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11Chemical Exchange Saturation Transfer 
(CEST) Imaging

Daniel Paech and Lisa Loi

�Introduction to Chemical Exchange 
Saturation Transfer (CEST) Magnetic 
Resonance Imaging (MRI)

Endogenous low-concentration metabolites or exogenously 
administered agents, containing either exchangeable protons 
or molecules, can be imaged using selective radiofrequency 
(RF) saturation followed by indirect detection via the water 
signal with large signal amplification [1, 2]. Chemical 
exchange saturation transfer (CEST) magnetic resonance 
imaging (MRI) makes use of the spontaneously occurring 
chemical exchange between solute-bound protons and pro-
tons of free bulk water. Magnetization transfer from satu-
rated low-concentration solutes to free water results in a 
decrease of the water magnetization, which is proportional to 
the local concentration of the metabolite of interest. 
Alterations of local tissue properties (e.g., pH changes in 
ischemic stroke) also affect the proton exchange rates, mak-
ing CEST MRI additionally sensitive to changes in the 
microenvironment.

In CEST MRI, successive acquisition of off-resonant sat-
uration at different frequency offsets around the water reso-
nance at Δ(Delta)ω(omega)  =  0  ppm yields the so-called 
Z-spectrum (Fig. 11.1),where the intensity of the water sig-
nal is plotted as a function of irradiation frequency defining 
the water frequency as zero-reference [3]. For an adequate 
pixel-wise determination of the water resonance, it is essen-
tial to correct for B0-field inhomogeneities; e.g., by using the 
“water saturation shift referencing” or “WASSR” approach 
[4]. Particularly at ultra-high field strength, additional cor-
rection of B1-field inhomogeneities is crucial for the correct 
interpretation of CEST data as the effect strength strongly 
depends on the applied saturation power [5].

Amide proton transfer (APT) imaging is the most fre-
quently studied CEST contrast resonating around 
Δ(Delta)ω(omega) = +3.5 ppm relative to the resonance of 
free water. This technique has first been applied by Zhou 
et al. to study pH-alterations caused by ischemic stroke [6]. 
CEST signal intensities are most commonly quantified by 
calculating the magnetization transfer ratio asymmetry 
(MTRasym). This approach is based on the assumption that 
magnetization transfer effects are symmetric with respect to 
water resonance. Consequently, e.g., APT CEST effects at 
Δ(Delta)ω(omega) = +3.5 ppm result in a positive magneti-
zation transfer difference, the so-called APT-weighted (APT-
w) CEST contrast [6]:

	
MTRasym sat sat∆ ∆ ∆ω ω ω( ) = −( ) − +( ) S S S/ 0 	

For APT-w CEST imaging based on the MTRasym 
approach, relatively high RF saturation power (e.g., 
B1 = 2.1 μ[mu]T) has been reported to maximize the APT 
effect [7]. In contrast, detection of relayed Nuclear 
Overhauser Effect (rNOE)-mediated CEST effects, located 
upfield from the water resonance at approximately at 
Δ(Delta)ω(omega) = −2 to −5 ppm, is improved by using 
lower saturation power (e.g., B1 = 0.6 μ[mu]T) [8, 9].

Besides the APT effect around +3.5 ppm from water, mul-
tiple exchangeable groups (resonating between 1 and 6 ppm 
from water) may contribute to the MTRasym contrast [2]. In 
addition, contributions from T1- and T2-relaxation [10, 11], 
conventional semi-solid magnetization transfer (MT) effects 
[12], and downfield rNOE CEST signals [13] affect the 
MTRasym metric. Therefore, more sophisticated approaches 
have been proposed enabling separation of multiple CEST 
pools, e.g., by using Lorentzian fit analysis on data with suf-
ficiently high spectral resolution (Fig. 11.1) [9, 14, 15].

Direct water proton saturation (spillover) and semi-solid 
MT effects can be reduced by applying the inverse difference 
metric introduced by Zaiss et al. in 2013 [16]. Further, correc-
tion of T1-relaxation time can be achieved by using the relax-
ation-compensated metric, which yields the apparent 
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Fig. 11.1  Z-spectrum acquired in the human brain of a healthy volun-
teer at 7.0 T. The most prominent resonances at positive frequencies can 
be assigned to the amide protons (dark blue line) and amines (orange 
line) resonating around Δ(Delta)ω(omega)  =  +3.5  ppm and 
Δ(Delta)ω(omega) = +2.2 ppm. A broader resonance can be observed 
upfield from the water resonance (Δ[Delta]ω[omega]  = − 2  ppm to 
−5  ppm), which is caused by relayed nuclear Overhauser effects 

(rNOE, green line). The water resonance (per definition at 0 ppm, light 
blue line) and the very broad semi-solid magnetization transfer (MT, 
red line) are additionally fitted by Lorentzian functions. Technical 
parameters: Read out: B0 = 7 T, FoV 195 × 170, matrix 128 × 112, slice 
thickness 5 mm, TE = 3.61 ms, TR = 7.4 ms, flip angle 10°. Saturation: 
120 Gaussian-shaped pulses à 15  ms; B1  =  0.9  μ(mu)T; in total 60 
offsets

exchange-dependent relaxation rate (AREX) [10, 14, 17–19]. 
Regarding the last mentioned correction method, it has been 
shown that T1-normalization may not be necessary in clinical 
MRI systems with lower field strength, when appropriate 
sequence parameters are chosen [20]. Ultimately, downfield 
resonating rNOE effects can be estimated and reduced yield-
ing the downfield rNOE suppressed (dns-) APT metric [13].

Future prospective large cohort clinical studies need to 
investigate whether the interfering effects in conventional 
APT-wMTRasym contrasts add up constructively or if more 
complex approaches are needed to increase the specificity 
and the diagnostic value of CEST MRI. Recently, consensus 
recommendations on clinical APTw imaging approaches 
have been provided by leading experts in the field to provide 
a rationale for optimized APTw imaging at 3 T [21].

�Neurooncological Applications of CEST MRI

Neurooncological imaging represents one of the major fields 
of CEST MRI applications. There is a fast growing body of 
evidence that APT(-w) imaging may add complementary 
information when included in conventional MRI protocols 
[22, 23]. CEST MRI approaches have been shown to allow 
differentiation between different World Health Organization 
(WHO) tumor grades and molecular tumor subtypes. 
Furthermore, early therapy response and prognostication 
have been shown to be associated with protein concentration 

alterations detected with CEST MRI. The following sections 
of this chapter provide an overview of the studies published in 
the literature (see Table 11.1 for summary of key studies).

�Endogenous CEST Contrasts 
in Neurooncological Applications

In 2003, Zhou et al. described for the first time the applica-
tion of APT-w CEST MRI in brain tumors [24]. The study 
was conducted in a rat 9 L gliosarcoma model and showed 
increased APT signal intensities that were assigned to malig-
nant brain tumor tissue. Since then, APT-w MRI has inten-
sively been investigated, both in animal studies and patients 
with brain tumors. Increased APT signals in tumors are gen-
erally explained by higher concentrations of mobile proteins 
and peptides in malignant tumors [22, 25, 26]. APT signals 
have been shown to positively correlate with WHO tumor 
grade in preoperative imaging of glioma patients [27–30]. In 
particular, the ability of APT-w CEST MRI to differentiate 
between high- and low-grade glioma was also reported for 
non-enhancing lesions [31]. Multiple studies found a posi-
tive correlation of APT signals with cell density and prolif-
eration (Ki-67-index) in brain tumors [27, 28, 32–34]. 
Investigations of CEST MRI at ultra-high field strength (7 T) 
recently confirmed these findings employing the relaxation-
compensated and downfield rNOE suppressed (dns-) APT 
metric in patients with glioma [35] (Fig. 11.2).

D. Paech and L. Loi



295

Table 11.1  Summary of key literature

Authors Article Summary
Ward, 
KM 
et al., 
2000

A new class of contrast agents for MRI based on proton 
chemical exchange dependent saturation transfer (CEST). J 
Magn Reson. 2000 Mar;143(1):79–87

First article proposing to use exchangeable protons for MRI 
contrast under physiological conditions and introduced the idea of 
using exogenous compounds as CEST agents for MRI. In vitro 
demonstration that selective radiofrequency (RF) saturation 
enables detection of protons of interest

Zhang 
et al., 
2001

A novel europium (III)-based MRI contrast agent. Journal of 
the American Chemical Society, 123(7), 1517–1518

The first demonstration of a paramagnetic CEST agent as a MRI 
agent

Zhou, J 
et al., 
2003

Using the amide proton signals of intracellular proteins and 
peptides to detect pH effects in MRI. Nature medicine. 
2003;9(8):1085–90

First application of pH-sensitive APT CEST imaging for detecting 
acute stroke in ischemic rat models

Zhou, J 
et al., 
2003

Amide proton transfer (APT) contrast for imaging of brain 
tumors. Magn Reson Med. 2003 Dec;50(6):1120–6

Initial application of APT CEST MRI in brain tumors (preclinical). 
Demonstration that APT MRI reflects endogenous cellular protein 
and peptide content in intracranial rat 9 L gliosarcomas

Van Zijl, 
PCM 
et al., 
2007

MRI detection of glycogen in vivo by using chemical exchange 
saturation transfer imaging (glycoCEST). Proceedings of the 
National Academy of Sciences, 104(11), 4359–4364

In vitro and in vivo detection of glycogen using CEST 
MRI. Glycogen metabolism could be followed in isolated, 
perfused mouse livers at 4.7 T before and after administration of 
glucagon

Sun, PZ 
et al., 
2007

Detection of the ischemic penumbra using pH-weighted 
MRI. Journal of Cerebral Blood Flow & Metabolism, 27(6), 
1129–1136

Twenty-one rats underwent permanent middle cerebral artery 
occlusion and ischemic evolution over the first 3.5 h post-
occlusion was studied using multiparametric MRI. The study 
showed that pH-weighted CEST MRI provides information 
complementary to PWI and DWI in the delineation of ischemic 
tissue

Van Zijl, 
PCM 
et al., 
2011

Chemical exchange saturation transfer (CEST): what is in a 
name and what isn’t? Magnetic resonance in medicine, 65(4), 
927–948

Review article focusing on the basic magnetic resonance principles 
underlying CEST and similarities to and differences with 
conventional magnetization transfer contrast. The basic theory, 
design criteria, and experimental issues for exchange transfer 
imaging are discussed

Chan, 
KW 
et al., 
2012

Natural D-glucose as a biodegradable MRI contrast agent for 
detecting cancer. Magnetic resonance in medicine, 68(6), 
1764–1773

Investigation of the possibility of using simple D-glucose as an 
infusable biodegradable MRI agent for cancer detection in two 
human breast cancer cell lines, MDA-MB-231 and MCF-7, 
implanted orthotopically in nude mice

Walker-
Samuel, 
S et al., 
2013

In vivo imaging of glucose uptake and metabolism in tumors. 
Nature medicine, 19(8), 1067–1072

Demonstration that glucose chemical exchange saturation transfer 
(glucoCEST) is sensitive to tumor glucose accumulation in 
colorectal tumor models and allows distinguishing tumor types 
with differing metabolic characteristics and pathophysiologies

Haris M 
et al., 
2013

Imaging of glutamate neurotransmitter alterations in 
Alzheimer’s disease. NMR Biomed. 2013;26(4):386–91

Application of glutamate-sensitive CEST MRI (GluCEST) to 
detect early stages of Alzheimer’s disease in the brain of APP-PS1 
transgenic mouse models

Zaiss, M 
et al., 
2013

Chemical exchange saturation transfer (CEST) and MR 
Z-spectroscopy in vivo: a review of theoretical approaches and 
methods. Physics in Medicine & Biology, 58(22), R221

Review article considering analytical solutions of the Bloch–
McConnell (BM) equation system for the theoretical description 
of CEST and the equivalent off-resonant spinlock (SL) 
experiments. Overview of reported CEST effects in vivo and 
applications on clinical MRI systems

Togao, O 
et al., 
2014

Amide proton transfer imaging of adult diffuse gliomas: 
correlation with histopathological grades. Neuro-oncology, 
16(3), 441–448

The ability of APT imaging to predict the histological grade of 
adult diffuse gliomas was tested in a cohort of 36 patients with 
histopathologically proven diffuse glioma

Li C 
et al., 
2014

Chemical exchange saturation transfer MR imaging of 
Parkinson’s disease at 3 Tesla. Eur Radiol. 
2014;24(10):2631–9

Feasibility study on the application of CEST MRI to detect 
Parkinson’s disease in 27 patients and 22 healthy controls at 
3 T. Region-specific investigation of CEST signals in the 
substantia nigra and the basal ganglia of Parkinson’s disease 
patients compared to normal controls

Wells JA 
et al., 
2015

In vivo imaging of tau pathology using multi-parametric 
quantitative MRI. Neuroimage. 2015;111:369–78

Investigation of APT CEST and GlucoCEST MRI in the rTg4510 
mouse model of tauopathy to assess neurodegenerative diseases

Davis 
et al., 
2015

Glutamate imaging (GluCEST) lateralizes epileptic foci in 
nonlesional temporal lobe epilepsy. Sci Transl Med. 2015; 
7(309):309ra161.

Glutamate chemical exchange saturation transfer (GluCEST) MRI 
was applied to patients with non-lesional temporal lobe epilepsy 
based on conventional MRI and its feasibility to correctly 
lateralize the temporal lobe seizure focus on glutamate-based 
images was shown

(continued)
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Fig. 11.2  Predictability of World Health Organization (WHO) tumor 
grade (HGG vs. LGG) in newly diagnosed untreated glioma. Two 
patients with HGG (GBM, c1–g1) and LGG (oligodendroglioma II, c2–
g2): ci: GdCE T1-w, di: T2-w (TSE), relaxation-compensated multipool 
CEST MRI at 7 T with APT (ei), NOE (fi), and dns-APT (gi) contrasts 
shown (unit: %). Only a small spot-like contrast enhancement displays 
in the tumor region of the patient with HGG (c1), while a clear hyperin-

tensity can be observed at dns-APT imaging (g1, white arrow). 
(Reproduced with permission from Paech D, Windschuh J, 
Oberhollenzer J, Dreher C, Sahm F, Meissner JE, et al. Assessing the 
predictability of IDH mutation and MGMT methylation status in gli-
oma patients using relaxation-compensated multipool CEST MRI at 
7.0 T. Neuro Oncol. 2018 Nov 12;20(12):1661–1671)

Table 11.1  (continued)

Authors Article Summary
Zaiss, M 
et al., 
2015

Relaxation-compensated CEST-MRI of the human brain at 
7 T: unbiased insight into NOE and amide signal changes in 
human glioblastoma. Neuroimage, 112, 180–188

Correction algorithm to compensate semi-solid magnetization 
transfer (MT), as well as T1 scaling and spillover in CEST data 
yielding the apparent exchange-dependent relaxation (AREX). 
First application to a study cohort of ten patients with glioblastoma

Xu, X 
et al., 
2015

Dynamic glucose-enhanced (DGE) MRI: translation to human 
scanning and first results in glioma patients. Tomography, 1(2), 
105

Dynamic glucose enhanced (DGE) image data from four normal 
volunteers and three glioma patients showed a strong signal 
enhancement in blood vessels, while a spatially varying 
enhancement was found in brain tumors

Paech, D 
et al., 
2017

T1ρ-weighted dynamic glucose-enhanced MR imaging in the 
human brain. Radiology, 285(3), 914–922

Adiabatically prepared chemical exchange–sensitive spin-lock 
imaging at 7.0 T performed in nine patients with glioblastoma and 
four healthy controls. Pathophysiologically increased glucose 
concentration in glioblastoma was demonstrated following 
intravenous administration

O’Grady 
KP et al., 
2019

Glutamate-sensitive imaging and evaluation of cognitive 
impairment in multiple sclerosis. Mult Scler. 2019 
Oct;25(12):1580–1592

Investigation of glutamate-sensitive chemical exchange saturation 
transfer (GluCEST) MRI in 20 patients with multiple sclerosis 
revealed increased GluCEST signals in patients with accumulated 
disability and a positive correlation with symbol digit modality test 
and choice reaction time scores

Another CEST contrast that gained attention in brain 
tumor imaging is mediated by the relayed nuclear Overhauser 
enhancement (rNOE)-mediated effect. Decreased rNOE sig-
nals are consistently observed in the tumor region of patients 
with newly diagnosed malignant brain tumors [8, 9, 14]. 
Further, correlation with tumor grade [36] and cellularity 
[37] were found for rNOE signals. Thus, both APT(-w) and 
rNOE imaging may aid more reliable differentiation between 
tumor and healthy brain tissue.

�Assessment of Histopathologic Tumor Subtypes 
with CEST
Assessment of genetic tumor subtypes such as isocitrate 
dehydrogenase (IDH)1 or IDH2 mutations versus wild type 
forms in patients with glioma are crucial for the therapy 
planning and prognostication [38]. In clinical routine, inva-
sive procedures such as tumor biopsy or surgical resection 
are necessary to determine the IDH mutation status, as con-
ventional imaging techniques cannot reliably provide this 
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information. Therefore, intensive efforts are made to develop 
novel imaging approaches that enable noninvasive determi-
nation of the IDH mutation status. For instance, magnetic 
resonance spectroscopy (MRS) has gained considerable 
attention for the detection of 2-hydroxyglutarate (2-HG) 
in vivo [39, 40] through its association with the IDH muta-
tion status. However, spatial resolution is limited and the 
acquisition remains challenging, impeding widespread clini-
cal adoption.

Recently, diverse APT CEST MRI approaches have been 
investigated as alternative noninvasive methods to determine 
the IDH-mutation status in patients with newly diagnosed 
glioma [35, 41]. These studies found increased APT signals 
in IDH wild-type glioma versus tumors with IDH mutation 
[35, 41]. It is assumed that mutations in IDH gene-encoded 
enzymes cause disturbances of cellular metabolism, includ-
ing alteration of amino acid concentrations and global down-
regulation of protein expression [41]. Supported by the 
findings of an ultra-high field CEST MRI study, Paech et al. 
recently suggested that the IDH mutation status may have a 
stronger influence on the APT signal than the WHO tumor 
grade [35].

Glioma patients with methylated O6-methylguanine-
DNA methyltransferase (MGMT) promoter have better out-
comes compared to patients with unmethylated MGMT 
promoter because of the increased chemosensitivity of these 
tumors [42]. Therefore, MGMT promoter methylation status 
is another molecular marker of key interest in the diagnostic 
work-up of glioma patients [35, 43, 44]. Jiang et al. reported 
significantly decreased APT signals in patients with methyl-
ated, compared to unmethylated MGMT promoters [43]. 
The same trends were also found using the relaxation-
compensated APT metric at 7 T; however, statistical signifi-
cance was not reached [35].

�Therapy Response Assessment, Prognostication, 
and Outcome Prediction with CEST
Early therapy response assessment and prognostication of 
patients with glioma are major challenges in clinical routine. 
The updated Response Assessment in Neuro-Oncology 
(RANO) criteria require repeated post-treatment MRI exam-
inations with gadolinium contrast [45], in order to account 
for possible pseudo progression early after treatment 
[45–47].

A preclinical study performed by Zhou et al. in 2011 indi-
cated that APT-w CEST MRI may enable differentiation 
between tumor recurrence and radiation necrosis in a tumor 
model of orthotopic glioma (SF188/V+ glioma and 9 L glio-
sarcoma) in rats [48]. Another animal study demonstrated 
the ability of APT-w MRI to detect early therapy response-
related changes in U87 tumor-bearing rats following radio-
therapy [49]. In accordance, APT-w CEST MRI has been 
shown to be sensitive to early therapy response-induced 

changes during treatment with temozolomide in an ortho-
topic tumor mouse model of human glioblastoma [50].

In humans, Park et al. found significantly increased APT 
signals in tumors of patients with progressive glioma com-
pared to tumors of patients with treatment-related changes 
[51, 52]. APT values were also reported to be moderately 
correlated with the choline-to-creatine ratio and moderately 
correlated with the choline-to-N-acetylaspartate ratio, 
obtained with magnetic resonance spectroscopy (MRS) [52].

APT- and rNOE-mediated CEST effects were also shown 
to allow a differentiation of treatment response from pro-
gression in glioma patients immediately after or already dur-
ing radio-chemotherapy [53, 54]. Furthermore, APT and 
rNOE CEST imaging enabled pre-treatment discrimination 
of responders to first-line chemo-radiation therapy versus 
patients with early progression [53, 55]. Recently, a study 
found early reduction in mean APT-w CEST signals during 
antiangiogenic treatment (4–6 weeks after initiation) to be 
associated with treatment response in patients with recurrent 
glioma [56]. Consistent with these results, APT CEST sig-
nals have additionally been shown to be associated with 
long-term outcome by means of progression-free survival 
(PFS) and overall survival in patients with newly diagnosed 
high-grade glioma (WHO grades III–IV) [57].

�Exogenous CEST Contrasts: Glucose-Enhanced 
MRI of Brain Tumors

The application of contrast agents is of high diagnostic value 
in neurooncological imaging. MRI contrast agents are gener-
ally based on the paramagnetic metal gadolinium (Gd). 
However, several studies recently reported accumulation of 
gadolinium in deep gray matter nuclei after serial application 
of linear gadolinium-based contrast agents (GBCA) [58–63]. 
Moreover, there is a known risk of developing nephrogenic 
systemic fibrosis (NSF) for patients with renal failure [64]. 
Therefore, novel MRI techniques using biodegradable con-
trast agents are highly desirable. A promising new approach 
is based on the intravenous administration of natural 
D-glucose, which can be detected using CEST [65–67] or 
chemical exchange sensitive spin-lock (CESL) [68, 69]. The 
principle of these approaches is to measure dynamic signal 
changes after the intravenous administration of d-glucose (in 
humans, e.g., 100 mL, concentration: 20% [70]) with high 
temporal and spatial resolution.

The ability of these approaches to detect increased glu-
cose concentrations in tumors was demonstrated in patients 
with glioma at 7 T [70–73]. These studies revealed higher 
glucose concentrations in tumor regions compared to healthy 
brain tissue [70–73]. Moreover, increased glucose concen-
trations were also detected in areas beyond the disrupted 
blood–brain barrier (BBB) (Fig. 11.3).

11  Chemical Exchange Saturation Transfer (CEST) Imaging
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Fig. 11.3  (a) T2-w image acquired at 7  T, (b) Gd-enhanced T1-
weighted (GdCE-T1w) image acquired at 3 T, (c) fusion of the GdCE-
T1w image and the T1ρ-weighted dynamic glucose enhancement 
(DGEρ). (d) DGEρ time curves with a temporal resolution of less than 
7 s in a tumor-ROI selected on DGEρ (ROI #1), a second tumor-ROI 
selected on the GdCE-T1w image (ROI #2), and a ROI in normal 
appearing white matter (ROI #3). Increasing DGEρ values are obtained 
in both tumor-ROIs following glucose injection. The red arrow marks 
an abrupt signal drop induced by patient motion. (e–i) DGEρ images 

(average of 5 consecutive images) at different time points after glucose 
injection. Note the hyperintense region at the bottom of the tumor area 
(black arrow; (g)), which is not visible in the GdCE-T1w image (b). 
(Figure reprinted under terms of Creative Commons license from 
Schuenke P, Paech, D, Koehler C, Windschuh J, Bachert P, Ladd ME, 
et al. Fast and Quantitative T1ρ-weighted Dynamic Glucose Enhanced 
MRI. Sci. Rep. 2017;7:42093. http://creativecommons.org/licenses/
by/4.0/)
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The origin of the signal changes in dynamic glucose-
enhanced (DGE) MRI is still under debate. In general, a glu-
cose concentration change in the intravascular space, the 
extravascular and extracellular space (EES), and the intracel-
lular space can contribute to the signal. The latest results in 
brain tumor studies suggest that signal changes on DGE-
MRI are mainly attributable to BBB leakage and tissue per-
fusion [70, 72, 74]. Furthermore, both CEST and CESL may 
be additionally altered by local pH, since an acidic tumor 
microenvironment can enhance DGE signals through proton 
exchange rate modulation.

Recently, glucose-enhanced CE-sensitive MRI has also 
been implemented in glioma patients at clinical field 
strengths of 3 T employing the CEST [75] and CESL [76] 
techniques. However, small effect sizes were observed at 3 T 
compared to previous results at 7 T MRI. Therefore, it is cur-
rently in question if a robust DCE imaging approach can be 
established at field strengths less than 7 T.

�pH-Sensitive CEST MRI in Neurooncological 
Applications

Cancer cells commonly show an altered metabolism and 
tend to have increased intracellular pH values and decreased 
extracellular pH values [77, 78]. These changes in the tumor 
microenvironment particularly result from increased expres-
sion and/or upregulated activity of H+-ATPases [79–82], 
Na+-H+ exchangers [83–85], carbonic anhydrases IX and XII 
[86, 87], monocarboxylate-H+ efflux cotransporters of the 
SLCA16A family [88, 89], and lactate dehydrogenases [90, 
91], which lead to an increased transport of protons (H+) and 
lactate across the cell membrane in the extracellular space. 
The reversed proton gradient [92, 93] causes an acidification 
of the extracellular compartment (pHe) and an alkalization 
of the intracellular space (pHi) with distinct consequences 
[93–95]. Thus, pH-weighted contrast methods may represent 
a valuable imaging technique to gain additional insights into 
various tumor characteristics.

Since the APT exchange rate is known to be base-
catalyzed for pH values above ∼5 [6, 96, 97], this pH depen-
dence can be used to generate pH-sensitive APT CEST 
contrasts, first demonstrated by Zhou et al. (2003) in isch-
emic rat brain models [6]. In contrast to ischemia, tumors 
show strong alterations of protein and peptide concentra-
tions, which are thought to be the major contributor to the 
APT-w contrast. Several studies have targeted fast exchang-
ing amine protons (around Δ[Delta]ω[omega] = +3.0 ppm) 
in order to obtain in vivo pH maps of tumors [98, 99]. As 
amide and amine groups of neutral amino acids and gluta-
mine are abundant in active tumor regions [100, 101], Harris 
et al. [98, 99] demonstrated that a pH-weighted CEST con-
trast can be obtained in patients with glioma by using amine 

CEST. Decreased pHe values were associated with shorter 
PFS [98]. Consequently, noninvasive windows into pH 
alterations in tumors provided by novel imaging techniques 
may have an impact on early identification of malignant 
transformation in tumors, therapy planning, and prognosti-
cation [92, 102].

�Assessment of Ischemic and Hemorrhagic 
Stroke Using CEST MRI

Stroke is a frequent neurological disorder and a leading 
cause of death and disability in the western countries. There 
are two main types of brain stroke: ischemic (>80%) and 
hemorrhagic stroke. For both types, early diagnosis and ther-
apy are crucial. In patients with ischemic stroke, an accurate 
detection of the ischemic penumbra and an early restoration 
of sufficient blood flow in these areas are essential to limit 
the extent of tissue damage. Prior to treatment, imaging by 
means of computed tomography (CT) (currently main 
modality) and/or MRI using diffusion-weighed imaging 
(DWI) and perfusion-weighted imaging (PWI) is decisive in 
cases of suspected stroke. However, on both CT and conven-
tional MRI, a clear differentiation of ischemic acidosis-based 
penumbra and benign oligemia remains a challenge in the 
hyperacute stroke period [103, 104].

�pH-Sensitive APT Imaging of Acute Ischemic 
and Hemorrhagic Stroke

APT-w CEST MRI has been demonstrated to enable a detec-
tion of ischemia in acute ischemic stroke patients [105–107]. 
Insufficiently perfused brain tissue becomes acidotic due to 
an anaerobic metabolism during early ischemia. 
Consequently, the base-catalyzed exchange rate of amides 
and free water protons results in decreasing APT signals. 
Thus, pH-sensitive APT imaging could be of significant 
diagnostic value for early stroke imaging, as pH-changes are 
considered to be one of the first tissue changes during hyper-
acute ischemic stroke.

Zhou et al. first applied pH-sensitive APT-w CEST imag-
ing to detect acute stroke in ischemic rat brain models. The 
pH dependence of the APT signal was calibrated in situ, 
using phosphorus spectroscopy. Comparison of the MTRasym 
spectrum between ischemic and contralateral regions showed 
a reduction for the 2–5  ppm offset range [6]. Since then, 
APT-w CEST MRI has been intensively investigated in dif-
ferent brain ischemic models [108–113]. Sun et al. applied 
the pH-sensitive APT-w approach in rats after induction of 
middle cerebral artery occlusion (MCAO) and found a strong 
correlation of pH-w signal intensity with tissue lactate con-
tent by means of 1H MR spectroscopy [114]. They further 
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demonstrated that several animals solely showed pH altera-
tions and hypoperfusion on cerebral blood flow (CBF) 
images, while T1- and T2-weighted images were inconspicu-
ous in the hyperacute stage. Moreover, the penumbra detected 
by pH-sensitive APT-w CEST MRI in the hyperacute period 
matched very well with the infarcted region on T2-w images 
after 24 h [115]. These findings suggest that APT-w CEST 
MRI may enable early differentiation of ischemic tissue, 
ischemic acidosis penumbra, and benign oligemia in animal 
models [116–118].

The translation of pH-based imaging technique to clinical 
applications yielded similar results: In 2011, Zhao et al. first 
applied pH-sensitive APT-w CEST MRI to four stroke 
patients at 3  T and found hypointense APT signals in the 
infarcted region compared to the normal-appearing brain tis-
sue [119]. Tietze et  al. reported significant differences 
between ischemic brain regions and normal-appearing-
white-matter in a study cohort of ten acute stroke patients 
using pH-sensitive APT-w CEST MRI [106]. More recently, 
changes of tissue pH were explored in ischemic stroke 
patients at different phases using APT-w CEST 
MRI. Depending on the onset time (≤6 h: hyperacute stage, 
6–48 h: acute stage, 48–96 h: early subacute stage, 96–168 h: 

late subacute stage) patients were assigned to four different 
groups [105]. APT signals were significantly lower in isch-
emic tissue over all four stages. Moreover, the results indi-
cated that tissue acidification during stroke decreases as the 
onset to scan time increases [105]. Generally, all investiga-
tions of pH-sensitive APT-w CEST MRI in stroke patients 
demonstrated the ability of identifying ischemic tissue and 
that the technique may aid differentiation between ischemic 
core region, acidosis-based penumbra, and benign oligemia 
in order to improve initial diagnosis and outcome prediction 
[105, 107, 119–121] (Fig. 11.4).

�Intracerebral Hemorrhage
In preclinical rat models, the comparison of ischemic brain 
tissue and hyperacute intracerebral hemorrhage revealed 
opposite APT signal alterations [122]. While ischemic stroke 
models showed hypointense contrasts, intracerebral hemor-
rhage appeared hyperintense compared to contralateral 
healthy brain tissue. The findings were attributed to the accu-
mulation of red and white blood cells, platelets, and protein-
rich serums in brain tissue as a consequence of the vessel 
rupture [122]. This is in line with previous publications 
describing increased APT signals in blood samples [123].

T1W1

a

b

c

T2W1 DWI APTW

2%

–2%

Fig. 11.4  Conventional MR images and APT-w images of patient with 
acute ischemic stroke of different National Institutes of Health Stroke 
Scale (NIHSS) scores and 90-day modified Rankin Scale (mRS) scores. 
Δ(Delta)APTW = Difference of the APT signal between the acute isch-
emic region and the contralateral side. (a) M/65 years, NIHSS score 
was 3 and 90-day mRS score was 0, Δ(Delta)APTW = −0.37%. (b) 
F/69 years, NIHSS score was 5 and 90-day mRS score was 2, Δ(Delta)
APTW = 0.82%. (c) M/81 years, NIHSS score was 22 and 90-day mRS 

score was 6, Δ(Delta)APTW = 1.93%. Areas of acute ischemic stroke 
display hypointense on APT-w images. (Reprinted under terms of 
Creative Commons license from Lin G, Zhuang C, Shen Z, Xiao G, 
Chen Y, Shen Y, Zong X, Wu R. APT Weighted MRI as an Effective 
Imaging Protocol to Predict Clinical Outcome After Acute Ischemic 
Stroke. Front. Neurol. 2018;9:901. https://creativecommons.org/
licenses/by/4.0/ [121])
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The first implementation of APT-w CEST MRI for the 
early detection of intracerebral hemorrhage in humans was 
performed by Ma et al. in 2017 [124]. The researchers inves-
tigated the APT-w CEST contrast in a study cohort of 33 
patients with intracerebral hemorrhage and found signifi-
cantly increased APT signals in areas of intracerebral hemor-
rhage at hyperacute, acute, and subacute stages. The authors 
concluded that APT-wCEST MRI could therefore contribute 
to noninvasively detect intracerebral hemorrhage at different 
stages [124].

�CEST MRI of Neurodegenerative Diseases

�Alzheimer’s Disease

Alzheimer’s disease (AD) is an irreversible neurological dis-
order and the major type of dementia in the elderly. In 2019, 
46.8  million people worldwide were affected by this age-
related disease and AD is gaining increasing importance due 
to demographic change [125]. Hence, imaging techniques 
for early AD diagnosis and monitoring of disease progres-
sion are desired.

In several AD animal models, APT-wCEST MRI has been 
studied for targeted detection of AD-associated tau-pathology 
[126] and amyloid-β(beta) (Aβ[beta]) deposits [127, 128]. 
As a result, significantly reduced APT-w signals were found 
in AD models compared to control groups, which was attrib-
uted to the effect of protein aggregation during AD [129]. 
Besides protein aggregation, AD can also be associated with 
cerebral tissue hypoperfusion and local hypoxia [130] that 
additionally result in a reduction of the APT signal due to 
tissue acidification, as previously discussed in detail.

The ability of APT(-w) imaging to detect brain tissue 
changes in AD patients and to distinguish between different 
disease stages was first investigated by Wang et al. in 2015 
[131]. In contrast to the animal studies described above, sig-
nificantly increased APT values were found in the hippocam-
pus of AD patients compared to normal controls [131]. This 
result is consistent with the histological proven accumulation 
of extracellular amyloid plaques and the appearance of tau 
proteins into intracellular neurofibrillary tangles that are 
characteristic for AD [131]. In addition, APT values were 
negatively correlated with patients’ scores in mini-mental 
state examination (MMSE) [131].

Glutamate-sensitive CEST MRI (GluCEST,Δ[Delta]ω[o
mega] = 3 ppm) [132] is another CEST contrast that gained 
attention as a noninvasive biomarker to detect AD at an early 
stage of disease [133, 134]. Investigations of GluCEST in an 
APP-PS1 transgenic mouse models of AD showed a reduc-
tion of GluCEST signals compared to signals obtained in 
wild-type controls [133], which is in accordance with studies 
describing a decrease of glutamate in the early stage of AD 

[135–137]. Besides glutamate, myoinositol has been demon-
strated as a potential molecular target for CEST imaging in 
preclinical AD mouse models [138, 139]. This metabolite is 
considered to be associated with amyloid plaque load, 
microglial activation, and neuroinflammation [139]. 
Myoinositol-based CEST (MICEST) MRI was firstly inves-
tigated by Haris et al. (2011) in healthy humans at ultra-high 
field strength (7  T) [140]. In addition, the application of 
MICEST MRI in an APP-PS1 transgenic mouse model of 
AD revealed about 50% higher MICEST signals in AD mice 
compared to wild-type controls, which was consistent with 
the results obtained through proton spectroscopy and immu-
nostaining [138].

Pathological alterations in cerebral d-glucose uptake 
[141] and 2-deoxy-d-glucose (2DG) uptake [142] in AD 
mouse models were detected using dynamic glucose-
enhanced (DGE) CEST MRI approaches. Recently, on-
resonance variable delay multiple pulse (on VDMP) CEST 
MRI was applied to study d-glucose in a mouse model of AD 
tauopathy demonstrating its feasibility in discriminating AD 
mice from wild-type mice [141].

�Parkinson’s Disease

Parkinson’s disease (PD) is a common, gradually progressing 
neurodegenerative disease characterized by a decreased 
dopamine level in the dopaminergic neurons in the substantia 
nigra. Unfortunately, the diagnosis of PD is still based on the 
clinical manifestations of PD in an advanced stage of the dis-
ease. Therefore, novel imaging techniques are required that 
are sensitive to pathological tissue alterations in the early 
stages of PD. In this context, a feasibility study of CEST MRI 
to detect PD showed a decrease of the MTRasym value between 
the offsets of 0 and 4 ppm in regions of the substantia nigra in 
comparison with normal controls [143]. Furthermore, a pro-
gressive signal intensity decrease from normal controls to 
early-stage PD and to advanced-stage PD was observed, 
which is consistent with the increasing loss of dopaminergic 
neurons in the course of the disease [144, 145]. PD patients 
with unilateral symptoms showed significantly lower APT-w 
CEST signal intensities in the substantia nigra on the affected 
side compared to normal controls [145]. In basal ganglia 
(e.g., globus pallidus, putamen, and caudate nucleus) of 
patients with PD, increased APT-w signal intensities were 
found, which has been speculated to be caused by an accumu-
lation of abnormal cytoplasmic proteins [146].

GluCEST MRI has been investigated in a mouse model of 
PD and elevated glutamate- signals were observed in the stri-
atum and motor cortex, which positively correlated with 
MRS-derived glutamate concentrations [147, 148]. 
Furthermore, a negative correlation between striatal GluCEST 
signal and motor function was found [148].
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�Multiple Sclerosis

With a worldwide prevalence of more than 2.2  million 
patients and a major cause of disability, multiple sclerosis 
(MS) is a serious neurodegenerative disease of the central 
nervous system [149]. MS is characterized by a transmigra-
tion of immune cells across the blood–brain barrier and a 
chronic inflammation. Further, demyelination and axonal 
degeneration in brain tissue and spinal cord represent key 
features of MS.

In clinical routine, T1- and T2-weighted as well as gado-
linium (Gd)-enhanced MRI techniques represent the diag-
nostic gold standard to detect and monitor progression of the 
disease. However, morphologically visible changes (BBB 
disruption and contrast enhancement, demyelination, gliosis, 
and atrophy) are typically related to an advanced stage of 
MS, so that conventional MRI is insensitive for pathological 
changes prior to lesion development. For earlier therapeutic 
intervention and improved prognosis, reliable identification 
of biochemical changes during the early course of the dis-
ease is crucial [150]. In this context, CEST MRI is suggested 
to aid detecting early tissue changes in patients with MS.

A preclinical study investigated an autoimmune encepha-
lomyelitis (EAE) mouse model prior to the onset of symp-
toms and found significantly different CEST signals at 
saturation offsets of 1 and 2 ppm compared to a naïve control 
group [151]. The expected pathological tissue changes 
detected by CEST MRI were consistent with follow-up 
gadolinium-enhanced MRI at the symptom onset and with 
immunofluorescent staining that was used to confirm the 
presence of neuroinflammation. Besides early detection of 
MS, a recent study has shown the potential of on resonance 
variable delay multiple pulse (on VDMP) CEST MRI to pre-
dict disease progression in EAE models of MS [152].

In patients with MS, Dula et al. found a relatively broad 
APT signal variation in different lesions; an increase in 
APT-w signal intensity, relative to healthy tissue, was found 
in some lesions [153]. Applications of GluCEST MRI in 
patients with relapsing-remitting MS found a trend toward 
increased GluCEST signals in the cortical GM of MS patients 
compared to healthy controls and a significant correlation of 
GluCEST signals with patient performance in a symbol-
digit-modality test and choice-reaction time [154]. These 
results could be explained by a dysfunctional regulation of 
glutamate in GM, which is expected to be involved in the 
pathogenesis of MS [155]. As MS affects the entire central 
nervous system including the spinal cord, CEST MRI was 
also applied to assess spinal cord lesions in patients with MS 
[156, 157]. By et al. reported that respiration correction in 
the spinal cord is necessary to accurately quantify APT val-
ues in MS lesions [157]. The respiration-corrected APT 

approach yielded significant differences between normal-
appearing white matter (NAWM) of MS patients and healthy 
controls; APT values in MS lesions were not significantly 
different from NAWM in healthy controls [157].

�Imaging of Other Neurological Disorders 
Using Glutamate-Sensitive CEST 
(GluCEST) MRI

�Epilepsy

Epilepsy is a complex neurological disorder and the fourth 
most common chronic neurological disease after migraines, 
Alzheimer’s disease, and Parkinson’s disease [158, 159]. In 
60–70% of patients, antiepileptic drugs (AEDs) are effective 
in suppressing seizures [160]. In patients with drug-resistant 
epilepsy the identification of epileptogenic brain regions is 
crucial for a possible neurosurgical resection. Until now, sev-
eral structural and functional imaging techniques have been 
applied to localize epileptogenic brain regions, including 
conventional MRI [161], MRS [162], single-photon emis-
sion computed tomography (SPECT) [163], 18-fluoro-
deoxyglucose positron emission tomography 
(18F-FDG-PET) [164], and magnetoencephalography 
(MEG) [165]. However, currently available imaging meth-
ods are often not capable of detecting the seizure focus 
adequately.

Both preclinical and human studies provide evidence that 
glutamatergic dysfunction and elevated glutamate levels are 
involved in neurological disorders such as epilepsy [166, 
167]. Thus, GluCEST MRI may provide valuable informa-
tion on local alterations of tissue glutamate associated with 
epileptic foci. In 2015, Davis et al. showed the feasibility of 
GluCEST MRI to correctly lateralize the temporal lobe sei-
zure focus in patients with previously determined non-
lesional temporal lobe epilepsy [168]. Furthermore, Neal 
et al. observed that enhanced peritumoral GluCEST contrasts 
are associated with recent seizures and drug refractory epi-
lepsy in patients with glioma [169].

�Encephalitis

Encephalitis is a central nervous system inflammatory dis-
ease that is often caused by viral infections (e.g., herpes sim-
plex viruses) and autoimmune processes [170]. In order to 
adequately counteract disease progression of infectious and 
autoimmune encephalitis, early diagnosis is mandatory. 
Recently, the feasibility of GluCEST imaging for the early 
diagnosis of encephalitis has been investigated in a preclini-
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Fig. 11.5  Conventional T2-w images, T2-Flair, DWI and GluCEST 
maps of patients with encephalitis and lacunar infarction (LI). 
(Reprinted under terms of Creative Commons license from Jia Y, Chen 
Y, Geng K, Cheng Y, Li Y, Qiu J, Huang H, Wang R, Zhang Y, Wu 

R.  Glutamate Chemical Exchange Saturation Transfer (GluCEST) 
Magnetic Resonance Imaging in Pre-clinical and Clinical Applications 
for Encephalitis. Front. Neurosci.2020;14:750. https://creativecom-
mons.org/licenses/by/4.0/)

cal and clinical setting [171]. Preclinical research on 
GluCEST imaging in rats with Staphylococcus aureus-
induced encephalitis was conducted at 7  T, while clinical 
investigations were performed at 3 T [172]. Hyperintensities 
on GluCEST contrasts were observed in the affected areas, 
both in mouse models and patients with encephalitis [171, 
172]. Furthermore, GluCEST MRI has been shown to enable 
distinguishing between patients with encephalitis and lacu-
nar infarction [171] (Fig. 11.5). In addition, GluCEST signal 
intensities in patients with encephalitis lesions significantly 
decreased after intravenous immunoglobulin therapy com-
pared to GluCEST values before treatment [171].

�Conclusion

CEST MRI represents a novel imaging technique providing 
complementary information to conventional MRI protocols. 
CEST MRI has proven its value in several neuroradiological 
applications, especially in neurooncology and cerebral isch-
emia. Furthermore, the application of multiple CEST 
approaches in various neurodegenerative diseases and brain 
disorders, such as MS, epilepsy, and encephalitis has shown 
the potential of CEST MRI as a noninvasive imaging bio-
marker that could extent the currently available repertoire of 
functional and metabolic MRI techniques. However, forth-
coming prospective studies in larger study cohorts are needed 
to prove the added clinical value.
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