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Abstract. Few-Shot Knowledge Graph Completion (FSKGC) aims to
predict new facts for relations with only a few observed instances in
Knowledge Graph. Existing FSKGC models mostly tackle this problem
by devising an effective graph encoder to enhance entity representations
with features from their directed neighbors. However, due to the sparsity
and entity diversity of large-scale KG, these approaches fail to generate
reliable embeddings for solitary entities, which only have an extremely
limited number of neighbors in KG. In this paper, we attempt to miti-
gate this issue by modeling semantic correlations between entities within
an FSKGC task and propose our model YANA (You Are Not Alone).
Specifically, YANA introduces four novel abstract relations to represent
inner- and cross- pair entity correlations and construct a Local Pattern
Graph (LPG) from the entities. Based on LPG, YANA devises a High-
way R-GCN to capture hidden dependencies of entities. Moreover, a
query-aware gating mechanism is proposed to combine topology signals
from LPG and semantic information learned from entity’s directed neigh-
bors with a heterogeneous graph attention network. Experiments show
that YANA outperforms the prevailing FSKGC models on two datasets,
and the ablation studies prove the effectiveness of Local Pattern Graph
design.

Keywords: Knowledge graph completion · Few-shot learning · Link
prediction · Graph learning · Representation learning

1 Introduction

Knowledge Graph is a vital resource for many downstream applications such
as recommendation system [21], question answering [12], urban computing [10],
fault detection [7] and medical data processing [5]. A knowledge graph (KG)
represents facts in the form of triple (h, r, t), describing relation r between head
entity h and tail entity t. Despite their large scale, KGs are usually incomplete.
Thus, knowledge graph completion (KGC), which is to infer new facts from
existing triples [17], has attracted widely attention in recent years.
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Current KGC approaches roughly follow encoder-decoder framework [13],
while encoder focuses on learning entity and relation embeddings and the decoder
aims to compute scores for new queries. These models mainly rely on sufficient
triples for each relation and entity to learn a good representation. Unfortunately,
due to the long-tail phenomenon in real-world KGs, a large proportion of rela-
tions have only a few triples [23]. Predicting new facts for these relations is
called few-shot knowledge graph completion (FSKGC) [2,24]. Generally, a K-
shot knowledge graph completion task aims to predict tail entities for query
(hq, rel, ?) with only K associated entity pairs of relation rel as the support set.
Figure 1(a) gives an example of FSKGC task.

Previous researches on FSKGC can be roughly grouped into sub-graph
based models and full graph models according to different network architecture.
Sub-graph models [9,14,23,24] capture signals from entity’s one-hop neighbors.
Unlike sub-graph models, full graph models [6,11,13,22] mainly encode entities
with multi-layer message passing neutral network [13] to capture features from
multi-hop neighbors.

Despite their variant designs, all these methods only consider intrinsic topol-
ogy signals from existing KG, and thus have two major limitations. 1) Graph
sparsity: A large amount of entities has a minimal number of neighbors in KG.
For example, 99.2% entities of Wikidata [20] have fewer than five neighbors. 2)
Neighbor diversity: In a real-world KG, neighbors of entities are mostly irrel-
evant to new few-shot relations [9]. It is difficult for current models to generate
reliable embeddings for these solitary entities with unrelated neighbors.

Intuitively, the correlations between entities in the same FSKGC task could
provide semantic meanings towards current relation. For instance, the embedding
of “Zuckerburg” may influence the representation of “Cook” in the context of
relation “ceo of” since they both act as the head entity of associated triples.

In light of this observation, in this paper, we propose a novel sub-graph
based model YANA (You Are Not Alone) to tackle solitary entity issue by
modeling hidden semantic correlations between entities in the same task. Specif-
ically, as shown in Fig. 1(b), YANA collects entities involved in the FSKGC task
in Fig. 1(a) to construct an entity set named relation-query association. Then
we introduce four novel abstract relations in two categories to describe entity
correlations in relation-query association and construct a multi-relation graph
called local pattern graph (LPG). With LPG, YANA devises a Highway R-GCN
[13] to learn entity embeddings. A query-aware gating mechanism is proposed
to integrate semantic meanings from LPG with intrinsic topology information
from one-hop neighbors in KG to refine entity representations. Moreover, a trans-
former relation learner followed with an attentive prototypical network is applied
to encode entity pairs and make predictions.

Our contributions could be summarized as follows: 1) This paper concerns
the limitation of current FSKGC models on representing solitary entities and
proposes a novel model YANA to address this problem by modeling correla-
tions between entities shared the same few-shot relation task. 2) Experiments
demonstrate that YANA achieves state-of-the-art performances on large-scale
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Fig. 1. 1(a) gives an example of 1-shot knowledge graph completion task. 1(b) illus-
trates the corresponding relation-query association and the corresponding local pattern
graph of 1(a). We devise four abstract relations to describe the correlations between
entities and introduce a unified node [UNK] to represent the unknown tail entity of
queries.

and sparse dataset Wiki and encouraging performances on the NELL. Extensive
experiments also show the effectiveness of each module.

The rest of the paper is organized as follows. Section 2 introduces basic pre-
liminaries. Section 3 gives the details of our proposed model. Section 4 presents
the details of experiments. Finally, Sect. 5 concludes our work.

2 Preliminaries

Knowledge Graph. A knowledge graph G is formulated as G := {E ,R, T }, in
which E is entity set, R is relation set and T := {(h, r, t)|h, t ∈ E , r ∈ R} is
triple set. Background graph BG of G denotes a set of known triples available in
training. Here we have BG ⊂ G.

K-Shot Knowledge Graph Completion. Every few-shot relation r /∈ BG
is formulated as Dr = {r,Pr, Cr}, in which Pr := {(h, t)|(h, r, t) ∈ G} and Cr

denote entity pairs and candidate entities of r respectively. A K-Shot Knowledge
Graph Completion task refers to given a few-shot relation r with K entity pairs
as support set Sr and a query entity pair (hq, ?), ranking golden tail entity tq
higher than other entities in Cr.

Relation-Query Association. We formally define the relation-query associa-
tion of a few-shot relation r with support set Sr and query (hq, ?) as an entity set
Aq

r := {h1, h2, . . . , hK , hq} ∪ {t1, t2, . . . , tK , t[UNK]}. Here, we introduce a unified
virtual node t[UNK] to denote the unknown tail entity in queries to ensure each
query has a unique Aq

r. For a K-shot task, we have |Aq
r| = 2K + 2.
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3 Methodology

The overall architecture of YANA is illustrated in Fig. 2. Given a query (hq, ?)
along with support set Sr and candidates, YANA constructs a local pattern
graph and applies Highway R-GCN to capture entities correlations. At the same
time, a HGAT is proposed to learn from one-hop neighbors of each entity. A
query-aware gating mechanism is proposed to merge information from two graph
neutral networks. Latter, YANA learns relation representation and make predic-
tions by a Transformer Relation Learner and Attentive Prototypical Network.
Details of these modules will be presented in the following subsections.
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Fig. 2. Overall architecture of our model YANA.

3.1 Local Pattern Graph Construction

To model the relatedness between entities in Aq
r, we consider two aspects of

correlations and introduce four different abstract relations to convert Aq
r to a

local pattern graph GL:

Inner-Pair Correlations: Two abstract relations HEAD OF and TAIL OF are
introduced to describe the correlations of two entities within entity pair,
e.g., for (Zuckerburg, ceo of,Meta), we have (Zuckerburg, HEAD OF,Meta) and
(Meta, TAIL OF,Zuckerburg).

Across-Pair Correlations: We introduce two abstract relations SAME ROLE
and CO OCCUR to reflect the relatedness of two entities from different triples.
SAME ROLE allows an entity to connect with the other K entities shared
the same role (head-to-head and tail-to-tail). Meanwhile, with CO OCCUR,
an entity can aggregate message from the other K entities in different
role (head-to-tail and tail-to-head). For entity pair (Zuckerburg, ceo of,Meta)
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and (Hans, ceo of,Version), we can have (Zuckerburg, SAME ROLE,Hans) and
(Hans, CO OCCUR,Meta) in GL

1.

3.2 Message Passing over Local Pattern Graph

Relational Graph Convolution Network (R-GCN) [13] is a powerful architecture
for producing latent representations of entities in multi-relational data. Thus,
based on GL, we propose an LR-layers Highway R-GCN network to update entity
embeddings. Specifically, the l + 1-th R-GCN layer computes the entity repre-
sentation follows:

h
′l+1
i = σ(

4∑

r=1

∑

j∈N
(hl

iW
l
r)), l = 0, 1, . . . , LR (1)

Wl
r is relation specific matrix for the r-th relation. hl

i is the l-th layer output
of node i. σ indicates non-linear activation function and we use ReLU [8]. To
overcome over-smoothing problem in multi-layer GNNs [22], we introduce
highway mechanism [3,15] to enable cross layer interactions and obtain the l+1-
layer output hl+1

i :

gl+1 = Sigmoid(Wl+1
h h

′l+1
i + bl+1

h )

hl+1
i = gl+1 � h

′l+1
i + (1 − gl+1) � hl

i

(2)

wherein Wl+1
h ∈ R

de and bl+1
h ∈ R are layer-specific learnable parameters. � is

element wise dot product. We take the L-th layer output hLR
i as the task-specific

embedding êi of the i-th entity ei.
Note that, we assign entity i except t[UNK] in LPG with a de dimensional

vector xi ∈ Rde obtained with embedding model ComplEx [17] and regard xi

as the input of Highway R-GCN, i.e., h0
i = xi. Besides, we represent t[UNK] with

learnable vector x[UNK] ∈ Rde which initial values drawn from the normal distri-
bution N (0, 0.5). To prevent noise from x[UNK] to other entities, we introduce a
punishment factor Lreg = ‖x[UNK]‖2, in which ‖ · ‖2 is the Euclidean norm.

3.3 HGAT for Encoding One-Hop Neighbors

Apart from entity correlations, direct neighbors in background graph are still
a vital source to encode entities [9,14,23,24]. Hence, we devise a heterogeneous
graph attention (HGAT) encoder generate the intrinsic embedding of entities in
Aq

r\{t[UNK]} and Cr from its one-hop neighbors.
First we extract one-hop neighbors Ne = {(ri, ti)} starting with e from BG.

We calculate the impacts of (ri, ti) following:

1 There will be eight edges for two pairs. We omit the other six samples for brevity.
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ni = tanh(W1(vri‖vti))

di = LeaklyReLU(uTni + b1)

αi =
exp(di)∑

(rj ,ej)∈Ne
exp(dj)

(3)

in which ni is the representation of (ri, ti), di and αi are absolute and nor-
malized attention value respectively. vri and vti are the initial embedding with
dimension de of ri and ti. W1 ∈ R

de×2de , u ∈ R
de and b1 ∈ R are learnable

parameters. Finally, we have the intrinsic embedding ē =
∑|Ne|

i=1 αini.

3.4 Query-Aware Gating Mechanism

In order to automatically select relevant features and filter unrelated noises, we
propose a query-aware gating mechanism to incorporate task-specific embedding
ê with intrinsic embedding ē and generate reliable entity embedding:

gq = Sigmoid(uT
gq [ĥq � h̄q; t̂q] + bgq )

he = ReLU(gqê + (1 − gq)ē)
(4)

wherein, ugq ∈ R
2de and bgq ∈ R learnable parameters.

3.5 Transformer Relation Learner

With entity representations, we are going to encode entity pairs. A major chal-
lenge is to preserve relation patterns when extracting hidden semantic features.
Inspired by the great success of transformer [14,18], we devise a transformer
relation learner (TRL) to represent entity pairs. Taking an entity pair (h, r, t) of
few-shot relation r as an example. We regard the pair as a sequence X = {h, r, t}.
The input representation of each element follows:

z0i = xorg
i + xpos

i , i = 1, 2, 3 (5)

wherein, xorg
i ∈ R

de is the origin embedding and xpos
i ∈ R

de is the learnable
positional signals. With such positional signals, the multi-head self-attention
module in transformer can distinguish the roles of input elements (i.e. head,
tail entity and relation). Embeddings of h and t are from Eq. 4. As for xr, we
use a unified random de dimensional vector as the initial embedding. Later, we
pack the embeddings into matrix Z0 and feed into an LT successive Transformer
layers2:

Zl = Transformer(Zl−1), l = 1, 2, . . . , LT (6)

2 Due to paper length restrictions, we omit the details of transformer and refer readers
to the origin paper [18].
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Finally, we apply a Mean Pooling layer over the LT -layer output ZLT to
obtain pair representation:

zp = MeanPooling(zLT

h , zLT
r , zLT

t ) (7)

3.6 Attentive Prototypical Network

Support instances may have various contributions when matching with different
queries [4,14]. To allow YANA to focus more on relevant instances and filter
noises during the prediction stage, we introduce an instance-level Attentive Pro-
totypical Network (APN) to generate query-aware relation representation rq and
compute the matching score by automatically determine the importance of each
instances towards the current query follows:

d(q, si) = ‖q − si‖2

βi =
exp(−d(q, si))∑K
j=1 exp(−d(q, si))

rq =
K∑

i=1

βisi

score(q, r) = −d(q, rq)

(8)

wherein, ‖ · ‖2 is the Euclidean norm. q and si are the representations of query
and the i-th instance learned from TRL. βi denotes the normalized semantic
similarity between q and si.

3.7 Model Training

We follow previous FSKGC models’ training regime [14,23,24] and conduct
meta-training to optimize our model. In each training step, we randomly sample
a relation r from Dtrain along with K instances from Pr as the support set Sr.
Positive queries Q+

r are from Pr\Sr. Then we obtain negative samples Q−
r by

polluting tail entity of each pair (hl, tl) in Q+
r s.t. tn ∈ Cr and (hl, tn) /∈ KG.

Finally, we apply margin-ranking loss along with Lreg to optimize our model:

L = Lrank + ξLreg

Lrank =
1
N

∑

r

∑

(hl,tl)∈Q+
r

∑

(hl,tn)∈Q−
r

max(γ + score(hl,tn) − score(hl,tl), 0) (9)

wherein hyper-parameter ξ is the trade-off factor between Lrank and Lreg. γ is
the margin distance.
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Table 1. Statistics of datasets.

Dataset Entities Relations Tuples Avg-Deg Solitary #Train #Valid #Test

NELL 68545 291 181,109 5.284 85.18% 51 5 11

Wiki 4,838,244 539 5,859,240 2.422 99.20% 133 16 34

4 Experiments

4.1 Datasets and Baselines

Dataset: We conduct experiments on two FSKGC datasets, NELL and Wiki
proposed by [23]. Relations with more than 50 but less than 500 instances are
selected to construct train/valid/test set. Also, each relation has its own candi-
date set Cr constructed based on the entity type constraint. Table 1 lists statistics
of these two datasets. Avg-Deg means the average degree of entities (including
inverse relations). Solitary means the percentage of entities with less than five
directed neighbors. #Train, #Valid and #Test indicate the number of tasks in
train, valid and test set, respectively.

Baselines: We compare YANA with following baselines to measure the effec-
tiveness of our model. 1) Sub-Graph Models: GMatching [23]: The first model
for one-shot relation learning. We extend GMatching to few-shot scenario by
applying a max pooling (MaxP) or a mean pooling (MeanP) layer over K sup-
port instances to obtain 5-shot results. FSRL [24]: A metric-learning model
with heterogeneous graph encoder and an LSTM auto-encoder for modeling
instances interaction. FAAN [14]: A model with dynamic graph encoder dis-
cerning entity properties in different relations. GANA [9]: A model incorpo-
rating pre-train embeddings with sub-graph GNN to improve low-degree entity
representations. 2) Full Graph models We compare YANA with five full graph
relation prediction models including R-GCN [13], GNN [11], RA-GCN [16],
I-GCN [6] and GNN-FSRP [22]. Results of these models are taken from [22].
3) Meta-Embedding Model : MetaR [2]: A meta-learning model over TransE [1]
for FSKGC. We directly report 5-shot results of MetaR from the origin paper.

4.2 Implementation Details

We initialize entities and relations in the background graph with ComplEx [17]
embeddings which dimensionality is 100 for NELL and 50 for Wiki. We set the
number of transformer layers to 3 and 4, and the number of heads to 4 and 8 for
NELL and Wiki, respectively. The number of R-GCN layers is set to 2. Dropout
with rate tuned in {0.1, 0.3, 0.5} is applied to avoid over-fitting. Adam is used to
optimize our model. We linearly increase the learning rate to 5e−5 for NELL and
6e−5 for Wiki at the very first 10k steps and decrease to 0 until the last epoch.
We evaluate every 10k steps on the validation set and select models achieving
the highest HITS@10 within 300k steps to make predictions on the test set. The
margin γ is set to 5.0, and the trade-off ξ is 0.1. The sizes of Q+

r and Q−
r are both
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set to 128. We fix the maximum number of neighbors M to 30 for all sub-graph
models to obtain results in our environment for a fair comparison.

Metrics: We use MRR and HITS@N to measure the performance of all methods.
MRR is the mean reciprocal rank, and HITS@N is the proportion of correct
entities ranked in the top N , with N = 1, 5, 10. For both HITS@N and MRR, a
higher score means better performance. We perform a 5-shot KGC task for all
models, i.e., K = 5.

4.3 Main Results

Table 2. Experiment results. Best results are in boldface. Underline indicates the
second-best results.

Model NELL Wiki

HITS@1 HITS@5 HITS@10 MRR HITS@1 HITS@5 HITS@10 MRR

GMatching (MaxP) .113 .223 .286 .174 .197 .331 .427 .273

GMatching (MeanP) .119 .255 .348 .188 .213 .335 .391 .284

FSRL .169 .284 .352 .230 .167 .295 .354 .253

FAAN .188 .361 .437 .271 .270 .391 .448 .339

GANA .194 .395 .482 .291 .289 .392 .436 .347

MetaR (BG:In-Train) .168 .350 .437 .261 .178 .264 .302 .221

MetaR (BG:Pre-Train) .141 .280 .355 .209 .270 .385 .418 .323

R-GCN .139 .346 .427 .270 .141 .310 .351 .233

GNN .140 .351 .451 .273 .143 .316 .365 .235

RA-GCN .144 .358 .442 .280 .146 .321 .364 .241

I-GCN .142 .353 .436 .275 .144 .317 .358 .238

GNN-FSRP .218 .442 .518 .336 .161 .338 .420 .252

YANA (Ours) .230 .364 .421 .294 .327 .442 .523 .380

Table 2 demonstrates that YANA achieves consistent improvements compared
with baseline models. To be concrete, 1) YANA achieves the state-of-the-art
performance on the Wiki dataset. Note that Wiki is a large-scale and sparse
dataset, where nearly 99% of entities only have less than 5 neighbors, leading to
sub-optimal performance for existing models. Nevertheless, our proposed model
YANA gains 3.1%, 5.0%, 7.5% and 3.3% performance improvements in HITS@1,
HITS@5, HIST@10 and MRR, respectively. 2) Unlike Wiki, NELL can provide
sufficient and related neighborhood information for FSKGC. The results show
that full-graph models leveraging signals from multi-hop neighbors are gener-
ally more expressive than sub-graph models. Even so, YANA achieves the best
HITS@1 performance, which means that our model can make more precise pre-
dictions than others.

4.4 Ablation Study

LPG Variants. The major contribution of our work is that we construct local
pattern graphs by proposing two categories of abstract relations for few-shot
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(a) NELL Dataset (b) Wiki Dataset

Fig. 3. Ablation study results of abstract relations. w/o Inner-Pair Correlations
denotes LPG without abstract relations HEAD OF and TAIL OF. w/o Across-Pair Corre-
lations means removing CO OCCUR and SAME ROLE in LPG.

relation tasks. To examine the legitimacy of these abstract relations, we conduct
experiments on NELL and Wiki with two different LPG constructed by remov-
ing two categories of relations, respectively. Overall results are shown in Fig. 3.
From these results, we observe that on both datasets, the removal of Inner-Pair
Correlations or Across-Pair Correlations leads to the performance decrement,
which means that modeling the correlations between entities is beneficial to final
predictions. In terms of different datasets, these entity correlations have more
significant impacts on Wiki than that on NELL. It is reasonable because Wiki is
far more sparse than NELL and therefore more dependent on dynamic neighbors
from LPG to encode entities.

Module Variants. We further conduct ablation studies on NELL to inves-
tigate the effectiveness of each module of YANA. w/o LPG generates entity
representation only by aggregating its one-hop neighbor embeddings with our
devised HGAT module. w/o HGAT omits the HGAT module and allows the
query-aware gating mechanism to combine the outputs of Highway R-GCN and
pre-trained embeddings to represent entities. w/o GNNs removes the LPG and
HGAT at the same time and represents entities with pre-trained embeddings
learned with ComplEx [17] to examine the effectiveness of graph encoders. w/o
TRL removes the transformer relation learner (TRL) and follows previous works
[9,23,24] to represent (h, t) with the concatenation of head and tail embeddings,
i.e., zp = [h; t]. w/o APN replaces the attentive prototypical network (APN)
with an LSTM matching network [19] to compute scores of queries.

Overall results are listed in Table 3. We can observe that: 1) Impacts of
Entity Encoder: The results of w/o HGAT prove the ability of our Highway
R-GCN to capture semantic meanings from LPG for FSKGC problem. Further-
more, the results of w/o LPG reveal the effectiveness of our sub-graph encoding
module. Besides, model performances drop sharply without graph encoders. 2)
Impacts of TRL and APN: We devise a transformer relation learner (TRL)
to encode entity pairs and apply an attentive prototypical network (APN) to
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Table 3. Results of model variants on NELL dataset with 5-shot. Best results are in
boldface.

Models HITS@1 HITS@5 HITS@10 MRR

YANA .230 .364 .421 .294

w/o HGAT .162 .315 .398 .235

w/o LPG .181 .332 .400 .252

w/o GNNs .097 .217 .268 .156

w/o TRL .156 .272 .334 .221

w/o APN .143 .309 .402 .229

compute scores for queries. Results of w/o TRL and w/o APN prove the valid-
ness of these modules.

5 Conclusion

This paper concentrated on the solitary entity issue in the few-shot knowledge
graph completion problem and proposed our model YANA. Different from pre-
vious approaches relying on learning knowledge graph structure to represent
entities, YANA introduces four novel abstract relations to exploit hidden cor-
relations between entities within a few-shot relation task. With a gating mech-
anism, YANA can effectively combine neighbor signals from knowledge graph
and task-specific features to learn more reliable embeddings for solitary entities.
Experiments on two benchmark datasets NELL and Wiki demonstrated the
effectiveness of YANA. Extensive ablation studies validated the effects of each
module in YANA and proved the importance of the four abstract relations. Our
future work may consider learning the contribution of different entities within a
task and explore the interaction of task structure and the background graph.
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