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Abstract. Discovering efficient exploration strategies is a central chal-
lenge in reinforcement learning (RL). Deep reinforcement learning (DRL)
methods proposed in recent years have mainly focused on improving
the generalization of models while ignoring models’ explanation. In this
study, an embedding explanation for the advantage actor-critic algorithm
(EEA2C) is proposed to balance the relationship between exploration
and exploitation for DRL models. Specifically, the proposed algorithm
explains agent’s actions before employing explanation to guide explo-
ration. A fusion strategy is then designed to retain information that is
helpful for exploration from experience. Based on the results of the fusion
strategy, a variational autoencoder (VAE) is designed to encode the task-
related explanation into a probabilistic latent representation. The latent
representation of the VAE is finally incorporated into the agent’s policy
as prior knowledge. Experimental results for six Atari environments show
that the proposed method improves the agent’s exploratory capabilities
with explainable knowledge.

Keywords: Deep reinforcement learning · Explainable AI ·
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1 Introduction

Deep reinforcement learning (DRL) has been widely studied and applied in var-
ious fields such as gaming, autonomous driving, and robotics [1,14,22]. How-
ever, the evaluation-based nature of DRL makes exploitation necessary, and
continuous exploration is required to improve decision-making. Therefore, the
exploration-exploitation dilemma is a central challenge in DRL [19]. Explo-
ration refers to trying new actions in unknown environments, whereas exploita-
tion refers to acting based on historical experience. The agent must take action
based on exploration and exploitation to obtain high cumulative rewards. DRL
methods proposed in recent years have mainly focused on improving the gen-
eralization of models while ignoring the exploration-exploitation dilemma, and
balancing the relationship between exploration and exploitation is difficult.
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Many approaches have been proposed to solve the exploration-exploitation
dilemma, such as noise-based exploration strategies [7,16] and intrinsic reward-
based exploration methods [2,12,20]. However, the uncertainty caused by exist-
ing noise-based exploration strategies is task-independent, which reduces explo-
ration efficiency. The reward function in intrinsic reward-based methods is arti-
ficially designed, which does not ensure that it is suitable for complex environ-
ments, and the above methods cannot achieve effective exploration.

Moreover, the weak explainability of DRL agents makes it impossible to
thoroughly understand and analyze data, models, and applications [5,23]. This
causes disparities between the realistic performance of an agent and expecta-
tions. One approach to explaining the decision-making of a network is visual
explanation, which has been studied in the field of computer vision [9,18]. A
visual explanation analyzes the network output factors by generating a heat
map, which highlights the critical regions in an input image. Visual explanation
methods have also been applied to explain an agent’s decision-making process
[11,24]. However, these explanatory methods merely analyze how an agent makes
decisions and fail to utilize the explained information to optimize the agent.

The agent assesses how well it learns about an environment task based on
the uncertainty of network predictions [4,12,15]. The uncertainty of traditional
exploration strategies is unrelated to environmental tasks, which leads to ineffi-
cient exploration. Recent exploratory approaches suggest that task-related infor-
mation can guide an agent’s exploration, such as discovering bottleneck states
[10], learning feature spaces [8], and VARIBAD [25]. The activation maps gen-
erated by the visual explanation contain task targets, which can be transformed
into task-related uncertainty to guide the agent’s exploration.

In this study, an embedding explanation for the advantage actor-critic algo-
rithm (EEA2C) is proposed based on the advantage actor-critic (A2C) architec-
ture. The proposed method provides a novel exploration strategy that employs
task-related explanations. EEA2C first uses a gradient-based explanation method
to generate activation maps. Meanwhile, a fusion strategy is designed to retain
helpful information for exploration from experience. Second, a variational auto-
encoder (VAE) is designed to project the fused experience into a probabilistic
latent representation, which represents the inherent structure of the task-related
environment. Finally, the latent variables are fed to the actor-critic network for
training. The agent’s policy is conditioned on both the environmental state and
latent variables. The contributions of this study are as follows.

– We propose a reinforcement-learning algorithm EEA2C with a novel explo-
ration strategy. The algorithm overcomes the inefficiency of exploration by
employing VAE techniques to encode the experience of the fusion explanation.

– The proposed algorithm customizes an explanation module and a fusion strat-
egy, compensating for traditional explanation methods that cannot optimize
the agent.

– Experiments are conducted in the ATARI environment to evaluate the perfor-
mance and advantages of the proposed algorithm. The experimental results
prove that the proposed algorithm promotes the agent’s policy learning abil-
ities and increases explainability.
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2 Preliminaries

This section introduces the concepts of reinforcement learning and variational
inference and provides definitions of commonly used symbols.

2.1 Reinforcement Learning

Standard reinforcement learning based on the Markov decision process (MDP)
is represented by a five-tuple of (S,A,P, r, γ), where S is a finite set of states,
A is a finite set of actions, and P is the unknown state-transition probability
function. r is the immediate reward associated with taking action a ∈ A while
transitioning from state st ∈ S to state st+1 ∈ S. γ ∈ [0, 1] is the discount factor
that represents the trade-off between maximizing immediate and future returns.
The goal of the agent is to identify a policy π that maximizes its expected reward,
where the cumulative return at each time step is Rt =

∑∞
n=t γn−trn.

2.2 Variational Inference

The goal of variational inference is to approximate the conditional probabilities of
latent variables considering the observed variables. Optimization methods can be
used to solve this problem. Suppose x = x1:n denotes a set of observable datasets,
and z = z1:m is a set of latent variables. Let p(z, x) denote the joint probability,
p(z|x) be the conditional probability, and p(x) be the evidence. The conditional
probability, p(z|x) = p(z,x)

p(x) , can be solved using Bayesian inference. However, it
is difficult to directly compute p(x). Therefore, the probability density function
q(z) is determined using variational inference to approximate p∗(z|x). q ∗ (z) =
arg min KL(q(z)||p(z|x)) is optimized to obtain the optimal q ∗ (z), where q(z) ∈
Q is the approximate distribution and p(z|x) is the required posterior probability
distribution. The KL divergence can be expressed as

KL(q(z)||p(z|x)) = E[log q(z)] − E[log p(z, x)] + log p(x), (1)

where log p(x) is a constant and the KL divergence is greater than zero. The
final goal of variational inference is as follows:

log p(x) ≥ log p(z|x) − log q(z)
= ELBO,

(2)

which is called the evidence lower-bound objective (ELBO).

3 Proposed Method

This section describes the architecture of the EEA2C and the workflow of the
proposed algorithm.
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3.1 Network Architecture

The trained network is shown in Fig. 1. The proposed model includes four main
modules: actor, critic, explanation, and inference. The actor and critic share the
state encoder and internal network used to train the policy. The explanation
module generates a task-related activation map using an activation gradient
mapping approach. The activation maps are fused to the original states using a
fusion strategy. The inference module extracts the latent structure of the fused
information by training a variational autoencoder (VAE). The inference module
encodes a fused experience to derive a latent variable distribution. The inferred
latent variables are employed to train the actor and critic modules as prior
knowledge.

Fig. 1. Overview of the proposed model EEA2C.

Each actor, critic, and inference module is a multilayer neural network. In
the inference module, let qω denote the encoder with parameters ω. pν denotes
the decoder with parameter ν. Let z denote the latent variable and z ∼ qω. Let
πθ denote an actor with parameters θ. Let Vψ denote the critic with parameter
ψ, and let D denote the experience data buffer. The module outputs can either
be concatenated or added to obtain the other module’s input. This algorithm is
introduced in detail in the following sections.
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3.2 Explanation of Actions with Activation Maps

During each iteration, the agent employs policy πθ to interact with the environ-
ment and obtain a series of experiences, which are stored in the data buffer D.
Then, the experience sample τ:t is sampled from D and denoted as

τ:t = {s0, a0, r0, ..., sm, ..., at−1, rt−1, st}. (3)

Fig. 2. Explanation module: activation map produced by the explanation module based
on the state-action pair.

To obtain the activation map of state sm in τ:t, an explanation module is
designed (see Fig. 2) by modifying the Grad-Cam approach [18]. Each state sm

in τ:t is convolved and computed by the actor to obtain am. Subsequently, the
gradient of the score for action am is computed with respect to the feature map
activations Mk of the last convolutional layer. These gradients flowing back are
averaged over the width and height dimensions (indexed by i and j, respectively)
to obtain the neuron importance weights αam

k :

αam

k =
1
T

∑

i

∑

j

∂πam

∂Mk
ij

, (4)

where aam

k is the weight of action a in the k-th channel. πam is the probability
that the agent selects action am and T denotes the normalization factor used to
ensure that the sum of the gradient weights of each channel is 1 (for example,∑

k αam

k = 1). The weight aam

k represents a partial linearization of the agent
downstream from M and captures the importance of feature map k for action
am. We perform a weighted combination of forward activation maps, followed
by a ReLU , to obtain the final activation map em, which can be denoted as

em = ReLU(
∑

k

αam

k Mk), (5)
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where the ReLU operation is used to retain regions that have a positive effect
on action am. The activation map em takes values in the range of [0, 1], indicat-
ing the relevance of the region in sm to am. Each state sm in τ:t is explained
sequentially, and the explanation module outputs the set of activation maps e:t:

e:t = {e0, e1, ..., em, ..., et}. (6)

3.3 Fusion Activation Maps and States

Based on the above methods, EEA2C can obtain activation maps e:t of τ:t from
the explanation module. A straightforward method that may be used to focus
an agent on the task-related regions is to multiply em and sm. However, when
multiplying em and sm, the zero values in the activation maps lead to incom-
plete state information. This disrupts the agent’s training, makes policy learning
unstable, and fails to enable the agent to focus on task-related regions. To over-
come this problem, we propose a state fusion strategy in which the state in τ:t is
reformulated as the weighted sum of the original state sm and noisy background
image gm. The original state sm is replaced with sΦ

m via the fusion operation
Φ(sm, em), which is formulated as follows:

sΦ
m = Φ(sm, em) = sm · em + gm · (1 − em), (7)

where gm is a blurred image obtained by applying a Gaussian blur filter to the
original image sm [6]. The representation sΦ

m of sm is located in the natural
state-space manifold. This formulation not only creates state sΦ

m that matches
the inner feature representation at sm but also preserves the object localization
information in em. The weight vector em ∈ [0, 1] denotes the significance of each
region that contributes to the state representation sm. The experience sample
τ:t is updated to τΦ

:t after fusing the activation map em:

τΦ
:t = {sΦ

0 , a0, r0, ..., s
Φ
m, ..., at−1, rt−1, s

Φ
t }. (8)

3.4 Encoding the Fused State with Variational Inference

To incorporate the fused experience τΦ
:t into the training process of the policy,

an additional probabilistic model is constructed to generate prior knowledge
of the actor-critic network. The latent variables generated by the probabilistic
model serve as task-related uncertainties to motivate exploration. Inferring the
latent distribution p(z|τΦ

:t ) is difficult owing to the intractable integrals involved.
Inspired by VAEs, an inference module is designed to approximate the poste-
rior distribution with a variational distribution q(z|τΦ

:t ). The inference module
consists of an encoder qω with parameter ω and a decoder pν with parameter
ν. The encoder qω takes the experience τΦ

:t and projects it into latent space Z.
This latent space captures the factors of variation within a fused experience. The
latent variable z (z ∈ Z) is subject to a normal distribution, and its parameters
(μ and σ) are predicted directly by qω(z|τΦ

:t ), as shown in Fig. 3.
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Fig. 3. Inference module: a trajectory of the fused explanation information is processed
using an encoder to generate the posterior of the task embedding process. The posterior
is trained with a decoder that predicts the past and future states and rewards from
the fused state.

The inference module approximates the conditional probability of the latent
variables in the posterior sample τΦ

:t . As with the target function of VAE, the
optimization objective of the inference module is to maximize ELBO:

L(ω, ν) = Ez∼qω(z|τΦ
:t )

[log pν(τΦ
:t |z)] − KL(qω(z|τΦ

:t )||pν(z))

= ELBO(ω, ν),
(9)

where the first term log pν(τΦ
:t |z) denotes the reconstruction loss. The second

term KL(qω(z|τΦ
:t )||pν(z)) encourages the approximate posterior qω to remain

close to the prior over the embedding pν(z). pν(z) is the prior probability of the
latent variable z using a standard normal distribution, pν(z) = N(0, I).

Owing to the introduction of the task-related latent variable z, the optimiza-
tion objective of the actor-critic network becomes

L(θ) = −logπθ(at|st, z)(Rn
t − Vψ(st, z)) − αHt(πθ), (10)

L(ψ) =
1
2
(Vψ(st, z) − Rn

t )2, (11)

where Rt =
∑n−1

i=0 γirt+i + γnVψ(st+n) is the n-step bootstrapped return and
α is the weight of the standard entropy regularization loss term. Our overall
objective is to minimize

L(θ, ψ, ω, ν) = L(θ) + βL(ψ) − λL(ω, ν), (12)

where β is the weight for the critic loss and λ is the weight inference module.
The actor-critic network and the inference module are trained using different
data buffers: the actor-critic network is only trained with the most recent data
because we use on-policy algorithms in our experiments; for the inference module,
we maintain a separate, larger buffer of observed trajectories.

4 Experiments and Results

4.1 Environment and Experimental Settings

EEA2C was evaluated for six control tasks in OpenAI Gym [3]. In all tasks,
the reward for each step of the agent was limited to [0, 1] during training. The
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algorithm uses 16 parallel actors to collect the agent’s experience with a five-step
rollout, yielding a minibatch of size 80 for on-policy transitions. The last four
observation frames are stacked as inputs, each of which is resized to 84× 84 and
converted to grayscale in [13]. The episode is set as the end of the game instead
of losing a life. Each episode is initialized with a random seed of no-ops [14].

The method proposed in this study is based on the A2C framework [13].
The actor and critic networks use the same structure, employing a multi-layer
perceptron (MLP) with two implicit layers 64 × 64. The inference module uses
a simpler network structure that outputs the mean and variance of the latent
variables. The experimental results are obtained by averaging five random seeds,
each with 2 × 107 frames.

4.2 Comparisons with Benchmark Algorithms

Fig. 4. Learning curves: expected return vs. number of training frames.

The DQN [14], DDQN [21], A2C [13] (with both separate and shared actor-critic
networks), and PPO [17] algorithms were employed as benchmark algorithms for
comparison. The learning speed of each algorithm was measured over a limited
number of game frames. Figure 4 illustrates the learning curves of all algorithms.
The learning curves were obtained by averaging the results over five random
seeds. The experiments showed that EEA2C outperformed all benchmark algo-
rithms in terms of the learning speed and improved the cumulative score for all
exploration tasks.

Figure 4 shows the mean reward for the proposed method and the other
benchmark algorithms, and the shaded areas represent the variance of the mean
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reward for each seed. From the above experimental results, the learning speed
and target rewards of the EEA2C algorithm outperformed those of the other
algorithms in all control tasks. The rewards that the EEA2C algorithm reaches
require 0.2 × 107 time steps, whereas the benchmark algorithms require 1 × 107

time steps to reach these rewards. As the number of training frames increased,
superior rewards to the benchmark algorithms were eventually achieved. In each
environment, the shaded area of EEA2C is smaller than those of the other algo-
rithms, indicating that EEA2C performs more consistently across multiple seeds.

From Fig. 4, the prior experience sample is shown to be insufficient at the
beginning of training, and the target in the activation map is scattered. In this
case, the confidence interval of the latent variables is large, which leads to an
unstable distribution. Therefore, the agent was more inclined to explore. As more
data are collected, the high-value regions in the activation map become concen-
trated, and the distribution of the latent variables tends to stabilize. Meanwhile,
the agent begins to exploit and the cumulative rewards tend to stabilize.

Table 1. Evaluation scores over 50 recent episodes on average. The best scores are in
bold.

Environment Random DQN DDQN PPO A2C EEA2C

Alien 240 2391 2041 1970 2091 3161

BeamRider 264 3627 3172 2750 3164 4356

Breakout 3 518 520 417 435 624

MsPacman 150 3180 2960 2350 2880 4830

Phoenix 440 10840 12250 20840 22530 28530

SpaceInvaders 120 3929 3672 4855 4673 7673

Table 1 shows that EEA2C achieves a better performance than the bench-
mark with a large margin in six tasks. Compared with the best score of the
benchmark algorithm, EEA2C achieved a 32.2% improvement on Alien, 20.1%
improvement on BeamRider, 20.0% improvement on Breakout, 51.8% improve-
ment on MsPacman, 26.6% improvement on Phoenix, and 58.0% improvement
on SpaceInvaders. EEA2C achieved a better average reward than the benchmark
when trained with limited frames. Therefore, further performance improvements
can be expected when EEA2C uses more training frames or a large-scale dis-
tributed computing platform.

4.3 Analysis of Explainability

This section analyzes how the activation maps generated by the explanation
module are associated with the action of the agent. The activation map can
be overlayed onto the original state to indicate evidence of the agent’s action.
As shown in Fig. 5, for the action predicted by the agent, a more-intensely red-
colored area indicates a more significant contribution, which can be used as the
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main basis for determining the predicted action. The activation map enables
an understanding of the regions that the agent focuses on when taking action,
which improves the explainability of the algorithm.

Fig. 5. Regions related to the agent’s decision are shown by adding the activation maps
to the image, where red regions correspond to high scores while blue corresponds to
low scores. (Color figure online)

The target in the ATARI environment appears periodically at a specific loca-
tion. Based on Fig. 5, we can conclude that the agent’s focus becomes increas-
ingly concentrated. The agent gradually learns to focus on task-related targets
and takes corresponding actions rather than reacting irrelevantly to state-specific
patterns. For example, in Alien 5(a) and SpaceInvader 5(f), the agent appropri-
ately reacts to the emergence of the enemy. The agent notices the enemy, moves
towards it, fires at it, and then turns away. When there are no objects in the
image, the agent moves as little as possible to avoid mistakes. The agent learns
a path to the target object among the worlds by forwarding planning elements
and lattice classes. Figure 5(d) shows an example of MsPacman. The agent scans
the route to ensure that there are no enemies or ghosts ahead. When the food
appears on the screen, the agent generates a path to this food.

5 Conclusion

This study proposes EEA2C to balance the relationship between exploration and
exploitation. Unlike previous research, this algorithm explains the agent’s actions
and employs the explanation to guide the agent’s exploration. Simultaneously,
an inference module was designed to encode the explanation into a probabilistic
latent representation, which can be incorporated into the policy as task-related
uncertainty. Experiments were conducted in the ATARI environment to evaluate
the performance and advantages of the proposed algorithm. The experimental
results showed that the EEA2C outperformed existing methods in terms of the
achieved reward during a single episode. The uncertainty provided by the latent
variables promoted policy learning. Furthermore, the activation maps generated
by the explanation module augmented the agent’s explainability. Task-related
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uncertainty can be obtained from explanation or provided by external expert
experience. In future work, we will consider other ways of capturing task-related
uncertainties to guide agents in more efficient exploration.

Acknowledgements. This work is sponsored by Shanghai Sailing Program (NO.
20YF1413800).
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