
Answering Complex Questions
on Knowledge Graphs

Xin Wang1,2 , Min Luo2, Chengliang Si2(B), and Huayi Zhan2

1 Southwest Petroleum University, Chengdu, China
2 Sichuan Changhong Electronic Ltd. Co, Mianyang, China

{chengliang.si,Huayi.zhan}@changhong.com

Abstract. The topic of knowledge-based question answering (KBQA)
has attracted wide attention for a long period. A series of techniques
have been developed, especially for simple questions. To answer com-
plex questions, most existing approaches apply a semantic parsing-based
strategy that parses a question into a query graph for result identifica-
tion. However, due to poor quality, query graphs often lead to incorrect
answers. To tackle the issue, we propose a comprehensive approach for
query graph generation, based on two novel models. One leverages atten-
tion mechanism with richer information from knowledge base, for core
path generation and the other one employs a memory-based network for
constraints selection. The experimental results show that our approach
outperforms existing methods on typical benchmark datasets.

Keywords: Complex questions · Knowledge base · Question
answering · Attention · Memory network

1 Introduction

Question answering on knowledge bases is an active area since proposed. Its main
task is to answer natural language questions from a structured knowledge base.
The KBQA system has been used as QA machine in many fields. At its early
stage, investigators have proposed techniques for answering simple questions.

Driven by practical requirements, techniques for answering complex ques-
tions, which contain multiple constraints are in urgent demand. However, prior
techniques for answering simple questions can not be easily adapted for answer-
ing complex questions. Taking the question “who plays claire in lost?” from
WebQuestion [4] as an example, if one simply parses it into a triple query 〈claire,
is played by, ?〉, the answer will be anyone who played claire in any series.
However, the correct answer should be the actor in “lost”. Therefore, answering
complex questions is far more complicated than that of simple questions.

To answer complex questions, most semantic-parsing-based approaches parse
a question into a query graph and use that query graph to find answers from a KB.
Typically, a query graph is defined as a formal graph, whose nodes correspond
to the topic entity, answer node, variables and constraints, and edges correspond
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Memmi et al. (Eds.): KSEM 2022, LNAI 13368, pp. 187–200, 2022.
https://doi.org/10.1007/978-3-031-10983-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10983-6_15&domain=pdf
http://orcid.org/0000-0002-4688-2948
https://doi.org/10.1007/978-3-031-10983-6_15


188 X. Wang et al.

to relations [27]. Figure 1 shows two questions along with their query graphs. In
each figure, the rectangle with bold font denotes the topic entity, rectangles with
normal font denote constraints and rounded rectangle with dotted line includes
a core path. The construction of query graphs can be split into three main tasks,
i.e., entity linking, core paths generation and constraints selection [3,8,10,15,17,
27,28,30]. Due to semantic diversity, query graphs are often unable to precisely
express the meaning of a given question.

The low quality of query graphs mainly lies in two issues. The first issue is the
core path generation. For example, question Q1 in Fig. 1 has two candidate core
paths, i.e., 〈fiction character〉1 and 〈TV character〉2. It is uneasy to determine
which one is the correct one. While, if the type information, e.g., “TV Character”,
of the topic entity can be used, then the candidate selection becomes much
easier. Another issue lies in the constraints selection. Most existing works [3,
17,27,30] simply add all identified constraints to a query graph without careful
justification. Hence, a query graph may carry inappropriate constraints.

TV_character

clair

type

<TV_character>

<cast>

lost

mid

<actor>

answer

(a)
Q1:who plays claire in lost? 

fiction_character

ken barlow

type

<fiction_character>

<cast>

coronation street

mid

<actor>

answer

(b)
Q2:who plays ken barlow in coronation street?  

Fig. 1. Questions and their query graphs

Contributions. The contributions of this paper are summarized as follows.

1. We devise a novel metric that is based on local similarity and global similarity
for measuring semantic similarity between a mention and a candidate entity.
This new metric shows superiority than its counterparts.

2. We introduce an attention-based model for core path generation. In contrast
to prior works, this model incorporates richer implicit information for path
identification and shows excellent performance.

3. We propose a memory-based model for constraints selection. The model
enables us to choose suitable constraints adaptively.

4. We compared our approach with the state-of-art methods on typical bench-
mark datasets and show promising results.

The reminder of the paper is organized as follows. We introduce related works
in Sect. 2. We illustrate our method in Sect. 3. We conduct experiments to show
the performance of our approach in Sect. 4, followed by conclusion in Sect. 5.
1 〈tv.tv character.appeared in tv program,tv.regular tv appearance.actor〉.
2 〈fictional universe.fictional character.character created by〉.



Answering Complex Questions on Knowledge Graphs 189

2 Related Work

The problem of answering complex questions on KBs has been investigated for a
period. Investigators have developed several techniques, that can be categorized
into information retrieval (abbr. IR) and semantic parsing (abbr. SP).

Information Retrieval. Methods in this line mainly work as follows: (a) identify
the topic entity from the underlying KB for the given question; (b) gain a sub-
graph around the topic entity over KB; (c) extract features of candidate answers
from the subgraph; and (d) match the feature of the query to choose answers.

One bottleneck of IR-based methods is feature extraction. Hence, existing
approaches adopt different feature extraction methods to catch important infor-
mation from the question and the answer, respectively. Early approaches perform
as follows. [7,26] first gain candidate answers over KB according to dependency
tree, then use feature map to process feature extraction on the question and can-
didate answers respectively. With the development of neural networks, [11,14]
introduce techniques by incorporating CNN and attention mechanism in feature
extraction. Moreover, some approaches [9,16] adopted memory networks for the
task.

Since IR-based approaches retrieve answers from a KB, the completeness of
the KB is imperative. [13,20] make efforts on reasoning under incomplete KB.
While [22,29] proposed techniques to dynamically update reasoning instructions.

Semantic Parsing. Most semantic parsing approaches show better performance
on complex KBQA [8,9,15]. Methods in this line mainly work as follows: (a)
question understanding: understand a given question via semantic and syntac-
tic analysis; (b) logical parsing: translate the question into logical forms; (c)
KB grounding: instantiate logical forms by conducting semantic alignment on
underlying KB; (d) KB execution: execute the logical forms to obtain answers.

In the early stage, traditional semantic parsing methods [4,12] used tem-
plates to conduct logical parsing. Recently, for question understanding, syntax
dependencies [1,2,17] were introduced to accomplish the task, while [21] treats
a complex question as the combination of several simple questions.

The logical form generation is crucial for SP-based methods, approaches,
e.g., [8,27] focus on the task. A staged query graph generation mechanism was
introduced by [27], where each stage added some semantic components with
rules. Followed by [27], [3] further investigated the staged query graph gener-
ation, and summarized the types of constraints. A hierarchical representation
that based on words, questions and relation levels was proposed by [28]. [15]
developed a state-transition model to generate query graphs. While [17] and [18]
improved techniques for ranking query graphs. [10] analyzed historical datasets
and put forward a set of structured templates for generating complex query
graphs. Followed by [10], [8] proposed a generative model to generate abstract
structures adaptively, and match the abstract structures against a KB to gain
formal query graphs.



190 X. Wang et al.

3 Approach

Problem Formulation. The task of complex question answering on KBs can
be formulated as follows. Given a natural language question Q represented as a
sequence of words LQ = {w1, ..., wT } and a background knowledge base KB as
input, it is to find a set of entities in KB as answers for the question Q.

Typically, SP-based techniques, which gain better performances, involves
question patterns and query graphs (a.k.a. semantic graphs). We next formally
introduce the notions (rephrased) as follows.

Question Pattern. Given a question Q, one can generate a new question by
replacing an entity mention in Q with a generic symbol 〈e〉. Then this new
question is referred to as a question pattern (denoted by P) of Q. For example, a
question pattern of “who plays claire in lost?” is “who plays 〈e〉 in lost?’,
where the entity mention “claire” in Q is replaced by 〈e〉.
Query Graph. Typically, a query graph Qg is defined as a logical form in λ-
calculus [27] and consists of a core path and various constraints. Specifically, a
core path includes a topic entity, a middle node (not essential), an answer node
and some predicates among these nodes. Constraints are categorized into four
types according to their semantics, e.g., entity constraints, type constraints, time
constraints, and ordinary constraints. Two query graphs are shown in Fig. 1.

Overview. Our approach consists of three modules i.e.,Topic Entity Recogni-
tion, Core Path Generation and Constraints Selection. In a nutshell, given a
question Q issued on a KB, the Topic Entity Recognition module first retrieves
mentions from it and identifies a set of topic entities as candidates from the
underlying KB. On the set of candidate entities, the Core Path Generation mod-
ule identifies the core path with an attention-based model. Finally, the Con-
straints Selection module employs a memory-based model to select the most
suitable constraints, which are then used to produce the query graph. Below, we
illustrate the details of these modules in Sects. 3.1, 3.2 and 3.3, respectively.

3.1 Topic Entity Recognition

The Topic Entity Recognition module works as follows. (1) It employs, e.g.,
BiLSTM + CRF to recognize entity mentions from a given question Q. (2) It
performs the entity linking task with the state-of-the-art entity linking tool, i.e.,
S-MART [24] to link a mention to entities in a KB. Note that, a mention may
be linked to multiple entities in a KB. Hence, after above process, a collection of
triples 〈m, e, se〉 are returned, where m, e and se represent a mention, an entity
that is linked from m and a score measuring semantic similarity between m and
e, respectively. (3) It determines the best topic entity according to a novel metric
for measuring semantic similarity between a mention and an entity in a KB.

Similarity Metric. Given a question Q, a list of n mentions [m1,m2, ...,mn] can
be extracted from it. For a mention mi (i ∈ [1, n]), it is linked to k different
entities [e1i , e

2
i , · · · , eki ] in a KB and each entity eji is assigned with a value sji



Answering Complex Questions on Knowledge Graphs 191

indicating the matching degree between mi and eji (j ∈ [1, k]). We define the
largest matching degree ŝi of mi as ŝi = max{s1i , s

2
i , · · · , ski }, then the entity

with ŝi is considered the best entity of mi. The local similarity lji and global
similarity gji between a mention mi and its j-th entity eji are hence defined as

lji = sji/ŝi and gji = sji
max{ŝ1,ŝ2,··· ,ŝn} , respectively. The final semantic similarity τ

is defined as below.
τ = β · lji + (1 − β) · gji , (1)

where β is an adjustment coefficient tuned by users.
Based on the metric τ , the best topic entity e is determined and returned to

the core path generation module for further processing.

3.2 Core Path Generation

Given the topic entity e of a question Q, one can generate a set R =
{R1, · · · , RT } of core paths as candidates, where each Ri takes e as the ini-
tial node and consists of h hop nodes and edges of e in a KG. Then one only
needs to determine the best one from multiple candidates. Here, the quality of
a core path Ri w.r.t. Q indicates the semantic distance between Ri and the
question pattern of Q.

To tackle the issue, a host of techniques e.g., [3,17,27] have been developed.
These techniques mostly learn correlation between a question pattern and cor-
responding candidate core paths for the best core path determination. While,
the correlation from explicit information alone is insufficient. For example, given

Fig. 2. Attention-based core path generation model & Deep semantic network



192 X. Wang et al.

the question “who plays ken barlow in coronation street?”, it is easy to
obtain a topic entity as well as a question pattern “who plays 〈e〉 in corona-
tion street?”. Note that the pattern corresponds to multiple candidate paths
(a.k.a. relations) in a KG, e.g., 〈fiction character〉 and 〈TV character〉, while
only one “golden” path exists. If the “type” information of the topic entity, i.e.,
‘TV Character’, can be incorporated, one can easily determine the golden path:
〈TV character〉. This example shows that implicit information, e.g., type of the
topic entity, plays a crucial role in determining the golden path.

Motivated by this, we develop an Attention-based Core Path Generation
Model, denoted as ACPGM, to generate a core path for a given question.

Model Details. As shown in Fig. 2(a), ACPGM learns correlation between a
question and a core path by using explicit correlation v1 and implicit correlation
v2 and semantic similarity τ of the topic entity. In particular, the degree of
explicit correlation is calculated with a deep semantic network, which is shown
in Fig. 2(b). We next illustrate with more details.

Explicit & Implicit Correlation. Intuitively, the semantic correlation between a
question pattern P and a core path Ri is referred to as the explicit correlation.
On the contrary, the correlation that is inferred from certain implicit informa-
tion, is referred to as implicit correlation. Taking the question pattern “who
plays 〈e〉 in lost?” of Q1 as example, it corresponds to multiple candidate
paths, among which 〈fictional character〉 and 〈TV character〉 are typical ones.
Observe that the “type” (as one kind of implicit information) of the topic entity is
“TV Character”, which already appeared in the second candidate. If the “type”
information can be used to guide the selection, then the correct answer can be
obtained since the second candidate is more preferred.

Structure of the Model. The entire model consists of two parts for learning
explicit correlation and core paths selection, respectively.

(I) A deep semantic network (abbr. DSN) is developed to capture the explicit
correlation between a question pattern P and a candidate path Ri. The struc-
ture of DSN is shown in Fig. 2 (b). It encodes P and Ri as letter-trigram vectors,
and applies two convolutional neural networks with the same structure to learn
their semantic embeddings, respectively. Then DSN computes semantic similar-
ity (denoted by v1) between P and Ri by calculating the cosine distance of two
embeddings.

(II) ACPGM takes two lists L1 and L2 as input and leverages attention
scheme to improve performance. The first list L1 consists of a question pattern P
and the “type” information of the topic entity in P. The second list L2 essentially
corresponds to the implicit information, e.g., the first two and the last entry of
a candidate path, along with the “type” information of the answer entity. Each
word xi (resp. ci) in the first (resp. second) list is encoded as hi (resp. ej), via
certain encoding techniques, e.g., Word2Vec.

For each hi in L1 and each ej in L2, we calculate a weight wij of each pair
〈hi, ej〉, as attention to the answer with below function.

wij = WT (hi · ej) + b, (2)



Answering Complex Questions on Knowledge Graphs 193

where · operates as the dot product, WT ∈ R and b are an intermediate matrix
and an offset value, respectively; they can be randomly initialized and updated
during training. Note that there are in total l = |L1| ∗ |L2| pairs of weights for
each input. Accordingly, the attention weight aij of the pair 〈hi, ej〉, in terms of
the implicit information can be computed via below function.

aij =
exp(wij)

∑l
k=1 exp(wik)

(3)

The attention weights are then employed to compute a weighted sum for
each word, leading to a semantic vector that represents the question pattern.
The similarity score v2 between a question Q and a core path Ri is defined as
below.

qi =
n+1∑

j=1

aijhj (4)

v2 =
m+1∑

i=1

qiei (5)

By now, the explicit and implicit correlation between a question and a candi-
date core path, i.e., v1 and v2 are obtained. Together with score τ for measuring
topic entity, a simple multi-layer perceptron, denoted by f(·) is incorporated to
calculate the final score that is used for core paths ranking.

v = f(v1, v2, τ) (6)

Here, the loss function of ACPGM is defined as follows.

Loss(Q, R) = max(γ + v(Q, a0) − v(Q, a), 0), (7)

where γ is the margin parameter, a and a0 refer to the positive and negative
samples, respectively. The intuition of the training strategy is to ensure the score
of positive question-answer pairs to be higher than negative ones with a margin.

3.3 Constraints Selection

Given a core path, it is still necessary to enrich it with constraints imposed by the
given question and produce a query graph for seeking the final answer. To this
end, we first categorize constraints into four types, i.e., entity constraint, type
constraint, time constraint and ordinary constraint, along the same line as [17],
and then apply an approach, that works in two stages, for constraints selection.

Candidates Identification. As the first stage, this task targets at collecting valid
constraints as candidates. Given a question Q and its corresponding core path
pc (identified by ACPGM), we first identify 1-hop entities ec connected to nodes
(excluding the topic entity and answer node) of pc from the underlying KB. For
each identified entity ec, if part of its name appears in the original question Q, ec



194 X. Wang et al.

is considered as a possible entity constraint. Moreover, we treat type information
associated to the answer node as type constraint. The time constraint is recog-
nized via certain regular expression, and ordinary constraint is distinguished via
some typical hand-weaved rules. All the identified constraints are then included
in a set of size n for further process.

Constraints Selection. Given the set of candidate constraints, a Memory-based
Constratint Selection Model, denoted as MCSM, is developed to choose con-
straints. The idea of MCSM is to measure the relevance between a question and
its constraints and then select the most suitable ones to update the core path.

Fig. 3. Constraint selection model

It works as follows. For each candidate constraint, it is converted into a
vector ci (i ∈ [1, n]) of dimension d with an embedding matrix A ∈ R

d×n,
which is initialized randomly and learned during training. The set of embedding
C = {c1, c2, · · · , cn} will be stored in memory for querying. The input question
is also encoded as a matrix eq of dimension d with another matrix B ∈ R

d×n.
Via encoding, the relevance ri between a candidate constraint and the question
can be measured with Eq. 8.

ri = σ(eq · ci) (8)

Here σ indicates a nonlinear transformation with sigmoid function. In this
way, ri can be deemed as the relevance degree between the i-th constraint and the
question. Based on the relevance set, a new embedding eo as the representation
of the output memory can be generated as follows:

eo =
n∑

i=1

ci × ri (9)

Intuitively, eo captures the total relevance between a question and all its con-
straints. Finally, the output embedding eo is transformed via Eq. 10 to be a
numerical number val for judgement.

val = σ(HT · eo) − θ (10)



Answering Complex Questions on Knowledge Graphs 195

Here, matrix H ∈ R
n×d is randomly initialized and optimized via training, and

θ is a predefined threshold for constraint selection, i.e., a constraint with val
above zero can be accepted.

After constraints are determined, the core path pc is updated as follows. For
an entity constraint, it is associated with a node (excluding the topic entity
and answer node) in pc. For a type constraint, it is connected to the answer
node directly. If the constraint is a time constraint or ordinary constraint, pc is
extended by connecting the constraint to the middle node or answer node. After
above steps, the query graph is generated. Then the final answer can be easily
obtained.

4 Experimental Studies

4.1 Settings

We introduce details of model implementation, dataset and baseline methods.

Model Implementation. Our models were implemented in Keras v2.2.5 with
CUDA 9.0 running on an NVIDIA Tesla P100 GPU.

Knowledge Base. In this work, we use Freebase [6], which contains 5,323 predi-
cates, 46 million entities and 2.6 billion facts, as our knowledge base. We host
Freebase with the Virtuoso engine to search for entities and relations.

Questions. We adopted following question sets for performance evaluation.

– CompQuestion [3] contains 2,100 questions collected from Bing search query
log. It is split into 1,300 and 800 for training and testing, respectively.

– WebQuestion [4] contains 5,810 questions collected from Google Suggest API
and is split into 3,778 training and 2,032 testing QA pairs.

Baseline Methods. We compared our approach with following baseline methods:
(1) Yih et al. 2015 [27], a technique for staged query graph generation; (2)
Bao et al. 2016 [3], extended from Yih’s work with techniques for constraint
detection and binding; (3) Luo et al., 2018 [17], that treats a query graph as
semantic components and introduces a method to improve the ranking model;
(4) Hu et al. 2018 [15] which gains the best performance on WebQuestion with a
state-transition mechanism; and (5) Chen et al. 2020 [8], that achieves the best
performance on CompQuestion.

4.2 Model Training

We next introduce training strategies used by our models.

Training for DSM. The DSM is fed with a collection of question pattern and core
path pairs for training. To improve performance, a subtle strategy is applied to
ensure the correctness of positive samples as much as possible. Specifically, for
each question Q in the original training set, a core path that takes topic entity



196 X. Wang et al.

e in Q as starting node, with length no more than two in the underlying KB
and F1 score no less than 0.5 is chosen as training data. Here F1 is defined as
2∗precision∗recall
precision+recall , where precision = #true paths predicted

#predicted paths and recall = #true paths predicted
#true paths .

Training for ACPGM. To train ACPGM, a collection of question pattern and
core path pairs 〈P, R〉 needs to be prepared. Besides the set of paths identified
for training DSM, n incorrect paths were chosen randomly as negative samples,
for each question pattern P; In this work, margin γ is set as 0.1, n is set as 5
and h, indicating number of hops, is set as 3.

Training for MCSM. The constraint with the largest F1 score is deemed as the
golden constraint. As a multi-classification model, MCSM calculates the binary
cross entropy loss for each class label, and sum all the label loss as the final loss.
The probability threshold θ is set to 0.8.

During the training, we use a minibatch stochastic gradient descent to min-
imize the pairwise training loss. The minibatch size is set to 256. The initial
learning rate is set to 0.01 and gradually decays. We use wiki answer vectors as
the initial word-level embedding.

4.3 Results and Analysis

We use the F1 score over all questions as evaluation metric. Here, F1 score for
final answer is defined similarly as before, with the exception that the precision
and recall are defined on answer entities rather than core paths.

Overall Performance. Table 1 shows the results on two benchmark datasets.
As can be seen, our method achieves 53.2% and 42.6% F1 values on WebQuestion
and CompQuestion, respectively, indicating that our method excels most of the
state-of-the-art works, w.r.t. F1 score.

Table 1. Performance evaluation (F1)

Methods CompQuestion (%) WebQuestion (%)

[Dong et al., 2015] [11] – 40.8

[Yao et al., 2015] [25] – 44.3

[Berant et al., 2015] [5] – 49.7

[Yih et al., 2015] [27] 36.9 52.5

[Bao et al., 2016] [3] 40.9 52.4

[Xu et al., 2016] [23] 36.9 52.5

[Abujabal et al., 2017] [2] – 51.0

[Luo et al., 2018] [17] 42.8 52.7

[Hu et al., 2018] [15] – 53.6

[Zhu et al., 2020] [30] – 52.1

Ours 42.6 53.2



Answering Complex Questions on Knowledge Graphs 197

We noticed that Chen et al., 2020[8] claimed higher performance on both
dataset. However, this work introduced additional information, proposed in [17]
as ground truth during training, while we just use the original WebQuestion.
Moreover, Hu et al., 2020[15] introduced external knowledge to solve implicit
relation to achieve higher performance on WebQuestion.

Performance of Sub-modules. As our approach works in a pipelined manner,
the overall performance is influenced by the sub-modules. It is hence necessary
to show the performance of each sub-module. To this end, we introduce a metric,
which is defined as Accu = |TP|

|test| , where TP is a set consisting of intermediate
results returned by a sub-module, such that each of them can imply a correct
answer, and test refers to the test set. Intuitively, the metric Accu is used to show
the upper bound of the prediction capability of each sub-module. Besides Accu,
the metric F1 is also applied for performance evaluation. Table 2 shows Accu
and F1 scores of sub-modules on WebQuestion and CompQuestion, respectively.

Table 2. Performance evaluation w.r.t. sub-modules

Sub-modules WebQuestion CompQuestion

Accu (%) F1 (%) Accu (%) F1 (%)

Topic entity recognition 93.5 77.4 93.4 64.4

Core path generation 65.0 54.7 60.3 44.3

Constraints selection 56.8 53.2 52.1 42.6

Topic Entity Recognition. For an identified entity, if it can lead to the “golden”
answer, it is treated as a correct entity, otherwise, it will be regarded as an
incorrect prediction. Based on this assertion, the Accu and F1 score w.r.t. topic
entity recognition can be defined. As is shown, the Accu of the sub-module
reaches 93.5% on WebQuestion and 93.4% on CompQuestion. This shows that
our sub-module for topic entity recognition performs pretty well. However, the
F1 scores of the sub-module reaches 77.4% and 64.4% on WebQuestion and
CompQuestion, respectively. The gap between the Accu and F1 scores partly lies
in the incompleteness of the answer set of a question in the test set. Taking
WebQuestion as an example, it was constructed by Amazon Mechanical Turk
(AMT) manually, for each question, it only corresponds to no more than ten
answers.

Core Path Generation. As shown in Table 2, the Accu of our core path generation
sub-module is 65% on WebQuestion and 60.3% on CompQuestion, respectively;
while the F1 scores on WebQuestion and CompQuestion are 54.7% and 44.3%,
respectively. The figures tell us following. (1) It is more difficult to determine
a correct core path on CompQuestion than that on WebQuestion, as both Accu
and F1 score on CompQuestion are lower than that on WebQuestion, which is
also consistent with the observation on both dataset. (2) Both metrics of the



198 X. Wang et al.

sub-module are significantly lower than that of Compared with the sub-module
for topic entity recognition,

There still exists a big gap between Accu and F1 scores on two dataset. We
will make further analysis in Error analysis part.

Constraints Selection. After constraints selection, the final answers are obtained.
Thus the F1 score of the sub-module is the same as that of the entire system.

We also compared the MCSM with a variant (denoted as MemN2N) of the
model introduced by [19] to show its advantages w.r.t. training costs. Compared
with MCSM, MemN2N leverages two matrices to produce different embedding
of constraints, which brings trouble for model training. As shown in Table 3,
MCSM consumes less time for model training, while achieves almost the same
F1 score, no matter how training set and validation set are split. This sufficiently
shows that the MCSM is able to achieve high performance with reduced training
cost.

Table 3. MCSM v.s MemN2N

Train/Validation MemN2N MCSM

Training time (s) F1 (%) Training time (s) F1 (%)

4:1 2549 52.8 2031 52.8

9:1 1610 52.8 1211 52.7

All Train 2340 52.7 1657 52.8

5 Conclusion

In this paper, we proposed a comprehensive approach to answering complex
questions on knowledge bases. A novel metric for measuring entity similarity
was introduced and incorporated in our topic entity recognition. As another
component, our attention-based core path generation model leveraged attention
scheme to determine the best core paths, based on both explicit and information.
A memory network with compact structure was developed for constraints selec-
tion. Extensive experiments on typical benchmark datasets show that (1) our
approach outperformed most of existing methods, w.r.t. F1 score; (2) our sub-
modules performed well, i.e., with high F1 values; (3) our sub-module e.g., the
constraints selection model was easy to train and consumes less training time;
and (4) implicit information was verified effective for determining core paths.

Acknowledgement. This work is supported by Sichuan Scientific Innovation Fund
(No. 2022JDRC0009) and the National Key Research and Development Program of
China (No. 2017YFA0700800).



Answering Complex Questions on Knowledge Graphs 199

References

1. Abujabal, A., Saha Roy, R., Yahya, M., Weikum, G.: Never-ending learning for
open-domain question answering over knowledge bases. In: Proceedings of the 2018
World Wide Web Conference, pp. 1053–1062 (2018)

2. Abujabal, A., Yahya, M., Riedewald, M., Weikum, G.: Automated template gen-
eration for question answering over knowledge graphs. In: Proceedings of the 26th
International Conference on World Wide Web, pp. 1191–1200 (2017)

3. Bao, J., Duan, N., Yan, Z., Zhou, M., Zhao, T.: Constraint-based question answer-
ing with knowledge graph. In: Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers, pp. 2503–2514 (2016)

4. Berant, J., Liang, P.: Semantic parsing via paraphrasing. In: Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics, pp. 1415–
1425 (2014)

5. Berant, J., Liang, P.: Imitation learning of agenda-based semantic parsers. Trans.
Assoc. Comput. Linguistics 3, 545–558 (2015)

6. Bollacker, K.D., Evans, C., Paritosh, P.K., Sturge, T., Taylor, J.: Freebase: a collab-
oratively created graph database for structuring human knowledge. In: Proceedings
of the International Conference on Management of Data, pp. 1247–1250 (2008)

7. Bordes, A., Chopra, S., Weston, J.: Question answering with subgraph embed-
dings. In: 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, pp. 615–620 (2014)

8. Chen, Y., Li, H., Hua, Y., Qi, G.: Formal query building with query structure
prediction for complex question answering over knowledge base. In: International
Joint Conference on Artificial Intelligence (IJCAI) (2020)

9. Chen, Y., Wu, L., Zaki, M.J.: Bidirectional attentive memory networks for question
answering over knowledge bases. In: Proceedings of NAACL-HLT, pp. 2913–2923
(2019)

10. Ding, J., Hu, W., Xu, Q., Qu, Y.: Leveraging frequent query substructures to
generate formal queries for complex question answering. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing and the Inter-
national Joint Conference on Natural Language Processing, pp. 2614–2622 (2019)

11. Dong, L., Wei, F., Zhou, M., Xu, K.: Question answering over freebase with multi-
column convolutional neural networks. In: Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing, pp. 260–269 (2015)

12. Fader, A., Zettlemoyer, L., Etzioni, O.: Open question answering over curated and
extracted knowledge bases. In: Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1156–1165 (2014)

13. Han, J., Cheng, B., Wang, X.: Open domain question answering based on text
enhanced knowledge graph with hyperedge infusion. In: Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, pp. 1475–1481
(2020)

14. Hao, Y., Zhang, Y., Liu, K., He, S., Liu, Z., Wu, H., Zhao, J.: An end-to-end
model for question answering over knowledge base with cross-attention combining
global knowledge. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics, pp. 221–231 (2017)

15. Hu, S., Zou, L., Zhang, X.: A state-transition framework to answer complex ques-
tions over knowledge base. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2098–2108 (2018)



200 X. Wang et al.

16. Jain, S.: Question answering over knowledge base using factual memory networks.
In: Proceedings of the NAACL Student Research Workshop, pp. 109–115 (2016)

17. Luo, K., Lin, F., Luo, X., Zhu, K.: Knowledge base question answering via encoding
of complex query graphs. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2185–2194 (2018)

18. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
Proceedings of the International Conference on WWW, pp. 697–706 (2007)

19. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks.
Advances in neural information processing systems 28 (2015)

20. Sun, H., Bedrax-Weiss, T., Cohen, W.: Pullnet: open domain question answering
with iterative retrieval on knowledge bases and text. In: Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing and the International
Joint Conference on Natural Language Processing, pp. 2380–2390 (2019)

21. Sun, Y., Zhang, L., Cheng, G., Qu, Y.: Sparqa: skeleton-based semantic parsing for
complex questions over knowledge bases. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, pp. 8952–8959 (2020)

22. Xu, K., Lai, Y., Feng, Y., Wang, Z.: Enhancing key-value memory neural networks
for knowledge based question answering. In: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2937–2947 (2019)

23. Xu, K., Reddy, S., Feng, Y., Huang, S., Zhao, D.: Question answering on freebase
via relation extraction and textual evidence. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, pp. 2326–2336 (2016)

24. Yang, Y., Chang, M.W.: S-mart: Novel tree-based structured learning algorithms
applied to tweet entity linking. In: Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing, pp. 504–513 (2015)

25. Yao, X.: Lean question answering over freebase from scratch. In: Proceedings of
the 2015 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Demonstrations, pp. 66–70 (2015)

26. Yao, X., Van Durme, B.: Information extraction over structured data: question
answering with freebase. In: Proceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 956–966 (2014)

27. Yih, S.W.t., Chang, M.W., He, X., Gao, J.: Semantic parsing via staged query
graph generation: question answering with knowledge base (2015)

28. Yu, M., Yin, W., Hasan, K.S., dos Santos, C., Xiang, B., Zhou, B.: Improved neural
relation detection for knowledge base question answering. In: Proceedings of the
ACL, pp. 571–581 (2017)

29. Zhou, M., Huang, M., Zhu, X.: An interpretable reasoning network for multi-
relation question answering. In: Proceedings of the 27th International Conference
on Computational Linguistics, pp. 2010–2022 (2018)

30. Zhu, S., Cheng, X., Su, S.: Knowledge-based question answering by tree-to-
sequence learning. Neurocomputing 372, 64–72 (2020)


	Answering Complex Questions on Knowledge Graphs
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Topic Entity Recognition
	3.2 Core Path Generation
	3.3 Constraints Selection

	4 Experimental Studies
	4.1 Settings
	4.2 Model Training
	4.3 Results and Analysis

	5 Conclusion
	References




