. To explore the abil-
ity of lexical knowledge, GAS injects the gloss information into supervised mod-
els [16]. Following the work of GAS, more methods attempt to integrate lexical
knowledge into supervised models, such as BEM [5] and EWISER [4]. BEM
learns the representations of the target words and context in the same embed-
ding space with a context encoder, and models the sense representations with a
gloss encoder [5]. In addition to the gloss of the current sense, EWISER further
utilizes the external explicit relational information from WordNet to enhance
its ability [4]. However, these methods neglect the interactions between context
and glosses, which can not enhance each other. To address this limitation, very
recent works [15,26] attempt to model the interactions between context and
glosses. CAN proposes a mechanism to generate co-dependent representations
of glosses and the context [15]. SACE strengthens the learning of sense-level con-
text, which takes into account senses in context with a selective attention layer
[26]. However, the methods only achieve limited improvements. The possible rea-
son is that they neglect to utilize the gloss information of previously identified
senses to assist the disambiguation of the following target words according to
the behavior pattern as human reads ambiguous sentences. In this paper, we
strive to design a memory enhancement mechanism to solve the problem for
WSD task.
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Fig. 1. Overview of our proposed MEM model

3 Methodology

3.1 Task Definition

In the all-words WSD task, the right sense of each ambiguous word in the
given context should be identified. Formally, the input of a WSD model is the
context C = {c1, c2, . . . , cn} and its output is a sequence of sense predictions
S = {si

c1 , s
j
c2 , . . . , s

k
cn}, where c1, c2, cn are ambiguous words in the context, and

si
c1 , sj

c2 and sk
cn represent the right senses, i.e., i-th, j-th and n-th sense from

the candidate sense sets for c1, c2 and cn. s ∈ Sci , where Sci is all candidate
senses of the ambiguous word ci. For each sense s of ci, we represent its gloss
with Gs

ci = {g1, g2, . . . , gn}.

3.2 Model Architecture

The overall architecture of our proposed model, called MEM, is shown in Fig. 1.
MEM consists of four units, i.e., the context-encoder unit, the gloss-encoder unit,
the memory-enhancement unit and the prediction unit. First, the context-encoder
unit and the gloss-encoder unit encode the context and the gloss of each can-
didate sense of the target ambiguous word, respectively. Then, the memory-
enhancement unit enhances the representation of the current target word by
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learning the its interactions with the glosses of the previously identified neigh-
boring words stored in the memory. Finally, the prediction unit score each can-
didate sense of the target word to select the right sense for it. Such selected
sense is stored into the memory and will be employed to enhance the sense
disambiguation of the following ambiguous words.

3.3 Context-Encoder and Gloss-Encoder Units

Inspired by the work of BEM [5], we introduce context-encoder unit and gloss-
encoder unit respectively, whose structures are shown in Fig. 1. Both encoders
are initialized with BERT to benefit from its powerful ability in capturing inter-
actions between words. The inputs of encoders are padded with BERT-specific
start and end symbols, i.e., [CLS] and [SEP]. The context and sense gloss of the
target ambiguous word are represented as C = [CLS], c1, c2, . . . , cn, [SEP] and
Gs

ci = [CLS], g1, g2, . . . , gn, [SEP], respectively.
The context-encoder unit takes the context C as its input, and encodes it to

generate the context representation C with BERT, described with Eq. (1).

C = BERT (C) , c̄i = C[i], (1)

where c̄i refers to the representation of the i-th word in the context. When
the target word is tokenized into multiple subword pieces by BERT tokenizer,
its representation is calculated as the average representation of all its subword
pieces.

The gloss-encoder unit takes the gloss Gs
ci as its input, and encodes it with

BERT. It then selects the output of BERT at the position of [CLS] as the gloss
representation.

s̄s
ci = BERTCLS(Gs

ci), (2)

where s ∈ Sci is one of the candidate senses for the target word ci, Gs
ci is the

gloss of s, and s̄s
ci is the gloss representation for s.

3.4 Memory-Enhancement Unit

To enhance the representation of the target word, we propose a memory enhance-
ment mechanism. Specifically, we first build a memory to store the represen-
tations of the glosses of the previously-identified neighboring words. Then we
encourage the interactions between the representation of the target word and
gloss representations of those neighboring words stored in the memory. This
practice can model human reading behavior, namely, to utilize the previously-
identified sense to assist the understanding of the following ambiguous words.

As shown in Fig. 1, one memory component is utilized to store the glosses
representations of the previously-identified neighboring words, i.e., M = {s̄y

cx}.
For each representation s̄y

cx in the memory, its subscript cx indicates the cx-th
ambiguous word before the current target word, and its superscript y indicates
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the identified y-th sense from the candidate sense sets for the cx-th ambigu-
ous word. For modeling the sequential relations in different glosses, we employ
Gated Recurrent Unit (GRU)to reconstruct their representations. Then, the orig-
inal representation and the reconstructed one are added together to update the
memory representation M̄. The above operations are described using Eq. (3).

M̄ = [M ⊕ GRU(M)], (3)

where ⊕ refers to the addition operation.
Then, in order to utilize the features from neighboring words, we concatenate

the context representation Ĉ of the neighboring words of the target word and
the memory representation M̄ together to generate the auxiliary information
representation V for the current target word:

V = [Ĉ; M̄], (4)

where Ĉ is obtained by removing the current target word representation from
C.

After obtaining the auxiliary information representation V of the current
target word, we employ a cross-attention mechanism [6] to capture the interac-
tions between the representation of the current target word c̄i and V to generate
the enhanced representation c̃i of the current target word. The operations are
described with Eq. (5).

c̃i = f (c̄i) + CA(LN [f (c̄i) ;V]), (5)

where f (·) is the fully connected function, CA indicates the cross-attention
mechanism [6], LN refers to the layer normalization. The detailed operations
of cross-attention mechanism is described as Eq. (6).

q = c̄iWq, k = VWk, v = VWv,

A = softmax(qkT /
√

d/h), CA(f (c̄i) ;V) = Av,
(6)

where Wq, Wk and Wv are learnable parameters, d and h are the dimension
and number of attention heads.

3.5 Prediction Unit

In the prediction unit, we score each candidate sense s ∈ Sci for the target word
ci with dot product of c̃i against gloss representation s̄s

ci of each sense s ∈ Sci ,
described as:

score(ci, s
j
ci) = c̃i · s̄j

ci , (7)

where j = 1, . . . , |Sci | indicates the j-th candidate sense of the target word ci.
According to the scores of all candidate senses, we select the sense sh

ci with the
highest score as the right sense of the target word.
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The training object L is to minimize the focal loss [13]:

pt = −CE(sr
ci , s

h
ci),

L(ci, s
j
ci) = −α(1 − exp(pt))γ ∗ pt,

(8)

where sr
ci represents the true sense of the target word ci, CE denotes the cross-

entropy function, α and γ are the balance parameter and focusing parameter,
respectively.

4 Experiments

4.1 Dataset

Table 2. The details of all datasets

Dataset Noun Verb Adj Adv Total

SemCor 87002 88334 31753 18947 226036

SE2 1066 517 445 254 2282

SE3 900 588 350 12 1850

SE07 159 296 0 0 455

SE13 1644 0 0 0 1644

SE15 531 251 160 80 1022

To verify the effectiveness of our proposed model, we employ the publicly avail-
able dataset SemCor and a representative open evaluation framework [23] to
train and evaluate our model. The framework consists of five evaluation datasets
including SensEval-2, SensEval-3, SemEval-07, SemEval-13 and SemEval-15,
which are marked with SE2, SE3, SE07, SE13 and SE15, respectively. The details
of all datasets are shown in Table 2. SemEval-07 dataset are chosen as our devel-
opment set, the others are selected as evaluation sets. All sense glosses in our
approach are retrieved from the widely-used WordNet 3.0.

4.2 Implementation Details

We utilize the pre-trained BERT to initialize our model, whose number of hidden
layer is 768, the number of self-attention heads is 12 and the number of the
Transformer blocks is 12. When fine-tuning our model, we use the SE07 as the
development set to select the optimal hyperparameters. In the fine-tuned model,
the dropout probability of CA is 0.1, the number of CA blocks is 5, the number
of CA heads is 8, the balance parameter α and the focusing parameter γ are 0.2
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and 0.5, respectively. As the limitation of the hardware condition, the batch size
of the context encoder and gloss encoder are 1 and 128, respectively. The initial
learning rate is 1e−5.

Table 3. Comparison with state-of-the-art models on F1-score.

Models Dev Test datasets Concatenation of test datasets

SE07 SE2 SE3 SE13 SE15 Noun Verb Adj Adv ALL

SVC [25] 69.5 77.5 77.4 76.0 78.3 79.6 65.9 79.5 85.5 76.7

EWISE [11] 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8

LMMS [14] 68.1 76.3 75.6 75.1 77.0 78.0 64.0 80.5 83.5 75.4

GlossBERT [9] 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0

GLU [8] 68.1 75.5 73.6 71.1 76.2 – – – – 74.1

EWISER [4] 71.0 78.9 78.4 78.9 79.3 81.7 66.3 81.2 85.8 78.3

MEM 74.9 78.8 78.6 79.3 82.3 81.4 69.2 83.2 86.9 79.1

4.3 Comparison with the State-of-the-Art Baselines

We compare the performance of our model MEM against seven representa-
tive and/or state-of-the-art supervised models. These models include SVC [25],
EWISE [11], LMMS [14], GlossBERT [9], GLU [8] and EWISER [4]. SVC exploits
the semantic relations between senses to compress the sense vocabulary to reduce
the number of sense tags to improve WSD performance. EWISE learns sense
representation from a combination of sense-annotated data, gloss definition and
lexical knowledge base to perform WSD. LMMS adopts the nearest neighbors
algorithm on word representation produced by BERT to select the most suitable
sense. GLossBERT utilizes BERT to jointly encode the context and glosses of
the target word. GLU employs the pretrained contextualized word representa-
tion by BERT to improve WSD accuracy. Based on EWISE, EWISER further
incorporates prior knowledge with synset embeddings, i.e., the explicit relational
information from WordNet.

Table 3 shows F1-score of our model and all baselines on dataset SemCor
obtained by the public evaluation framework [23]. We observe that although our
model is inferior to some baselines on SE2, MEM is still able to achieve the
best performance on SE3, SE13, SE15, and ALL datasets. Here, ALL means
the concatenation of all datasets. This shows that our model is superior to the
baselines. The experimental results demonstrate that our model is effective on
WSD task. Such satisfied performance of our model is attributed to its memory
enhancement mechanism.
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4.4 Ablation Study

Table 4. Comparison of ablation variants.

Ablation variants Dev F1-score Δ

MEM 74.9 –

Del-Memory 73.8 −1.1

Only-Memory 74.1 −0.8

Del-CA 74.4 −0.5

Del-Update 74.5 −0.4

We perform an ablation study by comparing the standard MEM model with
its four ablation variants: (a) Del-Memory: removes the memory component
described in Eq. (3), the contextual representation will interact with the tar-
get word via cross-attention directly; (b) Only-Memory: removes the contextual
representation described in Eq. (4), the memory representation M̄ will interact
with the target word via cross-attention directly; (c) Del-CA: removes the CA
mechanism described in Eq. (5); (d) Del-Update: removes the GRU component
described in Eq. (3) to stop the update of the gloss representation stored in the
memory.

The comparison result of the ablation study is shown in Table 4. According
to the table, we have the following observations. First, the performance decrease
of Del-Memory and Only-Memory demonstrates that the memory enhancement
mechanism is critical for our model. Second, both Del-CA and Del-Update show
inferior performance than the standard MEM model, which demonstrates that
cross-attention component and memory updating mechanism are effective.

5 Conclusion

This paper proposes a novel model for word sense disambiguation based on
memory enhancement mechanism (MEM). To the best of our knowledge, this
is the first work to leverage memory mechanism to store the gloss knowledge of
previously-identified words to assist the disambiguation of the next target word.
Accordingly, we design an effective memory enhancement mechanism to enhance
the representation of the target word with the identified glosses. Experimental
results on real-world datasets demonstrate that our model outperforms the state-
of-the-art models on word sense disambiguation task. This may provide a new
perspective for utilizing memory mechanism and gloss knowledge to improve
WSD methods.
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