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Abstract. Schedule network is essential for project schedule manage-
ment. Critical Chain Method (CCM) is the most commonly used method
on a schedule network to avoid project extension. The key to CCM lies
in setting the proper buffer size. However, little work has considered
the interdependence of nodes into buffer size calculating. In this paper,
we present Edge-shared GraphSAGE, a model based on Graph Neu-
ral Network (GNN) for improving the result of buffer size prediction.
Edge-shared GraphSAGE constructs undirected edges between schedule
networks of projects sharing resources with each other. Fed by historical
data of previous projects, the model predicts Safe-time Utilization Rate
of each node of current project, so as to calculate the predicted size of
the buffer. To the best of our knowledge, this is the first time that GNN
is used in calculating buffer size. In several real projects, the proposed
method outperforms Rule-based method and Machine Learning method.

Keywords: Schedule management · Project network · Edge-shared
GraphSAGE · Buffer calculation · Parallel big data project

1 Introduction

Research shows that 65–100% of big data projects end in failure. Gartner [1]
believes that 60% of BDA projects fail for being out of the budget or the plan.
Therefore, in the actual implementation of big data projects, not only advanced
technology is needed to complete some challenging tasks, but also the manage-
ment of project process should be paid attention to. Generally, the project is
broken down into some processes. Each process can be seen as nodes, and the
sequence relationship between the processes can be abstracted into edges. Thus,
a huge schedule network is formed, on which the process management of the
project is carried out.

As shown in Fig. 1, the network shows a complete big data project, includ-
ing the logical relationship order for all processes, in which a node represents a
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Fig. 1. Schematic diagram of network progress

process. Such network is called an Activity-on-node (AON) network. AON net-
works are particularly critical to the management of big data projects, especially
the optimization of project progress. There is a problem in big data projects,
that some operations often have a higher risk of delay due to their high level
of uncertainty, which requires more buffer time to prevent such processes from
affecting the completion of the entire project.

For the management of big data projects, the Critical Chain Method (CCM)
in the management method can usually be used for analysis and optimization.
The key of CCM is to find a suitable critical chain and set a reasonable buffer
size. Traditional buffer size prediction methods are usually based on rules, which
are too subjective and lack the learning of historical data. Besides, most rule-
based methods consider the processes to be independent of each other, ignoring
the successive logical relationship among processes.

We propose a new method based on graph neural network (GNN) to predict
the buffer size in the process, which achieves better results. We also compared
our method with the rule-based method and the regression methods of machine
learning to verify its effectiveness.

The contributions of our paper are as follows:

(1) We construct feature indicators of different nodes through expert experience
using the historical network data, and define Safe-time Utilization Rate θi
as the dependent variable.

(2) According to the resource sharing of nodes, we merge the network of these
projects to construct a parallel project schedule heterogeneous network.

(3) We propose Edge-shared GraphSAGE method based on graph neural net-
work (GNN) to predict the Safe-time Utilization Rate of each node in the
network, so as to indirectly calculate the buffer size of each process. Com-
pared with other methods(include Rule-Based method and Machine Learn-
ing method), this method shows the superiority.

2 Related Work

In the field of schedule management, the Critical Chain Method has been widely
used in recent years. For the setting of the buffer size, there are some methods
that many scholars have proposed.
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For the calculation of the Project Buffer, the most typical methods are the
cut and paste method (C&PM) and the root square error method (RSEM) [2].
The shortcomings of C&PM include that if there are more processes in a project,
the buffer that needs to be set will also be enlarged. For RSEM, its priori assump-
tion is that each process is independent, but in fact it is difficult to strictly hold,
which will make the buffer setting too small. Ashtiani B (2008) [3] used the Log-
normal distribution to improve the deficiencies of the RSEM method, integrated
the risk of the task, and calculated the parameters of the distribution. Gong Jun
(2019) [4] proposed the concept of using information entropy and introduced
an interval intuitionistic trapezoidal fuzzy number algorithm to quantify the
impact of uncertain factors on the process, thereby modifying the root variance
method. Zhou Yaoyao (2020) [5] proposed a calculation method for the critical
chain buffer based on comprehensive constraints, using a piecewise fuzzy func-
tion to determine specific resource constraint coefficients. Xu Ye (2014) [6] used
the linear regression equation method to predict the time schedule of different
processes in the project, and optimized the schedule and construction period
of the project by importing buffers, thereby shortening the construction period.
Yadav S (2020) [7] used the principal component analysis (PCA) method to
improve the root variance method, reduced the dimension of some indicators,
merged them into the buffer, and gave actual cases to shorten the construction
period.

However, for the setting of buffer size, most methods consider that each
node in the network is independent, and a few researchers have only conducted
the study of the previous and the latter projects. Especially for the schedule
management of parallel big data projects, there are huge differences in their
uncertainties, which is usually closely related to the position of the node in the
entire graph. For example, there are some process nodes with large uncertain-
ties, which are at the beginning and end of the network, also have significantly
different buffer sizes.

In recent years, researches on graph analysis method are emerging in the
computer field. The mainstream methods are a series of derivative and extended
methods including GCN [8,12], such as GraphSAGE [9], GAT [10], etc. Some
authors applied the GNN model to the prediction of traffic flow [11,13,14], which
has a very good prediction effect. Aiming at the optimization of the schedule
network, we try to apply GNN to the field of progress management for the first
time. For buffer calculation, we consider the impact of the overall network on the
buffer size of each process, and propose a new method of buffer size calculation
based on Edge-shared GraphSAGE. In addition, we compare this method with
the Rule-based method and the regression methods of Machine Learning, and
the result demonstrates that Edge-shared GraphSAGE performs well to some
degree.

3 Background

This section introduces theories of schedule network which is used in the mod-
eling process.
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3.1 Schedule Network

In a complete project process, it is necessary to describe the logical sequence of
each activity. We define each activity of the project as a process, and define the
logical sequence structure of a project as edges in the network. For two adjacent
nodes, each node represents the operation of a process, and each edge represents
the completion of the previous process and the beginning of the next process.

Fig. 2. Network diagram of a project

As shown in Fig. 2, each node represents each processing procedure in the big
data project. For this network, the former procedure must be completed before
the latter procedure can be executed, and there is a strong logical dependence
in it.

3.2 Critical Chain Method

At the beginning of the project, the schedule network needs to be drawn based
on the duration estimation, the given dependencies and constraints. Then the
critical path is calculated. After the critical path is determined, the availability
of resources is considered, so as to develop a resource-constrained schedule, in
which the critical path is usually different from the previous ones. And the
resource-constrained critical path in the schedule is called the critical chain [11].

Fig. 3. Schematic diagram of the Project Buffer

The method above is called Critical Chain Method (CCM), which is based
on Parkinson’s law. CCM is a resource-constrained schedule network analysis
tool. By setting a buffer to ensure network progress, it can effectively solve the
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situation of work delays. As shown in Fig. 3, through CCM, the accumulated
buffer time will be eventually placed at the end of the project to form a Project
Buffer. Import Buffer ensures that the critical chain will be successfully imported
without affecting the process.

3.3 Buffer Size

In a large number of previous studies, there is a lack of constructing compre-
hensive quantitative indicators to analyze the size of the buffer, and also short
of some indicators to measure the specific impact of process delaying. So it is
necessary to set relevant feature indicators for the buffer of each process. The
90% of probability estimate of the i-th process duration is noted as Si1, and the
50% of probability estimate is noted as Si2. For the i-th process, the safe time of
the process is noted as ΔS = Si1 −Si2. In a big data project, different processes
have different actual buffer size, which is noted as ΔT .

Define θi as the Safe-time Utilization Rate of the i-th process:

θi =
ΔTi

ΔSi
(1)

where ΔTi is the buffer time applicable to the i-th process in a big data project,
and ΔSi is the safe time of the i-th process. Because the uncertainty is different
in different processes of real implementation of the project, θi is also different
[12]. If the uncertainty of the sub-process is higher, the corresponding θi is larger
and the greater ΔTi is needed to ensure the completion of the process, otherwise,
the θi is smaller.

Set X = [x1, x2, x3, · · · , xn] as the impact factor of the buffer size, which is
defined as an independent variable. θ is the Safe-time Utilization Rate, which is
defined as a dependent variable. Therefore, a nonlinear regression relationship
between X and θ can be established, namely θi = f(x1, x2, x3, · · · , xn).

3.4 Evaluation Index

The predicted value of the buffer size of each node in the process network is a
continuous value. Therefore, we use R2 to calculate the effectiveness of fitting
results between the predicted value and the true value:

R2 =
∑

(ŷi − y)2
∑

(yi − y)2
(2)

where yi represents the true value of the model, y represents the average of true
values, and ŷi represents the predicted value.

4 Edge-Shared GraphSAGE

4.1 Global Network Without Resource Sharing

Define the network topology graph set G = {G1, G2, G3, · · · , Gn, Gs}, which
means a collection of (n + 1) schedule network of projects. As shown in Fig. 4a,
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this set contains n schedule networks Gj , j ∈ [1, 2, 3, · · · , n] of projects already
done before, whose nodes contain numerical labels, and a network Gs whose
nodes need to be predicted.

The projects are not connected to each other, i.e. they are independent of
each other. We call the individual elements Gj , j ∈ [1, 2, 3, · · · , n] a sub-network
of G. Each process node in G has its specific attribute value X as an independent
variable. Besides, all nodes on G have a corresponding Safe-time Utilization Rate
θ as a dependent variable. The labels of all nodes in sub-network Gs are unknown
and need to be predicted.

For Gi and Gj , there will be resource sharing in some processes. If there are
nodes sharing the same resources in Gi and Gj , define these nodes as shared
nodes, and their connecting edges as shared edges eij .

(a) Without resource sharing (b) With resource sharing

Fig. 4. Global network with/without resource sharing

4.2 Global Network with Resource Sharing

For the whole network, the edge whose ends belonging to the same project
schedule sub-network, is called a directed edge, otherwise, an undirected edge
which connects two different sub-networks. As shown in Fig. 4b, edges in brown
are shared edges.

eij =

{
Gi → Gj , if (i ∈ Gi) ∩ (j ∈ Gj) ∩ (i = j)
Gi ↔ Gj , if (i ∈ Gi) ∩ (j ∈ Gj) ∩ (i �= j)

(3)

4.3 Features of the Node

The attributes of each node in G are noted as X = {x1, x2, x3, x4, x5}, where
x1 represents resource tensity of data, x2 represents implementation difficulty
of the process, x3 represents connection level of data, x4 represents changing
probability of the process result, and x5 represents importance of the process.
These 5 features above are core factors affecting the prediction of buffer size.

Let experts score each process according to the indicators mentioned above,
and the score ranges from 1 to 5. 5 means the risk level of the indicator
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is extremely high, 4 means high, 3 means fair, 2 means low, and 1 means
extremely low.

We conduct a number of project managers with rich experience to perform
quantitative evaluations on the historical projects of the company to obtain
features of historical data. We use the historical buffer time, the expected prob-
ability of 50% and of 90% to calculate the utilization rate of safe time θ.

4.4 Edge-Shared GraphSAGE

For most tasks, GNN is used to solve classification problems requiring some
labels of nodes which are generally discrete values. We use GraphSAGE [12]
as backbone to build a regression model that outputs continuous values for
prediction, and we only consider the use of Mean aggregation to reduce the
complexity of our model.

(a) GraphSAGE regression network structure (b) Node aggregation

Fig. 5. Analytical diagram of the algorithm architecture (Color figure online)

As shown in Fig. 5a, different schedule sub-networks are input as nodes, and
they are connected and aggregated through sharing edges when they share the
same resources in the schedule, thereby forming a big network with historical
data and current data. The schedule network is input to GraphSAGE for predic-
tion. In order to fit continuous values, on the top layer, we replaced the Softmax
layer with the Linear layer, which played an important role in predicting con-
tinuous data.

For the entire network, there will be a clear distinction between the internal
connections of the sub-network and the connections between the sub-networks.
This is because the networks of different schedules are heterogeneous networks,
there is a distinct difference between their characteristics, and it cannot be
treated the same during aggregation. We add parameters λ and fine-tuned the
weights of these two parts above for trade-off to better adapt to the current
regression prediction. The improved model is named Edge-shared GraphSAGE.
The aggregation of the model is shown as Fig. 5b. The center node is the target
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aggregation node, noted as S. This figure contains two types of schedule net-
works, which are in blue and in yellow respectively. Similar to GraphSAGE, the
neighbors of S are aggregated.

The aggregation function in GraphSAGE is expressed as:

hl
N(v) ← Aggregatel({hl−1

u ,∀u ∈ N(v)}) (4)

We use the Mean aggregation function here, namely:

hl
N(v) ← σ(W · mean({hl−1

u } ∪ {hl−1
u ,∀u ∈ N(v)})) (5)

Notes: N(v) represents nodes connected to v
During aggregation, different projects connect to each other with shared

edges, so as to form a big network. A project contributes differently to aggrega-
tion than its neighbor project, so we set weight λ for trade-off.

Define u ∈ N(v). If u,v belong to the same project progress subgraph, mark
u as N+(v). If u, v don’t belong to the same subgraph, mark u as N−(v). The
resulting aggregation function of Edge-shared GraphSAGE is denoted as:

hl
N(v) ← σ(W · mean(hl−1

v ∪ {hl−1
u1

,∀u1 ∈ N+(v)} ∪ {hl−1
u2

,∀u2 ∈ N−(v)})) (6)

λ is a hyper-parameter, which controls the degree of connectivity between dif-
ferent sub-networks and can be optimized through experimental tuning. When
λ = 1, the weight between sub-networks is considered to be the same as the
weight into the sub-network, which is to say, this structure is the Mean aggre-
gation form of GraphSAGE. The pseudo code of the method is as Algorithm 1.

Algorithm 1: Edge-shared GraphSAGE: node value prediction (forward
propagation) algorithm
Input: Graph G(V, E) = {G1, G2, · · · , Gn}; input features xv, ∀v ∈ V ; depth

K; weight matrices W k, ∀k ∈ {1, · · · , K}; non-linearity function σ;
linear function Linear; mean aggregator function MEAN ; positive
neighborhood function N+ : v → 2v; negative neighborhood function
N− : v → 2v; hyperparameter λ

Output: Predicted value zv for all v ∈ V
1 h0

v ← xv, ∀v ∈ V ;
2 for k = 1, · · · , K do
3 for v ∈ V do

4 hk
N+(v)∪N−(v) ← MEAN({hk−1

u1 , ∀u1 ∈ N+(v)} ∪ {λ · hk−1
u2 , ∀u2 ∈

N−(v)});
5 hk

v ← σ(W k · CONCAT (hk−1
v , hk

N+(v)∪N−(v)));

6 end

7 hk
v ← hk

v/‖hk
v‖2, ∀v ∈ V ;

8 end

9 zv ← Linear(hK
v ), ∀v ∈ V ;

10 return zv;
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4.5 Calculate the Project Buffer and Import Buffer

The Safe-time Utilization Rate is used to calculate the real buffer time of each
process. The Project Buffer(PB) is the sum of all buffer times in the critical
chain, namely:

ΔTi = ΔSi · θi;PB =
n∑

i=1

ΔTi∈CriticalChain (7)

When the increasing of the Import Buffer does not affect the critical chain,
let the Import Buffer be the sum of all buffers on the non-critical chain.

5 Experiment

5.1 Data

We investigate a company’s implementation of big data projects in the past
4 years, and conduct two experiments on its relative schedule networks. One uses
the existing data (5 schedule networks with known node labels, and a schedule
network with unknown node labels) for comparative analysis, and let the invited
experts to score the attributes of nodes in the network. The other uses similar
pattens to increase random items of data, and automatically generates 50 similar
projects for analysis and comparison.

Fig. 6. A set of project network diagrams (Color figure online)

Figure 6 shows the topological structure of the project schedule network.
Networks in blue are historical projects. This data set has a total of 44 nodes
and 40 directed edges. The network in yellow is current project which is marked
as true dataset. In addition, an analog dataset of 50 similar projects is generated,
who has a total of 498 nodes and 477 edges. The historical data set is divided
into 60% and 40% as training set and testing set, respectively. Compare the
results of different methods in the testing set.
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5.2 Method

Rule-Based Method. When setting up the critical chain for schedule manage-
ment, the 50% shearing method is usually used to directly determine the size of
each buffer. For these historical projects, each node has a corresponding buffer
size. The essence of the Rule-Based method (Shearing method) is to directly
take 50% of the process as the size of the safety time, which θ is always equal
to 0.5. The R2 of this method in the testing set is only 0.319, that is to say, the
prediction accuracy of the buffer size for each node is low.

However, the advantage of this method is that it is relatively simple and
intuitive. Because there is no reference to relevant historical data, the safety
time prediction of each node cannot reflect the characteristics of the project
itself, and the prediction is poor.

Machine Learning Method. For the nodes of each schedule network, suppose
the nodes are independent of each other, we use three machine learning models
for training, including: (1) Decision Tree Regression (2) Random Forest Regres-
sion (3) GBDT Regression. They are verified in the testing set, and measured
by R2. Although the original data form is graph, there is no node relationship
information used in the calculation, which only uses the own information of each
node. The results are shown in Table 1.

Table 1. Comparison of experimental results of different methods

Method Dataset 1 Dataset 2

Results Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

Decision Tree 0.613 0.628 0.632 0.593 0.608 0.637

Random Forest 0.707 0.695 0.713 0.683 0.693 0.686

GBDT 0.643 0.623 0.637 0.607 0.585 0.586

We conduct 10 tests on each dataset of each model and take down the best
three results after adjusting parameters. Table 1 (Dataset 1) gives the prediction
of three models using the historical data of the company. It can be seen that the
best result is from Random Forest, whose R2 reaches 0.713, which is much better
than the Rule-based method. The results of both Decision Tree and GBDT are
not as good as that of Random Forest. Table 1 (Dataset 2) shows the result on
an expended data set of generated 50 similar projects. The overall R2 is slightly
lower than that in Dataset 1(historical data). The results indicate that when
data expands, the data is less accidental, the result of prediction is worse.

Edge-Shared GraphSAGE. In previous sections, the topological structure
of the network is not considered in experiments. In this section, we consider
the topological information, so the prediction θ learns the relationship between
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nodes. In addition, the resources between projects are usually shared (e.g. people
involved in one project are involved in other projects at the same time). As a
result, we add edges between nodes where resources are shared and established
strong correlation between projects.
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Fig. 7. The test results of Weight-GraphSAGE (Color figure online)

As show in Fig. 4b, node A in both two sub-networks is the process in which
the same project manager participates. Two schedule networks share the same
resource, so they are defined as shared edges. For some projects that don’t have
any shared resource, they are excluded from the calculation. Thus, a connected
graph G can be obtained. We use Edge-shared GraphSAGE to make predictions
on G. When λ = 1, the model degrades to GraphSAGE. We conduct experiments
on the true dataset and simulated dataset separately, and select 9 groups of
parameters where λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}, for analysis and
comparison. We use R2 as the evaluation metrics to measure the fit of the model.
The results of Edge-shared GraphSAGE are shown in Fig. 7. Points in blue are
the results of the real data, and points in red are the results of the expanded
analog data. Relatively speaking, the real data is sparse, the quantity is small, so
the stability is poor. We test the model using different value of λ, When λ = 0.8,
R2 is 0.758, the result is better than which of Machine Learning methods and
GraphSAGE (λ = 1). When λ diminishes, the accuracy decreases, which may
be caused by the reduced features that learned from adjacent sub-network. For
what kind of parameters to choose is highly depend on the characteristics of the
pattern and the distribution of degrees of schedule networks.

Therefore, we could not give the optimal parameters for all network to pre-
dict buffer size accurately. However, what is certain is that when the topology
information and associated network information are added, the prediction results
of each sub-network is improved. (e.g. R2 of the true dataset is increased from
0.713 to 0.758, and which of the simulation dataset is increased from 0.693 to
0.731.) It shows that the model can learn information from the adjacent nodes,
and leads to the best prediction of Safe-time Utilization Rate for each node.
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5.3 Comparision

For real projects, the rule-based method (shearing method) is usually very con-
venient and has certain practical effects. But it doesn’t take the mutual influ-
ence between nodes into account, and it also ignores the historical information of
nodes. Therefore, we introduce historical data and use Machine Learning method
to capture the characteristics of buffer settings in different nodes.

Table 2. Comparison of experimental results of different methods

Method Best R2 of true data Best R2 of analog data

Rule-Based Method 0.319 0.407

Machine Learning Method (RF) 0.713 0.693

GraphSAGE (λ = 1) 0.698 0.703

Edge-shared GraphSAGE (λ = 0.8) 0.758 0.731

As shown in Table 2, Machine Learning methods have improved the pre-
diction greatly compared with the Rule-based method, and make more targeted
predictions for different types of schedules. However, the information of the adja-
cent nodes is not used, so the prediction is not complete in theory. So we propose
Edge-shared GraphSAGE method to capture the information of adjacent nodes,
and the effect has been greatly improved.

Through networks, Edge-shared GraphSAGE learns the internal connection
of nodes sharing the same resources, which will make the regression fit better.
However, if the parameters are not selected properly, each project would take a
negative impact on its adjacent projects. Therefore, it is necessary to constantly
optimize the parameters to ensure the best results of the model.

6 Conclusion

We discussed how to optimize the buffer size in schedule management of parallel
big data projects, so as to improve the ability to resist uncertainty of the project.
The traditional method had the problem of excessive subjectivity and poor fit
with real data. Therefore, we proposed Edge-shared GraphSAGE, a GNN-based
model for regression analysis, which models the correlation between nodes, fur-
ther improved the result of buffer size prediction, and provided a reference for
the node regression problem of heterogeneous graphs.

For big data parallel projects, due to the large number of resources and the
serious problem of resource conflication, if buffer settings were unreasonable,
the process would be seriously affected. Introducing the Graph Neural Network
prediction technology into the Critical Chain method, we could reduce the error
of the schedule forecast of real project to a certain extent, avoided the delay of
the big data project, and reduced the cost of the project. Therefore, the model
was worthy of application and recommendation in the engineering field.
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