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Abstract. Federated Learning (FL) is an emerging distributed machine
learning framework that allows edge devices to collaborative train a
shared global model without transmitting their sensitive data to cen-
tralized servers. However, it is extremely challenging to apply FL in
practical scenarios because the statistics of the data across edge devices
are usually not independent and identically distributed (Non-IID), which
will introduce the bias to global model. To solve the above data hetero-
geneity issue, we propose a novel Multi-Stage Semi-Asynchronous Fed-
erated Learning (MSSA-FL) framework. MSSA-FL benefits convergence
accuracy through making the local model complete multi-stage training
within the group guided by combination module. To improve the train-
ing efficiency of the framework, MSSA-FL adopts a semi-asynchronous
update method. Meanwhile, proposed model assignment strategy and
model aggregation method further boost the performance of MSSA-FL.
Experiments on several public datasets show that MSSA-FL achieves
higher accuracy and faster convergence than the comparison algorithms.

Keywords: Federated learning · Non-IID · Multi-stage ·
Semi-asynchronous

1 Introduction

Due to the rapid advance and remarkable achievements of artificial intelligence
technology [1,2], a growing number of complicated intelligent tasks are pushed
to edge devices. How to use private data on edge devices to jointly train a
sophisticated machine learning model [3–5] has drawn an unprecedented level of
attention. As one of the most recognized approaches to edge training, Federated
Learning (FL) expects to leverage multiple devices to collaboratively train a
shared machine learning model with their local dataset without private data
transmission. Through aggregating weight updates from each device, a global
model can be efficiently and securely obtained.

This work is supported by the National Natural Science Foundation of China (NSFC)
(Grants No. U19A2061), National key research and development program of China
under Grants No. 2017YFC1502306.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Memmi et al. (Eds.): KSEM 2022, LNAI 13369, pp. 172–187, 2022.
https://doi.org/10.1007/978-3-031-10986-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10986-7_14&domain=pdf
https://doi.org/10.1007/978-3-031-10986-7_14


High-Performance Multi-stage Semi-asynchronous Federated Learning 173

A serious problem arises when applying FL to practical training: the data
among devices are heterogeneous, i.e., non-independent and identically dis-
tributed data (Non-IID) [6,7]. Numerous researches have demonstrated that
when training on heterogeneous data, local models based on the same initial
model eventually converge to different models, which introduces unpredictable
bias to the global model and results the deterioration in accuracy and conver-
gence speed. Previous studies are mainly devoted to addressing the problem of
Non-IID data in FL from two main perspectives. In a part of the work, sophisti-
cated federated optimization methods are explored to restrict the weight diver-
gence of local models. For example, FedProx [8] tackled the data heterogeneity
by adding a bound term on the locally trained optimization objective. For pre-
venting unstable and slow convergence on Non-IID data, SCAFFOLD [9] used
variance reduction to correct the “client-drift” in each client’s local updates.
Methods in another part of the work such as data extension are used to gener-
ate homogeneous data in FL. Zhao et al. proposed to use globally shared data
for training to deal with Non-IID. Astrea [10] alleviated the global data imbal-
ance based on Z-score data augmentation and solved the local imbalance by
mediator-based multi-device rescheduling.

However, the above researches mainly focus on improving the convergence
accuracy, neglecting the training efficiency problems [11–13] that arise when FL
is applied to heterogeneous devices. Since it must wait for the straggler devices
before aggregating in each round, the server aggregation timing is actually deter-
mined by the slowest straggler, which increasing the time per round. Further-
more, fast training devices are idle for a long period of time until aggregation
even though they have the capacity to engage in continuous training, leading to
low resource utilization.

To solve the above issues, we propose a high-performance Multi-Stage Semi-
Asynchronous FL (MSSA-FL) framework. Inspired by one of our key insight that
unbalanced data can be combined into a large data set approximately balanced,
MSSA-FL adopts a group-based multi-stage training method. Especially, com-
bination module aimed at clustering devices with similar data distribution and
grouping clusters with complementary data distribution. Through flexible multi-
stage training strategy, MSSA-FL obtains approximately IID dataset training
effect within group. To achieve the goal of efficiency optimization under the
accuracy requirement, our proposed semi-synchronous update method with rea-
sonable aggregation conditions boosts the frequency of model updates and allows
more idle devices to participate in the training. To mitigate the impact of model
staleness, we propose a heuristic aggregation method by adjusting the model
aggregated weights. Considering the impact of different devices on the perfor-
mance, in our model assignment strategy, we mainly exploring the training order
of devices which include the hard-to-train labels and strategically increasing the
participation opportunities for capable facilities to obtain the further perfor-
mance improvement. In summary, the main contributions of our work are as
outlined as follows:
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– We propose a novel multi-stage semi-asynchronous federated learning (MSSA-
FL) framework to solve the heterogeneous data issue and improve the training
efficiency.

– We design a combination module for MSSA-FL to infer devices data distri-
bution and group devices for the purpose of following multi-stage training.
Guided by grouping results, we propose a multi-stage training method to
make models trained on an approximate IID dataset combination, achieving
the effect of improving the global model accuracy.

– We propose a semi-asynchronous update method to improve the low efficiency
of synchronous FL. Furthermore, combining the characteristics of MSSA-FL,
a model assignment strategy and an aggregation method for stale models are
proposed to further boost the performance of MSSA-FL.

– We conduct extensive experiments to evaluate the effectiveness of the MSSA-
FL algorithm on different publicly available datasets. The experimental
results show that our approach is effective in both improving model accu-
racy and accelerating model training.

2 Related Work

The further integration of edge computing [14,15] and artificial intelligence
[16,17] has promoted the rapid advancement of federated learning [2]. Federated
learning (FL) [18], considered one of the most emerging distributed training tech-
niques, provides a solution for privacy-preserving distributed machine learning.
At present, multiple works are devoted to applying FL in real-world scenarios,
which are mainly embodied in the following two aspects: (1) achieving higher
convergence accuracy of FL with heterogeneous data [19,20,20]. (2) boosting the
efficiency of FL.

Convergence Accuracy Improvement. Several efforts had been made to
cope with the deterioration in accuracy and convergence speed of FL due to Non-
IId data. Li et al. proposed FedProx [8] by adding a heterogeneity bound to tackle
heterogeneity. Zhao et al. [7] used the earth mover’s distance (EMD) to quantify
data heterogeneity and proposed to use globally shared data for training to deal
with Non-IID. FedMA [21] demonstrated that the result of aggregation can be
affected by the permutations of layers and proposed a layer-wise aggregation
strategy to improve global model accuracy. Duan et al. proposed Astrea [10]
where devices with complementary data are divided into a group every round
by mediators and the global model is obtained by synchronously aggregating all
mediators’ models which are trained sequentially on devices within groups.

Efficiency Improvement. In terms of boosting efficiency of FL, Nishio et al.
proposed FedCS [22], in which server selects as many devices as possible to train
the model in a limited time interval based on the resource of devices. Xie et al.
proposed asynchronous FL [23], where the server performs aggregation as soon
as it receives a local model from any device. Wu et al. proposed a new semi-
asynchronous federated learning protocol SAFA [24] that classifies devices into
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latest, stale and tolerable and used discriminative aggregation with caching to
solve the problem of inefficient rounds and poor convergence speed of federated
learning in extreme cases. In [25], Xu et al. proposed a “soft-training” approach
to accelerate the stragglers by compressing the training models of stragglers.

However, there are few efforts to improve the overall performance of FL by
considering convergence accuracy and efficiency together. We propose a high-
performance multi-stage semi-asynchronous FL framework (MSSA-FL), consid-
ering the degradation of model accuracy due to Non-IID data and the inefficiency
of synchronous updates on heterogeneous devices.

3 MSSA-FL: Multi-stage Semi-asynchronous Federated
Learning

3.1 Framework Overview

The overall framework of MSSA-FL is shown in Fig. 1. High-performance multi-
stage semi-asynchronous federated learning contains the following components:
Multi-Stage Training, Semi-Asynchronous Training, Model Assignment and
Model Aggregation. It is worth noting that the combination module in server as
the key part of the framework solve the problem of data heterogeneity through
clustering and grouping. Devices with similar data distribution are divided into
clusters, and multiple clusters with complementary data distribution form a
group.

The detail workflow of MSSA-FL can be described as follows. Step 1: Server
starts one round pre-training and divides the devices into clusters and groups
through the combination module. Step 2: Selected devices download the global
model. Step 3: Devices train the received model on local dataset and upload the
weight updates to the server after completion. Step 4: Server receives the local
models and judges whether they have completed the multi-stage training. The
completed models are aggregated to update the global model. While the unfin-
ished models are sent to the corresponding devices according to their missing
training stages and repeats Step 2, 3.

We will introduce our proposed methods in detail in the following subsections.

3.2 Combination Module and Multi-stage Training

Attributing the effect of data heterogeneity to the fact that local models trained
on data with different data distributions have different optimization directions
and unpredictable biases would be introduced into the global model through
model aggregation. Therefore, in this section, we design a combination module to
achieve an approximate IID data distribution within the group and accordingly
propose a multi-stage training approach to solve the problems caused by data
heterogeneity.
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Fig. 1. Overview of MSSA-FL framework.

Combination Module. In order to form a balanced local dataset within a
group, the main works of the combination module include: (1) Divide devices
with similar data distribution into the same cluster. (2) Divide clusters with com-
plementary data distributions into a group to form a locally balanced dataset.

Device Clustering. Several cluster federated learning (CFL) schemes [26–28] have
been proposed infer whether customers have similar data distributions from
updates of their local models. In this section, we follow the client clustering
approach in [26], using the cosine similarity of the clients’ weight updates as the
proximities of the local optimizations. The cosine similarity between the updates
of any two devices i and j is defined as follows:

CS(i, j) =
〈Δω(i),Δω(j)〉

||Δω(i)|| ||Δω(j)|| (1)

In our approach, parameter updates are obtained for the local model of each
device through one round pre-training. To reduce the bias of cosine similarity,
the mean of absolute differences of pairwise cosine similarity is used as the dis-
similarity measure for clustering, as follows:

MADC(i, j) =
1

n − 2

∑

z �=i,j

|CS(i, z) − CS(j, z)| (2)

With the above clustering method, the server divides all devices into multi-
ple clusters, and the devices in each cluster have similar data distribution. As



High-Performance Multi-stage Semi-asynchronous Federated Learning 177

shown in Fig. 1, there are three clusters and each cluster has multiple devices
with similar data distribution.

Cluster Grouping. Although devices are clustered, the data distribution of each
cluster is still unknown. So we need to accomplish the following two works, infer-
ring the data distribution of each clusters and determining the group member
clusters that may achieve data balance within a group.

We leverage the method proposed in [29], using auxiliary dataset to infer
the data composition of each cluster. First, after client clustering, server selects
a representative device in each cluster to represents the data distribution of its
cluster. Next, establish the (3) to infer the composition of training data by finding
the relationship between the data of a specific label and the weight change of
the output layer.

Δωp
(p,i) · N̂p,i + (

Q∑

p=1

N j
p − N̂p,i)

∑Q
j=1(Δωj

(p,i)) − Δωp
(p,i)

Q − 1
= np

a · (ωk
p,i − ωG

p,i) (3)

where ωk is the local model of device k after pre-training, ωG is the initial global
model. Q is the number of labels. Δωj

(p,i) is the i-th weight update of the p-th
output node from gLj

and gLj
is the weights update obtained by training the

ωG on the samples of class j in the auxiliary dataset. np
a is the sample number of

class p in the auxiliary data, N̂p is the predicted sample quantity of class p, ωk
p,i

and ωG
p,i are link weights ω(p,i) of ωk and ωG, respectively.

∑Q
p=1 N j

p is the overall
number of all samples owned by device k. And we can obtain the final result as
the average value of all calculated N̂p,i (denoted as N̂p). Finally, cluster’s data
composition can be obtained after all classes are calculated.

KL divergence is used to measure the similarity of two distributions. The
server computes all combinations of clusters and calculates the KL divergence
between the data distribution for each combination and the ideal data distri-
bution. Here, the ideal data distribution can be a uniform distribution with
balanced labels. The server picks the combination result with the smallest KL
divergence until all clusters are included in a certain group. The detail of com-
bination module is described in Algorithm 1.

As illustrated in Fig. 1, since the data distribution of cluster1 is closest to
the ideal data distribution, cluster1 forms group1 by itself. Similarly, cluster2
and cluster3 form group2 because their combined data distribution is almost
balanced. By combination module, a locally balanced dataset is approximately
generated in each group.

Multi-stage Training. A natural motivation to address data heterogeneity in
FL is to supplement the imbalanced data in the device so that the local models
are trained on IID dataset. Considering the protection of private data, the server
transfer the model between multiple devices and perform multiple trainings to
solve the local data Non-IID problem in FL.

It is significant to identify the devices that can form a balanced data set.
Thus, we present the combination module described above, whose result guide
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Algorithm 1: Device Grouping Algorithm
Input: the number of clusters nclusters, uniform distribution Pu, global initial

model ωinit. Dkl is Kullback-Leibler divergence.
Output: the grouping result Group
Get all devices’ weight updates by a round pre-training.
CS ← Cosine similarity between any two devices according to (1)
MADC ← Calculate MADC(CS) using (2)
Scluster ← Hierarchical Clustering(MADC, nclusters)
Sdis ← Estimates the empirical data distribution of clusters according to (3)
Scom ← Combinations(Scluster, Sdis)
while | Scluster | > 0 do

g = arg min
k

(Dkl(Pk||Pu)), k ∈ Scom

for cluster in g do
Scluster ← Scluster − cluster

end
if |Scluster| is changed then

Group ← Group + g
end

end
return Group

the determination of which devices compose the locally IID dataset. In the com-
bination module, devices with similar data distribution generate a cluster, and
the data distribution of devices within the cluster can be further inferred. Each
cluster appears to be a virtual local device whose data distribution is known.
Accordingly, the combination module is capable of grouping clusters with com-
plementary data distributions so that a locally balanced dataset is generated
within each group. After completing all stages of training in a group, the local
model is equivalent to being trained on the IID dataset, which narrows the gap
between local models and reduces the bias introduced to the global model during
aggregation in server.

Simultaneously, based on combination module, multiple devices in the same
cluster are assigned the same function to provide that stage of training. A device
can release training resources after completing local training without waiting for
the current model to complete all stages, allowing such devices to immediately
provide training for other intra-group models. As a result, the training resources
for intra-group models are more flexibly satisfied and the device utilization is
improved because of the opportunity for training multiple models.

3.3 Semi-asynchronous Training

Although the multi-stage training strategy can solve the problem of data hetero-
geneity, it poses a challenge for system efficiency. Compared to single training for
each client per round in FedAvg, multi-stage training makes models train mul-
tiple times before aggregation, resulting in extended training time per round.



High-Performance Multi-stage Semi-asynchronous Federated Learning 179

Fig. 2. Illustration of different FL operating principles. Suppose device A and device
B are in one cluster, device C and device D are in another cluster. These two clusters
form a group.

Furthermore, device heterogeneity may lead longer device idle time when syn-
chronizing updates.

Considering the degradation on efficiency of multi-stage training, we adopt
a compromise solution, a semi-asynchronous update approach. In our semi-
asynchronous update approach, the server will aggregate the models in the fol-
lowing two cases: (1) A specified number of models complete multi-stage training
in the current round. (2) The time limit has been reached in the current round.
Consequently, the server only synchronously aggregates models that have com-
pleted multi-stage training within the round time. Residual models will keep
training asynchronously to participate in aggregation on subsequent rounds.

Figure 2 depicts above synchronous and semi-asynchronous algorithms’ oper-
ating principles. In FedAvg, only a few devices are selected to train in each
round, and the aggregation of models occurs as the slowest device completes its
local training. As for multi-stage training, although all devices participate in the
training, the round time increases significantly due to the multiple trainings per
model (e.g., B → D, C → A). With that comes longer wait time for idle devices.
In the semi-asynchronous training, because of exceeding the round time limit,
the server updates the global model in advance and adds new models in the
next round. Thus, semi-asynchronous update increases the frequency of global
model updates and makes more models to be trained in a round, providing more
devices the opportunity to overtrain.
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3.4 Model Assignment

In this section, we propose an assignment strategy for intermediate model which
have not completed all stages of training to select the suitable device for next
training stage.

Training Sequence Optimization. We observed that the model loses part of
the knowledge learned previously when it is trained on a new dataset, so it can be
inferred that the last stage of the multi-stage training has the largest contribution
to the model. Inspired by the above, we propose a method to determine the order
of multi-stage training based on the recognition ability of the global model for
different labels.

First, we use recall rate, which can be obtained through the validation of the
global model on server, to measure the ability of the model to recognize a certain
label samples. Then, we adopt the idea of z-score based outlier detection and con-
sider classes with scores grater than the threshold to be low-accuracy labels and
add them to set Slow. For a intermediate model, we assume Sls =[c1, c2, ..., cg]
as the clusters corresponding to its lacking stages. We add the data proportions
of classes in Slow to get [q1, q2, . . . , qg]:

qj =
∑

l∈Slow

Dislj , j ∈ Sls (4)

where Dislj is the proportion of data with label l of cluster j. Clusters with larger
q-value usually have more data samples with low-accuracy labels and they are
should be trained in the back of the queue, for enhancing the absorption of more
difficult knowledge. To maintain stochasticity in the order, we randomly select
the next stage of clusters among the �g/2� clusters with the smallest q.

Device Selection. Device heterogeneity causes a training speed difference
among devices. By increasing the probability of being selected for devices with
short training time, we expect to involve more high-speed devices in training to
get more models aggregated in less time. The probability of a idle device k to
be selected is:

pk =

∑
j∈IC

1
tj

tk
(5)

where IC is the set of idle devices that may be selected for the next stage of
the model and tk is the training time of device k which can be taken from
historical performance. To prevent fast devices from being selected frequently
and introducing bias, we set a credit for all device in each federated round. The
credit decreases as the device is selected, and the server will not select devices
without any credit.

3.5 Model Aggregation

Considering the problem that local models accomplished in the same round may
originate from different versions of the global model in the asynchronous update
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method. As shown in Fig. 2(c), the server collects two models with different
versions (CA-0 and DB-1 ) at the end of second round. In this section, we modify
the original aggregation method to reduce the influence of staleness models on
the global model.

The server maintains a global model version τg, which is incremented when
completing aggregation. And the version of the model k, τk, is defined as the
current τg when it is first sent to a device. Consequently, the staleness of an
aggregated model k is:

ak = τg − τk. (6)

Our motivation is to assign larger aggregate weights to models with smaller
staleness to support fresher local updates. Thus, we define the aggregated weights
of model k as:

pk(t) =
|Nk|γak(t)

∑
i∈M(t) |Ni|γai(t)

1(k ∈ M(t)) (7)

where |Nk| is the data size of model k during training, ak(t) is the staleness of
model k at round t and M(t) is the set of models to be aggregated at round t.
Here, γ is a real-valued constant factor less than 1.

Eventually, the global model of MSSA-FL will be updated according to the
following equation:

ωt+1 =
∑

k∈M(t)

pk(t) × ωt
k (8)

4 Experiment

4.1 Experimental Setup

We implement our proposed MSSA-FL and verify the effectiveness of our pro-
posed method by comparison and analysis.

Datasets and Models. We adopt two widely used public data sets, MNIST
and CIFAR-10, and use convolutional neural networks (CNN) for image classi-
fication task. The CNN network for MNIST contains: two 5 × 5 convolutional
layers (the first has 10 channels, the second has 20, each followed with 2×2 max
pooling), a fully connected layer with 50 units and ReLu activation, and a final
output layer. As for CIFAR-10, the model consists of three 3 × 3 convolution
layer with 128 channels and a fully connected layer with 10 units.

Implementation Details. As for the data heterogeneity between devices, we
follow the similar method in [30] and use a Dirichlet distribution Dir(α) to gen-
erate data partitions for devices, where α is a hyperparameter that can determine
the degree of Non-IID data partition. In order to simulate the heterogeneity of
devices, we assume that the performance of the devices follow the Gaussian dis-
tribution N (a, b)(a = 0.5 and b = 0.2). Meanwhile, we define the performance
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of a device as the number of batches it can process per second in training. We
ignore the communication latency between devices and the server.

Baseline Algorithms. In order to exhibit the superiority of MSSA-FL, we
reimplement other FL schemes for comparison: FedAvg [18], FedProx [8] and
FedAsync [23], which are representative synchronous and asynchronous FL pro-
tocols. We set μ to 1 for FedProx and keep the maximum staleness of the model
at 4 for FedAsync. The settings of other hyperparameters are shown in Table 1.

Table 1. Experimental setup

Parameter Symbol MNIST CIFAR10

Total number of devices N 100 100

Device selection level C 0.1 0.1

Local epochs E 5 5

Mini-batch size B 50 32

Learning rate η 0.001 0.005

Maximum time per round (s) t 400 500

Running time (s) T 30,000 150,000

4.2 Experimental Results

Accuracy Evaluation. Table 2 and Fig. 3 illustrate the experimental results
on convergence accuracy with representative α values. impr. (a) and impr. (b)
are the accuracy improvement of MSSA-FL compared with the best and worst
baseline FL Algorithm, respectively.

Table 2. Comparison of the best prediction accuracy to baseline approaches.

Dataset MNIST CIFAR-10

α = 0.1 α = 1 α = 10 α = 0.1 α = 1 α = 10

FedAvg 76.55 91.89 92.28 53.09 68.33 70.42

FedProx 81.02 91.74 92.07 51.36 67.69 70.17

FedAsync 88.13 92.34 92.86 55.19 68.08 68.52

MSSA-FL 90.42 93.71 93.92 59.35 70.93 71.02

Impr. (a) 2.29% 1.37% 1.06% 4.16% 2.60% 0.60%

Impr. (b) 13.87% 1.97% 1.85% 7.99% 3.24% 2.50%

Under all experimental settings, MSSA-FL has the highest model accuracy. It
can be seen a greater performance advantage of MSSA-FL as the α decreases. In
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(a) MNIST(α=0.1) (b) MNIST(α=1) (c) MNIST(α=10)

(d) CIFAR-10(α=0.1) (e) CIFAR-10(α=1) (f) CIFAR-10(α=10)

Fig. 3. Performance comparison of different FL algorithms on MNIST and CIFAR-10
with α = 0.1, α = 1 and α = 10.

the MNIST with α = 0.1, MSSA-FL outperforms the best baseline FL algorithm,
FedAsync, by 2.29%, and the worst baseline algorithm, FedAvg, by 13.87%. In
the MNIST with α = 10, MSSA-FL outperforms the best baseline FL algorithm,
FedAsync, by 1.06%, and the worst baseline algorithm, FedProx, by 1.85%. There
is the similar performance result in CIFAR-10. MSSA-FL improves the predic-
tion performance by 6.56%, 2.60%, 0.60% compared to FedAvg with α = 0.1,
α = 1, and α = 10. The above results demonstrate that the multi-stage training
strategy in MSSA-FL solve the data heterogeneity problem and improves the
accuracy of the model. When α is large, MSSA-FL generates more groups with
a single cluster (only a single cluster in a group is the best grouping result).
Therefore, MSSA-FL would degenerate into a algorithm similar to FedAvg.

Efficiency Evaluation. Table 3 shows the time required to reach the target
accuracy when specific α value (α = 0.1). In MNIST, MSSA-FL saves 68.56%
and 67.98% time over FedAvg and FedProx. As for CIFAR-10, MSSA-FL saves
22.50% and 47.98% time over FedAvg and FedProx. FedAvg and FedProx use the
same synchronous update method, so they always take longer to reach the target
accuracy. FedAsync outperforms the above synchronous methods in terms of
time efficiency. By contrast, MSSA-FL still reduces the training time by 17.06%
and 12.37% in MNIST and CIFAR-10.

Figure 4 shows the average idle time per round of devices in different algo-
rithms under homogeneous and heterogeneous device settings. MS-FL is the
multi-stage synchronous federated learning described in Sect. 3.3. It can be seen
that MSSA-FL has minimal device idle time in heterogeneous setting and also
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Table 3. Time(s) to achieve the target accuracy.

Algorithms MNIST (Acc.= 0.8) CIFAR-10 (Acc.= 0.5)

FedAvg 27536.14 90590.97

FedProx 27036.13 134954.31

FedAsync 10439.65 80113.95

MSSA-FL 8658.13 70205.36

(a) Homogeneous devices. (b) Heterogeneous devices.

Fig. 4. Average device idle time per round.

good performance in homogeneous setting. MSSA-FL allows faster devices train
more frequently, which lessens the time of multi-stage training and lets more
devices to train in a round. Though FedAvg achieves the shortest device idle time
in homogeneous setting, when devices are heterogeneous, slow devices severely
block FedAvg training. Due to the longest round time, MS-FL always has the
largest device idle time.

Effectiveness of Combination Module and Model Assignment Strat-
egy. We implement two variants of MSSA-FL, MSSA-RG (MSSA-FL with ran-
dom groups) and MSSA-NMA (MSSA-FL without model assignment policy).
Figure 5 shows the comparison results of MSSA-FL and MSSA-RG, MSSA-NMA
in MINST with α = 1. In Fig. 5(a), we sample the results every 15 rounds and
calculate the accuracy of the model formed in each group at the sampling points
(the range of accuracy of different groups’ model is marked by error lines). MSSA-
FL achieves a faster convergence speed and higher accuracy than MSSA-RG. At
the same time, the variance of model accuracy for different groups in MSSA-FL
is smaller than MSSA-RG, demonstrating the effectiveness of the combination
module. As shown in Fig. 5(b), MSSA-NMA achieves the accuracy as high as
MSSA-FL. However, it takes 8835.3 s to reach 80% accuracy, which is 13.46%
longer than MSSA-FL (7646.41 s). Consequently, model assignment strategy is
able to speed up the convergence of the model.
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(a) MSSA-FL v.s. MSSA-RG (b) MSSA-FL v.s. MSSA-NMA

Fig. 5. Efficiency evaluation of proposed methods.

5 Conclusion

In this paper, we have proposed a novel FL framework, MSSA-FL to address the
heterogeneous data issues and improve the training efficiency. By combination
module, MSSA-FL enables to infer devices data distribution and group devices
for the purpose of following multi-stage training. MSSA-FL requires the mod-
els trained in multi-stage within the group to achieve approximately IID dataset
training effect, reducing the impact of Non-IID data among devices. For boosting
training efficiency, MSSA-FL adopts the semi-asynchronous update method. Fur-
thermore, we designed a model scheduling strategy and a heuristic aggregation
method to further improve the performance of MSSA-FL. We conducted exten-
sive experimental validation and demonstrated that MSSA-FL has the highest
prediction performance and fastest convergence speed compared with advanced
synchronous and asynchronous FL algorithms.
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