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Abstract. Traditional drug discovery process has made a major contribution to
pharmacotherapy, but also confer big challenges: it is time-consuming, expensive,
and laborious. In recent years, the computational drug repositioning methods are
used to address such challenges and bring up new opportunities. The drug-disease
association prediction is a crucial task towards computational drug repositioning.
In this paper, we propose a new computational method termed CFDDA which
employs graph-based neural collaborative filtering to effectively predict the poten-
tial indications of existing drugs. 10-fold cross validation on benchmark dataset
shows that the proposed model achieves a promising performance in predict-
ing drug-disease association compared with other state-of-the-art methods. The
obtained AUPR of 0.539 absolutely outperforms the baselines and the AUC of
0.9103 is comparative to the best model. Moreover, the predicted drug indications
are validated by published literature to confirm the effectiveness of our method in
practical application.
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1 Introduction

Traditional drug development is a time-consuming, expensive and high-risk process.
According to reports, the total development time of a new drug is at least 10–15 years,
with an average cost of $2.6 billion [1]. In view of the difficulties and challenges of
traditional drug development, it is worth the effort to identify new therapeutic uses for
existing drugs. This kind of drug development methods is known as drug repositioning.
Computational drug repositioning helps rapidly identify new indications for market
drugs using computation-based methods, such as network inference, machine learning
and deep learning.

To date, the computational methods used to predict the undetected drug-disease
association can be classified into three categories: network-based propagation, machine
learning-based methods and deep learning-based methods. Network-based propagation
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methods generally spread information iteratively to neighboring nodes through edges
in the network [2]. Traditional machine learning techniques have been widely used to
build biological entity association prediction model [3]. However, feature engineering
in machine learning is a laborious and time-consuming task which requires a decent
amount of domain knowledge. Instead, deep learning is thriving owing to its capacity of
learning distributed feature representation automatically through multi-level nonlinear
transformation, and is widely used to complete complex downstream tasks. For instance,
an increasing number of deep learning-based recommendation algorithms are used to
predict potential drug-disease association [4]. The extensively used techniques in CF
recommendation include matrix factorization (MF), neural collaborative filtering (NCF)
and graph neural network (GNN), etc. [5–7]. Recently, neural graph collaborative fil-
tering (NGCF) model has attracted more and more attention [7, 8]. Inspired by such
studies, graph neural collaborative filtering (GNCF) has been used in biological entity
prediction tasks such as drug-disease associations prediction and polypharmacy side
effects prediction [9, 10].

Inspired by the succeed of CF methods in recommendations, this paper focuses on
collaborative filteringmodels for drug-disease associations (DDA) extraction, especially
on NGCFmodel. Here we propose a new end-to-end framework, termed CFDDA, using
collaborative filtering methods for DDA prediction. First, we conduct a comparative
study on various collaborative filtering algorithms and investigate their advantages in our
task. Next, we combine the advantages of several typical CF models to explore diverse
perspectives of node representation for purpose of enhanced prediction performance.
Further, considering the cold start problem which is most common in CF recommenda-
tion system, we add the auxiliary information from drug/disease similarity measures to
our framework. Finally, CFDDA is applied to predict the potential drug-disease associ-
ations accurately and effectively. The overall schematic framework of CFDDA is shown
in Fig. 1.

Fig. 1. The overall schematic framework of CFDDA model
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2 Materials and Methods

2.1 Dataset

Known Drug-Disease Associations
Two published datasets, i.e. PREDICT [11] and CDataset [12], were employed in our
experiment to validate the proposed model. There are 1933 known drug-disease asso-
ciations involving 593 drugs and 313 diseases in the PREDICT, and 2532 known drug-
disease associations including 663 drugs and 409 diseases in the CDataset. For each
dataset, drugs were derived from DrugBank [13], while diseases were acquired from
Online Mendelian Inheritance in Man database (OMIM) [14]. The known associations
can be viewed as a bipartite network between drugs and diseases. For convenience, the
bipartite network is presented as a binary matrix Y ∈ Rm×n, where m and n denote
the dimension of the matrix same as the number of drugs and diseases. The entry yij
in the matrix is set as 1 if drug ri has a known association with disease dj, or yij = 0
conversely. It is worth to mention that verified interactions between drugs and diseases
are very sparse, and the percentage of unverified associations is above 98%.

Similarity Matrices
The molecular structure of drugs is denoted by the notation of Simplified Molecular
Input Line Entry Specification (SMILES) [15]. Base on the SMILES, PubChem finger-
print descriptors are calculated via the Chemical Development Kit (CDK) [16]. Then,
pairwise drug similarity based on their feature profiles, i.e. fingerprint, is measured by
the Tanimoto score. The calculated drug similarities are denoted by a m × m matrix sr ,
where the entry sr(i, j) is the similarity between drug ri and drug rj. The similarities
between diseases are obtained from MimMiner [17], which used text mining approach
to compute similarity between two diseases from the OMIM database. The disease sim-
ilarities are represented by a n × n matrix sd , where the entry sd (i, j) is the similarity
between disease di and disease dj.

2.2 GCN-Based CF Module

Here we descript the procedure of node encoding using graph convolutional network
(GCN) framework. The common GCNs contain three operations: 1) feature transforma-
tion, 2) non-linear activation, and 3) neighborhood aggregation. Specifically, given an
undirected graph with nodes X and adjacency matrix A, a multi-layer neural network is
constructed on the graph with the following layer-wise propagation rule:

H (l+1) = f
(
D̃− 1

2 ÃD̃− 1
2H (l)W (l)

)
(1)

whereH (l+1) is the eigenvector matrix of drugs and diseases obtained after l step embed-
ding propagation. H (0) is assigned as X that can be randomly initialized. Ã = I + A
denotes the adjacency matrix with self-connection added and D is a degree matrix
such that Dii = ∑

i Ãij, thus entry dii denotes the number of non-zero elements of
the i-th row vector in the adjacency matrix A. The Laplacian matrix is defined as
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L̃ = D̃− 1
2 ÃD̃− 1

2 , D̃ = I + D, and I denotes the identity matrix. W (l) is a layer-specific
trainable transformation matrix.

In our experiment, we find that the three-operations in GCN not always are necessary
to strengthen a model. So we build two types of GCNmodels with different components,
which are termed as GCN1 and GCN2 respectively. GCN1 combines all the three oper-
ations of feature transformation, nonlinear activation and neighborhood aggregation but
GCN2 only contains neighborhood aggregation.

GCN1 Formulation
Given the drug-disease interaction matrix R, we get the adjacent matrix A and its degree
matrix D, shown in formula (2). The Laplacian matrix L is calculated as follows:

A =
[
0 R
RT 0

]
,L = D− 1

2AD− 1
2 (2)

According to the propagation rules, the network embeddings of nodes are calculated
as follows:

H (l) = LeakyReLU (L̃H (l−1)W (l)
1 + LH (l−1) � H (l−1)W (l)

2 ) (3)

where H (l) is the node embeddings obtained by l iterations of information propagation;
L̃ = L + I , and � denotes the element-wise product. LeakyReLU is the activation
function. The other symbols’ definition is similar to formula (1). Finally, we concatenate
the outputs of all convolutional layers to obtain the embedding of drug ri as formula (4):

eGCNri = h(0)
ri || . . . ||h(l)

ri (4)

where h(l)
ri and h(l)

dj
denote the l-th layer embeddings of drug ri and disease dj respectively;

|| means concatenation. Similar as eGCNri , we can obtain eGCNdi
as the GCN embedding of

disease di. Then the interaction feature of drug-disease pair (ri, dj) are calculated by a
elements-wise product � in formula (5):

eGCNij = eGCNri � eGCNdj (5)

GCN2 Formulation
Compared to GCN1, GCN2 only use the convolutional operation as formula (6):

H (l) = LH (l−1) (6)

Considering that different convolutional layer has different contribution to the final
node embeddings. Instead of equally concatenating the embeddings from different layers
as formula (4) did, we apply a weighted sum method to aggregate the embeddings as
follows:

eGCNri = α0 h
(0)
ri + α1 h

(1)
ri + α2 h

(2)
ri + . . . + αl h

(l)
ri (7)

where αi is a trainable weight for the l-th layer embedding h(l). Similar as eGCNri , we can
obtain eGCNdi

as the GCN embedding of disease di. Then the two node embeddings are
integrated by a elements-wise product �:

eGCNij = eGCNri � eGCNdj (8)
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2.3 Neural CF Module

TheNeural CFmodule is borrowed fromNCF frameworkwhichwas originally proposed
for recommendation [6]. It consists of two parts:MF layer andmultiple linear perceptron
(MLP) layers.

MF Layer
We use eMF

ri and eMF
dj

to respectively denote the embeddings of drug ri and disease dj
that are learned from the input of their one-hot vector pair. MF layer leverages a linear
operation � to get the interaction characteristics of the pair (ri, dj):

eMF
ij = eMF

ri � eMF
dj (9)

MLP Layers
First, we learn the node representations eMLP

ri and eMLP
dj

from embedding layer for drug ri

and disease dj. Then they are concatenated to get the simple interaction feature eMLP(0).
Next, an l-layers MLP uses the non-linear function ReLU to explore the deep interaction
features:

eMLP(0)
ij = eMLP

ri ⊕ eMLP
dj (10)

eMLP(l)
ij = ReLU (eMLP(l−1)

ij W l + b(l)) (11)

where ⊕ is the concatenation operation; W (l) and b(l) are the trainable weight and bias
value of the l-th MLP layer respectively.

2.4 Learning Similarity Features by Weighted Random Walk

We view the similarity as a weighted network, then the weighted randomwalk algorithm
(WRW) derived from Deepwalk [18] is employed to learn comprehensive features of
drugs and diseases. First, given a start node in the network, the random walk algorithm
is used to extract node sequence on the walk path, and then the SkipGram [19] model
is applied to learn node embeddings. In this way, we obtain drug embedding eWRW

ri and
disease eWRW

dj
respectively. Finally, we take eWRW

ri and eWRW
dj

as the input to learn further
feature representation by MLP. The procedure is similar to formula (11), so we don’t
repeat it. The outputs of MLP are interacted by a elements-wise product:

eWRW
ij = eWRW (l)

ri � eWRW (l)
dj

(12)
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2.5 CFDDA Model

Model Formulation
We model the drug-disease relationships prediction process as a binary classification
problem. The output of the model is a probability y

∧

ij, which is used to predict whether
there is a potential treatment relationship between sample pair:

y
∧

ij = σ
(
h
(
eMF
ij ⊕ eMLP

ij ⊕ eGCNij ⊕ eWRW
ij

)
+ b

)
(13)

where eMF
ij , eMLP

ij , eGCNij and eWRW
ij have been mentioned above; σ, h and b denote

the activation function, weight and bias value of the output layer respectively. Here,
we choose sigmoid as the activation function and update the h value through back
propagation in the training stage.

Loss Function and Training Process
The loss between the predicted value and the target value is defined as binary cross-
entropy loss:

L(θ) = −
∑
(i,j)

yi,jlogy
∧

i,j +
(
1 − yi,j

)
log

(
1 − y

∧

i,j

)
+ λ‖θ‖ (14)

where yi,j denotes whether there is an observed association between the drug ri and
the disease dj (0 or 1), y

∧

i,j denotes the predicted drug-disease association score, (i, j)
denotes a training sample. θ denotes the model parameters, λ denotes the regularization
parameter. L(θ) is the loss function to be minimized, and we use Adam optimizer to
minimize the loss function.

Parameter Settings
The training epochs is 80. The learning rate is 0.001. The batch training size is 64. The
number of negative samples is 5. The embedding size of MF part is 16. The embedding
size of the MLP part is 64, and the dimension of the subsequent hidden layer is [64, 32,
16]. The embedding size of GCN part is 16, and the number of convolution layers is 3.
The embedding size ofWRWpart is 16. Researchers can adjust regularization coefficient
by themselves.

3 Results and Discussion

3.1 Evaluation Metrics

We conducted a 10-fold cross-validation using golden standard datasets PREDICT and
CDataset to evaluate the performance of CFDDA. In the 10-fold cross-validation, all
known drug-disease associations in the dataset are randomly divided into 10 subsets.
Each subset in turn serves as the test set, and the other 9 subsets serve as the training set.
The cross-validation process is repeated 10 times and the averaged result is taken as the
final performance report. In each fold, CFDDA model is trained on the training set, and
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then used to predict the associations in the test set. According to the prediction scores, the
area under curve (AUC) and the area under precision-recall curve (AUPR) are selected as
metrics to evaluate the predictionmodel. Since recent studies have shown that AUPR can
provide more informative assessments than AUC on highly unbalanced datasets [20],
we attach more importance to AUPR in the following experiments. Besides, we also
use the metric of hit ratio (HR)@n that is usually adopted in recommendation system to
measure the accuracy of top-n recommendations in the ranking list.

3.2 Performance Comparison of Various CF Models

Each CFmodel has its distinct advantage in feature representation so as to have different
recommendation performance. Here we conducted experiments to explore the properties
of several typical CF models, such as MF, NCF, GCN. It is worth mentioning that we
developed two differentGCN-basedmodels:GCN1 andGCN2. The parameters involved
in these CF methods are set through grid search, and the default values will refer to the
original papers that proposed thesemethods. Table 1 shows theAUC,AUPRandHR@10
obtained by four prediction methods on PREDICT.

Table 1. Performance of CF models on PREDICT

AUC AUPR HR@10

MF 0.8771 0.4221 0.6612

NCF 0.8856 0.4994 0.6648

GCN1 0.8989 0.5234 0.6912

GCN2 0.9005 0.3926 0.6813

As the result shown in Table 1, two GCN models achieve better performance than
MF and NCF in all metrics, except the AUPR of GCN2. Moreover, GCN1 outperforms
GCN2 with the AUPR of 0.5234 and HR@10 of 0.6912 respectively. Specifically, the
AUPR of GCN1 is 13% higher than GCN2 method.

MF is a linearmodel that only uses simple andfixed inner product to estimate complex
drug-disease associations in low-dimensional potential space.NCF framework integrates
MF and MLP methods. Since MLP uses nonlinear function to learn deep interaction
features of drugs and diseases, it greatly enhances NCF performance. However, MF
and NCF cannot encode topological information. Comparatively, GCN-base methods
perform information propagation on the bipartite graph from drug-disease associations
to model the high-order connectivity of the graph structure. Specifically, GCN2 only
retains neighborhood aggregation to reduce the model complexity and speeds up the
training progress. Accordingly, it achieves a slightly lower performance than GCN1.

3.3 Performance of Integrated CF Models

In light of the results of CF model comparison, we focus on the GCNmodel as the main
framework. To include the ability of various CF model in capturing features of drugs
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and disease, we try several combinations and compare their contribution to prediction
model. The results are reported in Table 2.

Table 2. Performance of integrated CF model on PREDICT

AUC AUPR HR@10

GCN1 0.8989 0.5234 0.6912

GCN2 0.9005 0.3926 0.6813

GCN1 + NCF 0.8905 0.5225 0.6792

GCN2 + NCF 0.9047 0.5360 0.7289

From the results, we can see that the addition of NCF toGCN1 almost has no positive
effect on the prediction performance. In contrast, the combination of NCF and GCN2
make a significant improvement on AUC, AUPR, and HR@10 which reach to 0.9047,
0.536 and 0.7289 respectively. In particular, the AUPR is 14.3% higher than simple
GNC2. SinceGCN2andNCFpay attention to distinct aspect information of drug-disease
associations, their combination helps to obtain comprehensive feature representation.

We analyze that GCN1’s complex network structure is enough to model high-order
connectivity from bipartite graphs, so adding NCF will not significantly improve per-
formance. Here, we add auxiliary information of drugs and disease from knowledge
database to alleviate the cold start problem in CF model. The experiment results demon-
strate that the auxiliary information has positive contribution to CFADD as expected,
shown in Table 3. Finally, considering the best performance we take NCF + GCN2 +
SIM as our standard model, referred to as CFDDA.

Table 3. Ablation experimental results on PREDICT

AUC AUPR

GCN2 + NCF 0.9047 0.5360

GCN2 + NCF + SIM(CFDDA) 0.9103 0.5390

3.4 Comparisons with the State-of-the-Arts Models

In this section,we compareCFDDAwith four recentmethods:NIMCGCN[21], LAGCN
[9], DisDrugPred [22],MBiRW [12].We adopt the published results or open source code
in the following experiments. The comparison between baselines and CFDDA is shown
in Table 4.
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Table 4. Comparison to baselines in the 10-fold cross validation on PREDICT

AUC AUPR

NIMCGCN 0.8352 0.1216

LAGCN 0.7617 0.1566

DisDrugPred 0.8900 0.0700

MBiRW 0.9110 0.1290

CFDDA 0.9103 0.5390

As the results shown in Table 4, we can see that CFDDA has the absolute advantage
over all baseline methods with respect to the value of AUPR which reach to 0.539. It is
crucial to the model with sparse data. As we above-mentioned, for highly unbalanced
datasets, AUPR can provide a more significant evaluation than AUC. AUPR compre-
hensively considers both real positive rate and false positive rate, so the biased dataset
has little effect on it. From Table 5 we can see that AUC of CFDDA is 0.9103 which is
a bit lower than the best model MBiRW. The reason may be that our model uses fewer
prior auxiliary information by comparison to MBiRW.

3.5 Evaluation on Extra Dataset

In order to make the prediction more convincing, we repeated the above experiment on
another dataset. The comparison results are shown in Table 5.

Table 5. Comparison to baselines in the 10-fold cross validation on CDataset

AUC AUPR

NIMCGCN 0.8654 0.1352

LAGCN 0.7890 0.1698

DisDrugPred 0.9080 0.0670

MBiRW 0.9320 0.1990

CFDDA 0.9216 0.5917

Clearly, we can see that CFDDAhas the absolute advantage over all baselinemethods
with respect to value of AUPR which reaches to 0.5917. It shows that the performance
of CFDDA on different datasets is certainly stable.

3.6 Prediction of Novel Drug-Disease Associations

To further validate the prediction ability of CFDDA, we investigate the prediction results
of the model and cite the evidence for the discoveries. The prediction scores at top 10 are
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considered, shown in Table 6. We find that eight out of ten predicted associations to be
proved in published literature. After retrieval in PubMed, we find that Trihexyphenidyl
has been proved to be one of the most useful drugs to treat Parkinson’s disease [23]. In
addition, some publications confirmed that Tiagabine is a novel antiepileptic drug that
was designed to block gamma-aminobutyric acid uptake by presynaptic neurons and
glial cells [24].

Table 6. Top 10 drug-disease associations predicted by CFDDA

Drug Disease Evidence

Pilocarpine Hypertension [25]

Methyclothiazide Enteropathy, familial NA

Melphalan Mismatch repair cancer syndrome [26]

Clofarabine Mismatch repair cancer syndrome [27]

Biperiden Parkinson disease, late-onset [28]

Orphenadrine Dystonia [29]

Trihexyphenidyl Parkinson disease, late-onset [23]

Isoleucine Spastic paraplegia NA

Bromocriptine Parkinson disease, late-onset [30]

Tiagabine Seizures [24]

4 Conclusion

In this paper, we formalized theDDAprediction problem into a CF recommendation task
aiming to computational drug repositioning. For the purpose of ranking the association
probabilities of drug-disease pairs, we investigated several typical collaborative filtering
recommendation methods, such asMatrix Factorization (MF), Neural Collaborative Fil-
tering (NCF), Graph Convolutional Network (GCN). The comparison experiment shows
that these CF methods provide unique contribution to the overview prediction perfor-
mance. Understandably, MFs’ linearity limits the ability of feature representation. Both
NCF and GNN-based CF leverage the neural network framework to encode the features
of drugs and diseases, but GNN-based models focus more on topological neighbors.
Correspondingly, we combined the two CF framework aiming to derive comprehensive
feature representation. In addition, the addition of auxiliary information contributes to
the improvement of system performance through relieving the cold start problem. The
final experimental results show that CFDDA has considerable competitiveness com-
pared with other state-of-the-art methods. Moreover, the predicted recommendation list
of drug indications is verified by publicly available literatures.
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