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Abstract Artificial intelligence (AI) is aimed at endowing machines with some form 
of intelligence. Not surprisingly, AI scientists take much inspiration from the ways 
in which the brain—or the mind—works to build intelligent systems. This chapter 
proposes a different angle to harness the neurosciences for composition. Rather than 
building musical ANN to learn how to compose music, I shall introduce my forays 
into harnessing the behaviour of a type of neuronal model referred to as spiking 
neuronal networks to compose music. The discussion revolves around a piece for 
orchestra, choir and a solo mezzo-soprano entitled Raster Plot. 
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1 Introduction 

Artificial intelligence (AI) is aimed at endowing machines with some form of intelli-
gence. Not surprisingly, AI scientists take much inspiration from the ways in which 
the brain—or the mind—works to build intelligent systems. Hence, studies in philos-
ophy, psychology, cognitive science and more recently, the neurosciences have been 
nourishing AI research since the field emerged in the 1950s, including, of course, AI 
for music (Miranda 2021). 

The neurosciences have led to a deeper understanding of the behaviour of indi-
vidual and large groups of biological neurones. We can now begin to apply biolog-
ically informed neuronal functional paradigms to problems of design and control, 
including applications pertaining to music technology and creativity (Magenta 2022). 
Artificial neuronal networks (ANN) technology owes much of its development to 
burgeoning neuroscientific insight. 

However, this chapter proposes a different angle to harness the neurosciences for 
composition. Rather than building musical ANN to learn how to compose music, I 
shall introduce my forays into harnessing the behaviour of a type of neuronal model
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referred to as spiking neuronal networks to compose music (Jang et al. 2019). The 
discussion revolves around a piece for orchestra, choir and a solo mezzo-soprano 
entitled Raster Plot. 

2 Description of Raster Plot 

Raster plot is a tribute to Plymouth-born explorer Robert Falcon Scott. It includes 
extracts from Scott’s diary (Scott 2008) on the final moments of his expedition to 
the South Pole before he died in March of 1912; the extracts used in the piece are 
available in Appendix 1. 

The mezzo-soprano sings the extracts using sprechgesang, a type of vocaliza-
tion between singing and recitation: the voice sings the beginning of each note and 
then falls rapidly from the notated pitch, alluding to the endurance of Scott and his 
companions facing the imminent fatal ending of the expedition. A whispering choir 
echoes distressed thoughts amidst a plethora of jumbled mental activity represented 
by the sounds of the orchestra. 

2.1 New Models 

Inspired by the physiology of the human brain, I devised a method to represent the 
notion of mental activity musically. I used a computer simulation of a network of 
interconnected neurones that model the way in which information travels within the 
brain, to generate patterns that I subsequently turned into music. When the network 
is stimulated with an external signal (this will be clarified below), each neurone of 
the network produces sequences of bursts of activity, referred to as spikes, forming 
streams of rhythmic patterns. A raster plot is a graph plotting the spikes (Fig. 1): 
hence the title of the composition. 

Fig. 1 A raster plot illustrating collective firing behaviour of a simulated network of spiking 
neurones. Neurone numbers are plotted (y-axis) against time (x-axis) for a simulation of 50 neurones 
over a period of ten seconds. Each dot represents a firing event
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In a nutshell, I orchestrated raster plots by allocating each instrument of the 
orchestra to a different neurone of the network simulation. Each time a neurone 
produced a spike, its respective instrument was prompted to play a certain note. The 
notes were assigned based upon a series of chords, which served as frames to make 
simultaneous spikes sound in harmony. 

The movement culminates with a transition from the orchestrated raster plots to a 
concluding passage bearing resemblance to a cathedral psalter chant. I wanted this to 
represent the moment Scott passed way; musically, it conveys a moment of poiesis: 
a moment of transition. 

2.2 Music Neurotechnology 

As briefly mentioned above, many recent advances in the neurosciences, especially 
in Computational Neuroscience, have led to a deeper understanding of the behaviour 
of individual neurones and their networks. I have coined the term Music Neurotech-
nology in a paper I co-authored for Computer Music Journal in 2009 (Miranda et al. 
2009), to refer to a new research area that is emerging at the crossroads of Neurobi-
ology, Engineering Sciences and Music. The compositional method described here is 
one of the outcomes of my continuing research in this field. Another important devel-
opment in this area includes Brain–Computer Music Interfacing (BCMI) systems to 
enable persons with severe motor impairment to make music (Eaton et al. 2015). 

The spiking neurones model that I used to compose the piece was originally 
developed by computational neuroscientist Eugene Izhikevich (2007). A biological 
neurone aggregates the electrical activity of its surroundings over time until it reaches 
a given threshold. At this point, it generates a sudden burst of electricity, referred to 
as an action potential. Izhikevich’s model is interesting because it produces spiking 
behaviours that are identical to the spiking behaviour of neurones in real brains. 
Also, its equations are relatively easier to understand and program on a computer, 
compared to other, more complex models. Izhikevich’s equations represent the elec-
trical activity at the level of the membrane of neurones over time and can reproduce 
several properties of biological spiking neurones commonly observed in the brain. 

The simulation contains two types of neurones, excitatory and inhibitory, which 
interact and influence the behaviour of the whole network. Each action potential 
produced by a neurone is registered and transmitted to other neurons, producing 
waves of activation, which spread over the entire network. A raster plot showing an 
example of such collective firing behaviour, taken from a simulation of a network of 
neurones, is shown in Fig. 1. Here, the spikes result from a simulation of the activity 
of a network of 50 artificial neurones over a period of ten seconds: the neurones are 
numbered on the y-axis (with neurone number 1 at the bottom, and neurone number 
50 at the top) and time, which runs from zero to 10,000 ms, is on the x-axis. Every 
time one such neurone fires, a dot is placed on the graph at the respective time. 

Figure 1 shows periods of intense collective spiking activity separated by quieter 
moments. These moments of relative quietness in the network are due to both the



220 E. R. Miranda

action of the inhibitory neurones and the refractory period during which a neurone 
that has spiked remains silent as its electrical potential decays back to a baseline 
value. 

The network model needs to be stimulated to produce these patterns of activation. 
For the composition of Raster Plot, I stimulated the network with a sinusoidal signal 
that was input to all neurones of the network simultaneously. Generally speaking, the 
amplitude of this signal controlled the overall intensity of firing through the network. 
For instance, the bottom of Fig. 2 shows a raster plot generated by a network of 
spiking neurones stimulated by the sinusoid shown at the top of the figure. As the 
undulating line rises, the spiking activity is intensified. Conversely, as the undulating 
line falls, the spiking activity becomes quieter. As a gross generalization, if one 
thinks of the spiking neuronal network model as the brain of some sort of organism, 
then the stimulating sinusoid would represent perceived sensory information. Albeit 
simplistic, I find this model inspiring in the sense that it captures the essence of how 
our brain responds to sensorial information. Of course, a more complex signal could 
replace the sinusoid; for instance, a sampled sound could be used to simulate the 
network. In this case, the raster plots would look considerably more complex than 
the ones I am presenting in this chapter. 

Fig. 2 At the top is a sinusoid signal that stimulated the network that produced the spiking activity 
represented by the raster plot at the bottom
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3 Compositional Process 

To compose the piece, I set up a network with 50 neurones and ran the simulation 
12 times, lasting for 10 s each. For all runs of the simulation, I set the stimulating 
sinusoid to a frequency of 0.0005 Hz, which means that each cycle of the wave lasted 
for 2 s. Therefore, each simulation took five cycles of the wave, which can be seen 
at the top of Figs. 2, 3 and 4, respectively. 

Compositionally, the top of Figs. 2, 3 and 4 suggests musical form to me, whereas 
the bottom suggests musical content. Hopefully, this will become clearer below as I 
unpack the process by which I composed this piece. 

For each run, I varied the amplitude of the sinusoid, that is, the power of the 
stimulating signal, and the sensitivity of the neurones to fire. The power of the 
stimulating signal could be varied from 0.0 (no power at all) to 5.0 (maximum 
power) and the sensitivity of the neurons could be varied from 0.0 (no sensitivity 
at all; would never fire) to 5.0 (very sensitive). For instance, for the first run of the 
simulation, I set the power of the signal to 1.10 and the sensitivity of the neurons to 
2.0 (Fig. 3), whereas in the tenth run I set these to 2.0 and 4.4, respectively (Fig. 1). 
One can see that the higher the power of the stimuli and the higher the sensitivity, the 
more likely the neurons are to fire and therefore the more spikes the network produces 
overall. One can observe a considerable increase in spiking activity in Fig. 4, which 
corresponds to the fourth run. And in Fig. 2, which corresponds to the tenth run, 
there is a substantial increase in the intensity of spiking activity. Table 1 shows the 
values for the 12 runs. I had envisaged at this stage a composition where the music

Fig. 3 First run of the simulation produced sparse spiking activity because the amplitude of the 
sinewave and the sensitivity of the neurons were set relatively low
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Fig. 4 Sensitivity of the neurons to fire was increased slightly in the fourth run of the simulations, 
resulting in more spiking activity than in previous runs

Table 1 Parameters for the 12 runs of the spiking neurones network 

Run 1 2 3 4 5 6 7 8 9 10 11 12 

Power 1.10 1.11 1.12 1.13 1.14 1.2 1.21 1.22 1.3 2.0 2.2 3.0 

Sensitivity 2.0 2.3 2.6 2.9 3.2 3.5 3.8 4.0 4.2 4.4 4.8 5.0 

would become increasingly complex and tense, culminating with the transition to 
the psalter-like chant I mentioned earlier. 

I established that each cycle of the stimulating sinusoid would produce spiking 
data for three measures of music, with the following time signatures: 4/4, 3/4 and 
4/4, respectively. Therefore, each run of the simulation would produce spiking data 
for fifteen measures of music. Twelve runs resulted in a total of 180 measures, but as 
we shall see below, I finished the spiking section at measure number 160. I felt that 
the resulting music was beginning to linger and loose interest at about this measure. 
Thus, the time was ripe for the transition to the psalter-like chant. 

With the settings shown in Table 1, I noticed that the neurones did not produce 
more than 44 spikes in one cycle of the stimulating sinusoid. This meant that if I 
turned each spike into a musical note, then each cycle of the sinusoid would produce 
up to 44 notes. In order to transcribe the spikes as musical notes, I decided to quantize1 

them to fit a metric of semiquavers, where the first and the last of the three measures 
could hold up to 16 spikes each, and the second measure could hold up to 12. Next,

1 To quantize means to restrict a variable quantity to discrete values. For example, an ordinary clock 
normally quantizes time to seconds; each tick of the clock corresponds to a second. 
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I associated each instrument of the orchestra, excepting the choir and the mezzo-
soprano parts, to a neurone or group of neurones. This is shown in Table 2. From  
the 50 neurones of the network, I ended up using only the first 40, counting from the 
bottom of the raster plots upwards. Polyphonic instruments, such as the organ, were 
associated with a group of neurons because they can play more than one stream of 
notes simultaneously. 

The compositional process progressed through three major steps: 

(a) the establishment of a rhythmic template, 
(b) the assignment of pitches to the template and 
(c) the articulation of the musical material. 

In order to establish the rhythmic template, firstly I transcribed the spikes as semi-
quavers onto the score. Figure 5 shows an excerpt of the result of this transcription 
for a section of the strings.

Although I could have written a piece of software to transcribe the spikes, I ended 
up transcribing the spikes manually. I printed the raster plots for each cycle of the 
stimulating signal (Fig. 6). Then, I used a template drawn on an acetate sheet to

Table 2 Instruments are 
associated with neurones 

Neurones Instruments Neurones Instruments 

1 Contrabass 2 17 1st Violin 1 

2 Contrabass 2 18, 19, 20, 21 Organ 

3 Cello 3 22, 23, 24, 25, 26 Celesta 

4 Cello 2 27, 28, 29 Vibraphone, 
Timpani 

5 Cello 1 30 Snare drum, 
Cymbal, 
Tam-tam 

6 Viola 3 31 Tuba 

7 Viola 2 32 Trombone 3 

8 Viola 1 33 Trombone 2 

9 2nd Violin 4 34 Trombone 1 

10 2nd Violin 3 35 Trumpet 2 

11 2nd Violin 2 36 Trumpet 1 

12 2nd Violin 1 37 Horn 3 

13 1st Violin 5 38 Horn 2 

14 1st Violin 4 39 Horn 1 

15 1st Violin 3 40 Clarinet bass 
clarinet 

16 1st Violin 2 

Each instrument plays the spikes produced by its respective 
neurone or group of neurones
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Fig. 5 Transcribing spikes from a raster plot as semiquavers on a score

establish the positions of the spikes and transcribe the information into the score 
(Fig. 7).

To forge rhythmic patterns that would be recognized as such by performing musi-
cians, I altered the duration of the notes and rests, while preserving the original 
spiking pattern as much as I could. Figure 8 shows the new version of the score

Fig. 6 A raster plots for each cycle of the stimulating signal produce spiking data for three measures 
of music
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Fig. 7 A template drawn on an acetate sheet was used to transcribe the spikes into the score

shown in Fig. 5 after this process. Figure 9 shows the result of the compositional 
process, with pitches and articulation.

I would say that in many ways the compositional method that I developed for raster 
plot draws on Pierre Boulez serialism (Griffiths 1979). In order to assign pitches to 
the rhythmic template, I defined a series of 36 chords of 12 notes each, as shown in 
Fig. 10. These chords sprang on the back of the napkin after a conversation I had with 
composer Peter Nelson on a rainy afternoon in a café in Edinburgh. I had mentioned 
to him that I was struggling to find a decent way to assign pitches to the spiking 
rhythms. Peter suggested using matrices representing harmonic topologies. It was a 
eureka moment.

I started by creating 12 chords based on the harmonic series. Then, I established 
additional 24 chords firstly by inverting only a portion of those 12 chords (e.g., only 
the notes on the G clef) and then by inverting chords entirely. I do not remember 
the exact rationale for the different key signatures; most probably, I defined them in 
haste in order to avoid having to write all accidents next to the respective notes on 
the score. 

To begin with, I used the first chord of the series to furnish pitches for the first 
21 measures of music. As the spiking activity up to this point was not so intense, I 
decided to use only this chord to begin with. Then, from measure 22 onwards I used 
each subsequent chord of the series to furnish pitches for every three measures, and 
so on. Once I had furnished the pitches for measures 124–126 with the 36th chord, I 
subsequently selected chords unsystematically to continue the process until measure 
number 160.
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Fig. 8 Resulting rhythmic figure 

Fig. 9 Resulting music
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Fig. 10 Series of chords for the harmonic structure of raster plot

The actual allocation of pitches of the chords to notes of the rhythmic figures was 
arbitrary. I did this differently as the movement progressed. In general, those figures 
to be played by instruments of lower tessitura were assigned the lower pitches of the 
chords and those to be played by instruments of higher tessitura were assigned the 
higher pitches, and so on. An example is shown in Fig. 11, which shows the allocation 
of pitches from the G clef portion of chord number 22 to the rhythmic figures for
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Fig. 11 An excerpt from raster plot illustrating the assignment of pitches to rhythmic figures 

the violins in measures 82–84. There were occasions where I decided to transpose 
pitches one octave upwards or downwards in order to best fit specific contexts or 
technical constraints of the respective instrument. Other adjustments also occurred 
during the process of articulating the musical materials. 

3.1 Limitations 

A caveat of my method to turn raster plots into music is that it limits my ability to 
compose with the parameters composers would normally expect to work with, that 
is, duration and pitch. In a way, this limitation forced me to work with other musical 
parameters, such as articulation and timbre, to fashion the materials. To this end, I 
employed several non-standard playing techniques to forge new musical gestures. 

The process of articulating the musical material is a difficult one to explain objec-
tively because it was much less systematic than the processes described thus far. The 
vocal part was composed at the same time as I worked on the articulations. But it 
was not directly constrained by the spiking neurones method. The mezzo-soprano, 
which sings in sprechgesang mode, appears in measures corresponding to periods of 
rarefactive spiking activity. Musically, I wanted to create an effect akin to responso-
rial singing. Metaphorically, I wanted to allude to an imaginary process, whereby the 
neurones were sending commands to control the muscles of the vocal mechanisms 
of a hypothetic singer, but not so efficiently. Hence, the undefined effect of hearing 
neither clear singing nor clear speaking. The bass clarinet often doubles the mezzo-
soprano, representing the hypothetic singer’s mind’s ear; it plays the melodic lines 
she intends to sing. Technically, this aids the singer to find the right pitch to enter 
passages that are difficult to ascertain the pitch unaided.
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4 Reflection on Process 

By way of introspection, I often find myself confronting the following dichotomy 
whenever I attempt to articulate my compositional practice. On the one hand, I think 
of music as the intuitive expression of ineffable thoughts, highly personal impres-
sions of the world around me, and the irrational manifestation of emotions. On the 
other hand, I am keen to maintain that music should be logical, systematic, and 
follow guiding rules. In general, I think that rationality does play an important role 
in music composition, especially classical music. Hence, formalisms, rules, schemes, 
methods, number crunching, computing, and so on, are of foremost importance for 
my métier: But I also think that music that is totally generated automatically by a 
machine is rather meaningless. Music needs to be embedded in cultural and emotion-
ally meaningful contexts, which composers express in subtle, often ineffable ways. A 
computer would not be capable of composing a piece such as Beethoven’s Symphony 
No. 9. Its backstory, myriad of references, drama, and so on, are aspects of musi-
cianship that computers, as we know them today, cannot grasp. The composition of 
Raster Plot is a good example of this dichotomy. 

All the same, one of the reasons I find it exciting working with artificial intelli-
gence, and computers in general, is because they can generate musical materials that 
I would not have produced on my own manually. This mindset is akin to John Cage’s 
thinking when he preferred to set up the conditions for music to happen rather than 
composing music set in stone. Cage liked being surprised by the outcomes of such 
happenings (Cage 1994). By the same token, I enjoy being surprised by the outcomes 
of a computer. But I am not willing to just leave these materials intact I am afraid. 

A recording of the premiere of raster plot by Ten Tors Orchestra, under the baton 
of the late Simon Ible, is published by Da Vinci and a free version is available on 
YouTube.2 A short excerpt of the score is shown in Appendix 2. 

Appendix 1 The Lyrics for Raster Plot 

For God’s sake, 

look after our people. 

Had we lived, 

I should have had a tail to tell, 

of the hardihood endurance and courage

2 Raster Plot on YouTube: https://www.youtube.com/watch?v=xEywlAbP8Vs 

https://www.youtube.com/watch?v=xEywlAbP8Vs
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of my companions, 

which would have stirred  

the heart of every Englishman. 

These rough notes 

and our dead bodies 

must tell the tale. 

We shall stick it out 

to the end, 

but we are getting weaker. 

Of course 

and the end cannot be far. 

It seems a pity, 

but I do not think 

I can write more. 

For God’s sake, 

look after our people. 

Appendix 2 Excerpts from the Score 

See Figs. 12 and 13.
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Fig. 12 Page 17 from the score
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Fig. 13 Page 20 from the score
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