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�Introduction

Artificial intelligence (AI) has dominated medical research 
and clinical applications in recent years. The use of the term 
AI dates to many decades ago, first introduced in the 1956 
Dartmouth Summer Research Project on Artificial 
Intelligence. AI generally encompasses all applications 
regarding computers performing tasks requiring human 
intelligence and its simulation of learning [1]. Machine 
learning (ML) is a subtype of AI, where algorithms learn to 
perform tasks by “training” a large dataset, learning the 
data’s characteristics without explicit assumptions of the 
relationships between variables [2–4]. Of all ML algorithms, 
neural networks (NN) have recently gained much interest 
in radiology, due to their natural affinity for analyzing 
images. These networks consist of layers of interconnected 

nodes (“neurons”) that are roughly based on the layered 
organization of neurons in the brain [5]. With a multilayered 
NN, “deep” networks can be built, hence the term “deep 
learning (DL)” when referring to applications which employ 
this type of ML algorithm [6].

Excitement around NNs was stirred up after a DL-based 
algorithm won the ImageNet Challenge in 2012 (an annual 
competition for classification of natural images) and greatly 
surpassed the performance from past years [7]. This excite-
ment in DL quickly extended to the medical imaging field, 
and has been attracting immense interest not only because of 
the advances in ML theory and the development of better 
algorithms, but also due to the advances in hardware 
(improved computational resources such as graphics pro-
cessing units (GPUs) and the accumulation of medical data 
(the large amount of data is commonly referred to as “big 
data [8]”) needed to train the algorithms [3]. DL applications 
have shown great potential in ophthalmology [9], dermatol-
ogy [10], radiology [11], and pathology [12], to name a few 
examples. In radiology, some uses of AI include automating 
time-consuming tasks, solving problems that are intellectu-
ally difficult for humans, making diagnoses, and asserting 
predictions.

We provide a brief overview of AI in neuroradiology by 
describing key terms, common ML algorithms, basic NN 
architecture, and a small sampling of applications.

�Basic Definitions

Artificial intelligence (AI) is a field that designs computer 
systems to perform tasks that mimic human intelligence. 
Machine learning (ML) is subtype of artificial intelligence 
that develops algorithms to acquire knowledge and make 
decisions from the data. Classic ML depends on carefully 
human-engineered features extracted from input data. For 
many tasks, however, it is difficult to predetermine which 
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features to extract. To address this problem, representation 
learning was developed to teach machines to discover not 
only the mapping from input to output, but also the represen-
tation itself. The representation-learning algorithm deter-
mines the optimal set of features to best carry out the task. 
For very complex tasks, a hierarchy of features, from con-
crete to abstract, local to global, may be needed. Deep 
learning (DL) provides an elegant solution by using a lay-
ered architecture, whereby progressively more complex pat-
terns are extracted as data pass through the layers. Through 
this tiered processing, simple features (such as intensity, 
edges, and textures) are conjugated to build more complex 
features (such as corners, contours, etc.), from which more 
elaborate structures (such as organs and lesions) are con-
structed. Similarly, complex abstractions can be formulated 
upon simpler concrete concepts (Fig. 58.1).

There are two general methods by which machines learn: 
“supervised learning” and “unsupervised learning,” which 
differ in their applications and the input data. In supervised 
learning, some “ground truth” exists, which is used to train 
the algorithm. During the training process, the correct 
answers are known a priori, and the algorithm iteratively 

makes predictions on the training data and adjusts the param-
eters to minimize the errors on subsequent iterations. 
Training continues until the machine achieves a desired level 
of accuracy or performance plateaus. Common applications 
of supervised learning include classification and regression. 
For example, classification algorithms might aim to identify 
specific tumors as “meningioma,” “astrocytoma,” or “glio-
blastoma” (multiclass classification) or perhaps predict suc-
cessful treatment response from radiosurgery (binary 
classification). The goal of regression techniques is to predict 
a number or series of numbers (such as biomarkers) from an 
image, such as the volume of abnormal white matter in a 
multiple sclerosis patient. Common supervised learning 
algorithms include linear regression or logistic regression 
for regression problems; support vector machines (SVM) for 
classification problems, and K-nearest neighbor and deci-
sion trees (including random forest) for both classification 
and regression problems.

In unsupervised learning, no ground truth images or classi-
fications are provided. They may be unknown, and as such, the 
procedure can be used to generate hypotheses. In this situation, 
the algorithm must come up with its own rules to organize 

AI
Artificial Intelligence

Machine Learning

Supervised
Learning

Unsupervised
Learning

Deep Learning

Fig. 58.1  Artificial 
intelligence methods. Within 
the subset of machine 
learning methods, deep 
learning is usually 
implemented as a form of 
supervised learning. 
Reprinted from “Deep 
Learning in Neuroradiology”, 
AJNR Am J Neuroradiol. 
2018;39(10):1776–1784, 
Zaharchuk et al., with 
permission from WILLIAMS 
& WILKINS CO.; American 
Society of Neuroradiology
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images or data. It may use mathematical processes to system-
atically reduce redundancy, organize data by similarity, or sep-
arate into groups based on variability. Common applications of 
unsupervised learning include clustering (to discover inherent 
groupings), dimensionality reduction (generalization), and 
association (pattern search). Some popular examples of unsu-
pervised learning algorithms are: K-means for clustering, prin-
cipal component analysis (PCA) for dimensionality reduction, 
and a priori algorithms for association problems.

�Machine Learning: Some Basic Terms

Many algorithms use similar approaches such that a brief 
overview of terminology can be helpful. The following lists 
of key terms are commonly used in machine learning.

Features are measurable properties or attributes that 
represent the object of interest. In the case of medical 
images, features can be the pixel values, curvature, gradi-
ent, entropy, etc. Features are often stacked together into a 
longer feature vector that is used as an input to the ML 
model. Traditionally, the goal of many imaging researchers 
has been to create images with desired features, based on 
their domain knowledge and presumed biological mecha-
nisms. More recently, automated features have been popu-
lar, an approach that has been labeled radiomics. With 
neural networks, features are identified directly from the 
data without human intervention.

Weights are learnable parameters of the model; in fact, 
sometimes the words “weights” and “parameters” are used 
interchangeably. They are usually initialized randomly and 
are updated during training to optimize the model’s perfor-
mance. Sometimes, the initial weights can be set based on 
prior training of a network trained on a similar problem, a 
method known as “pretraining,” which can reduce training 
time and improve performance in some situations. In 

nondeep-learning models, each input feature is multiplied by 
a weight. In this context, weights represent how much influ-
ence a feature or variable has on the output. In neural net-
works, weights represent the strength of the connection 
between nodes. The goal of training is to optimize these 
weights to achieve the best performance. They are then fixed 
when the model is applied in a production on new, unseen 
data, a process known as “inference.”

Hyperparameters are the configuration options of the ML 
model that are selected and usually tuned manually to obtain 
optimal performance. Learning rate for training a neural net-
work, number of layers, k in k-nearest neighbors, and maxi-
mum depth in decision trees are some examples of 
hyperparameters.

Loss-function is a mathematical expression for evaluat-
ing how well the model is fitting the data. The choice of the 
loss-function is task-dependent. For example, in a regression 
model to predict treatment response, such as days to progres-
sion, the mean-squared error between true and predicted 
number of days can be used. The larger the difference 
between the prediction and the truth, the more changes need 
to be made during the iterative updating of the weights. For 
binary or multiclass classification, other methods are used, 
such as cross-entropy.

Gradient descent is an optimization algorithm, which 
adjusts the parameters in small increments to minimize the 
loss function. It can be thought of as the algorithm trying to 
descend the landscape created by the loss function to find the 
lowest possible loss on the given data, which presumably 
identifies the model weights that represents the best 
solution.

Underfitting refers to a model that cannot perform well 
with training data or new data (Fig. 58.2). Sometimes, this is 
due to a model that does not have enough parameters to rep-
resent the data, suggesting important features for prediction 
are not being used as inputs to the model.
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Fig. 58.2  Illustration of (a) underfitting, (b) best-fitting, and (c) over-
fitting. (a) Underfitting fails to capture the pattern. (b) Best-fit captures 
the pattern and is not too inflexible or flexible and is likely to have better 

accuracy on new, unseen data. (c) Overfitting fits strenuously to the 
noise of the training data; while it may perform well with the training 
data, this performance is degraded when applied to new, unseen data
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Overfitting occurs when a model learns the training data 
and all its idiosyncrasies too well, to the extent that it limits 
the model’s ability to generalize, which result in poor per-
formance on new data (Fig. 58.2). With enough parameters, 
a model can learn to reproduce the training data exactly, 
essentially memorizing the particular group of data it is 
trained on; since new data will necessarily differ, such a 
solution will show degraded performance on new data the 
model has never seen (the “test” set). The best way to avoid 
overfitting is to collect more training examples, though 
other approaches such as cross-validation, regularization, 
and dropout can also be used.

K-fold cross validation is a useful procedure to provide 
a less biased or less optimistic estimate of a model’s per-
formance, which can also reduce overfitting. The dataset is 
divided into K number of groups/folds, where one group/
fold is used as testing set and the remaining k-1 folds are 
used for training. This process is repeated K times until 
each fold of the K folds have been used as the testing set. 
This leads to the creation of K individual models and thus 
an idea of the sensitivity of the model to different splits of 
training data. Either the model with the “best” perfor-
mance can be selected for future predictions or the differ-
ent models can be used together in consensus for better 
performance.

Regularization is a technique to reduce overfitting by 
reducing the complexity of a model. It is based on the idea 
that smaller values of the parameters tends to minimize the 
risk of overfitting aspects of the data that are just due to ran-
dom noise. This is generally accomplished by adding a term 

to the loss function to penalize large parameter values associ-
ated with more complex models. Ridge regression and Lasso 
are popular regularization methods.

�Common Machine Learning Algorithms

�Some Common Machine Learning Algorithms

Choosing the appropriate algorithm for the task and the 
available data is crucial. Below are some common ML algo-
rithms grouped by their functionality (note some algorithms 
may belong to multiple functional categories) (Fig.  58.3). 
The most common ML applications in neuroradiology are 
for classification and regression tasks.

�Regression Algorithms
Regression is used for making predictions based on previous 
observations. Regression algorithms model the relationship 
between a set of explanatory variables and the outcome 
variable(s). In radiology, regression models are often used 
for predicting treatment outcome and risk assessment. 
Popular regression algorithms include:

Linear Regression methods, the workhorse of statistics, 
have been co-opted into statistical ML. Linear regression is 
used when the prediction is continuous and its relationship 
with the dependent variables is thought to be linear. 
Multivariate linear regression is used when more than one 
feature is being used to estimate the final variable of inter-
est (Fig. 58.4).

SUPERVISED LEARNING 

UNSUPERVISED LEARNING 

Decision trees 

K-nearest neighbors 

Support vector machine 

Random forests 

Naive Bayes classifier 

Neural networks

Logistic regression 

Classification Regression

Linear/non-linear regression

Local regression (LOESS)

Ordinary least squares regression

Neural networks 

Cluster analysis Dimension reduction 

Hierarchical clustering

K-means clustering 

Linear discriminant analysis

Principal component analysis 

Fig. 58.3  Common 
supervised and unsupervised 
machine learning algorithms
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Fig. 58.4  (a) Simple linear regression model with an equation in the 
form Y = b0 + b1X, where X is the independent (explanatory) variable 
and Y is the dependent (output) variable. (b) Instead of fitting a linear 
line to the explanatory variable (X), logistic regression fits an S-shaped 
“logistic function” to predict a binary output variable (Y). (c) 

Multivariate adaptive regression splines model demonstrating a con-
tinuous relationship, between the output variable (Y) and the explana-
tory variable (X), which is different for different ranges of X. For 
example, there is a positive relationship between Y and X, if X is 
between 0 and 1 and a negative relationship when X is between 2 and 4

Logistic Regression is used when the prediction is binary 
(Fig. 58.4). Logistic regression uses the sigmoid function to 

model the input data, g z
e z( ) =

+ −

1
1

, and produces an out-

put ranging between a minimum of 0 and a maximum of 1. A 
threshold is applied to make the binary decision.

Multivariate Adaptive Regression Splines (MARS) is a 
nonparametric regression method that makes no assumption 
about the relationship between the predictors and dependent 
variables (Fig.  58.4). Instead, the relationship between the 
predictors and dependent variables is derived from the 
regression data using multiple piecewise linear regression. 
MARS can derive models even when the relationship 
between the predictors and the dependent variables is 
nonmonotonic.

�Classification Algorithms
Classification algorithms use supervised learning to separate 
data into different categories. Popular classification algo-
rithms include:

K-Nearest Neighbor assumes similar data points are 
close to each other. A new data point is labeled according to 
the most represented label among “k” number of its nearest 
neighbors (Fig. 58.5). One concern for these models is that 
they perform better if there is good balance in the number of 
examples of each class in the training data. Otherwise, the 
class with the most examples will tend to dominate the 
predictions.

Support Vector Machine transforms the seemingly insep-
arable data into a higher dimensional space and finds a 
hyperplane that can distinctly classify the data points, with a 
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maximum margin separating the two classes (Fig. 58.6). In 
SVM, kernels are used to transform the input data into the 
required format in the higher dimensional space. Choosing 
the right kernel is a challenge. Some of the kernels used in 
SVM are linear, nonlinear, polynomial, radial basis function 
(RBF), and sigmoid.

Decision Trees. are flowchart-like models that can be 
used for regression and classification problems, with cate-
gorical variables or continuous variables. The whole training 
dataset starts at the root. Different algorithms (e.g., ID3, 
C4.5, CART, etc.) are available to split the data into sub-
nodes recursively, until leaf/terminal nodes are reached. 
The goal is to create subnodes that are progressively more 
homogeneous (pure) (Fig.  58.7). When building the tree, 
“information gain” and “entropy” are calculated to deter-
mine which attribute is used to split each node. Entropy is a 
measure of the randomness. Information gain (IG) measures 
how well an attribute separates the data into their target clas-
sifications. Mathematically, IG computes the decrease in 
Entropy after a split based on an attribute (IG = Entropy_
before – Entropy_after). Constructing a decision tree is about 
finding an attribute that returns the lowest entropy and the 
highest IG.  Splitting stops when entropy or IG is zero, or 
some predetermined criteria (such as maximum depth) is 
met. To avoid overfitting, the full tree then undergoes prun-
ing., to trim off some branches such that overall accuracy is 
unaffected. In practice, the training dataset is used to create 
the tree and the validation dataset is used for trimming.

�Clustering Algorithms
Clustering is similar to classification, except that the classes 
are unknown. Clustering algorithms use unsupervised meth-
ods to group data points by their similarity while maximizing 
the variance between groups. The most popular clustering 
algorithms are:

K-Means Clustering. that groups similar objects together 
into clusters (Fig. 58.8). The algorithm starts by guessing the 
initial centroids for each cluster, and then repeatedly assigns 

?

feature 2

fe
at

ur
e 

1

Fig. 58.5  K-Nearest Neighbor example. If k  =  3, the new example 
would be assigned to circle(?), because two of the three closest neigh-
bors are circle. If k  =  1 (Nearest neighbor), it would be assigned to 
triangle

optim
al hyperplane

Fig. 58.6  SVM example. Circles and squares represent different 
classes. In the standard space (left), the two classes cannot be separated 
by a linear line. SVM transforms the original data into a different space 

(right), where they can be separated by an optimal hyperplane (red solid 
line) with the largest possible margin (black dotted lines)
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Fig. 58.7  Decision tree 
model. Root Node represents 
the entire population, which is 
subdivided into two or more 
branches/subtrees. Decision 
Node represents a rule for 
splitting data into different 
classification. Terminal Node 
represents the predicted target 
variable

K-Means

Fig. 58.8  K-Means clustering divides the data points into clusters, with maximum homogeneity within the clusters and maximum heterogeneity 
across the clusters

instances to the nearest cluster and re-computes the centroid 
of that cluster.

The process of assignment and recalculation of the cen-
troids is repeated until the centroids no longer move (i.e., 
assignment of objects to clusters also stabilizes). This pro-
duces a separation of the objects into groups with minimal 
intracluster distance and maximal intercluster distance.

Hierarchical Clustering is an iterative algorithm that 
builds a hierarchy of clusters (Fig. 58.9). Initially, each data 
point is considered as an individual cluster. The similar clus-
ters merge into the same cluster iteratively, until one cluster 
is formed.

�Dimensionality Reduction Algorithms
Dimensional reduction algorithms attempts to summarize 
and simplify data representation in an unsupervised manner. 
The goal is to reveal inherent structure within the data. After 
dimensional reduction, the simplified representation can 
then be used in a supervised learning method. These algo-

rithms are often used in classification and regression. 
Principal component analysis is an unsupervised technique, 
while Linear Discriminant Analysis is a supervised tech-
nique. They are common dimensionality reduction tech-
niques used as a preprocessing step in Machine Learning and 
pattern classification applications.

Principal Component Analysis (PCA) is a mathematical 
procedure often used to reduce the dimensionality of large 
data sets. PCA transforms a set of correlated variables to a 
set of uncorrelated (orthogonal) variables (Fig.  58.10). 
Dimensionality-reduction is achieved by retaining the 
dimensions that contains the highest variance (hence, most 
information), while dropping the dimensions with the lowest 
variance. It will help us extract essential information from 
data by reducing the dimensions. PCA captures the most 
essential information contained in the data using fewer 
dimensions.

Linear Discriminant Analysis is very similar to PCA. In 
addition to finding the component axes that maximize the 

58  CNS Machine Learning



1354

A
C

D F

E

B

G
H

D F E B C A G H

Fig. 58.9  Hierarchical clustering. Dendrogram is a type of tree dia-
gram that shows hierarchical between similar sets of data
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Fig. 58.10  Principal component analysis (PCA) transforms a set of 
correlated variables to a set of uncorrelated (orthogonal) variables. In 
this example, the principal component, λ2, captures the maximum vari-
ance. To capture information contained in the data using fewer dimen-
sions (dimensionality reduction), the λ1 dimension can be eliminated
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Fig. 58.11  Linear discriminant analysis (LDA) finds the axes that 
maximize the separation between multiple classes. Features in higher 
dimension are projected onto a lower dimension to facilitate classifica-
tion into different classes

Fig. 58.12  Ensemble model aggregates the predictions of a group of 
models (such as classifiers and regressors) to get a better prediction than 
with each individual model

variance of the data (PCA), LDA also finds the axes that 
maximize the separation between multiple classes 
(Fig. 58.11). LDA transforms the data into a variable space, 
which minimizes the intraclass variance and maximizes the 
interclass variance. The features in higher dimension space 
are then projected onto a lower dimensional space, in order 
to separate the data into two or more classes.

�Ensemble Algorithms
Ensembling is an ML technique that combines several mod-
els together to make the final prediction (Fig.  58.12). 
Typically, ensemble models outperform each constituent 
model, which is why ensemble models are very powerful and 
popular. There are three common methods to create ensem-
bles: (1) stacking, (2) bagging, and (3) boosting.

	1.	 Stacking passes the input through several different algo-
rithms in parallel (Fig. 58.13). The corresponding outputs 
are then as input to the last model, which makes a final 
decision. The final decision-making step usually uses a 
regression model.

	2.	 Bagging (aka Bootstrap aggregation) uses the same 
algorithm and trains it on different subsets of the data 
(Fig.  58.14). Data in the subsets are random and may 
repeat. The algorithm is trained on subsets several times 

E. Tong et al.
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Fig. 58.13  Stacking ensembles combine several different algorithms together to make a final decision

and then predicts the final answer by majority voting. The 
most famous example of bagging is Random Forest, 
which is bagging on the decision trees.

Random Forest is an ensemble of decision trees for 
classification or regression tasks (Fig.  58.15). Multiple 
decision trees are constructed by repeatedly resampling 
subsets of the training data with replacement. The final 
consensus prediction of the random forest is determined 
by polling each decision tree – using either the max-vote 
(in classification) or mean value (in regression).

	3.	 Boosting uses a series of models that are trained sequen-
tially, to convert weak learners into strong learners, 
thereby improving the performance. Each subsequent 
model is designed to correct the errors from its predeces-
sor (Fig. 58.16).

Adaptive Boosting (AdaBoost) is a popular boosting 
method that uses adaptive weights to force the model to 
concentrate on difficult cases that are prone to erroneous 
classification. Subsequent trees are grown to help classify 

observations that are not misclassified by the previous 
trees. Predictions of the final ensemble model are the 
weighted sum of the predictions made by the ensemble of 
tree models.

Gradient Boosting Machines (GBM) are modern 
boosting methods that are adapted from AdaBoost. The 
major difference between AdaBoost and Gradient 
Boosting Algorithm is how the two algorithms identify 
and boost the weak learners. GBM uses a gradient-
descent-like method to minimize the loss function of the 
model. Instead of using higher weights to boost weaker 
learns, as in AdaBoost, GBM adjusts the gradients. The 
ability to use a customized loss function makes GBM 
adaptable to a wide range of applications and thus, is 
widely popular.

EXtreme Gradient Boosting (XGBoost) is a specific 
implementation of Gradient Boosting, which uses a vari-
ety of regularization techniques that reduce overfitting 
and improve overall performance.
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Fig. 58.14  Bagging ensembles combine the same type of algorithms together to make a final decision

tree1 tree2 treeB

k1 k2

x

k

voting (in classification) or averaging (in regression)

kB

Fig. 58.15  Random forest is 
composed of many decision 
trees; each tree varies in depth 
and branching. During testing, 
a new input (X) is run down 
all of the trees, producing B 
number of outputs (k1, k2, … 
kB). Voting is performed for 
final classification (k)

E. Tong et al.
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Fig. 58.16  Boosting ensembles train a series of models sequentially, with special attention to assist and strengthen the weaker learners

�Deep Learning

The classic example of a deep learning model is the neural 
network (NN), which was inspired by human neural 
networks.

Each biologic neuron processes and integrates the 
received stimuli and fires off if the excitation threshold is 
surpassed, thereby propagating the signal to the downstream 
neurons. Similarly, an artificial neural network is a computa-
tional framework of interconnected neurons (called nodes), 
arranged in layers (Fig. 58.17). Typically, NN consists of an 
input layer, one or more interconnected layers of neurons, 
and an output layer for making predictions. Within a layer, 
each node processes its input mathematically (applying 
weights and summing), makes a decision (by applying an 
activation function), and then passes the output on to the next 
layer of nodes. Weights (represented by the arrows in 
Fig. 58.17) connect the nodes in different layers and repre-
sent the strength of connections between the nodes.

The power of these NNs is in their scalability, which is 
largely based on their ability to automatically extract rele-
vant features from a labeled dataset, circumventing the need 
of expert-engineered formulations. Typical NN architectures 
start with an input layer, where data is turned into features. 

Next are a few hidden layers, which compute intermediate 
representations of features. The final layer is the output layer, 
which produces the results.

�Training and Optimizing

As data pass through the multiple layers, a process called 
“forward propagation,” the NN computes a hierarchy of fea-
tures (from simple to complex, perceptible to abstract), 
which are then used to produce the desired output. For each 
forward propagation of each training data, the performance 
of the NN is assessed by a loss function, which quantifies the 
error between the predicted value and the true value. 
Choosing the right loss function is important. Different loss 
functions may be selected depending on the task; for exam-
ple, for binary or multiclass classification, “cross-entropy 
loss” is commonly used; for segmentation tasks the Dice 
coefficient [13] may be incorporated in the loss function to 
assess and reward the algorithm for creating predictions that 
have high overlap with the ground truth segmentation; for 
image transformation tasks, mean squared error summed 
over all voxels could be utilized to compare the similarity of 
two images [3]. During training, the error calculated by the 
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Fig. 58.17  A neural network consists of an input layer that connects to 
the input variables, one or more hidden layers, and an output layer that 
produces the output variables. This example has three hidden layers 
with five neurons in each layer with two final output classifications. All 
layers are fully connected. Feature representation gets progressively 

more complex and abstract as layers get deeper. Within each hidden 
layer, each node processes its input mathematically (applying weights 
and summing), makes a decision (by applying an activation function), 
and then passes the output on to the next layer of nodes

loss function, is back-propagated through the NN, one layer 
at a time, and parameters that affect the performance (e.g., 
the magnitude of the weights at each level) are adjusted 
accordingly. Typically, this is carried out iteratively by an 
optimization algorithm such as gradient descent.

NN are ideally trained using large numbers of cases that 
are divided into three subsets: a training set, a validation set, 
and a test set. The actual learning process of an ML algorithm 
requires using a training dataset. After training, the perfor-
mance of the algorithm is assessed with a set of validation 
data; this is used to inform the training of the algorithm in 
later iterations and for selecting the best “hyperparameters,” 
such as learning rate and prediction thresholds [4]. A test set, 
which consists of data the algorithm has never seen and is 
separate from the training and validation sets, is then used to 
evaluate the final performance of the algorithm [4].

�Overfitting and Data Augmentation

Since having a large dataset is crucial for good performance, 
data augmentation can be performed to increase the size and 
variety of the dataset. Transformations (e.g., flipping, rotat-
ing, skewing, cropping, etc.), modifications of attributes (e.g., 
orientation, location, size, brightness), and noise can be syn-
thetically applied to the acquired images to artificially gener-
ate more training data. Augmentation can potentially improve 
the robustness of the models, presumably by aiding the NN 
learn generalized features that are invariant to orientation, 
noise, etc. Data augmentation should only be applied to the 
training dataset and not to the validation or test dataset.

Deep learning models have many hyperparameters and 
even more parameters (e.g., weights and biases). To avoid 

overfitting, regularization and dropout can be used, although 
having more training examples is most ideal. Dropout is a 
regularization method that approximates training many dif-
ferent, slightly modified, smaller NNs in parallel. During 
training, some nodes (along with their downstream connec-
tions) are randomly “dropped” or ignored by the NN. This 
has the effect of spreading and shrinking the weights, reduc-
ing the probability of over-relying on a particular node or a 
particular feature. Like regularization methods, dropout is 
effective when there is a limited amount of training data, 
which makes the model susceptible to overfitting.

�Common Deep Learning Algorithms

This is an ever-growing field. Below are a few popular deep 
learning algorithms used in neuroradiology:

�Autoencoder

Autoencoders are a specific type of feedforward neural net-
works where the generated output image is an improved ver-
sion of the input image. Autoencoders consist of three 
components: encoder, code, and decoder (Fig. 58.18). The 
encoder compresses the input into a lower-dimensional code 
while the decoder then reconstructs the output from this 
code. During the encoding step, the autoencoder learns to 
extract only the important features from the input images and 
to ignore irrelevant noise. Thus, noise and artifacts are 
removed when the decoder reconstructs the images. Similar 
to a U-net, such a method can be used to remove noise from 
medical images.
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Fig. 58.18  Autoencoder 
architecture. The encoder 
encodes the input information 
into a smaller, denser 
representations. The decoder 
takes this dense representation 
and reconstructs the output

Flattened feature maps

Final C
lassifier

Convolution

OutputInput image Hidden layers

ConvolutionConvolution

0.5 x

0.5 x

Max poolingMax pooling

Fig. 58.19  Convolutional neural network. The input image is submit-
ted to a series of convolutions, producing a stack of features maps con-
taining low-level features. These feature maps are then downsampled 
by a max pooling layer. Deeper convolution layers produce higher-level 

global features. Layers of convolutions and max pooling are alternately 
stacked until the CNN is deep enough to capture the features of the 
images for the task at hand. Feature maps are then flattened into a single 
vector for the final classification or regression output-step

�Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a class of NN that 
is most commonly used for classification and segmentation 
of both natural and medical images (Fig.  58.19). In tradi-
tional NNs, the two-dimensional images are flattened into a 
long vector of pixel values as input. CNNs can accept non-
flattened images and learn the spatial relationship between 
pixels in a hierarchical manner. The basic CNN has three 
types of layers:

	1.	 Convolutional layers for extracting feature maps.
	2.	 Pooling layers for trimming down the features.
	3.	 Fully-connected layers for making final predictions.

The first layer of CNN architecture is the convolution 
layer, which uses convolution filters (a.k.a. feature detectors 
or kernels) to extract features from the input image. Filters 
move across the whole image to detect features by applying 
a small kernel of weights at each pixel, a mathematic opera-

tion called convolution. For each layer, multiple different 
kernels can be used to learn a wide range of features, such as 
edges, textures, and other nonlinear representations of the 
data. Deeper convolution layers assemble lower-level local 
features into higher-level global features. The filter values 
are the learnable parameters that are adjusted during training 
to optimize the extracted features. It is required to put a non-
linear “activation function” at the output of the neuron. 
Typically the Rectified linear unit (ReLU) is used because it 
is effective and simple to implement. ReLU outputs the input 
value for positive inputs and blocks negative inputs, setting 
the outputs in these cases to zero (Fig. 58.20a). The nonlin-
ear activation functions introduce nonlinearity into the 
CNNs, so that complex functions can be represented that 
would not otherwise be possible, making CNNs more power-
ful than linear classifiers.

ReLU is a popular activation function because it is easy to 
implement. Mathematically, it is defined as y = max(0, x). It 
is also every effective in removing neurons from the network 
during the training process. However, the nulled neurons 
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Fig. 58.20  (a) ReLU outputs the input value for positive inputs and 
blocks negative inputs. (b) Leaky ReLU replaces the horizontal compo-
nent with a function with small nonzero gradient. This is done to miti-

gate the “dying ReLU” issue. (c) Exponential linear unit (ELU) uses a 
log curve instead of a straight line for the negative inputs. (d) Scaled 
exponential linear unit (SELU) is a scaled (α) version of ELU

cannot be recovered and are definitively eliminated, which 
may prevent the network from converging or impair the 
accuracy. To mitigate this “dying ReLU” problem, variants 
of the ReLU function were introduced. The leaky ReLU 
replaces the zero output (for negative inputs) with a function 
with a small nonzero gradient (Fig.  58.20b). The nonzero 
gradient will retain the neurons, allow them to recover dur-
ing training and keep learning. Similar to leaky ReLU, 
another variant, the Exponential linear unit (ELU) uses a 
log curve instead of a straight line for the negative inputs 
(Fig. 58.20c). ELU outperformed all the ReLU variants in 
the original paper’s experiments. Scaled exponential linear 
unit (SELU) is a scaled version of ELU with an additional 
scale parameter, α (Fig. 58.20d).

Pooling layers are introduced between convolution layers 
to reduce the dimensionality of the feature maps, which also 
helps with overfitting. Pooling consolidates and generalizes 
the most important features. Max pooling, which propagates 
the maximum activation, is often used. Successive pooling 
operations result in maps with progressively lower resolu-
tion, increasingly richer information, and more global repre-
sentation. After the features are extracted by convolutional 
layers and consolidated by the pooling layers, they are flat-
tened into a long vector and introduced to one or more fully-
connected layers. In the fully-connected layers, all the 
neurons in one layer are connected to all neurons in the next 
layer. They are used to generate nonlinear combinations of 
the learned features, in order to make the final predictions.
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Fig. 58.21  UNET architecture. Each gray box corresponds to a multi-
channel feature map. The number of channels is denoted on top of the 
box. The x–y size is denoted along the left edge of the box. White boxes 

represent the copied feature maps from the skipped connections. 
Different colored arrows represent different operations

�UNET

�U-Nets
The successive layers of convolution and pooling in CNNs 
increase abstraction of the feature maps but lose spatial 
information in the process. Therefore, while CNNs can gen-
erate the feature maps to detect or classify a targeted lesion, 
they cannot locate the lesion within the image for segmenta-
tion tasks. U-nets were designed to mitigate this problem. 
The UNET architecture has three parts (Fig. 58.21):

	1.	 Contracting/Downsampling path.
	2.	 Bottleneck.
	3.	 Expanding/Upsampling path.

There are usually a symmetric number of downsampling 
and upsampling layers, with extra connections between 
nodes in shallower layers that skip some deeper layers. 

Similar to CNNs, the downsampling layers capture the con-
text of the image. Feature maps are generated with succes-
sive downsampling, which involves convolution, ReLU, and 
max pooling steps. The bottleneck layer, consisting of convo-
lutional layers, is added to reduce the number of feature 
maps. Upsampling layers consist of deconvolution, upsam-
pling, convolution, and ReLU. The expanding path incorpo-
rates contextual information (from the contracting path) with 
localization information (obtained by skip connections) to 
localize and segment targets within the image.

�Generative Adversarial Network (GAN)

Generative adversarial networks (GANs) are used to gener-
ate output images that share realistic features with the desired 
ground truth images [14]. GANs have two submodels: a gen-
erator model and a discriminator model (Fig.  58.22). The 
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Fig. 58.22  Generative adversarial networks are comprised of a gener-
ator and a discriminator. The generated samples from the generator and 
the real samples are classified as real or fake by the discriminator. The 

generator is updated based on how well, or not, the generated samples 
fool the discriminator. The discriminator is updated based how accu-
rately it can classify the samples

generator model generates new imaging samples after learn-
ing patterns from training images. Many of the methods 
described above can be used as the generator, such as a 
U-net. The output produced by a good generator model 
should be almost indistinguishable from real training images. 
The discriminator model attempts to distinguish between 
samples drawn from the training images and those produced 
by the generator. It receives as input the real and the gener-
ated image and trains a network to try to distinguish them 
from each other. The two models are trained together in an 
adversarial manner - if the discriminator successfully identi-
fies real and generated samples, the discriminator’s parame-
ters will remain unchanged, but the generator’s parameters 
will be modified; alternately, if the generator fools the dis-
criminator, the generator’s parameters will remain 
unchanged, but the discriminator’s parameters will be modi-
fied. GANs provide a powerful and clever mechanism for 
image augmentation and image transformation.

Transfer learning is a technique whereby a new model is 
built upon another neural network model that was previously 
trained for a similar task. Layers from VGG, GoogLeNet 
(http://deeplearning.net/tag/googlenet/) or Inception-ResNet 
(https://keras.rstudio.com/reference/application_inception_
resnet_v2.html), trained on large groups of nonmedical 
images, are often reused in medical imaging models. Transfer 
learning has the benefit of decreasing the training time for a 
neural network model and can result in lower generalization 
error. The weights in reused layers are usually used as the 
starting point for the training process, and thus may require 
less training data when compared to models that are built 
from scratch. Often only some of the deeper layers are re-
trained with the new data, as this can frequently lead to better 
performance.

�Model Design and Assessment

For an ML algorithm to be effective, care is needed in select-
ing the optimal model and cost function, defining the hyper-
parameters, as well as providing the model with sufficient 
amounts of training data [3].

�Data Preparation and Augmentation

It is standard practice to divide available data into three sub-
sets: a training set, a validation set, and a test set. The actual 
learning process of an ML algorithm requires using a train-
ing dataset. After training, the performance of the algorithm 
is assessed with a set of validation data; this is used to 
inform the training of the algorithm in later iterations and for 
selecting the best “hyperparameters,” such as learning rate 
and prediction thresholds [4]. A test set, which consists of 
data the algorithm has never seen and is separate from the 
training and validation sets, is then used to evaluate the final 
performance of the algorithm [4]. Random transformations 
(e.g., flipping, rotating, skewing, dimming, etc.) can be 
applied to the images, to “augment” the imaging dataset, 
though these are usually used exclusively in the training set.

�Applications in Neuroradiology

In radiology, opportunities exist for AI in all aspects of the 
imaging life cycle, from protocol automation before acquisi-
tion [15], image reconstruction and quality improvement 
after acquisition [16, 17], to image interpretation [9, 10]. ML 
can also combine imaging and clinical metadata to predict 
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treatment response or clinical outcome [18]. We shall explore 
a small sample of AI applications in neuroradiology.

�Detection

�Critical Findings on Emergent CT

Noncontrast head CT scans are the most commonly ordered 
studies for emergent diagnosis and they constitute the largest 
volume of work for neuroradiologists. Automating head CT 
scan interpretation can streamline the workflow and raise 
appropriate alerts promptly. Deep learning has been success-
fully used to detect critical findings such as intracranial hem-
orrhage, fracture, midline shift, and mass effect on head CTs 
[19]. Their algorithms achieved an AUC of 0.92 for detecting 
intracranial hemorrhage, 0.92 for detecting calvarial frac-
tures, 0.93 for detecting midline shift, and 0.86 for detecting 
mass effect. Different hybrid models were developed and 
optimized to detect each of the abnormalities. For instance, a 
modified ResNet18 with five parallel fully connected (FC) 
layers was used for detecting and distinguishing the types of 
hemorrhage (intraparenchymal, intraventricular, subdural, 
extradural, and subarachnoid hemorrhages). The confidences 
at the slice-level are then combined, using a random forest, 
to predict the subject-level confidence for the presence of 
intracranial hemorrhage. A 2D UNET was then used to seg-
ment the extent of the hemorrhage. In a similar manner, a 
modified ResNet18 model was used to detect mass effect and 
midline shift. A DeepLab-based architecture was used to 
predict pixel-wise heatmap for acute fractures. These engi-
neered features representative of fractures was used to train a 
random forest model to predict the presence of a calvarial 
fracture [19]. Transfer learning has been successful in detect-
ing the presence of hemorrhage on noncontrast brain CT, 
with accuracies of >98% [20]. These promising perfor-
mances suggest the potential of using DL to triage head CT 
scans and prioritize studies with detected critical findings. 
While this may reduce interpretation time for the flagged 
studies, it is still unclear if this would have positive effects on 
patient outcome.

Of all the urgent indications for head CTs, there is noth-
ing that needs more timely accurate diagnosis than acute 
stroke. There are several commercial software suites that 
incorporate artificial intelligence for comprehensive acute 
stroke imaging which includes evaluation of ASPECTS and 
intracranial hemorrhage on noncontrast CT, large vessel 
occlusion detection and/or collateral assessment on CTA, 
and measurement of infarct core and penumbra on CT perfu-
sion. Some software even has emergency activation or 
mobile-device notification capabilities [21]. In multiple stud-
ies [22–24] [25], their performance was noninferior to expe-
rienced neuroradiologists.

�Screening for Aneurysm

Screening for aneurysms is tricky, particularly if they are 
small. Many computer-assisted algorithms for detection of 
aneurysms have been designed on different modalities [26–
29]. One of the better models used transfer learning based on 
ResNet-18 for detecting aneurysms on time-of-flight (TOF) 
MRA, achieving 91% to 93% sensitivity with detection of 
more aneurysms than human readers [29]. Digital subtrac-
tion angiography (DSA) is the gold standard for diagnosing 
aneurysms, but can still be challenging if vessels bend and 
overlap, which can appear similar to aneurysms at certain 
projections. A two-stage CNN detection system has been 
used to differentiate vessel overlaps from aneurysms on DSA 
[28]. The first CNN localizes the ROI to the target vessel 
(posterior communicating artery) in order to minimize inter-
ference from other vessels; the second stage CNN combined 
frontal and lateral views to detect aneurysms, using a concur-
rent false-positive suppression algorithm trained to ignore 
vessel overlaps, achieving an accuracy of 93.5%. In practice, 
neurointerventionists often use 3D-rotational angiography to 
help them discern and characterize small aneurysms. 
3D-rotational angiography consists of a series of 2D images, 
taken circumferentially around the head during arterial con-
trast injection, followed by 3D reconstruction of the vascula-
ture. To simulate this, several 3D-rotational angiography 
projection images were concatenated onto a single image as 
an input to a 2D-CNN model [30], and achieved an surpris-
ing 99% accuracy in detecting 263 aneurysms.

�Classification

�Classify Different Tumors and Subtypes

Tumor classification is an essential step to help guide the 
treatment decision. For decades, the potential for improved 
classification through various machine learning techniques 
has been investigated using linear discrimination analysis, 
support vector machines, decision trees and random forest, 
radiomics, and shallow neural networks [31]. Today, the 
automatic classification capability of deep learning methods 
is getting much attention, and several studies have shown its 
potential in brain tumor patients. In particular, a new field 
called Radiomics has been rapidly adopted in the assessment 
of CNS malignancy. Radiomics is a translational field of 
research aiming to extract quantitative patterns and inter-
pixel relationships from medical images, that will allow 
analysis of complex, high-dimensional, quantitative infor-
mation embedded within the images. Radiomics is often 
coupled with ML or AI techniques to process the massive 
amount of data, which typically outperform traditional statis-
tical methods (Fig. 58.23).
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Fig. 58.23  Radiomics workflow to classify benign vs. malignant brain 
masses. A set of features are extracted from the input images and used 
for training. Various machine learning algorithms are used to classify 

the images based on the feature vectors. Performance of the ML models 
is graded according the labels supplied as ground truth

Radiomics with ML is a promising tool for differentiat-
ing malignancy from benign tumors, glioblastomas from 
metastases [32], and classifying metastases by their primary 
malignancies [33]. Besides using structural features, func-
tional imaging features may also be helpful to classify tumor 
types. ADC maps, dynamic contrast enhanced permeability 
maps (K-trans, Kep, Vp, Ve), and dynamic susceptibility 
contrast perfusion maps (rCBV, rCBF) can be used to dif-
ferentiate glioblastomas, CNS lymphomas, and metastases 
[34]. Most studies report similar performance to human 
reviewers.

Molecular profiling of brain tumors has improved prog-
nosis prediction [35], and is increasingly used in many types 
of malignancies. Determination of subtypes is most defini-
tive by tissue sampling. Radiogenomics machine-learning is 
emerging as potential noninvasive alternative to identify sur-
rogate biomarkers that can reflect tumor genomics. For 
instance, there are at least 4 biologically distinct subgroups 
identified in medulloblastoma-sonic hedgehog [SHH], 
wingless-type [WNT], group 3, and group 4, each with prog-
nostic and therapeutic differences. WNT tumors confer more 
favorable outcomes and better survival. Using MRI–derived 
radiomic features (such as intensity-based histograms, tumor 
edge-sharpness, Gabor features, and local area integral 
invariant features) fed into an SVM, researchers were able to 
classify SHH, group 3, and group 4 tumors with good accu-
racy (AUC  =  0.79, 0.70, and 0.83, respectively). WNT 
tumors posed more of a challenge, with AUC ranging from 
0.55 to 0.63 [36].

�Classify Different Types of Dementia

Besides brain tumors, extensive efforts have been also made 
to use ML to classify stages along the spectrum of Alzheimer’s 
disease. Using the ADNI dataset, combined features from 
MRI and PET were able to distinguish normal control (NC), 
mild cognitive impairment converters (MCI-C), mild cogni-
tive impairment nonconverters (MCI-NC), and Alzheimer’s 

disease. A multilevel stacked deep polynomial network was 
used to classify patients into different binary groups (i.e., AD 
versus healthy control [NC], or mild cognitive impairment 
converters [MCI-C] versus nonconverters [MCI-
nonconverters]). For distinguishing patients with AD from 
NCs, they achieved an impressive AUC of 0.97. A lower 
AUC of 0.80 for predicting MCI converters from noncon-
verters demonstrated that this is a more difficult task [37]. 
The flexibility of NNs also allows combination of images 
with nonimaging data as input. Another study combined sim-
ilar imaging features with CSF data in the ADNI dataset 
using a deep-weighted sparse multitask learning framework 
to improve classification, achieving 95% accuracy in differ-
entiating patients with AD from NCs. Again, multiclass clas-
sification was more challenging, achieving an accuracy of 
63% for 3 classes (AD, NC, and MCI) and 54% for 4 classes 
(AD, NC, MCI-C, and MCI-nonconverter) [38].

�Segmentation

One of the key advantages of AI-based radiology is the pros-
pect of automatization and standardization of repeated mea-
surements, which is best exemplified by detection and 
segmentation of lesions. AI-based segmentation is helpful 
for monitoring disease progression, treatment planning, and 
volumetric measurements.

Stepping up from detecting the presence of aneurysms, 
several studies attempted to segment aneurysms using deep 
learning [39, 40]. Park A et al. [41] proposed a 3D CNN with 
encoder-decoder architecture to segment the intracranial 
aneurysms on CTA.  Similar to UNet, the model contains 
skip connections to transmit output directly from the encoder 
to the decoder. When the model was available to assist the 
clinicians, their mean sensitivity increased by 0.059 (95% 
CI, 0.028–0.091; adjusted P  =  0.01), mean accuracy 
increased by 0.038 (95% CI, 0.014–0.062; adjusted 
P = 0.02), and mean interrater agreement (Fleiss κ) increased 
by 0.060, from 0.799 to 0.859 (adjusted P = 0.05). Similar 
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Fig. 58.24  Diagram showing a DeepLab v3-based segmentation net-
work. In this example, four distinct MR sequences that are commonly 
used in clinical practice serve as model input; post-Gd T1-weighted 
inversion recovery prepped fast spoiled gradient-echo (IR-FSPGR), 
pre- and post-Gd T1-weighted spin echo, and T2-weighted FLAIR 

imaging. Five contiguous axial slices of each of the four sequences are 
concatenated in the color-channel dimension to create an input tensor. 
This tensor is fed into a DeepLab v3-based network to predict the seg-
mentation on the center slice

performance was achieved in 3D TOF MRA [42] and in 
DSA [40] with a Dice score coefficient above 0.9.

For optimal management of patients with brain cancer, 
delineation of initial tumor volume and especially volume 
change following disease progression or therapy are key neu-
roradiological tasks. The Response Assessment in Neuro-
Oncology (RANO) work group formulated guidelines for 
assessing treatment response based on size measurements 
[43]. Several AI approaches have been developed for auto-
matic detection and segmentation of brain tumors [44, 45]. 
This development is in part attributed to the publicly avail-
able Brain Tumor Segmentation (BraTS) dataset [46], and 
deep learning has shown high potential in detecting and seg-
menting primary brain tumors in this dataset [47, 48]. Similar 
AI approaches have been used to segment brain metastases, 
which may be more challenging due to their size and multi-
plicity [49–51]. Accurate segmentation in addition to seg-
mentation is important because of the high value of 
stereotactic radiosurgery to treat these lesions. Various neu-
ral network architectures were used, including residual net-
works [52], dense networks [53], U-Nets [54] and V-Nets 
[55], Pyramid Scene Parsing Nets [56], Feature Pyramid 
Networks [57], GoogLeNet [58], and the DeepLab_v3 [59]. 
The latter architecture is currently considered one of the 
most robust neural networks for image-based semantic seg-
mentation, which represents classification at the image pixel 
level. The key difference of the DeepLab_v3 approach com-
pared with other architectures is its reliance on atrous (or 
dilated) convolutions. Consequently, this network has a very 
large receptive field, thereby incorporating greater spatial 

context. Such approach may be key for enabling networks to 
identify local features as well as global contexts, i.e., identi-
fying brain regions, which could enhance the network’s 
decision-making process on similar local features. 
Figure 58.24 shows a flowchart of a deep learning segmenta-
tion tool based on the DeepLab_v3 architecture.

Stereotactic radiosurgery is also used for treating arterio-
venous malformations (AVMs) Traditionally, the lesions are 
manually segmented for treatment preparation. A 3D V-Net 
was designed to segment AVMs on postcontrast CT to guide 
stereotactic radiosurgery. V-Net is a specialized CNN, derived 
from U-Net, for volumetric (3-D) medical image segmenta-
tion. Similar to U-Net, it consists of a contracting (downsam-
pling) path and an expanding (upsampling) path, with skip 
connections to preserve localization information. More exten-
sive downsampling and upsampling occurs in V-Net, which is 
accomplished by dividing the contracting path into several 
stages, each comprising of several 3-D convolutional layers. 
Whereas U-Net uses max pooling, V-Net uses convolutions 
for both reducing the resolution and for extracting the most 
important features, making V-Net more memory efficient. 
Using manual segmentation by experts as gold standard, the 
Dice score coefficient of the V-Net model was 0.85 [60].

�Prediction

Accurate prediction of outcome is helpful for treatment deci-
sions, especially in the era of “personalized medicine.” 
Classic prediction methods have been super-dated by ML 
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Fig. 58.25  (a) Patient with minimal reperfusion 0% at 24-h. (b) 
Patient with major reperfusion, 100% at 24-h. Baseline images (DWI, 
ADC, Tmax, MTT, CBV, CBF) were inputs. Final infarct lesion at 3 to 
7 days served as ground truth for the model. The red solid line on the 
T2-weighted fluid-attenuated inversion recovery images outlines infarct 
lesions at 3 to 7 days. Numbers after predicted volume (mL) indicate 
Dice score coefficients. CBF indicates cerebral blood flow; CBV, cere-

bral blood volume; DSC, Dice score coefficient; DWI, diffusion-
weighted imaging; MTT, mean transit time; and Tmax, time to 
maximum of the residue function. (Reprinted from “Use of Deep 
Learning to Predict Final Ischemic Stroke Lesions From Initial 
Magnetic Resonance Imaging”, JAMA Netw Open. 2020;3(3):e200772, 
Yu et al., with permission under the terms of the CC-BY license, which 
permits unrestricted use, distribution, and reproduction in any medium)

algorithms which are capable of discovering more complex 
relations between variables and multivariate interactions.

�Prediction in Acute Ischemic Stroke

Many different deep learning models have been used to pre-
dict the clinical outcome in acute stroke, such as modified 
Rankin Scale at 3 months, treatment outcome (good reperfu-
sion), adverse complications (such as hemorrhagic transfor-
mation) [61], cognitive performance [62], and hemorrhagic 
transformation after thrombolysis [63].

As the window for treatment and treatment options for 
acute stroke broadens, careful selection of appropriate 
patients is crucial for successful outcomes. Clinical trials 
using cutoff thresholds of imaging parameters have identi-
fied thresholds for ADC (<620 × 10−6 mm2/s) and Tmax (>6 s) 
as definitions of infarct core and penumbra, respectively. The 
most common method to select patients for therapy is based 
on time from presentation (i.e., last seen normal) and penum-

bra to infarct ratio [64–66]. Newer ML models have been 
built to predict final infarct volume on MRI [67, 68]. Using 
patients with large vessel occlusion from the Imaging 
Collaterals in Acute Stroke (iCAS) study and the Diffusion 
Weighted Imaging Evaluation for Understanding Stroke 
Evolution Study-2 (DEFUSE-2), a UNET model has been 
shown to accurately predict final infarct lesions from base-
line perfusion-weighted and diffusion-weighted imaging 
(Fig.  58.25). Even though the model was trained without 
information about reperfusion status, it was able to predict 
well in patients with either good or poor perfusion, with bet-
ter performance than clinically available software packages 
[69]. In patients with major reperfusion, the UNET model 
outperformed the clinical thresholding method for Dice 
coefficient and sensitivity. In patients with minimal reperfu-
sion, the UNET model outperformed the clinical threshold-
ing method in specificity and positive predictive value. The 
ability to accurately predict final infarct volume from base-
line imaging alone, can help guide decision-making, in addi-
tion to mismatch profile. In another interesting study, a 
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time-resolved deep-learning model using baseline CTP 
parameters (cerebral blood volume, time-to-drain) was 
designed to predict the dynamic progression from penumbra 
to infarct core over time. Using a multiscale U-Net together 
with a convolutional auto-encoder, the evolution of the isch-
emic tissue can be estimated by interpolation [70].

Other models have incorporated clinical data with imag-
ing data to predict the final outcome. In one study, the addi-
tion of clinical data (National Institutes of Health Stroke 
Scale, age, sex, and time from symptom onset) mildly 
improved the AUC from 0.85 (imaging data from CT perfu-
sion only) to 0.87 [71]. A novel application that took advan-
tage of the flexibility of NN is demonstrated in a study that 
trained separate models to predict the outcome based on the 
treatment strategy. A CNN (CNN+tPA) was trained with 
patients treated with intravenous recombinant tissue-type 
plasminogen activator (rtPA) and a separate CNN was trained 
with patients without rtPA (CNN−tPA). For each test subject, 
the models would predict the final infarct core if rtPA was 
administered or withheld, and the treatment effect of rtPA 
can be estimated by the difference the predicted final infarct 
core [72]. This study illustrates the potential of using DL to 
provide recommendations for personalized treatment plans.

�Predict Aneurysm Rupture Risk and Outcome

Treatment decisions need to be made for unruptured small 
aneurysms and SAH patients with multiple aneurysms. 
Studies have applied machine learning algorithms to predict 
the outcomes of unruptured aneurysm [73–79]. 
Morphological features extracted from DSA can be used for 
aneurysm stratification [74]. Flatness was the found to be the 
most important morphological determinant to predict stabil-
ity of aneurysm; unstable aneurysms were more irregular. 
Hypertension could influence the morphology of unstable 
aneurysms [74]. Another study using CNNs to predict rup-
ture risk of small aneurysms (<7 mm diameter) on rotational 
DSA outperformed human predictions [75].

Predicting complications, such as delayed cerebral isch-
emia and functional outcome, after aneurysmal rupture could 
provide guidance for patient care. Efforts have been made to 
predict delayed cerebral ischemia from a combination of 
clinical and imaging data with various machine learning 
algorithms, with modest accuracy [80].

�Predict Conversion of MCI to AD

In addition to early diagnosis, ability to predict disease pro-
gression can be helpful to patients with debilitating disease 
such as dementia. Mild cognitive impairment (MCI), which 

is the clinical precursor of Alzheimer’s disease (AD), has a 
broadly heterogeneous spectrum with variable rate of pro-
gression. Some patients with MCI remain stable over time, 
while others progress gradually to AD, with approximately 
10% to 15% of MCI patients converting to AD each year 
[81]. Many ML models have been built to predict this con-
version. Using data from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI), deep learning models 
based on imaging combined with demographics, neuropsy-
chological (including cognitive assessment, AD assessment 
scale, memory evaluations), and APOe4 genetic data were 
studied to predict MCI to AD conversion within 3 years [82]. 
One such model was able to distinguish the MCI-converters 
from those with stable MCI with an AUC of 0.925, 86% 
accuracy, 87.5% sensitivity, and 85% specificity. The model 
also distinguished patients with AD from healthy controls 
with 100% accuracy.

�Improving Image Quality

There are innovative applications of DL to improve the 
image quality, reduce acquisition time, and improve the 
robustness of some advanced CT and MRI techniques.

�Image Improvement and Synthesis

For instance, DL can convert images with low-resolution 
into high-resolution [83], simulate 7 T MR images from data 
acquired at 3  T [84], and generate normal-dose CT from 
simulated low-dose CT [85]. By acquiring paired arterial 
spin-labeling (ASL) CBF images with 2 and 30 min of acqui-
sition time, deep network has been shown to boost the SNR 
of ASL significantly [86] (Fig. 58.26).

DL has also been used to create images with different 
contrast or with features of different modalities, for instance, 
using DL to generate T1-weighted images from T2-weighted 
images, or vice versa [87]. The superior soft tissue contrast 
offered by MRI and the desire to reduce unnecessary radia-
tion dose, makes is attractive to generate synthetic CT from 
MR images. Synthetic CT has been used to replace CT for 
radiation therapy [88] and for PET/MR attenuation correc-
tion [89].

�Dose Reduction and Virtual Contrast 
Enhancement

The recent concerns over gadolinium deposition in the brain 
from gadolinium-based contrast agents administration have 
inspired innovative DL methods to reduce their usage and 
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Fig. 58.26  An example of improving the SNR of arterial spin-labeling 
MR imaging using deep learning. The model is trained using low-SNR 
ASL images acquired with only a single repetition, while the reference 
image is a high-SNR ASL image acquired with multiple repetitions (in 
this case, 6 repetitions). Proton-density-weighted images (acquired rou-
tinely as part of the ASL scans for quantitation) and T2-weighted 
images are also used as inputs to the model to improve performance. 
The results of passing the low-SNR ASL image through the model are 

shown on the right, a synthetic image with improved SNR.  In this 
example, the root-mean-squared error (RSME) between the reference 
image and the synthetic image compared with the original image is 
reduced nearly three-fold, from 29.3% to 10.8%. Reprinted from “Deep 
Learning in Neuroradiology”, AJNR Am J Neuroradiol. 
2018;39(10):1776–1784, Zaharchuk et  al., with permission from 
WILLIAMS & WILKINS CO.; American Society of Neuroradiology

Standard Dose 10% Dose DL-enhanced 10% Dose

Dose: 0.10 mmol/kg Dose: 0.01 mmol/kg Dose: 0.01 mmol/kg

Fig. 58.27  For a patient with meningioma, the deep learning synthesized images result in similar highlighting of contrast enhancement, with 
improved visibility in the synthesized full-contrast version compared with low-dose CE-MRI

dosage (Fig. 58.27). Using images acquired with 100% full-
dose (0.1 mmol/kg) of gadobenate dimeglumine as target, a 
DL model was trained to generate full-dose images from 
10% low-dose (0.01 mmol/kg) images [90]. Subjects were 
patients with a variety of pathologies, including gliomas. 
Compared to the low-dose images, the synthesized full-dose 
postcontrast images yielded higher image quality with sig-

nificant improvements (>5  dB PSNR gains and >11.0% 
improvements in a measure of visual similarity known as the 
structural similarity index metric [SSIM]). Compared to true 
full-dose images, the synthesized full-dose images had 
slightly better motion-artifact suppression, with a nonsignifi-
cant reduction in image quality (P  =  0.083) and contrast 
enhancement (P = 0.068).
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Another group took this approach to the extreme and used 
a DL model to predict contrast enhancement from noncon-
trast MRI images in three groups of subjects: normal sub-
jects, patients with enhancing brain tumors, and patients 
with nonenhancing brain tumors [91]. Compared with 
ground truth contrast-enhanced T1-weighted imaging quan-
titatively, the virtual contrast enhancement yielded a sensi-
tivity of 91.8% and a specificity of 91.2%, AUC of 0.969, a 
peak signal-to-noise ratio of 23  ±  1  dB, and an SSIM of 
0.872  ±  0.031. Qualitatively, the virtual contrast maps for 
gliomas are blurrier and show less nodular-like ring enhance-
ment, with some false-positive enhancements of nonenhanc-
ing gliomas. The ability to synthesize images from ultra-low 
gadolinium dose, while preserving diagnostic quality, is 
highly desirable for patients who need imaging repeatedly. 
These studies show that this is a promising avenue of research 
using DL.

Dose reduction is also beneficial for positron emission 
tomography (PET) imaging, which inherently has high radi-
ation exposure. DL has been used to synthesize high-quality 
virtual 18F-fluorodeoxyglucose (FDG) PET images from 
low-dose FDG-PET images and the concurrent MR images. 
A fully convolutional encoder–decoder was trained with 
low-dose PET images, with 200-fold dose reduction, con-
structed through undersampling of standard-dose PET 
images. Both quantitatively and visually, the denoised ultra-
low-dose PET images reconstructed with only 0.5% of the 
standard dose, deliver similar visual quality and diagnostic 
information as the standard-dose PET images. The addition 
of MRI images further enhanced the quality of the synthe-
sized images [92]. Another study using a different method to 
simulate low-dose FDG-PET images achieved similar satis-
factory results. Instead of subsampling, low-dose PET 
images were obtained by acquiring images over a short 
duration of 3 min (with standard-dose tracer) and the full-
dose PET images acquired over the full duration of 12 min 
served as ground truth. The shorter acquisition time has the 
additional advantages of reducing motion artifact and 
improves the efficiency of PET imaging [93].

Besides FDG, DL was also able to reduce radiotracer 
requirements for amyloid (fluorine 18 [18F]–florbetaben) 
PET/MRI imaging without sacrificing diagnostic quality 
[94]. Subsampling one hundredth of the full-dose PET data 
was used to simulate a low-dose (1%) acquisition to train a 
CNN model. The synthesized images showed marked 
improvement on all quality metrics (peak signal-to-noise 
ratio, SSIM, and root mean square error) compared with the 
low-dose image. The accuracy for determining amyloid 
uptake status was high (89%) and similar to intrareader 
reproducibility of full-dose images (91%). By overcoming 
the obstacles of high radiation dose, long scan time, and 
lower SNR, DL is making high quality ultra-low-dose PET 
images a foreseeable reality.

�Reconstruction from Subsampled Diffusion-
Weighted Imaging

Neurite orientation dispersion and density imaging (NODDI) 
is a diffusion-weighted imaging method using models to 
characterize microstructure of white matter and neurite prop-
erties in the brain. NODDI can disentangle crossing fibers 
and estimate the fiber orientation distribution function (ODF) 
in each voxel [95]. Similar to DTI, NODDI requires lengthy 
acquisitions of many (near a hundred) diffusion-weighted 
images with multiple b-values and orientations [96]. A NN 
was trained to reconstruct fractional anisotropy and mean 
diffusivity maps from a small subsets of acquired DTI data, 
using only 3 to 20 diffusion-encoding directions. The accu-
racy and precision in DTI reconstruction achieved by the NN 
was higher than that by conventional reconstructions. The 
model also performed well in tumor delineation from recon-
struction using only three diffusion-encoding directions [97]. 
A similar DL approach was used to predict tissue property 
maps, such as neurite dispersion, from subsampled diffusion 
acquisitions with as few as 8 to 12 diffusion-weighted scans 
to achieve 12-fold acceleration [98]. With appropriate train-
ing in patients, these networks provide clinically meaningful 
information about tissue microstructure in acute stroke [99] 
(Fig.  58.28). Fiber tractography can also be improved by 
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Fig. 58.28  Neurite orientation dispersion and density imaging 
(NODDI) and generalized fractional anisotropy (GFA) parameter maps. 
Slices showing asymmetries in the brain due to stroke in three partici-
pants from the test dataset. Both ODI and GFA parameter maps are 
displayed for the fully sampled reference images (ref column) as well 
as the proposed 2D CNN generated images using a dataset undersam-
pled to 24 directions (CNN column). Red arrows highlight the visible 
asymmetries. (Reprinted from “Simultaneous NODDI and GFA param-
eter map generation from subsampled q-space imaging using deep 
learning. Magn Reson Med. 2019; 81: 2399–2411. Gibbons et al., with 
permission from John Wiley and Sons)
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Fig. 58.29  Quantitative susceptibility mapping using a deep neural 
network: QSMnet. QSM maps from MEDI and QSMnet are compared 
for a patient with microbleed (a: red boxes, b: red arrows), a patient 
with multiple sclerosis lesions (c: blue boxes, d: blue arrows), a patient 
with large hemorrhage (e: yellow arrows), microbleed (e: red boxes, g: 
red arrows) and calcification (e: pink boxes, h: pink arrows), and a 
healthy volunteer with calcification (i: pink boxes, j: pink arrows). The 

lesions are similarly delineated in both MEDI and QSMnet maps. In f, 
strong streaking artifacts are observed only in MEDI (green arrows). 
Note that no lesions except for calcification were observed in the 
healthy volunteers and, therefore, were trained in QSMnet. (Reprinted 
from “Quantitative susceptibility mapping using deep neural network: 
QSMnet, NeuroImage, Volume 179, 2018, Pages 199–206, Yoon et al., 
with permission from Elsevier)

directly predicting the fiber ODF in each voxel from unders-
ampled DWI scans with CNNs. Compared with standard 
acquisitions that use hundreds of gradient directions, the net-
work generates accurate ODFs from as few as 15 gradient 
directions [100] or 25 DWI scans [101]. The CNNs outper-
form standard methods in challenging voxels that contain 
two or even three fiber directions, because they leverage 
information about the spatial continuity of neighboring vox-
els in the input data.

�Improve Image Quality in Quantitative 
Susceptibility Mapping (QSM)

Quantitative susceptibility mapping (QSM) reconstructs 
tissue magnetic susceptibility in the brain from gradient 
echo phase MRI and has clinical applications in aging 
[102] and neurodegeneration [103]. Gold-standard QSM 
reconstruction requires multiple phase measurements at 

several tilted head orientations [104]. Deep learning has 
been used to predict high quality QSM maps from a single 
orientation phase MRI scan. Models such as QSMnet [105] 
and DeepQSM [106] have adopted a 3D UNET to generate 
QSM maps with higher quality and better accuracy than 
state-of-the-art single orientation methods. This improved 
performance is evident in higher peak signal-to-noise 
ratios and reduced normalized root mean squared error, as 
well as the visible reduction of streak artifacts that con-
taminate many single-orientation QSM maps. Deep-
learning QSM reconstructions take only seconds and are 
well suited to visualize focal areas of susceptibility abnor-
malities, e.g., in multiple sclerosis lesions and hemorrhage 
[105], with high structural similarity to the reference stan-
dard (Fig. 58.29).

The accuracy of the final QSM map also depends on pre-
processing steps such as receive coil combination and back-
ground phase removal. Streamlined pipelines mitigate error 
propagation from preprocessing by performing multiple nec-

E. Tong et al.



1371

essary steps in a single optimization [107]. Alternatively, 
CNNs such as SHARQnet have been trained on tens of thou-
sands of synthetic background field examples to accurately 
remove background phase signal from susceptibility sources 
with various geometric shapes [108]. General adversarial 
networks (GAN) have also been used for QSM reconstruc-
tion, where the generator network aims to create realistic 
QSM maps and the discriminator learns to distinguish real 
and generated images [109]. The GAN architecture reduces 
residual blurring in the output QSM maps compared to other 
CNNs and is robust to imperfections in preprocessing steps 
if the model is trained on high-quality input data.

�Reduce Acquisition Time: Magnetic Resonance 
Fingerprinting

Magnetic resonance fingerprinting (MRF) is a new scanning 
approach that uses pseudo-random acquisitions (e.g., vari-
able flip angles and repetition times) to obtain unique signal 
time courses for different tissues [110]. These tissue signa-
tures are then matched to a dictionary of time courses to 
retrieve multiple corresponding tissue parameters (e.g., 
quantitative T1 and T2) from a single, rapid scan. Quantitative 
relaxation parameters offer new insight into subtle patholo-
gies such as differentiating active from inactive lesions in 
epilepsy [111]. Despite its relative efficiency, MRF requires 
storage of large dictionaries with over 10,000 entries for 
matching and is still lengthy to acquire at higher spatial reso-
lutions with whole-brain coverage.

Machine learning methods have been combined with tra-
ditional undersampling strategies (e.g., parallel imaging) to 
further increase the acquisition speed of MRF. The designed 
CNNs, trained on simulated and actual data, take an input 
MRF time series and output quantitative T1 and T2 maps. The 
network parameters are a compact representation of the 
MRF dictionary, and the CNN inference procedure is 300 to 
5000 times faster than typical dictionary matching methods 
[112, 113]. Combined with parallel imaging, deep learning 
enables whole-brain T1 and T2 mapping with high spatial 
resolution (1 mm3 isotropic), in as few as 7 min [114]. This 
scan time is even faster than conventional T1- or T2-weighted 
scans at the same resolution.

�Challenges Ahead

As powerful as ML algorithms can be, one issue they face is 
bias, as these algorithms are only as good as the data we feed 
them. The generalization of trained ML algorithms beyond 
what they have “seen” in the training data is critical for their 
increased use. There has been much discussion about this in 
the computer science field, and is quite important in the field 
of radiology as well [115]. (See Table 58.1 for key literature 

in the field of artificial intelligence [17, 36, 50, 69, 91, 99]). 
The algorithms, once trained, will be representative of the 
training data and, if trained properly, will perform well on 
testing data originating from the same distribution as the 
training data. However, they might perform poorly when 
applied on data coming from different data sources or patient 
populations. Discrepant results were also reported with data 
collected across different scanner models. This and the 
requirements for well-curated multicenter data for model 
training are all challenges to overcome before the wide-
spread use of ML-based methods becomes a reality in the 
clinic.

Another obstacle is the lack of interpretability of the algo-
rithms [116]. With deep neural networks in particular, there 
is little insight into the inner workings of the models; for 

Table 58.1  Summary of key artificial intelligence literature

Authors Article Summary
Kleesiek 
et al. 
2019 
[91]

Can Virtual Contrast 
Enhancement in Brain 
MRI Replace 
Gadolinium?: A 
Feasibility Study. 
Investigative Radiology. 
2019;54(10):653–60

A deep learning model was 
designed to predict contrast 
enhancement from noncontrast 
multiparametric brain MRI 
scans

Chen et 
al. 2019 
[17]

Ultra-Low-Dose (18)
F-Florbetaben Amyloid 
PET Imaging Using 
Deep Learning with 
Multi-Contrast MRI 
Inputs. Radiology. 
2019;290(3):649–56

Simultaneously acquired MRI 
and ultra–low-dose PET data 
can be used to synthesize 
full-dose–like amyloid PET 
images by using deep learning

Iv et al. 
2019 
[36]

MR Imaging-Based 
Radiomic Signatures of 
Distinct Molecular 
Subgroups of 
Medulloblastoma. AJNR 
Am J Neuroradiol. 
2019;40(1):154–61

Radiomics and machine 
learning model was built to 
predict four molecular 
subgroups of pediatric 
medulloblastoma (sonic 
hedgehog [SHH], wingless-
type [WNT], group 3, and 
group 4)

Gibbons 
et al. 
2019 
[99]

Simultaneous NODDI 
and GFA parameter map 
generation from 
subsampled q-space 
imaging using deep 
learning. Magn Reson 
Med. 
2019;81(4):2399–411

Deep learning estimated 
NODDI and GFA parameters 
from highly undersampled 
q-space data, performed better 
than other state-of-the-art 
methods, allowing a ten-fold 
reduction scan time compared 
to conventional methods

Yu et al. 
2020 
[69]

Use of Deep Learning to 
Predict Final Ischemic 
Stroke Lesions From 
Initial Magnetic 
Resonance Imaging. 
JAMA network open. 
2020;3(3):e200772-e

A deep learning model was 
developed to provide 
individualized infarct lesion 
prediction for patients with 
acute ischemic stroke before 
intervention

Grøvik et 
al. 2020 
[50]

Deep learning enables 
automatic detection and 
segmentation of brain 
metastases on 
multisequence MRI. J 
Magn Reson Imaging. 
2020;51(1):175–82

Using multisequence MRI, a 
2.5D neural network based on 
a GoogLeNet architecture was 
designed to automatically 
detect and segment brain 
metastases with high accuracy
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instance, they may work well for tumor segmentation and 
prediction, but precisely how they accomplish these feats are 
still unclear. The black-box nature of the deep learning algo-
rithms contrast the current radiologic management of 
patients, where the decision making process is ideally more 
transparent and traceable. There may also be strong legal and 
ethical arguments against a decision support system that is 
based on nontraceable logic. Consequently, there is a need to 
improve the interpretability of these hidden algorithm struc-
tures, which also represents a key step toward accepting this 
new technology in a routine clinical setting. In order to suc-
cessfully apply AI tools in a clinical setting, interpretable or 
explainable solutions would ideally be available for the diag-
nosis, classification, and response evaluation of patients.

This black-box problem has led to a field of research 
called “eXplainable AI” or XAI, representing a new set of 
techniques that attempts to provide an understanding of how 
input and output data relates to each other. As an example, 
deep learning models can be made “visible” by introducing 
decision trees (model regularization) during training. Having 
regularized models allowing clinical users to step through 
the inner processes behind the networks’ predictions would 
represent a key step toward improving interpretability. One 
approach is to combine deep learning with the novel concept 
of tree regularization [116], which may have major advan-
tages compared to standard regularization in that it returns a 
decision tree that best mimics the predictions of the AI-model.

�Summary

We are living in the period of the artificial intelligence revo-
lution. AI is rapidly infiltrating and transforming radiology. 
The small sampling in this chapter highlighted some of the 
potential directions that can be taken with AI. While it has 
been speculated that AI will replace human radiologists 
entirely, it is hard to predict if and when that may happen. AI 
can advance our diagnostic prowess and refine management 
decisions. Indeed, AI is a tool to be embraced rather than 
feared. Working together with well-trained radiologists, AI 
offers the potential to improve our ability to serve our patients 
more effectively and more efficiently, with the ultimate goal 
of alleviating neurological disease.
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