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Trends and Validation in Impedimetric 
Immunosensors in the Application 
of Routine Analysis 

Sthéfane Valle de Almeida, Maria Lurdes Felsner, 
Juliana Cancino Bernardi, Mauro Chierici Lopes, and Andressa Galli 

Abstract In this chapter, the use of statistical tools that can be applied to determine 
recommended validation parameters is explored, aiming at the application of impedi-
metric devices in routine analysis. In addition, this section brings published reviews 
focused on specific areas, such as the development and characteristics of impedi-
metric immunosensors applied to the analysis of biological and chemical contam-
inants in foods, pesticides, hormones, and medicines as environmental pollutants 
and for clinical analysis for the prevention and detection of diseases and pathogenic 
infections. First, the fundamentals of electrochemical impedance are presented, and 
then, the applications of the devices and their advantages are discussed in detail. The 
future perspectives for the use of analytical validation in these systems, the different 
levels of validation, and the main figures of merit evaluated in immunosensors were 
also discussed. In addition, future perspectives for the use of these devices with 
properly validated methodologies are discussed. 
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1 Introduction 

Currently, many impedimetric immunosensors have been developed for routine anal-
ysis in several matrices [1–4]. In this chapter, we will address the focus for the 
different samples (food, environmental, and clinical) that have been analyzed using 
these devices and what is needed for them to be commercialized. 

1.1 Immunosensors 

Biosensors are analytical devices characterized by the use of a biological mate-
rial (bioreceptor) coupled to a transducer surface, responsible for converting the 
biological response into an analytical signal [5, 6]. These devices can be classi-
fied according to the type of bioreceptor and the type of transducer, and among 
the most common bioreceptors are antibodies/antigens, in so-called immunosensors 
[6, 7]. They are based on the immunological interaction between antigen and anti-
body, which generate an immune complex (Fig. 1a). In general, immunosensors have 
advantages such as high sensitivity, speed in obtaining results, simplicity of handling, 
and the possibility of miniaturization, so that analyses depend on small volumes of 
samples and reagents [8, 9]. Furthermore, immunosensors can be combined with 
electrochemical techniques, being the most economically viable due to the low cost 
of instrumentation and minimal consumption of reagents when compared to other 
analysis methods [8, 10]. 

The detection strategy of these devices can vary according to the interaction 
mechanism between the bioreceptor and the analyte, which can be direct or indi-
rect detection (Fig. 1b). Direct immunosensors utilize the bioreceptor (antibody or 
antigen) directly anchored to the transducer surface, and the labeled analyte is then 
recognized and monitored. Although this strategy is faster and simpler than indi-
rect detection, there is little amplification of the analytical signal, leading to lower 
sensitivity. Furthermore, in direct detection, the choice of the marker is limited. In 
addition to the surface-anchored bioreceptor, indirect immunosensors use a second 
labeled antibody that specifically recognizes the analyte and generates the response. 
This strategy features a wide variety of labeled antibodies available on the market 
capable of amplifying the analytical signal, increasing the sensitivity of the anal-
ysis. However, the labeling step can be time-consuming and increase the cost of 
the analysis, besides that cross-reactions with the secondary antibody are common, 
decreasing its specificity [11–14]. 

Although it is common that both detection strategies (direct and indirect) use 
markers (enzymes, nanoparticles, fluorophores, etc.), it is also possible to monitor 
the formation of the immune complex through a label-free detection (Fig. 1c). These 
devices feature one less preparation step (antibody/antigen labeling), reducing anal-
ysis time and cost. This increases the analytic frequency and makes the device 
more affordable. Also, not using a marker minimizes cross-reactions, leading to
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Fig. 1 Representation of immunosensor detection strategies. a Immune complex formation. b 
Immunosensor with direct and indirect detection. c Immunosensor with label-free detection. [Source 
The authors (2022)] 

better accuracy and selectivity [15, 16]. In this context, impedimetric immunosen-
sors, which use the technique of electrochemical impedance spectroscopy (EIS), 
are advantageous, as they measure the variation in the electrical properties of the 
electrode surface, providing data about the impedance and resistive properties of the 
system [15, 17]. 

1.2 Fundamentals of Impedimetric Measurements 

Electrochemical impedance spectroscopy (EIS) consists of applying a low-amplitude 
sinusoidal input over a given frequency range and analyzing the output signal. The 
method borrows several concepts from the field of electrical engineering for the 
analysis of electrical circuits. Due to this, we will first analyze the impedance of 
some electrical circuits in which the impedance is expressed in terms of electrical 
properties of the circuit elements, like resistance and capacitance, but is important to 
understand that impedance is not an electrical property itself. It is, more generally, a
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transfer function, that is, a relation between input and output signals in the frequency 
domain. In the field of electrochemistry, the impedance is formally defined as [18, 
19]: 

Z (ω) ≡ 
F{E(t)} 
F{i (t)} (1) 

where E(t) and i (t) are the alternating potential and current, respectively. F denotes 
the Fourier transform that is a change of variables defined by: 

F{ f (t)} = 
∞∫

−∞ 

f (t)e− j ωt dt = F( j ω) (2) 

After substituting the limits into the definite integral, the variable t, the time, 
disappears, and a complex function of ω, the frequency, is obtained. It is simple 
to show that if the input and output signals are sinusoidal functions with the same 
frequency, the real and imaginary parts of this complex function can be obtained 
from the amplitude of the signals and the phase shift between them [20, 21]. Due 
to non-idealities in the potentiostat and nonlinearities in the system response, the 
measured signals are more complex than a simple sinusoidal function. In practice, 
they are represented as a sum of sines and cosines with frequencies that are integer 
multiples of the fundamental frequency (Fourier series), and due to the low amplitude 
of the input signal, only the first term of the series is retained [21, 22]. 

On the other hand, we can obtain theoretical expressions for the impedance of 
a system by applying the Fourier transform to the time-dependent equations that 
describe the relationship between input and output. For a resistor of a resistance R, 
the current follows Ohm’s law, i (t) = E(t) 

R . Applying Fourier transform to both sides 

of this equation results in ι(s) = E(s) 
R . Finally, from definition (1): 

Z(ω) = R (3) 

For a capacitor of a capacitance C, the current follows dE dt = i (t) C . Applying Fourier 
transform, j ωE(s) = ι(s) 

C . From definition (1): 

Z (ω) = 1 

j ωC 
= −  

1 

ωC 
j (4) 

Note that the impedance of a resistor is a purely real number, while the impedance 
of a capacitor is a purely imaginary number. Thus, the real and imaginary parts of 
a complex impedance are associated, respectively, with the resistive and capacitive 
portions of the system response. Although the response of an electrochemical system 
is not purely electrical, the resistive part is commonly interpreted as the resistance to
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the flow of current, while the capacitive part is commonly interpreted as the storage 
of charge in the system [18]. 

The particular form of the complex impedance depends on the relationship 
between the input and output signal in the time domain. If this relationship is 
linear, it can be assured that the application of definition (1) will result in a complex 
impedance that depends only on the frequency and systems parameters [21]. There-
fore, linearity between input and output signals is an important requirement for both 
the measurement and theoretical derivation of impedance. 

The equivalent impedance for any electrical circuit containing passive elements 
(resistors, capacitors, and inductors) can be directly obtained by applying Kirch-
hoff’s laws in the same way as in routine circuit analysis. That is, the equivalent 
impedance of the elements associated in series is the sum of the impedances of each 
element

(
Zeq = ∑

Zi
)
while the inverse of the equivalent impedance of the elements 

associated in parallel is the sum of the inverses of the impedance of each element(
Z−1 
eq = ∑

Z−1 
i

)
[19, 21, 22]. 

The impedance spectra of two simple circuits are represented in Fig. 2 by their 
Nyquist plots, the representation of the impedance in the complex plane, i.e. the 
negative of the imaginary part versus the real part. 

For the circuit on the left, the impedance spectrum is a vertical line with a constant 
real part. This circuit can be compared to an ideally polarizable electrode, assuming 
that the double-layer capacitance is Cdl and the uncompensated resistance is Ru . 
From the equation in the figure, notice that the imaginary part vanishes for ω → ∞  
and increases unlimitedly for ω → 0, which explains the blocking characteristic of 
the circuit. 

For the circuit on the right, the Nyquist plot is a semi-circle with a radius Rct 

centered at {Ru + Rct/2, 0}. Two semi-circles for two different Rct values are plotted.

Fig. 2 Nyquist plot of the impedance spectra of two common circuits. The circuits and impedance 
spectra are shown in the figure. The vector representation of a given impedance point is shown in 
the graph on the right, identifying the impedance module and phase. [Source The authors (2022)]
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This circuit can be compared to an electrode that undergoes a kinetically controlled 
charge transfer. Note that the limit of impedance for ω → ∞  is a real impedance 
Z = Ru and the limit of impedance for ω → 0 is a real impedance Z = Ru + Rct. 
Then, as frequency increases, the impedance goes through the semi-circle from the 
right to the left as indicated by the red arrow in the figure. The maximum point 
(redpoint in the figure) located at {Ru + Rct/2, Rct/2} is equal to 1 

RctCdl 
. So, for this 

circuit, capacitance and the resistances can be obtained directly from the Nyquist 
plot. In more complex circuits, however, a numerical fit of the theoretical curve to 
the experimental points is used to extract the parameters.

There are two other graphs, called Bode plots, commonly used to represent 
impedance data as a function of frequencies. One of the Bode plots consists of a 
plot of the logarithm of the impedance modulus versus the logarithm of frequency, 
and the other consists of a plot of the impedance phase versus the logarithm of the 
frequency. Often both curves are shown on dual y-axis graphs. 

The response of electrochemical systems is determined by several phenomena, 
not exclusively of an electrical nature, so the approach described above is not suffi-
cient to interpret the impedance measurement of electrochemical systems. The most 
rigorous and powerful approach is to derive the impedance expression from the partial 
differential equations that model the system, which is mathematically challenging 
[21, 22]. The transient response of electrochemical systems is intrinsically nonlinear 
due to the exponential dependence of current on potential. To obtain a linear model, 
a steady state is assumed, and the perturbation due to the low-amplitude sinusoidal 
input is analyzed. The oscillating response is expressed by a Taylor series, and under 
the assumption of linearity, only the first-order term of the series is considered. 
As it takes several minutes or more to acquire an impedance spectrum, a common 
cause of problems is that the steady-state condition is not maintained throughout the 
experiment [23]. 

In practice, a simpler approach based on equivalent circuits is applied, as exem-
plified in Fig. 2. Equivalent circuits are composed of the passive circuit elements 
described above and some generalized circuit elements that mimic the impedance 
response of non-electrical phenomena such as diffusion, adsorption, and so on [24]. 
Such an analogy approach has been criticized by some authors [25], but for impedi-
metric measures, they are completely satisfactory. Caution should be exercised, 
however, in choosing circuit elements, keeping in mind that the impedance response 
of these elements is derived for a specific set of experimental conditions. 

One generalized element particularly useful is the so-called constant phase 
element (CPE), whose impedance is ( jω)−α 

Q where α is an empirical parameter ranging 
from 0 to 1. Returning to the circuits in Fig. 2, the impedance responses of the 
corresponding electrochemical cells are quantitatively different. To account for this 
non-ideality, the capacitor must be replaced by a constant-phase element (CPE), as 
shown in Fig. 3. 

The Nyquist plots in Fig. 3 reproduce better what is observed experimentally. 
When α �= 1, inclined lines appear in the left plot showing the phase angles less then
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Fig. 3 Nyquist plot for the circuits in Fig. 2 modified by a CPE. Three values of are used: α = 
1(continuous), α = 0.95(dashed) and α = 0.9 (dotted). [Source The authors (2022)] 

90◦, and the depressed semi-circles appear in the right plots. When α = 1, Q has 
units of capacitance, and the impedance of the ideal circuits is recovered. 

For a system under mixed kinetic and diffusional control, a diffusional impedance 
must be associated in series with the charge transfer resistance. For semi-infinite 
linear diffusion, the so-called Warburg element [24] can be inserted into the circuit, 
forming the Randles circuit. The Nyquist plot calculated for the Randles circuit with 
two different Warburg parameters is shown in Fig. 4. 

The inclined line in the low-frequency region is due to Warburg impedance. The 
higher the parameter σ , the lower the diffusion coefficient of the electroactive species. 
For slowly diffusing species, the Warburg impedance merges with the charge transfer 
semi-circle. 

Fig. 4 Nyquist plot for the 
Randles circuit with σ = 50 
(blue) and σ = 250 (orange). 
[Source The authors (2022)]
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Often, the Randles circuit or some modification of it [26] is used to model the 
impedance response of immunosensors. For this, the impedance parameters must 
be correlated with the concentration of the analyte. Note that Ru and ZW represent 
the bulk process and should not be affected by changes to the electrode surface. On 
the other hand, CDL(or Q) and Rct represent, respectively, the double layer and the 
charge transfer process that is affected by the formation of immune complexes. 

1.3 Impedimetric Immunosensors 

Immunosensors that use the EIS technique are called impedimetrics. Although EIS is 
a fundamentally electrochemical technique, used to characterize systems, providing 
information about their interfacial processes, studies have been carried out regarding 
its application as an analytical technique, especially in biosensor detection, due to 
its precise, non-perturbing, and non-destructive nature. 

The formation of an immune complex, however, does not involve electron transfer, 
then the so-called faradaic EIS can be carried through the variation of the electro-

chemical response of a redox pair, being the ferri/ferrocyanide
([

Fe(CN  )6
]4−/3−)

pair the most commonly used. Furthermore, the formation of the immune complex 
alters the electrode surface configuration, blocking the charge transfer sites, 
increasing the surface film thickness, and changing the dielectric constant, resulting 
in an increase in double-layer capacitance that can be correlated with the concentra-
tion of antigen in the so-called non-faradaic EIS [27, 28]. The greater the number of 
immune complexes formed, the greater the Rct of the system, since there is blockage 
of the electrode for charge transfer resulting from the new redox processes. Thus, 
EIS can be used to detect the presence of antigens/antibodies and also to quantify 
them. 

2 Trends in Impedimetric Immunosensors for Different 
Samples 

Impedimetric immunosensors have been developed with potential applications for 
different fields. Figure 5 presents the cluster map of keywords, generated by the 
VOSViewer software, based on data obtained from the Web of Science database. 
Author-provided keywords mentioned more than five times were selected in the 726 
articles published between February 2002 and February 2022. In all, eight clusters 
were obtained, represented by different colors. The size of the frames represents the 
number of times in which the term was mentioned, while their proximity indicates 
the relationships with the other terms. It is possible to observe the main characteris-
tics and applications of these devices, from materials used (nanoparticles, graphene
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Fig. 5 Subject cluster refers to the incidence of the main keywords of Web of Science articles 
on impedimetric immunosensors published between Feb/2002 and Feb/2022. [Source The authors 
(2022)] 

oxide, conducting polymers, nanocomposites, and quantum dots) to analytes (toxins, 
pesticides, biomarkers, and especially pathogens). 

Furthermore, complex matrices (water, human serum, and food) are commonly 
mentioned especially for recovery and proof-of-concept studies, being the closest 
a method can come to routine analysis before it is fully validated. The choice of 
matrix varies according to the purpose of the analysis, the sensor’s characteristics, 
and its analytical performance. For example, a device intended for clinical diagnosis 
may use blood, urine, or sweat samples, while a device designed for environmental 
analysis uses soil, water, or air samples. Additionally, factors such as pH, ionic 
strength, and possible sample interferences must be carefully evaluated, as they can 
affect the formation of the immune complex [29, 30]. 

In this section, we will highlight the application of impedimetric immunosensors 
in real matrices, discussing the particularities of the main types of analysis: food 
quality control, environmental monitoring, and clinical diagnosis.
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2.1 Food Analysis 

With the increasing demand for food worldwide, the need for stricter control over 
its production and storage is essential to guarantee its quality. Food and beverages 
that are inappropriately consumed can cause serious damage to health and in some 
cases lead to death. Contamination can occur through several mechanisms: failures 
in the manufacturing/storage process, such as poor quality of raw material and poorly 
performed cleaning of facilities and equipment; careless, ill-disposed, out of temper-
ature or poorly sanitized transport; and storage for longer than indicated or in inap-
propriate places [1, 31]. Currently, analyses for quality control in food and beverages 
are complex and expensive, since it is a complex matrix, with many contaminants 
that can interfere with an accurate result. In addition, certain microorganisms can 
cause irreversible damage to health even in tiny amounts, so their detection must be 
extremely sensitive [32]. 

Contaminations in food can be biological (viruses, bacteria, fungi, protozoa, 
and worms) or chemical (pesticides, toxins, and allergens). Biological, especially 
bacterial, corresponds to most cases of foodborne infection [33, 34]. Bacteria are 
conventionally detected by culture methods in a process that takes between 3 and 
10 days for results, or by enzyme-linked immunosorbent assays (ELISA) that takes 
between 1 and 3 days [35, 36]. Thus, with the main advantage of being quick to 
obtain the result, impedimetric immunosensors are being developed to detect them 
in food samples. As an example, Mutreja et al. [37] developed an impedimetric 
immunosensor based on screen-printed carbon electrodes (SPCE) for the detection of 
Salmonella typhimurium (responsible for most cases of food contamination world-
wide [38]) in water and de lichi and orange juices. OmpD was used as a surface 
biomarker and the anti-OmpD antibody as a detection probe, both extracted and 
purified by the authors themselves. Systems like this give the result in less than 
1 h and tend to have low cross-reactivity with other pathogens. Furthermore, liquid 
samples (water, juice, and milk) only need to be diluted before analysis [39, 40], 
eliminating costly processes and time-consuming pre-treatment and enrichment. 

Devices to detect bacteria in solid samples, especially meat, can also be found. 
Unlike liquids, these samples must be pre-treated. For meat in general (including 
pork, fish, and chicken), a process of digestion in saline solution and filtration can be 
carried out [40, 41], lasting about 15 min. In some cases, it is still necessary to enrich 
the sample (24 h) followed by centrifugation and/or filtration [42, 43]. However, 
it is noteworthy that even being more time-consuming, the enrichment process can 
increase the sensitivity of the analysis, making it more effective in detecting small 
amounts of bacteria that would not be observed in samples without this pre-treatment. 

The most common chemical contaminants come from the environment and the 
manufacturing, packaging, and shipping process. Meat is commonly contaminated 
with compounds from pasture (e.g., pesticides) and water (e.g., drugs for human 
use) ingested by the animal, as well as drugs and supplements for animal use (e.g., 
antibiotics). Agricultural foods, on the other hand, are mainly contaminated with 
pesticides used to improve production. Chemical additives can also be found in most
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processed foods, and even though they are necessary, some of these compounds can be 
toxic [44]. Although most countries and regions determine acceptable concentration 
limits for these compounds for food to be considered suitable for consumption, some 
compounds are not yet legislated. In addition, there are chemicals such as pesticides 
that are banned in a certain country, but that does not mean that food produced 
is completely free of it [44, 45]. For the detection of chemical contaminations in 
food, laborious and expensive techniques (HPLC, ELISA) are used, which generally 
require a sample extraction step [46, 47]. Besides, the detection of these compounds 
is at the trace level, so the methods used need to be sensitive, with detection limits 
below those established by current legislation. 

In the case of chemical contaminants, beverage analysis by impedimetric 
immunosensors generally does not require preparation [48, 49]. Solid agricultural 
samples, such as fruits, cereals, or vegetables, however, undergo minimal pre-
treatment, which generally takes less than 1 h. For this, the sample needs to be 
washed and dried to remove surface contaminants, ground or kneaded for homog-
enization, and extracted with an organic solvent (usually acetone [50, 51]) [52]. 
Some works also report the use of centrifugation and ultrasonic treatment instead 
of extraction with organic solvent [53]. An example, Malvano et al. [54] developed 
an impedimetric immunosensor for the detection of the mycotoxin ochratoxin A in 
cocoa samples, with pre-treatment using the addition of phosphoric acid and chloro-
form, followed by filtration, the addition of sodium bicarbonate, and centrifugation. 
Furthermore, recovery studies carried out on the samples present results with an accu-
racy comparable to traditional methods, with detection limits below those stipulated 
by legislation [54, 55]. 

In addition to toxins and pesticides, allergens (substances capable of causing 
allergic reactions) are chemical compounds that can be present in food samples, 
natural from the production process, or consequences of contamination. Allergen 
detection is of paramount importance for the food industry, to avoid accidental expo-
sure to consumers who may have severe allergic reactions. Even when not present in 
the food formulation, it is possible to find these substances due to cross-contamination 
or poor quality of the raw material used. In addition, the manufacturer must indi-
cate on the product label which allergens are present so that an allergic person can 
avoid consuming them. Little explored so far, the detection of allergens employing 
immunosensors would make it possible to carry out analyzes outside of centralized 
laboratories, making the result faster and more accessible [56, 57]. Although there 
are voltammetric [58] and amperometric [59] immunosensors reported in the litera-
ture with analyzes performed on samples of milk and nut derivatives, there are few 
impedimetric devices [60–62] found so far. Among these works, the work of Chiriacò 
et al. [63] can be highlighted, who developed a lab-on-chip platform for detecting 
gliadin (a protein present in gluten) in beer and wheat samples. The immunochip had 
a detection limit about 20 times lower than the world limit for a food to be considered 
gluten-free. Although little explored, these systems tend to have a wider linear range, 
greater sensitivity, and lower detection limits than those using other electrochemical 
techniques [60].
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2.2 Environmental Analysis 

Increasingly, living beings (including humans) are being exposed to compounds that 
can cause risks to their health and consequently lead to an environmental imbalance. 
Substances such as pesticides, hormones, and drugs are commonly used by man and 
discarded in nature, becoming pollutants and potentially causing irreversible damage 
to certain ecosystems. Pollution can directly affect humans by compromising natural 
resources, leading to soil infertility, scarcity of drinking water and food, and, in 
some cases, the death of species essential to the development of the resources of that 
ecosystem [64]. Additionally, several diseases can be linked to exposure to pollution. 
The presence of harmful substances (e.g., pesticides) discarded in the soil or aquatic 
bodies can lead to intoxication and, depending on the compound, oncogenesis [65]. 
On the other hand, air pollution is related to lower respiratory tract infections, preterm 
births, and pulmonary and cardiovascular diseases, which are the leading causes of 
death worldwide [66]. 

Polluting compounds are present in matrices such as water, soil, and air, causing 
damage to the health of all forms of life. The detection and quantification of these 
species is an essential tool to assess the environmental condition of a given area, 
which is important for the elaboration of public policies to avoid future environ-
mental imbalances. In this sense, impedimetric immunosensors for detection in envi-
ronmental samples (water, soil, and air) can bring advantages such as reduced sensor 
preparation time and minimal pre-treatment, enabling in situ analysis even in remote 
locations. Furthermore, it would be ideal to use environmental analysis methods with 
low consumption of reagents, generating as little waste as possible. Electrochemical 
devices, which in general are or can be adapted to be miniaturized, are a greener 
alternative to traditional methods. 

Domestic effluents are generated daily in our activities. Sanitary sewers, septic 
tanks, and grease traps contain organic compounds and microorganisms that are 
discarded in nature. These effluents usually need treatment before final disposal; 
however, some compounds may persist after this treatment. For example, antibi-
otics are widely used in humans and animals and are later excreted in feces and 
urine. Therefore, they are found at trace level in environmental samples, which is 
a problem due to the increasing resistance of bacteria to these drugs [67]. Impedi-
metric immunosensors for detecting antibiotics in environmental samples are rare, 
but there are several non-biological electrochemical sensors in the literature [68– 
71]. We can highlight the impedimetric immunosensor developed by Lamarca et al. 
[72], which was used to determination of ciprofloxacin in wastewater samples. This 
immunosensor showed high sensitivity and good recovery rate, in addition to detec-
tion time (2 min) and detection limit (7.5 pmol L−1) much lower than values obtained 
by other electrochemical techniques for the detection of this antibiotic. 

Although human daily activities involve the disposal of substances, industrial, 
mining, and agricultural activities are the main responsible for the disposal of toxic 
compounds. In general, waste generated by mining processes involves inorganic 
compounds, especially metals. The electrochemical detection of metal ions is widely
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discussed in the literature, mainly by voltammetric techniques. As sensors (espe-
cially chemically modified ones) are capable of performing this detection, there is 
no justification for developing immunosensors for detecting metal ions. Industries 
are responsible for the emission of various gases and chemicals, many of which can 
cause serious ecological imbalances. Impedimetric immunosensors to determine the 
presence and concentration of various industrial residues and their respective by-
products have been widely developed. Even tap water samples may contain several 
compounds from the industry at the trace level, especially those that are more persis-
tent in the treatment process. For example, dyes [73] and some drugs [74] are known 
to be persistent in the usual water treatment and can be present in drinking water, 
coming into contact with humans, animals, and plants even far from the place where 
it was discarded [75, 76]. 

In general, water samples (river, tap, rain, surface, or groundwater) undergo at 
least the extraction process. It should be noted, however, that most methods involve 
the use of chromatography [77]. In the case of electrochemical immunosensors, it is 
possible to carry out the analysis without this process [78]. It is common, however, 
that the water sample is diluted in buffer, to eliminate the effects of the pH variation. 
Dilution varies depending on sample conditions and the detection strategy used. For 
example, more polluted water samples tend to have a greater matrix effect, so they 
should be more diluted. Also, cross-reactions can occur depending on the choice 
of the biorecognition element. Thus, if a sensor reacts with a certain interference 
present in the sample, the dilution must be greater to minimize its presence. 

In addition, for water to be considered potable, certain physical, chemical, and 
biological standards must be followed. Thus, besides possible chemical contamina-
tion, water samples can also be evaluated for biological contamination. In countries 
where treated water is not easily accessible, pathogens (mostly bacteria) present 
in drinking water can cause serious damage to health. Considered one of the most 
dangerous bacteria, Escherichia coli immunodetection is widely reported in the liter-
ature, including EIS-based sensors [79–84]. These devices can have a total construc-
tion and analysis time close to 6 h [84], which can be considered an advantage over 
traditional culture methods. 

Agricultural pesticides are considered the most toxic and persistent pollutants for 
the environment, and the detection of these compounds is widely discussed in the 
literature. However, impedimetric immunosensors whose application is performed 
in environmental samples are rare. Here, the detection of carbofuran in water and 
soil samples can be highlighted [50]. Carbofuran is an insecticide, termite, acaricide, 
and pesticide considered highly toxic to human and animal health. In addition, its use 
reduces the quality of the soil and easily contaminates aquatic environments [85]. 
The water sample reported in this work was only fortified with the pesticide standard, 
while the soil sample had to undergo an extraction process with acetone, followed 
by rotary evaporation. 

Soil analyzes performed by traditional methods require the sample to go through 
the extraction process. Generally, the extraction of pesticides and other organic 
compounds is performed through the difference between their properties (solubility, 
polarity, volatility, and molecular weight) and those of the remaining components
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of the matrix [86]. Although most of the extraction methods require a large amount 
of sample and consume a high volume of solvent, microextraction is standing out 
for generating less waste and thus making it greener [86, 87]. With the increasing 
demand for more environmentally friendly alternatives, there are automated microex-
traction technologies on the market today for simultaneous sampling, concentration, 
and cleanup [88]. Due to its high complexity, the soil is too complex to eliminate 
pre-treatment in analysis by label-free devices. Thus, impedimetric immunosensors 
are still rarely applied to soil samples. 

Atmospheric pollutants can be gaseous compounds (e.g., NOx, CO), particulate 
matter (e.g., PM10, PM2.5), persistent organic pollutants (e.g., organochlorines, poly-
cyclic aromatic hydrocarbons), and heavy metals (e.g., mercury, lead) [89]. These 
are used to determine the air quality of a given region and consequently to verify 
if it is within the standards defined by the legislation. Its detection is important not 
only to identify areas of high health risk but also to assess whether pollution from 
this area can reach neighboring or even remote locations, thus preventing this from 
happening [90]. Despite its importance, articles that use electrochemical sensors for 
gas detection are rare. No articles have been found so far that portray the use of EIS 
for this purpose. Part of this is due to the complex sample preparation required, which, 
like soil samples, must at least go through the extraction process. In some cases, it is 
necessary to carry out a pre-concentration of the analyte to guarantee its detectability. 
Also, sampling is a complex issue when talking about air. It must be considered that 
each region is different in terms of emission source and weather conditions so that the 
sample characteristics (particle size, composition, and concentration) vary according 
to the sampled area and the time of year [91]. 

2.3 Clinical Analysis 

Clinical diagnoses are the goal of the development of most immunosensors. The 
identification of a disease or cause of infection can be performed using molecular 
tests such as polymerase chain reaction (PCR) or immunoassays as enzyme-linked 
immunosorbent assay (ELISA). While both are sensitive and accurate, they are also 
time-consuming and expensive as they require specialized personnel and centralized 
laboratories. Although there are currently numerous works reporting the develop-
ment of point-of-care (POC) methods, clinical analyzes require high sensitivity and 
specificity, which is a challenge considering the complexity of biological samples. 
Thus, new biosensors and bioassays are widely found in the literature due to the 
specific binding between the analyte and the bioreceptor, leading to greater accuracy 
compared to non-biological devices [92–95]. 

Devices such as immunosensors can be used for clinical diagnoses through moni-
toring of biomarkers, which are molecules of biological importance whose activity is 
directly related to specific processes at the cellular level. Any protein whose concen-
tration can be monitored for diagnosis is considered a biomarker [96, 97]. Antibodies 
can even be biomarkers, so their monitoring can be used to detect the presence or
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stage of certain infections. Thus, immunodevices can be used in two different ways: 
immobilizing the antigen to detect the antibody or immobilizing the antibody to 
detect an antigen [98]. 

The detection of antibodies is particularly important to monitor the immune 
response developed by vaccines. Vaccines are known to stimulate the production of 
antibodies so that the body is prepared to fight the disease. Antibody tests are essen-
tial to assess the amount of antibodies produced and, consequently, the expected 
efficacy of the vaccine [99]. In addition, it is possible to estimate how long the 
immunity generated by the vaccine lasts, thus predicting the need for booster doses 
[99]. Studies indicate that vaccinated people have more antibodies than unvacci-
nated people, increasing protection against serious infections and death [100, 101]. 
There are also antibody tests to detect whether a person has had contact with a 
disease—so-called rapid tests. Rapid tests to detect antibodies are currently avail-
able on the market for several diseases [102–105]. Furthermore, depending on the 
type of antibody targeted, it can indicate whether the disease is in the acute (active) 
phase or if there has been a previous infection. In general, IgG tests are widely used 
to detect the previous infection and IgM tests are used to identify infections in the 
first few days [106]. Although commercially available tests are mostly colorimetric, 
electrochemical immunosensors are being developed using antibodies as targets. 

Tests for antibody detection must be applied to blood samples, usually after the 
process of separating its components. Thus, it is common for serological diagnoses to 
be performed in plasma or serum, depending on the type of antibody and the protein 
used as capture antigen. Blood plasma separation is performed by centrifugation 
with an anticoagulant to remove other blood components. Compared to collecting 
serum, obtaining plasma is faster, has more protein, and produces a larger final 
sample volume. However, the anticoagulant to be used in sample preparation must be 
carefully evaluated to avoid interference with protein binding [107–109]. Although 
antibodies are present in plasma, their concentration is generally low, which limits 
the application of this type of sample to very sensitive methods. When using an 
immunosensor to detect antibodies in plasma, the sensitivity tends to be slightly lower 
than using buffer due to a large number of interferers. Despite this, the use of the 
EIS technique makes it possible to achieve greater sensitivity than other techniques, 
also presenting greater simplicity and speed of analysis [110]. 

Despite the lower number of different proteins, serum samples are the most 
common in serological tests. This is due to the similarity with whole blood, which 
contains practically the same proteins (minus those involved in clotting). In addition, 
these proteins show greater stability than those present in plasma [108]. Serum sepa-
ration can be performed using two strategies: spontaneous when the blood sample 
is left to rest for the clot to form; and mechanical, which involves centrifuging the 
sample before aspiration using a Pasteur or automatic pipette. Most of the time, 
both processes are carried out to obtain the largest amount of sample possible. Thus, 
the blood sample can be kept at rest for a few minutes before being centrifuged. 
Spontaneous clotting time may vary, as may centrifuge rotation and time [111, 112]. 
Electrochemical sensors do not require extraction of analytes from the serum sample, 
as standard methods do. Due to the high sensitivity of impedimetric immunosensors,
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detection of antibodies in serum usually requires dilution of this sample in buffer 
(usually PBS) [111, 113, 114]. 

In addition to antibody detection, plasma and serum samples can be used for 
protein biomarkers detection through immune complex formation. With often similar 
symptoms, the identification of the pathogen-causing disease is an issue that requires 
care. It is common for some viruses from the same family, for example, to present the 
same symptoms, as is the case with flaviviruses (dengue, zika, and chikungunya). 
Antibodies produced by infections caused by such viruses can easily cross-react, 
compromising the diagnosis. Thus, only a molecular test or detection of a specific 
biomarker allows for an accurate diagnosis. Present in all flaviviruses, the NS1 protein 
is expressed in large amounts by all flaviviruses and can be used as a biomarker 
as it can be detected one day after contamination. Although identification of the 
type of flavivirus is difficult due to the similarity of the NS1 proteins, the use of a 
specific antibody can be used to define which virus causes it [115, 116]. Impedimetric 
immunosensors for the diagnosis of flaviviruses (especially dengue) through the 
detection of NS1 have been developed. In this case, the linear ranges must be wide so 
that detection on real samples can be performed. The most common sample is acute-
phase serum, which presents values in the range of ug mL−1. Obtaining detection 
limits generally in the range of ng mL−1 indicates the possibility of using these 
sensors for NS1 detection with high sensitivity [117–119]. 

Selectivity tests for clinical diagnoses are usually performed considering common 
elements in the sample used. These compounds can interfere with the analysis, espe-
cially those present in greater amounts in the sample. For example, in plasma samples, 
albumin can be an interferer [109]. Considering the high cross-reactivity, in the case 
of the NS1 protein, tests with other flaviviruses are also performed [120, 121]. When 
this study is carried out in the development of electrochemical immunosensors, it 
is common that there is low cross-reactivity between the different flaviviruses. It 
is also important to note that there are cases where there is co-infection so that a 
positive result for two different flaviviruses can occur without necessarily being a 
wrong result. Thus, it is still a challenge to identify similar viruses in tests other than 
the standard ones. 

Along with the difficulty of identifying similar viruses, there are cases in which it is 
necessary to differentiate between bacterial and viral infections so that the treatment 
is correctly oriented [116, 122–124]. C-reactive protein (CRP) and interleukins can 
be used to differentiate the type of pathogen, as they are overexpressed in the case 
of bacterial infections [123, 125, 126]. Besides, they can be used as biomarkers 
for cardiovascular disease and cancer, respectively. The application of impedimetric 
immunosensors for the detection of these biomarkers in serum [127, 128] reports 
detection limits much lower than those found by other methods. In addition, they have 
high recovery rates, indicating the sensor’s accuracy and reliability for application 
in routine analysis. This is especially important considering the label-free strategy, 
without any amplification of the analytical signal. 

In addition to the determination of diseases caused by pathogens, immunosensors 
have been developed to diagnose different types of cancer. To date, most existing 
routine procedures are invasive and time-consuming (e.g., histopathology, biopsy).
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Biomarker detection allows the diagnosis to be performed in a less invasive way, with 
reduced cost and high sensitivity. Furthermore, some tests for the detection of cancer 
biomarkers are currently being used in routine analyses [129, 130]. For example, the 
detection of prostate-specific antigen (PSA) in the blood is used to diagnose prostate 
cancer. However, although PSA tests are sensitive, the rate in the body naturally 
increases with age, so it is recommended that it be performed in addition to a digital 
rectal exam [131–133]. 

As with other diseases, most impediment devices for detecting cancer biomarkers 
are applied to serum samples. However, other samples can be used, such as urine (real 
or synthetic). Urine can be collected in large quantities and has a smaller number of 
possible interferents than blood-derived samples. Besides, it is common for drugs or 
metabolites to be found in high concentrations, so urine is also used in toxicology tests 
[134]. Furthermore, the use of urine makes the exam non-invasive and can be used 
mainly in the case of bladder cancer, in addition to the cytological exam. Synthetic 
urine (prepared according to the protocol published by Brooks and Keevil [135]) 
is used primarily because it does not involve collecting material from individuals 
and therefore does not need to be approved by the Ethics Committee. In the case of 
real urine, it was reported by Shaikh et al. [136] that the samples were placed in a 
water bath at 37 °C and centrifuged. Thus, the supernatant was obtained, which was 
used in the analyses. As with serum samples, impedimetric analysis of biomarkers 
in urine does not suffer significant interference from other proteins, which indicates 
the selectivity of the devices [136, 137]. 

2.3.1 SARS-CoV-2 

With the SARS-CoV-2 pandemic, the development of new, faster, and cheaper diag-
nostic methods has become a worldwide goal. In general, tests on samples of nasal 
secretions are used in PCR analysis, making it possible to detect the presence of the 
virus even in asymptomatic individuals. Articles reporting impedimetric immunosen-
sors to detect SARS-CoV-2 antigens can be found in the literature, including using 
artificial nasal secretion samples. This artificial sample is easily prepared with the 
addition of antibodies (mainly IgG) and inorganic salts in an aqueous medium [138, 
139]. In the case of detection by PCR, it is necessary to go through a step of RNA/DNA 
extraction and purification. Most electrochemical biosensors, however, do not require 
the sample to be extracted or purified, so it is just diluted in buffer [140]. In all cases, 
the sample must be inactivated so that there is no risk of contamination during anal-
ysis. Sample inactivation can be employing radiation, thermal process, or addition 
of chemical agents. The best process for inactivating a sample must be evaluated 
on a case-by-case basis, depending mainly on laboratory conditions and availability. 
Furthermore, inactivation must be carried out not only when there is a suspicion of a 
virus, but also of fungi, bacteria, and other microorganisms that may be transmissible 
[140, 141]. 

The collection of nasal or nasopharyngeal samples is uncomfortable, which may 
discourage patients from performing the test. Thus, the search for less invasive and
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equally efficient samples and collection methods has been the subject of research. 
The detection of viral antigens [142] and specific antibodies for SARS-CoV-2 can be 
performed in blood or serum samples, and there are even commercially available rapid 
colorimetric tests for the detection of them [143, 144]. Antibody tests, in particular, 
are accurate, and, as different types of antibodies have different immune windows, it 
is possible to obtain information about the time of infection. For example, a positive 
IgM/IgG negative test indicates that the infection is in the acute phase, while a 
negative IgM/IgG positive test indicates that the person has had contact with the virus, 
but the acute phase has passed [145]. Impedimetric devices for detecting antibodies 
are also being developed. Furthermore, tests for quantification of these antibodies 
present limits in the range of ng mL−1, similar to other electrochemical sensors for 
virus antibodies detection [146, 147]. 

In addition to nasal and serum samples, saliva can also be used to detect the 
presence of the virus. One of the biggest challenges in saliva analysis is that sensors 
need to have high sensitivity to be able to detect the presence of the analyte at very 
low concentrations. In addition, a person’s saliva can contain different compounds 
depending on their habits. Thus, the detection of a given analyte must be done by very 
specific devices, as the chance of a cross-reaction with different compounds is high. 
In this sense, the collection is very important and must be standardized so that the 
results are reliable. In general, the individual is asked not to have eaten or performed 
oral hygiene for at least 2 h before collection. However, this time may vary according 
to the method and the antigen to be detected. In addition, some methods may require 
the patient to perform a warm water rinse immediately before collection. This is to 
remove possible impurities that are still in the mouth and stimulate the production 
of saliva. Between the collection and the analysis, it is also recommended that a 
stabilization buffer be added to the saliva so that there is no damage to the sample 
during the transport and storage process [148, 149]. 

Saliva samples do not need to undergo an extraction process for detection by 
impedimetric immunosensors. Thus, only centrifugation is performed to collect the 
supernatant and discard the precipitate, to obtain the saliva present in the collection 
material and eliminate suspended materials present in the sample. These devices 
have low detection limits, especially for the spike proteins (S protein), found on the 
surface of the virus, and nucleocapsid (N protein) found in its nucleus. Furthermore, 
detection can be performed in less than 1 h, making the sensors suitable for use in 
analyzes that require high analytical frequency [150, 151]. 

2.3.2 Wearable Devices 

The integration of new technologies from different areas enables the development of 
more advanced sensors. Progress in the development of new biocompatible materials, 
flexible electronics, and near-field communication technology makes it possible to 
manufacture wearable sensors for health monitoring. These devices are especially 
interesting to assess biomarker levels continuously and in real time, without the 
individual having to leave the house. In addition to making exams more accessible
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to the patient, this can help reduce the cost to health systems. Commercially, some 
wearable sensors can be found. Most aim to monitor parameters related to daily 
activities, such as the number of steps, amount of calories expended, heart rate, 
maximum oxygen consumption, sleep quality, and physical exercise. Biomarkers 
such as potassium, sodium, glucose, and lactic acid are also of interest for detection, 
mostly on sweat [152–154]. 

Sweat is a sample rich in electrolytes and metabolites, and as it is secreted by 
the body, it can be collected non-invasively. The biggest challenges in detecting 
biomarkers in sweat are (1) the high possibility of contamination due to exposure to 
being secreted and (2) the small amount of sample collected [154]. In this sense, the 
use of wearable immunosensors can circumvent these problems, providing specific 
and sensitive results with miniaturized platforms. For the detection of the biomarkers, 
an ideal wearable sensor should be mechanically similar to the skin. This is because 
there needs to be movement stability, that is, that the sensor is not disconnected 
or generates signal noise as the individual moves. Therefore, flexible and resistant 
materials are preferable for its development. In addition, the response is transmitted 
quickly, preferably in real time. Depending on the purpose of the analysis, monitoring 
may also be required to be continuous, so the sensor must be programmed to transmit 
the results at the desired frequency. For example, if the wearable sensor is to monitor 
a biomarker every hour, it must be optimized to transmit the response obtained 
over 60 min. For this, the sensors must also have a power system, which can be by 
storage (e.g., super capacitors and batteries) or harvesting (e.g., thermoelectric and 
photovoltaic). Furthermore, the data transmission system must be carefully evaluated 
on a case-by-case basis, so that the results are not lost with the connection [155–158]. 

Wearable impedimetric immunosensors can be highly precise and accurate, 
showing no significant interference in the presence of analyte-like compounds in the 
sample. For example, a Ti3C2Tx MXene-based wearable patch for cortisol detection 
showed no significant variation in analytical response in the presence of other steroid 
hormones. In addition, the authors obtained relative standard deviations (RSD) of 
less than 3% in the fortified sweat analyses [159]. Furthermore, these devices can 
present results similar to those obtained by ELISA, which indicates a good correla-
tion between the developed sensor and a gold standard technique of analysis [160, 
161]. To date, there are few wearable impedimetric immunosensors reported in the 
literature. However, with the advancement of technologies, it is expected that the 
number of publications will increase in the coming years [155]. 

3 Trends in the Validation of Impedimetric Immunosensors 

For a new analytical method or device to be used in routine analyses, it is necessary 
to ensure that its results are statistically reliable, thus showing its effectiveness. This 
performance evaluation, called validation, intends to ensure the proximity between 
the experimental result and the real result, attesting to its applicability. Validation is 
performed using parameters indicative of analytical performance, which depend on
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the particularities of each system, the proposed objective, available resources, and 
the objective of the analysis. 

Devices for qualitative analyzes (yes or no) in general must evaluate at least the 
parameters of precision, accuracy, selectivity/specificity, and robustness. On the other 
hand, the quantitative and semi-quantitative ones must also evaluate the working 
concentration range, linearity, the limits of detection (LOD), and quantification 
(LOQ). 

3.1 Current Scenario in the Validation of Immunosensors 

Recently, a trend in the development of new electrochemical immunosensors has 
been observed in the literature, with desirable characteristics such as better sensitivity 
and lower detection limits, aiming to obtain devices that facilitate their application 
in different areas of society [162, 163]. This trend is confirmed by the numerous 
published reviews that focus on specific areas such as the development and char-
acteristics of immunosensors applied to the analysis of mycotoxins in foods, the 
analysis of pesticide residues in food and environmental matrices, and immunosen-
sors for clinical analyzes for the prevention and detection of heart diseases, cancer, 
diabetes, arteriosclerosis, and infections caused by different types of pathogens such 
as bacteria and viruses [4, 115, 162–165]. 

The introduction of nanomaterials in the development of immunosensors has 
contributed to enhancing the sensitivity and detectability characteristics described 
above and demonstrates the potential for the application of these devices in routine 
analysis. However, what can be seen in the numerous articles published on this topic 
is a greater emphasis on the characterization and optimization of immunosensors and 
less attention to their analytical performance through very detailed in-house valida-
tion studies or interlaboratory validation [4, 162–165]. Given this, it can be said that 
the greatest challenge of the current scenario of immunosensor development, for 
their industrial commercialization, and application in routine analysis, is to carry out 
robust validation studies that make use of real samples and that detail the validation 
protocol adopted to confirm the validity of the immunosensor in practical applica-
tions. The transfer of methods developed in research and development laboratories 
to industrial, quality control, and diagnostic analysis laboratories is a current need 
that must be considered so that new devices using immunosensors can be applied to 
improve society’s quality of life. 

Clinical, food, and environmental monitoring laboratories are normally regulated 
by quality assurance systems (ISO standards), which require that standardized analyt-
ical methods by accreditation bodies or that have been validated according to valida-
tion guides such as ISO 17025, AOAC, EPA, USEPA, FDA, ICH, NATA, i.g., to be 
adopted in their routine analysis [166]. It is noted that despite the numerous efforts 
of researchers to develop new immunosensors with applications in different areas, 
there is a need to demonstrate the reliability and consistency of the results obtained
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by them through robust studies of analytical validation for their later application in 
routine analysis. 

It is recognized worldwide that new analytical methods or modifications of 
existing analytical methods need to have their performance verified by a systematic 
study involving different parameters, graphic and statistical tests, and acceptance 
criteria to prove their suitability for the intended use and demonstrate the reliability 
and consistency of the analytical results [167, 168]. This investigation process is 
known as validation. The validation process is essential so that analytical methods 
can be applied to real samples in routine analyzes by industrial or quality control 
laboratories, as well as being adopted as standard methods by inspection bodies. 
The impact on society of unreliable analytical results can be disastrous especially in 
the diagnosis of diseases, environmental monitoring or quality assurance, and food 
safety, causing damage to the industrial sector and society due to decision-making 
based on methods that have not been properly validated [167–170]. 

Analytical validation of method or procedure can be performed at different levels: 

(1) Characterization of analytical performance for standardized methods that is 
analyzed in laboratories other than those in which they were validated; 

(2) In-house validation in which validation parameters and acceptance criteria 
are evaluated in a single laboratory for a developed method or for a standard 
method used outside the scope in which it was developed; 

(3) Full validation in which, after carrying out the in-house validation, an inter-
laboratory study is carried out to determine the reproducibility of the method 
and its performance in different laboratories. 

In research and development laboratories, in-house validation is usually adopted 
and in accreditation bodies, full validation procedures are used for the standardization 
of official methods [171]. It is evident from the works reported in the literature that 
immunosensors are currently developed in research and development laboratories. 
Given this, this chapter will describe in detail the validation parameters normally 
adopted for carrying out an in-house validation study and how they are evaluated in 
the literature for different electrochemical immunosensors. 

It is noteworthy to observe that most of the published works considering 
the development of new immunosensors only assess their analytical perfor-
mance by presenting some characteristics or validation parameters such as selec-
tivity/specificity, linear range, detection limit, and sensitivity. Validation parameters 
such as precision and accuracy are usually evaluated separately from the analytical 
performance study in the application of immunosensors in real samples [4, 27, 162– 
165, 170–180]. There is also no detail, in most of the works, of the methodological 
aspects adopted to obtain each of the evaluated parameters and acceptance criteria, as 
well as the software used to perform the calculations. Besides, only for the detection 
limit and sensitivity parameters, a mention is made of the adopted planning and calcu-
lation method [4, 27, 162–165, 172–180]. These issues make it difficult to transfer 
the analytical method that makes use of the immunosensor to other laboratories as 
well as to practical applications.
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To carry out robust in-house validation studies, different parameters must be eval-
uated, such as selectivity/specificity, linearity, sensitivity, detection and quantifica-
tion limits, precision, accuracy, and robustness through a systematic study involving 
statistical tools and criteria of acceptance [171]. Various validation guides can be 
found for different areas as described above. 

Due to the considerations made so far, in this chapter, the main validation param-
eters will be described in detail, as well as the form of evaluation of these in studies 
reported in the literature involving immunosensors. In addition, a critical assessment 
of future perspectives in the validation process of these devices will be presented. 

(a) Selectivity/Specificity 

It is observed that the parameters “specificity” and “selectivity” are used interchange-
ably in published articles on immunosensors. Specificity refers to the analysis of 
a single analyte when the method is free of interferents and determines only the 
compound of interest [181]. Therefore, some analyzes involving enzyme or immuno-
chemical assays can be considered specific. Selectivity, in turn, refers to the analysis 
of different compounds to the extent that a particular analyte or different analytes 
can be determined in a complex sample without interference from other compo-
nents present. In other words, selectivity is used to discriminate between the analyte 
of interest and other components of the sample, while specificity is the ability to 
produce signals to effectively identify the analyte [166]. 

In this sense, attention should be drawn to the need for researchers involved in 
the validation of these devices to emphasize the characteristic of immunosensors 
concerning their specific character or not for the analyte of interest, and when it is 
not possible to prove the specificity of the immunosensor, the most correct term to 
use is “selectivity”. The specificity/selectivity evaluation studies of immunosensors 
are performed with the addition of possible interferents in standard analyte solutions, 
adopting a univariate strategy in which different interferents are evaluated about the 
analyte of interest. In some works, studies of standard addition of the analyte in 
real samples are described to verify the existence of a matrix effect to check the 
selectivity/specificity of the immunosensor [4, 27, 162–165, 172–180]. 

(b) Linearity 

The linearity parameter refers to the ability of an analytical method to obtain analyt-
ical responses directly proportional to the concentration of an analyte in a sample. 
This proportionality relationship is obtained through a calibration function estab-
lished by an analytical calibration curve [181]. Whenever possible, an attempt is made 
to establish a linear relationship (simpler calibration model) between the analytical 
signal and the concentration of the analyte of interest. However, it should be noted 
that it is not always possible to establish a linear relationship and that other calibra-
tion models can be adopted, since the quality of the data about the concentration of 
the analyte in the sample is crucial for a routine application [182]. 

In published works on immunosensors, it is observed that the methodological 
aspects of building the analytical curve (number of standards, concentration of stan-
dards, and number of replicates for each point on the curve), the evaluation of the
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calibration function (linear, quadratic models, etc.), and statistical tools for analyzing 
the models are neglected and most of the time they are not presented. Furthermore, 
there is a tendency to adopt linear models for the relationship between the analytical 
signal and the concentration of the compound of interest. As acceptance criteria, 
in most of the studies reported, the coefficient of determination (R2) is used and in 
some isolated cases the correlation coefficient (r) as an acceptance criterion of the 
immunosensor linearity [4, 27, 162–165, 172–180]. These criteria, despite numerous 
criticisms regarding their use, are still adopted by some validation guidelines [166]. 
There is a lot of controversy in the literature on the use of these parameters to check 
linearity. 

The correlation coefficient (r) describes the presence of a linear relationship 
between the two variables analyzed, and the degree of association should be posi-
tive or negative. Conversely, the coefficient of determination (R2) shows the type of 
association and the proportion of variance explained by the model adopted (linear or 
polynomial). In neither case is the adequacy of the calibration model evaluated and 
therefore these parameters cannot be used to evaluate linearity [166, 182]. However, 
there is a recent, still timid, tendency of some researchers to describe linearity in more 
detail through the application of linear regression methods and more robust ways of 
evaluating linearity [183, 184]. It is therefore suggested that researchers involved 
in the development of immunosensors adopt simple or weighted linear regression 
methods and model evaluation criteria such as analysis of data homoscedasticity, 
calculation of regression analysis estimates (F-tests, residual standard deviation) to 
confirm the linearity of these devices since it is recognized in the literature that these 
parameters confer greater reliability in choosing the calibration model to be adopted 
[166, 182]. 

(c) Limits of Detection and Quantification 

The limit of detection (LOD) refers to the lowest concentration of the analyte that 
can be detected, but not necessarily quantified, under the established experimental 
conditions, while the limit of quantification (LOQ) refers to the smallest amount of the 
analyte in a sample which can be determined with acceptable precision and accuracy 
under the established experimental conditions. Different methods for determining 
these limits can be found in the method validation guidelines, such as those based 
on blank standard deviations, on the signal/noise ratio, and on the analytical curve 
[181]. 

It can be seen in published works on immunosensors that there is a tendency to 
use the signal/noise ratio method and the method based on standard deviations of 
blank to determine the detection limit. Few studies make use of the calibration curve 
method. However, it is important to emphasize that all published works usually 
present comparisons of the detection limits of the developed immunosensor with 
those reported in the literature [4, 27, 162–165, 172–180]. The detection limits values 
may vary depending on the calculation method adopted. Therefore, detection limits 
comparisons should initially consider how this parameter was obtained. 

Most of the studies reported for immunosensors do not present the limits of quan-
tification. This parameter is important for the reliable determination of low analyte
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concentrations in the sample of interest and should be included in the immunosensor 
validation study. 

(d) Precision 

Precision refers to the proximity between the results obtained employing tests with 
samples prepared as described in the analytical method to be validated. It is normally 
expressed in relative standard deviations (RSD (%)) and can be evaluated at three 
levels: (1) repeatability, (2) intermediate precision, and (3) reproducibility. The first 
two levels can be evaluated in in-house validation studies, while the last one can only 
be determined when a full validation study is applied [171, 181]. 

In terms of precision, in the evaluation of immunosensors, different ways of 
evaluating this parameter are presented. In some studies, precision is evaluated by 
analyzing the analyte in a standard solution on 3 to 6 immunosensors to demonstrate 
that the device construction is reproducible and terms such as “inter-assay preci-
sion” or “intra-assay precision” are used. In other studies, immunosensor precision 
is evaluated by the relative standard deviations of recovery tests on real samples [4, 
27, 162–165, 172–180]. Few studies report the analysis of intermediate precision 
in which the analyte determined by the immunosensor is evaluated under different 
conditions (days, analysts, and equipment) [182, 184]. Another observation is the 
“erroneous” attribution of reproducibility to the immunosensor, even when it was 
only evaluated internally in the laboratory where it was developed [4, 27, 162–165, 
172–180] 

Thus, it is suggested to avoid the term “reproducibility” to attribute precision 
to immunosensors evaluated in a single laboratory, since this estimate can only be 
obtained through interlaboratory trials [171]. Another important issue to be high-
lighted is that the evaluation of different levels of precision in real samples will 
attribute greater reliability to the analytical data obtained by the immunosensors and 
will facilitate their transfer to practical applications. 

(e) Accuracy 

Accuracy refers to the degree of agreement between the individual results of the 
method under study concerning a value accepted as true [181]. This parameter can be 
determined in different ways: (1) using certified reference materials; (2) by comparing 
the developed method with a standard reference method and (3) by recovery tests. Of 
the three ways mentioned, whenever possible, the first or second should be adopted 
[185]. Recovery assays can provide biased estimates of accuracy if the added analyte 
behaves differently from the analyte present in the sample due to dissimilarities in 
its chemical form and reactivity [166]. 

For the evaluation of immunosensors, recovery assays predominate as a way of 
evaluating the accuracy, although some works report the comparison with standard 
methods such as ELISA, PCR, and HPLC [175–177]. However, in most published
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works, recovery tests are adopted not to express accuracy but to demonstrate applica-
bility in real samples of the immunosensor. Reliable accuracy estimates are impor-
tant for transferring the methodology using immunosensors to practical applica-
tions, especially in clinical trials where an incorrect diagnosis can lead to serious 
consequences for the patient’s health. 

4 Conclusions and Future Perspectives 

It is easily verified in the literature that immunosensors have a wide potential of 
applications in different areas such as clinical, environmental, and food analysis. 
Every year a greater number of immunosensors are being developed, but on the other 
hand, their practical application in routine laboratories is still shy. This scenario can 
be changed by carrying out robust in-house validation studies in which different 
parameters are evaluated based on guidelines for the validation of specific areas. 
This will provide greater reliability and consistency to the analytical data obtained 
by immunosensors, which will facilitate their transfer to routine analysis laboratories. 
For this to occur, researchers should be encouraged to carry out in-house validation 
studies of developed immunosensors. 

Additionally, impedimetric methods are fast and robust alternatives for the routine 
analysis in several matrices with studies related to the development of new materials 
and analysis devices widely reported in the literature. To complement these studies, 
routine analytical applications need to be validated to ensure data quality and relia-
bility, and several validation guidelines can be used for this purpose, which makes 
an important contribution to the field of electroanalysis. 
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Abstract In its complexity, light-matter interaction has a proven value for many 
scientific fields, such as quantum mechanics, material sciences and spectroscopy. 
In recent decades, bioanalytical tools have been developed, taking advantage of 
this knowledge. Sensing techniques such as the ones depending on (bio) catalytic 
reactions could be improved in terms of sensitivity and limits of detection and quan-
tification with light stimuli. Others, such as surface plasmon resonance (SPR), could 
only thrive after the unraveling of some light-matter interaction particularities. In 
addition, the consolidation of nanoscience, including the capability to synthesize 
nanoparticles with enzyme-like activity and selectivity (nanozymes), led to a new 
perspective on the practical advantages of designed materials with optical attributes 
deriving from subwavelength-scaled particles. A set of techniques could benefit from 
this phenomenon. Examples are Surface-Enhanced Raman Spectroscopy (SERS), 
derived from the Raman effect, and Localized Surface Plasmon Resonance (LSPR), 
derived from SPR. This chapter is an overview of light-matter interaction from the 
perspective of bioanalytical tools, highlighting the state of the art of plasmonic-
based electrochemical and electroanalytical methods, taking advantage of designed 
nanoparticles with controlled size, geometry and composition.
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1 Part I. Localized Surface Plasmon Resonance 

1.1 Introduction 

Plasmonic nanoparticles (PNPs) are a class of nanomaterials with unique properties 
under incident electromagnetic radiation. Such remarkable properties arise from the 
interaction of PNPs with light at specific wavelengths, which generates the collective 
oscillation of the free electrons on the surface of the NP. As a result, the so-called 
localized surface plasmon resonance (LSPR) takes place. Figure 1 illustrates the 
phenomenon of LSPR excitation, representing the collective oscillation of the free 
electron on the surface of spherical NPs upon light irradiation. This phenomenon 
leads to an intensive absorption signal in a wide range of the ultraviolet, visible, and 
NIR regions of the electromagnetic spectrum. 

The features of the LSPR leverage distinguished physical effects on the PNPs and 
surroundings. As examples, the optical near-field enhancement, heat generation, and 
the formation of hot charges [2]. The near-field enhancement is the most commonly 
studied outcome of LSPR and has been widely explored for surface-enhanced Raman 
spectroscopy (SERS) in the last few decades, a topic that is going to be deepened 
further in this chapter. For a system to be an optimized SERS substrate, usually 
highly uniformly sized and spatially distributed metallic nanoparticles are desired 
[3]. The near-field enhancement at the nanoparticle resonance frequency arises due 
to mainly two contributions: (i) the dipolar field formed around the particles along-
side the plasmons; (ii) the lightning rod effect, i.e., the strong electric potential 
gradient formed due to the curvature of a metallic interface [4, 5]. In addition, PNPs 
are able to generate local heat upon resonant frequency stimulation due to Joule’s

Fig. 1 Schematic 
illustration of the collective 
oscillation of free electrons 
on Au nanospheres upon 
excitation of the incoming 
specific light irradiation. The 
collective oscillation of the 
free electrons generates the 
LSPR signal in the 
electromagnetic spectrum. 
Adapted with permission 
from [1]
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effect (also called Ohmic heating). Heat production during LSPR excitation emerges 
through the fast excitation of electrons and their energy loss caused by relaxation 
processes as electron–phonon coupling, transferring energy from the electrons to the 
lattice phonons, and in sequence, to the surrounding matter as fast phonon–phonon 
couplings are achieved [6]. Photothermal therapy is currently the main application 
that benefits from this outcome, although the field of catalysis has been exploring this 
effect to improve catalysts performance through thermodynamics [7, 8]. However, 
powerful, a less explored, and comprehended phenomenon that has brought atten-
tion only over the last few years are the generation of hot electrons and hot holes 
as charge carriers upon LSPR resonance-matching wavelengths. This effect is liable 
whenever the electrons in collective oscillation overcome the energy from the Fermi 
level of a determined structure. Its applications mainly concern catalysis and sensing 
through the charge transfer and redox processes [2, 9]. Nowadays, the attempt to 
disentangle the contributions from these three main outcomes of LSPR excitation 
has been challenging the researcher in this field [10–12]. In this task, spectroscopic 
and theoretical models are the greatest allies, although there is still plenty of room 
for discoveries that seem to be quite particular in each study system.

1.2 Localized Surface Plasmon Resonance: Practical View 

These effects are very sensitive to molecules adsorbed on the PNP surface, which can 
deliver energy to the attached or surrounding molecules. These properties are espe-
cially explored for different kinds of catalysis, such as photo, electro and biocatalysis, 
and sensors as they foster strongly enhanced energy efficiency around the NPs surface 
[13–16]. Therefore, LSPR can be used as a fine tool since the techniques relying on 
it grant high-spatial resolution, as small as the plasmonic structure size, and high 
specificity enhance the design of very precise applications, with the added benefit of 
being remotely controllable by light. 

Moreover, the physical effects of the LSPR excitation can be tuned by the different 
characteristics of PNPs, such as their size, morphology, architecture, composition, 
surface functionalization, and surrounding environment, among many others. This 
is described by Mie’s theory, which elucidates the optical properties of spherical 
particles through the function of the particle’s cross-section and the dielectric constant 
of its composition and the surrounding medium [17]. The derived functions that 
describe rod-like nanoparticles were developed over Mie’s theory by Gans and El-
Sayed [18, 19]. The scattering cross section of particles smaller than the incident 
light wavelength requires a few corrections and comprises a composition of multiple 
effects as electric and magnetic dipoles and quadrupoles. For metallic particles, 
electric dipoles dominate in the visible range, while for other materials, a different 
composition of these can be seen. These several kinds of intrinsic features of the PNPs 
induce changes in the LSPR profile due to the impact on the optical confinement, 
charge distribution, and energy dissipation of the entities. Among the commonplace 
trends, an increase in particles’ size often implies a redshift of the electric dipole
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band and the appearance of electric quadrupole bands, which in practice results in 
two bands instead of just one. For nanostars, it is found that the tip-angle is the 
factor that affects LSPR maximum band peak, as an increase in tip-angle promotes 
a blueshift of the peak [20]. It is also reported that nanostars produce a different 
spectral behavior depending on the excitation source wavelength. [21]. That way, the 
LSPR response relies on the PNP’s characteristics to provide enhanced efficiency 
and performance [22–25]. 

For example, theoretical simulations show the differences in the plasmonic-driven 
field enhancement by changing the morphology of Au for nanospheres, nanorods, 
and nanostars, as shown in Fig. 2A. It is noticeable the stronger plasmonic-driven 
field enhancement on the rounding edges of the particles, which leverages a special 
concentration of energy into the tips of the spikes on nanostars [26]. The theoretical 
enhancement factors calculated for each Au morphology confirm the prominence of 
Au nanostars compared to gold nanospheres and nanorods (Fig. 2B, left). As a result 
of this increased field concentration on their tips, Au nanostars showed substan-
tially higher efficiency at the Au-TiO2 nanocomposites platform for their photocat-
alytic performance to photodegradation of rhodamine B (RhB) when compared to 
nanospheres and nanorods (Fig. 2B, right) [23]. Therefore, the different morphologies 
of the PNPs triggered singular performances to the analyte molecules that reached out 
the surface of the Au PNPs toward the photocatalytic reaction assessed in this study. 
This effect has also been explored for other areas beyond the field of nanocatalysis 
[27, 28], such as plasmonic biocatalysis [29, 30] and electrocatalysis [31–33]. 

In addition, there are many other distinct physicochemical properties of the 
PNPs (such as electrical, magnetic, optical, and thermal) together with the small 
size leading to higher spatial resolution capabilities, their reactivity, and favorable 
surface for biomolecules binding (directly on their surface or by surface functional-
ization), which further enhance the possibilities of attainable applications. Therefore, 
combined with their plasmonic properties, these PNPs provide room for the design 
of innovative tools in a single platform and exclusive reactions. As an example, it is 
possible to merge the singular features of PNPs and electrochemical properties. 

1.3 Electrochemical Surface Plasmon Resonance 

Combining electrochemistry with the distinct optical characteristics of PNPs gives a 
step forward for a new field of study: the electrochemical surface plasmon resonance 
(ESPR). The use of electrochemical techniques with PNPs allows to find out new 
insights toward distinguishing plasmonic properties and their physical effects, paving 
the way for advances in cutting-edge applications [34]. Particularly, this technology 
has been showing interesting results for biomolecules and molecules recognition as 
a powerful electrochemical instrument for bio and analytical sensing [35]. 

The ESPR technique works as electro-optical biosensing, i.e., detecting electro-
chemical processes that occur through the LSPR properties of the PNPs [36, 37]. 
Under light irradiation, these electrochemical processes can also be enhanced by
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Fig. 2 Theoretical simulations were performed to assess the plasmonic-driven field enhance-
ment of the PNPs Au nanospheres, nanorods, and nanostars upon electromagnetic field irradiation 
(plasmon-peak wavelengths). Representation of the normal-to-surface field maps (A). Left: Theo-
retical enhancement factors obtained from the calculations. In the case of the Au nanorods, the 
computed values are represented for a particle when it is parallel (blue point) and longitudinal (red 
point) to the incoming field. Right: Normalized reaction rates from the photocatalysis of rhodamine 
B (RhB) by the platform of Au nanostructures attached to the Au-TiO2 nanocomposites, obtained 
from experimental (black points) and theoretical (red points) analysis (B). Adapted with permission 
from [23] 

the generation of surface plasmons [32]. That way, the electrode surface acts simul-
taneously as the source for SPR excitation and an electrochemical detector, which 
provides information about both electrochemical and optical properties of PNPs 
composites and target molecules. Figure 3 shows a representative illustration of the 
typical electrochemical cell for ESPR analysis. 

Pioneer studies by Lofas made use of thin Au films covered by a dextran layer 
using SPR properties for bioanalytical applications. In this case, the evanescent
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Fig. 3 Illustrative 
representation of an 
electrochemical cell for 
ESPR analysis. The light 
source reaches out the 
electrode surface where the 
PNPs are attached. Upon 
light irradiation, the 
light-enhanced 
electrochemical process is 
evidenced, and the ESPR 
takes place 

electric field generated on the surface of the metal, i.e., the electromagnetic field 
spatially localized in the vicinal dielectric which faces an exponential decrease with 
the perpendicular distance can improve the bioanalytical analysis through covalently 
bounded biomolecules [38]. 

1.4 Conclusions 

Therefore, ESPR is a powerful tool to promote enhanced analytical detectors for 
molecules and biomolecules merging plasmonic features, their outcomes, and elec-
trochemical properties. This technology has been explored in heterogeneous catal-
ysis, electrocatalysis, nanocatalysis, sensors, biodetectors, among others. Through 
such technology, we can expand our knowledge about the physicochemical effects 
in the plasmonic field. Moreover, these findings provide new information to create 
lab-on-chip devices, non-invasive analysis in real-time, providing cutting-edge tech-
nologies for target diagnosis of diseases, to cite few possibilities. Finally, this combi-
nation of features (different LSPR features and PNPs characteristics together with 
the electrochemical properties) can leverage plenty of new properties and possibili-
ties by tuning each of the NP and light wavelength characteristics in electrochemical 
devices.
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2 Part II. Surface Plasmon Resonance Sensing 

2.1 Introduction 

Surface plasmon resonance (SPR) sensing is a relatively new technique that has 
aroused a lot of interest and has been studied and developed in the last 30 years 
[39, 40]. It is based mainly on sensitive changes in optical properties of metal films 
(usually Au or Ag) that occur when a target analyte binds at the metal surface, 
providing high sensitivity by a simple and versatile methodology [41]. 

Over the years, SPR has been used for different applications, such as medicine, 
food, gas-phase chemistry, environment, and electrochemical measurements, being 
a powerful tool for characterization of chemical processes and sensing [42–44]. SPR 
sensing has become a very important and widely used tool for label-free biomolecular 
interaction analysis, presenting a low limit of detection (LOD). The LOD for aqueous 
buffer and complex sample medium can reach values lower than 1 fg mL−1 [45, 
46] and 20 ng mL−1 [47], respectively, which when compared to other techniques, 
such as UV spectroscopy (1 μg mL−1) [48], ELISA (0.114 ng mL−1) [49], and 
HPLC (0.04 μg mL−1) [50], evidences the extremely low concentrations that can be 
measured with this technique. 

The excitation of surface plasmons in SPR sensing is most commonly generated 
by an attenuated total reflection (ATR) of p-polarized (with an electric field parallel 
to the plane of incidence) incident light between a high-refractive-index medium 
and a low-refractive-index medium [51, 52]. Depending on the angle at which a light 
beam reaches the interface of the two mediums, the light may be partly reflected 
away and refracted to the low-refractive-index medium. ATR occurs when the angle 
is higher than the critical angle, which leads to the total refraction of light from the 
normal of the surface and therefore from the interface [53]. If a plasmonic metal layer 
is coated on a surface between these two media, the incidence of light can induce 
the generation of surface plasmons on the film. This phenomenon takes place when 
the wave vector of incident light (k) matches the wavelength of surface plasmons, 
causing electrons to oscillate in resonance [54]. Since the surface plasmon waves are 
generated in the metal surface and its wave vector (ksp) propagates parallel to the 
surface, the parallel component of incident light (ks) needs to match ksp in magnitude 
for the SPR to occur, as shown in Fig. 4. Both wave vectors are expressed as follows 
in Eqs. 1 and 2 [53, 55, 56]: 

ks = 
2π 
λ 

ηp sin ϑ = 
2π 
λ 

√
εp sin ϑ (1) 

ksp = 
2π 
λ 

/
εmεd 

εm + εd 
(2) 

where εm, εd , and εp are the complex dielectric constants of the metal, the surrounding 
dielectrics, and the material, respectively, ηp is the refractive index of the dense
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Fig. 4 Schematic representation of a p-polarized light focusing through a high-refractive index into 
a plasmonic metal covered low-refractive index. Here, the parallel component of the incident light 
(ks) matches the wave vector of surface plasmons (ksp) at the given angle, permitting the excitation 
of SPR 

medium, θ and λ are the incidence angle and wavelength of the light. When ks is 
equal to ksp, part of the incident light is absorbed into the film generating surface 
plasmons, and a lower intensity of light is reflected away [56]. The amount of light 
that is lost in the metallic film depends on both light incidence, and the angle where 
the generation of surface plasmons is higher and the intensity of reflected light is 
lower is denominated SPR angle (θ SPR) and can be determined from Eqs. 1 and 2 as 
shown in Eq. 3 [53]: 

ks = ksp → θSPR = sin−1
/

εmεd 

εp(εm + εd ) 
(3) 

As the surface plasmon waves generated can propagate faster than the incident 
optical wave in the dielectric medium, it is not possible to excite surface plasmons by 
a direct irradiation of a focused optical wave on the metal-dielectric interface [57]. 
For the excitation to occur, the propagation constant of the incident optical waves 
needs to be enhanced to match that of surface plasmons. The most commonly used 
method is by prism coupling, where a prism with a high-refractive index is used 
before the plasmonic metal film, as described by Kretschmann [52, 56]. The optical 
light travels through the prism and is totally reflected at its base, generating in the 
process an evanescent wave that propagates along with the interface with the metal 
film. The propagation constant of the wave can, in this case, be adjusted both with 
the angle or the wavelength, as described in Eq. 1, to match that of surface plasmons, 
and a photodetector measures the reflected light [55]. 

The θ or the λ is varied and when the SPR occurs, the reflectance observed in the 
photodetector decreases reaching the lowest at a specific point θ ’ or  λ’. If an analyte
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Fig. 5 Schematic of Kretschmann configuration for SPR analysis (A). Reflectance response upon 
variation of θ or λ and the changes of θ or λ necessary for SPR with deposition of the analyte (B). 
Real-time monitoring of θ or λ necessary for SPR upon deposition of the analyte (C) 

is deposited on the surface of the metal film, the θ ’ or  λ’ is shifted, and this shift 
can be monitored as it is directly proportional and sensitive to the amount of analyte 
deposited, which is the detection principle of SPR sensing [52, 58]. By monitoring 
the variation of θ ’ or  λ’ over time, it is also possible to obtain data about the kinetics 
of the deposition process and obtain real-time monitoring of the procedure or reaction 
(Fig. 5) [59, 60]. 

2.2 SPR Sensing Applications 

Since the detection in SPR sensing is based on the deposition of molecules on the 
surface of the plasmonic metal film, the selectivity is often a problem in complex 
systems as a response can be affected by any substances that come in contact with the 
metal layer [61, 62]. To overcome this issue, principally in biosensing applications, 
bioreceptors could be immobilized on a metal surface to bind selectively to target 
molecules [63]. An interesting alternative is the deposition of molecularly imprinted 
polymers (MIP) on the SPR surface [64], where the target analyte is used to form a 
mold that is later used to bind to the same analyte selectively. 

Yuan et al. [65] developed an SPR sensor for heparin using a polydiallyldimethy-
lammonium (PDDA)-modified Au film as a sensing platform. In a mixture of Au NPs 
and heparin added on to the positively charged modified film, heparin is preferentially 
deposited as it interacts stronger with PDDA than the Au NPs (Fig. 6). Through the 
difference in SPR shift between the Au NPs and heparin, it was possible to achieve 
a selective sensor with a LOD of 0.026 ng mL−1. The Au NPs also contributed to 
covering the surface of the sensor in the absence of heparin, preventing the deposition 
of unwanted molecules. 

Modification of the SPR platform with plasmonic nanoparticles to enhance 
sensing capabilities was also investigated, coupling SPR with LSPR effects and 
generating an enhanced response. Xia et al. studied a multilayer SPR sensing plat-
form for immunoglobulin G (IgG) where the Au film was modified with Au NPs [66]. 
To selectively sense IgG, the film was modified with a graphene oxide layer in which
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Fig. 6 Schematic representation of PDDA modified SPR sensor for competitive heparin sensing. 
The modification with PDDA causes a small shift in the SPR peak (a). The shift reaches a maximum 
when only Au NPs are present (b), and when heparin is added, it interacts preferentially with the 
surface, decreasing the shift observed (c). Reprinted with permission from [65] 

a layer of an IgG antibody was deposited. Distinct morphologies of Au NPs were 
tested. Interestingly, Au nanorods presented a better response than Au nanospheres, 
mainly due to its stronger longitudinal LSPR mode. This difference influenced the 
LOD of the sensor, where the nanospheres presented LOD of 10 ng ml−1 and the 
nanorods of 4.6 ng ml−1. 

2.3 Electrochemical SPR Sensors 

As SPR sensing presents relatively simple instrumentation and methodology, it can be 
easily integrated with other techniques, such as mass spectroscopy [67] and electro-
chemistry [68–70]. In electrochemical applications, small variations in electrostatic 
fields are measured at the electrode surfaces that, whenever integrated with SPR, are 
used to study the interaction between electrical energy and chemical changes on the 
system [71]. 

Electrochemical surface plasmon resonance (ESPR) involves a three-electrode 
assembly. The plasmonic metal film can be used as a working electrode and the 
counter electrode, usually a Pt wire, is placed on the electrolyte to close the circuit. 
Electrochemical methods are possibly used for the characterization of redox systems 
by the measurement of current with the variation of the potential applied (by cyclic 
voltammetry for example) [72, 73]. The variation of the potential might lead to varia-
tions in the SPR response of the system as some redox reactions only occur at specific



Plasmonics in Bioanalysis: SPR, SERS, and Nanozymes 47

potentials. Among the possible applications, ESPR is a powerful methodology for 
studying enzymatic processes, anodic stripping, potential-controlled absorptions, 
charge transfer reactions, and surface characterizations [74–77]. Figure 3 depicts a 
schematic representation of the ESPR apparatus and analysis. 

Baba et al. [69] developed an ESPR-based glucose sensor in which electri-
cally conducting polymers, poly[N,N-dimethylethyl-3-(1H-pyrrol-1-yl)propane-1-
ammonium chloride] (PPy-Q), and poly(3, 4-ethylenedioxythiophene) (PEDOT), 
were deposited on the surface of an Au film by a layer-by-layer technique with the 
deposition of glucose oxidase (GOx) enzyme on the upmost layers (Fig. 7). As the 
polymers used were able to be doped or undoped by anions in solution, SPR could 
be used to determine some parameters during the oxidation of glucose under 0.3 
VAg/AgCl, as the variations of refractive index, the thickness of absorbed glucose, 
film thickness, and the dielectric constant of PPy/GOx layer all generate a change in 
reflectivity during the addition of glucose. A simultaneous determination of glucose 
was also performed through current and reflectivity through additions of 10 mM of 
glucose under 0.3 VAg/AgCl, showing that in both cases, it was possible to sense the 
analyte although the SPR method showed a more sensitive result. 

Lu and co-workers [78] applied electrochemical impedance spectroscopy tech-
nique coupled with SPR as a source of studying the molecular binding of IgG on 
the electrode as a model system. By the simultaneous measurements of the SPR 
angle and admittance density over the time under 0.12 V bias, it was possible to 
determine and follow the kinetics of protein association and dissociation processes, 
using concentrations as low as 33 nM. It was observed that the two measurements 
are equivalent if double layer charging dominates the impedance, but SPR is more 
sensitive to complementary information regarding changes in bulk refractive index 
and nonspecific adsorption. 

Fig. 7 Schematic representation of the electrochemical cell used for the ESPR sensing of glucose. 
The Au electrode is covered with a film of PPy-Q/PEDOT and PPy-Q/Gox for the selective detection 
of glucose both by electrochemical and optical methods. Reprinted with permission from [69]
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Another application of ESPR to a sensing platform was performed recently by 
Ribeiro et al. [70], where the SPR approach was employed for real-time monitoring 
and sensing, and a square wave voltammetry (SWV) was used as a more sensitive 
sensing technique for the quantification of the carbohydrate antigen 15–3 (CA 15–3). 
As a sensing platform, an anti-CA 15–3 antibody was immobilized on the surface 
of the Au film through covalent bonds. The analysis was performed as described in 
Fig. 8A, where the θ SPR was monitored over time during the initial association, then 
through a washing step to remove unbounded material. After the dissociation step, 
a solution of ferro/ferricyanide is added, and the SWV is performed generating a 
current response proportional to the antigen’s concentration, and finally, the sensor 
is regenerated with a 0.1 M Gly-HCl (pH 2.0) solution. 

On the quantification steps, the concentration of CA 15–3 was varied from 0.1 to 
500 U mL−1 and measured through the variation on θ SPR (Fig. 8B) and the oxidation 
current obtained on the SWV procedure (Fig. 8C). The sensitivity obtained through 
the SWV step was much superior to the SPR step, and the LOD was much lower (0.1

Fig. 8 Schematic representation of the ESPR method used by Ribeiro et al. for the quantification 
of CA 15–3 (A). Analytical curves obtained from the SPR angle variation (B) and current from 
SWV measurements (C). Reprinted with permission from [70]
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compared with 21.0 U mL−1 from SPR). In this case, the ability of real-time moni-
toring of SPR coupled with the high sensitivity and selectivity of electrochemical 
methods generate a powerful platform for antigen analysis and measurement.

2.4 Conclusion 

In general, ESPR represents a powerful technique for the characterization of chem-
ical and electrochemical processes, real-time analysis and monitoring, and sensitive 
quantification of target molecules. Its application brings important improvements 
to health diagnosis, as new developments incorporate higher sensitivities and better 
selectivity, since it represents a general drawback of SPR sensing and can be over-
come by the variety of possible electrochemical methods as has been described in this 
chapter. SPR sensing techniques also bring much attention to their simplicity and for 
being able to be applied for the construction of a wide range of label-free biosensing 
platforms, which when compared with other techniques represent a simpler and 
cheaper alternative, only requiring a prior modification of the platform for a viable 
application. Another very interesting advantage of ESPR sensing is that the sensing 
substrate can be easily modified to change the strategy used depending on the target 
molecule. Taking into consideration all the advantages discussed, coupling SPR 
sensing with electrochemical sensing shows a very promising and sensitive platform 
for biological processes and quantifications. 

3 Part III. SERS and Coupled Techniques as Tools 
for Bioanalysis 

3.1 Introduction 

When describing aspects of surface-enhanced Raman spectroscopy (SERS), it is 
virtually impossible to avoid any presentation of the Raman effect and how it brings 
peculiarities compared to other common spectroscopic characterization techniques, 
especially fluorescence spectroscopy and infrared spectroscopy (IR). 

Raman effect consists of the inelastic light scattering by molecules, whose ener-
gies comprise information regarding vibrational modes of ensembles of atoms 
constituents of the studied molecule, with a prelusive study of sunlight beams in liquid 
benzene dating ca. 1930 [79]. Compared to other techniques, Raman allows a broad 
spectral window from as low as a few cm−1 to more than 4000 cm−1, high-spectral 
resolution, and low-bleaching effects compared to fluorescence measurements. 

As water is very weakly active to Raman scattering in contrast to IR, it becomes 
viable to run Raman measurements in aqueous solutions. Additionally, the technique
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is easily and commonly coupled to microscopes, allowing for the localized interroga-
tion of micrometric regions of each sample and enabling the confection of chemical 
maps. 

A good analysis in the context of Raman spectroscopy is challenged, however, 
by the small scattering cross section (as ca. 10–30 cm2 sr−1), which is 8–16 orders 
of magnitude smaller compared to the ones achieved by IR and fluorescence spec-
troscopies. This is a major disadvantage even for the very particular—and Raman 
active—group of fluorescent dyes in resonance mode. This means that, in the event, 
an incident photon energy matches the energy needed for an electronic transition, 
structural changes in the molecule will occur, largely increase its polarizability, and 
therefore, Raman scattering [80]. Hence, an enhancement of the scattering process is 
needed for most practical applications, and in this context, surface-enhanced Raman 
spectroscopy (SERS) was developed and is now commonplace for chemical analysis. 

SERS effect was explored originally, yet unintentionally, by Fleischmann in 1974 
[81] with spectroscopic measurements of pyridine adsorbed onto electrochemically 
roughened Ag electrodes. Subsequently, the effect was better described by Van Duyne 
[82], Creighton [83], and Moskovits [84] in 1977 and 1978, studying amines and 
pyridine adsorbed onto Ag electrodes. These last authors implied that the origin of 
such an effect could be strongly connected to plasmonic excitations arising from the 
metal onto the molecules adsorbed in close proximity. Consequently, signaling that 
the enhancement is strongly dependent on the distance between the metal surface 
and adsorbed molecules, which makes this a useful tool for surface probing. 

The story of SERS development in the last 50 years is rich and full of interesting 
details. Nonetheless, some of the findings must be at least mentioned as: (i) the 
most accepted mechanism now being a combination of the electromagnetic field 
enhancement and chemical charge-transfer processes, (ii) discussions evidencing 
enhancements up to a theoretical 1010 factor, and (iii) the fruitful road of metallic 
nanoparticles design for numerous hot-spots regions. 

It is worth emphasizing that SERS is not at all limited to metals, as examples in 
oxides and graphene are often reported [85, 86]. Besides, the applications to chem-
ical analysis either standalone in the so-called intrinsic mode or by tagging desired 
analytes with molecular reporters with high-Raman cross section as fluorescent dyes, 
in the called extrinsic mode. Some of these will be further discussed here, yet we 
kindly provide readers with some selected comprehensive and detailed resources 
[20, 79, 87, 88]. 

3.2 Designing SERS-Active Substrates 

Since the performance of SERS-active platforms strongly depends on the chosen 
materials, as well as the geometry and spatial disposition of the employed nanopar-
ticles, the design of platforms for a larger electromagnetic field enhancement is 
naturally linked to nanotechnology. It has become a field of study itself including,
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for example, expansion of applications to operando mode or the exploration of plas-
monics in the UV region [89]. Table 1 summarizes some of the plentiful methods for 
the confection of SERS-active platforms, with a brief description of some advantages 
and challenges of each. 

Table 1 A brief selection of commonplace methods for the confection of SERS-active platforms, 
with enlisted advantages and challenges 

Method Description Advantages Challenges References 

Colloidal NPs NPs are dispersed 
in a colloidal 
regime to form 
aggregates with 
high-hotspot 
regions densities 

Plentiful hotspot 
regions result in 
high-scattering 
enhancement, 
especially with 
designed 
anisotropic 
nanoparticles, 
such as nanostars 

Aggregation, 
sedimentation, 
and aging of the 
nanoparticles 

[90] 

Self-assembled 
monolayers of 
NPs 

NPs 
self-organized to a 
stable disposition 
at a certain 
interface, leading 
to a SERS-active 
film, transferrable 
to solid surfaces 

Straightforward 
preparation, 
maximization of 
hot-spots per unit 
area, versatility of 
the NP layer in the 
interface, and 
viability to 
liquid–liquid or 
liquid–air 
operation 

Stabilization of 
the active layer 
with high 
enhancement, 
usually 
multilayers are 
required 

Liquid-liquid 
[91, 92] 

Liquid-air 
[93] 

Sphere-segment 
void (SSV) 
templates 

Platforms are 
produced by direct 
electrodeposition 
of a metal through 
a monolayer of 
densely packed 
polymeric spheres 

Tunable 
electromagnetic 
field enhancement, 
reproducibility 

Multiple steps are 
required to form 
good-quality 
monolayers of 
close-packed 
spheres and 
determination of 
deposition layer 
height/charge 

[94] 

SHINERS Metallic NP core 
coated with silica 
or alumina shell 
represents the 
SERS-active 
component, being 
spread onto the 
substrate with 
molecules to be 
probed 

Reproducible, 
chemically stable, 
high 
enhancements, 
viable to biologic 
material probing 

Studies down to 
monolayer 
resolution are 
viable, yet a 
higher spatial 
resolution is 
troublesome 

[95]

(continued)
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Table 1 (continued)

Method Description Advantages Challenges References

Spin-coated 
templates 

In most 
approaches, a 
dispersion of NPs 
is spread to a 
substrate attached 
to a holder; the 
system is rotated, 
and liquid phase 
excess is 
eliminated, 
producing a thin 
film 

Usually very fast 
and scalable; can 
be applied to 
flexible, 
transparent, and 
low-cost 
substrates 

Reproducibility 
issues are 
common; 
hydrodynamic 
effects can cause 
radial distortion 
and variations 
from center to the 
edge (e.g., 
capillary waves 
and thickness 
gradients) 

[96] 

Breath-figure 
method (BFM) 

This method 
consists of 
producing a 
template through 
quick evaporation 
of a volatile 
solution 
comprising a 
polymer or NPs; 
as temperature 
drops, water 
droplets from air 
condensate and a 
porous layer is 
formed, used as is 
or for further steps 

Versatile process 
to form templates, 
low-cost and, if 
coupled to a 
spinner, very fast 

Can suffer 
reproducibility 
issues, dependent 
on relative 
humidity 

[97, 98] 

E-beam 
lithography 

Involves scanning 
a high-energy 
beam of electrons 
through a 
substrate, 
selectively 
removing material 
with precise 
spatial control 

Very high-spatial 
precision, 
reproducibility, 
and versatility to 
produce complex 
geometrical 
shapes, which 
grants 
predictability 
through modeling 

Expensive, 
time-consuming, 
can require 
unwieldy etching 
and lift-off steps 

[99] 

Aluminum 
anodization 

The aluminum 
material is 
electrochemically 
anodized and 
chemically etched 
to produce a 
porous membrane 
in the nanometric 
diameter range, 
serving as a 
template for 
further processes 

Reproducible, 
low-cost, tunable 
pore diameter, and 
layer depth. 

Time-consuming 
with multiple 
steps and 
cumbersome 
chemicals 
involved 

[100]

(continued)
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Table 1 (continued)

Method Description Advantages Challenges References

Metal 
electrodeposition 

Direct 
electrodeposition 
is performed onto 
conducting 
substrates by 
applying either a 
potential or 
current 

High efficiency 
and 
reproducibility; a 
multitude of 
metallic species 
can be reduced at 
the surface with 
control of 
geometry and 
morphology 

Only compatible 
with conducting or 
semi-conducting 
substrates 

[101, 102] 

For a method to develop a SERS-active platform, it is worth considering the 
requirements for the platform and sensing conditions, the cost of equipment and 
materials, the time required to produce, and the reproducibility and reliability of the 
methods. This often leads to a balance between bottom-up and top-down approaches, 
with multiple successful ideas in both. 

3.3 Quantitative Aspects: Enhancement Factors 
and Chemometrics 

Enhancement Factors: SERS brings at its core the intention of enhancing Raman 
scattering. This means that a SERS-active platform is regarded as superior the better 
it performs such a role. To compare different approaches, the so-called enhancement 
factor (EF) is often employed and refers to the mathematical ratio of the signal 
intensity per molecule of the SERS system against the Raman analog (i.e., non-
SERS), as shown in Eq. 4. Here, I refers to the scattering intensity, N is the number 
of molecules involved in the process, and when it comes to the comparison of the 
cross-section enhancement—therefore in a single-molecule fashion -, dσ/dΩ refers 
to the differential Raman cross section. 

EF = 
ISERS 
NSERS 

IRaman 
NRaman 

; EFsingle molecule = 
dσSERS 
dΩSERS 

dσRaman 
dΩRaman 

(4) 

Despite being conceptually simple, this estimation is not trivial, and distortions 
are widespread in the literature. They can lead to unrealistic EF values, without 
physical meaning and not rarely beyond the expected theoretical limit of ca. 1010. 
This can be estimated by an enhancement in excitation (

⎟⎟E2(ω)
⎟⎟/⎟⎟E2 

0 (ω)
⎟⎟ ≈ 105) 

coupled to an emission enhancement of similar order, generating the often described 
as ‘

⎟⎟E4
⎟⎟ enhancement’. One might notice that (i) the chemical enhancement, except 

in specific cases, will not contribute much to the overall enhancement, and (ii) a 1010
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enhancement is too optimistic for most SERS platforms. Frequent errors include 
the choice of Raman comparison sample, calculation of the number of molecules 
in each case, laser penetration depth, cross-section values, the area or volume being 
interrogated by the light source and not accounting for fluorescence suppression. 

Another indirect consequence consists of the instituted rally for increasingly high-
EF numbers. In practice, the limits of detection often barely change and spectral 
quality might not suffer significant improvements, as already mentioned in the liter-
ature [97]. It is certainly sound to pursue high enhancements shown with practical 
applications that can solve real-world problems rather than focusing on comparing 
numbers with sloppy definitions in the literature. Adequate means for EF estimation 
are available elsewhere, with discussions of overlooked issues [103, 104]. 

Chemometrics 

Incorporation of chemometrics to SERS measurements is still seldom seen in liter-
ature, despite recent reports indicating a powerful capability toward quantitative 
measurements and improved limit of detection. It is worth noticing how spectral rich-
ness is beneficial to allow greater possibilities of deconvolutions and peak compar-
isons for these approaches. This can be achieved, for example, through designed 
molecular tags and the usage of multiple distinct metallic NPs or laser sources 
[105, 106]. 

For example, Brolo and co-workers employed an Au NP-onto-coverslips approach 
to explore SERS detection of antibiotics at ultralow concentration [107]. Instead of 
relying on scattering intensity, the occurrence of a scattering event in a hotspot was 
considered itself as the ‘count’, generating digital maps and quantitative data as the 
number of molecules aided through non-negative matrix factorization (NMF). 

Chemometrics was also employed to study cancer single-cells among a pool of 
cells flowing through a microfluidic channel in a creative approach by Moskovits 
and colleagues [108]. The authors employed a Ag NP dimer coupled to a Raman-
active tag linked to an affinity biomolecule such that, within a set of spectra with 
a complex composition of convoluted bands. They successfully applied principal 
component analysis (PCA) to assess three principal components and describe which 
peaks compose each PC. Therefore, which one decorously discriminates between 
cancerous and non-cancerous cells. Classical least squares (CLS) were also explored, 
granting the additional data of the numerical contribution of each tagged receptor to 
the overall obtained spectrum. 

Other examples in the literature include the usage of partial least squares (PLS) 
[109], k-nearest neighbor (KNN) and support vector machine (SVM) [110], machine 
learning [111], and neural networks [112].
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3.4 Applications 

Applications of SERS are now expected to achieve much more than a bare char-
acterization of vibrational modes, exploring the capabilities of the technique, and 
hyphenating with other tools, especially electrochemistry. 

When it comes to bioanalysis, a plethora of biochemical compounds can be 
interrogated, and the Raman profile can provide information regarding conforma-
tion, enzyme mechanisms [113], presence/absence of biomarkers, discrimination of 
specific cells within a culture, address neurotransmitters, antibodies, toxins, and even 
to confer a barcode tag to multiple different analytes [88]. 

Bartlett and co-workers, inspired by the context of pathogen-specific DNA biode-
tection, explored the association of electrochemistry with SERS [114]. In the work, 
electrochemistry was used too drive the melting of hybridized DNA amplicons with 
a single nucleotide polymorphism, while the labeled complementary single-stranded 
DNA (ssDNA) provided an intense SERS signal as the chains were attached to Au-
coated SSV templates. By relating the decrease of the SERS signal to the applied 
electrochemical potential, causing the melting of the hybridized pair, Y. pestis and Y. 
pseudotuberculosis were successfully discriminated. 

The idea of creating a library of compounds and biological elements encoded 
by their physical and chemical properties, composition, action, and affinity to other 
elements is central to areas, such as drug development. In this context, it can lead to 
a faster screening of promising approaches toward viable pharmacological options. 
When it comes to SERS, the concept of barcoding for high-throughput bioanalysis 
was developed [115], where beads are functionalized with SERS-tags and peptides. 
In this approach, each main peak of each tag corresponds to a single bar within a 
barcode chart, and the combination of these tags and their affinity toward specific 
proteins could theoretically generate more than one million distinct barcodes through 
spectral deconvolution. With a similar rationale, Pezzotti and co-workers studied the 
deconvolution of bands of SARS-CoV-2 variants and were able to engender barcodes 
to multiple variants as Raman peaks shifted due to differences in S-containing amino 
acids, interface pH, RNA bases, and the secondary structure (Fig. 9) [116]. 

Associations of SERS to lateral flow immunoassays (LFIAs) are also becoming 
more frequent [117–120]. This is given their advantages as faster process time 
compared to RT-PCR and mass spectroscopy, price compared to RT-LAMP and 
ELISA, and increased shelf-life compared to pure electrochemical bioassays. In 
SERS-LFIA bioanalysis, as in Fig. 10, the Raman enhancing element is usually a 
metallic NP or silica beads coated with NPs, functionalized with specific proteins 
(here, SARS-CoV-2 S-protein). They ought to interact with the analyte (as IgM and 
IgG, in this example) and concentrate on the conjugate pad of the test-strip. As the 
test sample is added and flows through the strip, the analyte, if present, is captured 
by the respective antibodies in the test lines and the conjugation to the SERS-tags 
confers detection through the Raman peaks. 

Active use of electrochemical methods with SERS can be addressed either as 
complementary techniques or to acquire information in tandem (EC-SERS). The
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Fig. 9 Summarized process of ‘barcoding’ SARS-CoV-2 variants through Raman spectral decon-
volution. Spectra are obtained for each variant, bands are deconvoluted according to their ascribed 
composition, the presence of certain peaks leading to a bar whose width relates to the band width. 
From ref [116] with permission of the publisher 

importance of EC-SERS can be exemplified by the case of Ag, with a positively 
charged surface at the open circuit potential (OCP). Naturally, by changing the poten-
tial of the surface relative to a reference electrode, the interface becomes either less 
or even more charged, with clear effects on the adsorption affinity of molecules to the 
metal and consequently, the intensity of Raman peaks acquired. This was exemplified 
by Bindesri et al., collecting Raman spectra during potential steps in a conducting 
cloth loaded with Ag NPs and levofloxacin as a model drug [121]. Another example 
consists of changing the charge and morphological characteristics of a SERS-active 
surface via electrochemical potential sweeps and exploring the consequences in the 
acquired Raman data. In that case, distinct profiles are commonly seen, as explored 
by EC-SERS and EC-SOERS, another Raman enhancement specific to the oxidized 
metal state [122]. 

3.5 Tip-Enhanced Raman Spectroscopy (TERS) 

As a last consideration, when it comes to biomolecules, we already discussed the 
advantages of Raman relative to fluorescence spectroscopy such as the narrow bands, 
less photobleaching, and label-less nature of the techniques, and how SERS improved
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Fig. 10. Schematic of SERS-LFIA bioassays with a SERS-active element as Au NPs (A), protein-
functionalization of the SERS-tags (B), and design of the test-strip, with a sample pad, a SERS-tags 
loaded conjugation pad, antibody-rich test lines and a control line C. The bioconjugation of proteins 
and respective antibodies allows detection through the Raman peaks. From ref [119] with permission 
of the publisher 

the intrinsically low-Raman cross section. These techniques show extreme impor-
tance and usefulness to chemical analysis, yet spatially limited by the diffraction limit 
of the light, with a consequential optical resolution of many hundreds of nanometers. 
On the other hand, microscopy techniques such as the scanning probe microscopy 
(SPM), with ultra-sharp tip probes, provide enough spatial resolution to interrogate 
atoms of a surface. The combination of SPM and SERS resulted in the elaboration of 
the tip-enhanced Raman spectroscopy (TERS), amalgamating the remarkably high-
spatial resolution of SPM, therefore exploring the sub-wavelength range, with the 
enhancement of Raman scattering from SERS. For this, TERS tips are manufactured 
to combine sharpness and a metallic coating or immobilized NPs. The tip is set to 
sweep or maintain contact to a surface to be probed, and due to the electromagnetic 
enhancement being strongly dependent on the distance, intense Raman scattering is 
obtained with information of the nanometric region close to the tip edge only, as 
schematized in Fig. 11 [123]. 

With this powerful combination of characterization capabilities, TERS opens a 
new yet challenging road of opportunities especially for biological applications, with
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Fig. 11. Scheme of a TERS operation, with a sharp SERS-active tip scanning the sample concomi-
tantly to a focused laser source, promoting the SERS data generation (a). Micrograph of a typical 
TERS tip with a nanometric edge (b). From ref. [123] with permission of the publisher 

already successful examples of bacteria [124], viruses [125], and isolated whole 
biomolecules [126, 127]. 

Wood and co-workers showed the TERS imaging and spectral recording of sub-
20 nm hemozoin crystals, an insoluble pigment produced by breakage of hemoglobin 
by malaria parasite-infected cells, inside the very digestive vacuole of the cell, as 
indicated by Fig. 12 [128]. 

Other successful examples include DNA/RNA structural studies, proteins such as 
β-amyloid, and insulin polymorphs. Once again, electrochemistry can be coupled to 
an EC-TERS technique, already shown to be capable of providing information on 
localized electrochemical processes at the nanoscale [129]. 

Challenges are still abundant to TERS, including tip production, stability, 
cleanness, data interpretation, and practical/economically viable setups associating 
UHV-STM-SERS capable of achieving stable single-molecule level investigation. 

3.6 Conclusions 

The powerfulness of SERS to bioanalysis was certainly long proven, with ubiqui-
tous presence in the literature of the past two decades, while constantly evolving 
to be considered less of a coadjuvant characterization technique and now a field 
of study itself. This includes elaborating efficient and stable substrates, recording 
quantitative data, coupling to other techniques such as EC-SERS or SERS-LFIA and 
even ingenious and modern approaches to overcome the spatial limitation to study 
spectroscopic profiles in the nanometer range.
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Fig. 12. AFM micrographs of a population of malaria-infected erythrocytes (a, b, and  c), with 
hemozoin crystals (b, c), TERS spectrum recorded of a hemozoin crystal edge (d), control TERS-
off spectrum (e), control hemozoin SERS, and resonant SERS spectra (f, g). From ref [128] with 
permission of the publisher
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Considering what has been achieved, the near future will certainly comprise (a) 
flourishing publication of works employing SERS-active labeled probes for sensing 
in real samples. These probes require clever functionalization to interact with specific 
biomolecules, especially considering the context of the SARS-CoV-2 pandemics, 
which arguably showed that biosensors are needed more than ever, and that bioanal-
ysis is still a field of prolific discoveries and advances; (b) the scalability of SERS-
active platforms with enough diversity and lower cost is also still a challenge to be 
addressed to enable the dissemination of SERS-based sensors; (c) coupling to other 
techniques should become more common and so will be the innovative usage of 
statistics for data handling. 

In a longer timeframe, new steps to harder and more complex challenges should be 
seen, including the reproducible recording of spectroscopic information in a single-
molecule regime via STM-TERS. The use of in operando mode to acquire infor-
mation on chemical processes occurring in real-time while coupled to other tech-
niques and indeed, new or optimized approaches to in-vivo monitoring of biological 
processes inside cells and throughout tissues, which probably translates as a new class 
of wet-phase, chemically stable, biocompatible, and versatile SERS-active elements. 

4 Part IV. Nanozymes 

4.1 Introduction 

Enzymes are biocatalysts widely used in various sectors of industry, including food, 
textile, cosmetics, and the production of biofuels [130]. According to Allied Market 
Research in March 2020, the enzyme market value was US$ 8.6 billion worth in 2019 
and is expected to reach US$ 14.5 billion by 2027. These values already exceed more 
than 20% of what was previously estimated in 2017, when the world enzyme market 
was expected to reach US$ 6.8 billion by 2022 [131]. 

Enzymes are frequently used for industrial, biotechnological, and research appli-
cations due to their high selectivity since they are chemo-, regio-, and stereoselec-
tive biocatalysts [132]. Moreover, they are low-toxic and environmentally friendly 
biomolecules and thus, are usually biocompatible. In general, enzymes can catalyze 
reactions with rate constants up to 17 orders of magnitude higher compared to reac-
tions carried out in their absence [133]. They represent a versatile class of molecules 
since they are liable for design via gene and protein engineering according to specific 
demands such as enhancement of desired physical–chemical properties [134]. 

However, natural enzymes production is limited due to scaling up issues and time-
consuming separation and purification steps, which makes them a costly feedstock. 
Besides, limitations concerning their stability require mild reaction conditions such 
as temperature, pressure, stirring, pH, and a restricted window of solvents [135–137]. 

In order to overcome these drawbacks, the development of artificial enzymes has 
strengthened as a field of study in the 1970s [138]. Classically, biomimetic organic
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chemical compounds were designed with a similar structure to enzymes’ active site, 
although with improved physical and chemical robustness [139, 140]. 

Nevertheless, in the 1990s, biomimetic chemistry of artificial enzymes has 
expanded its boundaries to the promising field of catalytic nanomaterials, creating 
the new field of nanozymes by exploring nanomaterials’ enzyme-like properties 
[141–149]. This approximation merged the ease of synthesizing nanomaterials in 
comparison with complex macromolecules with the more reasonable expenses from 
their attainment process. In the first moment, mainly fullerene was explored for these 
applications, although some works with gold, ceria, and rare earth nanomaterials were 
timidly introduced. 

In 2007, Gao and co-workers reported intrinsic peroxidase-like properties in 
Fe3O4 NPs [150]. The authors report that these findings are not unexpected since 
FeII/FeIII redox pair in solution is known to catalyze the breakdown of peroxide in 
Fenton’s reagent. Besides, many peroxidases such as horseradish peroxidase (HRP) 
and cytochrome C comprise iron-containing heme-centers. Alongside the fortifica-
tion of the field of metallic nanoparticles, this work was considered a turning point 
in the field of nanomaterials as artificial enzymes. 

In the following years, an expressive and emerging number of authors started 
studying enzyme-like properties of NPs [151, 152]. Among several catalytic 
outcomes of these nanomaterials, this period elucidated properties concerning their 
selectivity [153–155], high sensitivity for analytical purposes [156, 157], and low 
cytotoxicity [158]. 

Nanozymes performance, as well as most enzymatic kinetic systems, can be 
approached with Michaelis–Menten model [159, 160]. Therefore, parameters such as 
substrate specificity (KM), catalytic rate constant (kcat), catalytic efficiency (kcat/KM), 
and maximal reaction velocity (vmax). In the case of electrochemical nanozymes, 
usually maximal reaction current (Imax) is used instead [161, 162]. The general 
Michaelis–Menten model is represented by Eq. 5, where v is the velocity of reaction 
and [S] is the concentration of a substrate S. 

v = 
Vmax[S] 

KM + [S] 
(5) 

The term ‘nanozyme’ was firstly introduced in 2004 by Manea and co-workers 
to describe their synthesized Au NPs-based material with ribonuclease-like activity 
[163]. However, it was only in 2013 that this term was reinforced and extended in a 
review made by Wei and Wang to every material with enzyme-like properties up to 
that date [164]. 

Since then, the number of publications on ‘nanozyme’ has grown exponentially, 
as the report generated by the ‘Web of Knowledge’ shows in Fig. 13. 

Alternative and complementary approaches for the definition of ‘nanozymes’ have 
been used by other authors, such as Gooding [165, 166]. According to his definition, 
nanozymes are three-dimensional components that not only mimic the reactions of 
natural enzymes, but simulate the confined environment with channels that regulate 
the mass transport and reactant gradients.
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Fig. 13 Number of publications on ‘nanozyme’ since 2014. This report was generated by the ‘Web 
of Knowledge’ in January, 2022 

It is noteworthy that, despite the development of this field, there is still a lack 
of common understanding among the literature concerning the nomenclature and 
analyzes performed on NPs with enzyme-like properties. While some authors prefer 
using the classical catalytic approach, those that choose to work with the actual 
nanozyme approach do not follow the same definitions, standards, and assays. 

4.2 Nanozymes Composition: Materials, Size, and Geometry 

Besides the promotion of the term ‘nanozymes’, the work from Wei and Wang high-
lights the mechanisms, kinetics, and applications of various nanomaterials that mimic 
natural enzymes [164]. In this review, the authors focus on cerium, iron, and other 
metal oxide-based nanomaterials, as well as metal-based nanomaterials, such as 
gold, platinum, and bimetallic structures. A metal-free section of this work is set 
apart from the carbon-based nanomaterials, such as fullerene, carbon nanotubes, and 
graphene, including their derivatives. Among the redox enzymes mimicked by these 
nanozymes, peroxidase, oxidase, catalase, and superoxide dismutase were the major 
enzymatic classes addressed in this study from 2013. 

In 2019, Wu and collaborators published a second part of the review on nanozymes 
previously elaborated in 2013 [141]. At this time, the review reflected a broader range 
of nanomaterials developed and explored as nanozymes between 2013 and 2019 in a 
wider variety of applications. Among the metallic and metallic oxide nanomaterials, 
copper, vanadium, and molybdenum gained space in the nanozyme scenario mainly 
for being considered cheaper than noble metals and the ease of synthesis scaling up. 
Besides, metal–organic-framework (MOF) used as nanozymes has brought attention
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Fig. 14 Relationship and 
influences of size, 
morphology, and 
composition as 
interdependent parameters in 
the resultant nanozyme 

due to their capability of creating confined spaces with high-surface area and versatile 
composition. 

Furthermore, the review of Wu and collaborators highlights the importance of a 
rational design of nanozymes regarding their shape, size, and composition as future 
perspectives in the field. These parameters are interdependent and known for a long 
time to tune NPs’ physical–chemical and catalytic properties in classic catalysis 
[167]. In an enzyme-mimicking catalytic environment, this is no different. Figure 14 
shows a schematic tetrahedron representing the influence of these parameters in a 
final nanozyme structure, contemplating their interconnections. 

The authors claim that high-performance nanozymes with desired properties are 
liable to be designed if the target application is established, and the structure–activity 
relationship is deeply investigated at first. Both experimental and computational 
data may support the design, and in future, artificial intelligence tools could be 
explored to survey the best candidates. 

Examples of references with morphological and compositional variety of 
nanozymes are summarized in Table 2. The table illustrates an extensive range 
concerning these two parameters that directly influence physical–chemical prop-
erties of the nanozymes. Thus, this reinforces the need of rational designed systems 
toward an optimized efficiency on application of nanozymes. 

4.3 Properties and Applications 

Accordingly, as an optical property, LSPR of noble metals nanoparticles is strongly 
dependent on the tetrahedral pillars (as represented in Fig. 14) in addition to the 
medium characteristics, as predicted by Mie’s theory [233–236]. The high sensitivity 
of these optical features, including LSPR, makes nanozymes good candidates for 
sensing purposes. 

Although colorimetric sensors based on metallic nanozymes have already been 
extensively reported, LSPR sensors are less explored. For instance, Au NPs’ 
peroxidase-like activity has been recently used in colorimetric assays for biomedical 
applications to sense histidine [237], biothiols [238], glucose [239], blood in urine 
[240], diagnostic of measle virus [241], influenza virus [242, 243], and SARS-CoV-2 
[244].



64 H. R. de Barros et al.

Table 2 Examples of tunable 
aspects such as morphology 
and composition of 
nanozymes 

Mimicking 
enzyme 
activity 

Morphology Composition References 

Peroxidase Cubes Platinum [168] 

Dots Carbon [169, 170] 

Fibers Vanadia [171] 

Rods Vanadia [171] 

Sheets Carbon [172, 173] 

Palladium [174] 

Vanadia [171, 175] 

Spheres Gold [176–179] 

Iron oxide [180–183] 

Palladium [184] 

Platinum [185, 186] 

Silver [187, 188] 

Tubes Carbon [189] 

Platinum [190] 

Wires Vanadia [191–193] 

Complex 
structures 

MOF [194–196] 

Multimetallic [32, 197, 198] 

Oxidase Dots Copper [199] 

Platinum [200, 201] 

Spheres Molybdenum [202] 

Gold [203–206] 

Platinum [207, 208] 

Superoxide 
dismutase 

Cubes Ceria [209] 

Dots Carbon [210] 

Fullerenes Carbon [211] 

Rods Ceria [212] 

Sheets Carbon [213, 214] 

Spheres Carbon [215] 

Ceria [216–220] 

Melanin [221] 

Hydrolase Tube Carbon [222] 

Sheet Carbon [223–225] 

Sphere Gold [226–229] 

Complex MOF [230–232]



Plasmonics in Bioanalysis: SPR, SERS, and Nanozymes 65

Besides, colorimetric methods were also applied to assess the same peroxidase-
like activity of Au nanozymes used to detect copper[237] and mercury [245] ions 
in biological samples. In environmental samples, for example, the peroxidase-like 
activity of Au was used to detect methylmercury [246] and organic pesticides [247], 
whereas platinum nanozymes peroxidase-like activity was used to sense mercury 
ions [185]. 

On the other hand, LSPR sensors are designed to detect qualitatively and quanti-
tatively the analyte according to the LSPR shift in the UV–Vis spectrum. Concerning 
the LSPR sensors, the records are scarcer in comparison with colorimetric probes. 

In 2011, Au NPs with glucose oxidase-like properties were used as plasmonic 
sensors of DNA hybridization owing to the size enlargement of the nanoparticle 
[248]. In 2021, bimetallic nanozymes of Au-Pt were designed to sense Ag+ ions in 
water samples. The LSPR sensor was built in order to detect the reduction of Ag+ 

ions on the surface of Au-Pt nanozymes, which ended up with a blueshift of the 
LSPR maximum [249]. 

External stimuli of nanozymes with LSPR-matching wavelength sources are 
capable of promoting enhanced catalytic activities toward an analyte or reactant. 
Plasmonic nanozyme-based sensors stimulated with the wavelength of the nanopar-
ticle’s LSPR maximum have been developed with Au-Pt bimetallic nanomaterials 
toward hydrogen peroxide in a peroxidase-like fashion with the exposition to near-
infrared (NIR) [250]. In another study, Au NPs supported on copper-based MOFs 
were stimulated with LSPR-matching light, which led to a 1.6-fold improvement in 
the reaction kinetics of peroxidase and presented antibacterial and wound healing 
properties [251]. 

Electrochemical approaches to plasmon-driven catalytic reactions with 
nanozymes are even rarer in the literature. In electrochemical reactions, metallic 
nanoparticles have been used as oxidases toward alcohol [252–254] and water [255], 
as well as reductases toward oxygen [256, 257] and carbon dioxide [258]. In all the 
previously mentioned examples, LSPR-matching wavelength sources were used to 
enhance their catalytic activity toward the product formation. 

Concerning the direct use of nanozymes as LSPR-enhanced electrochem-
ical sensors, glucose oxidase was mimicked by Au NPs in an electrooxidation 
system stimulated by light for glucose sensing [259]. The authors found a sixfold 
enhancement in the sensor sensitivity upon excitation with a LSPR-matching light 
source. 

In 2018, Wang and collaborators synthesized Au/NiAu multilayered nanowire 
arrays as non-enzymatic glucose sensors [260]. Whenever they were stimulated 
with LSPR-matching wavelengths, their sensitivity was enhanced by twofold in 
comparison with the dark conditions. 

Au-Pt nanoframes loaded on hexagonal boron nitride exhibited enhanced sensing 
parameters toward glucose upon NIR stimulus [261]. Glucose was monitored in 
human tears through electrooxidation, and an enhancement of up to 1.6-fold was 
achieved under illumination with NIR wavelength. 

Concerning the peroxidase-like activity of nanozymes in electrochemical systems, 
hydrogen peroxide and glucose were detected by nanozymes composed of AuNi
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nanodendrite arrays upon visible light exposition [262]. After external light stim-
ulus, glucose detection presented a 3.3-fold enhancement in comparison with dark 
conditions, whereas hydrogen peroxide presented a 1.5-fold increase. 

Au nanorods sensors exhibited a 2–fourfold increase in sensitivity toward 
hydrogen peroxide whenever irradiated with light [263]. The produced sensor was 
then used to detect cancer cells with a trace detection of hydrogen peroxide released 
from cervical cancer cells (HeLa). 

Da Silva et al. synthesized AgAu hollow nanoshells supported on graphene 
oxide (AgAu/GO) and silica submicrospheres (AgAu/SiO2) as sensors for hydrogen 
peroxide through its reduction reaction [32]. These materials had distinct metallic 
percentage composition, and thus, their LSPR was apart from each other. After 
a systematic study concerning the exposition toward different wavelengths, the 
authors found out that the materials exhibited their best performance toward hydrogen 
peroxide sensing only once they were irradiated with the external stimuli that matched 
their LSPR maximum. This happened upon red light toward AgAu/SiO2 and both 
violet and green lights toward AgAu/GO. When a non-LSPR-matching light was 
used, practically no improvement was observed, as indicated in Fig. 15. In this work, 
the improvement in performance was analyzed and stated through parameters such 
as the sensibility slope, maximum current (Imax), and Michaelis–Menten apparent 
constant

(
K app M

)
. 

Miguel et al. developed a peroxidase-like system with MnO2 nanowires decorated 
with Au NPs for the electrooxidation of hydrogen peroxide [264]. The increase in 
the sensor sensitivity upon LSPR-matching laser stimulus was 1.16-fold, which was 
attributed to a better charge separation by the plasmonic generated hot electrons and 
the hot holes in the oxide used as support. 

4.4 Conclusions 

The immense variety of nanozymes-containing systems is reflected in the diversity 
of optical properties of the metallic nanoparticles. The fine shift in the LSPR makes 
outstandingly sensitive sensors with or without the aid of electrochemical approaches. 
In addition, LSPR-stimulus through an external source is a powerful tool of catalytic 
enhancement, mainly due to hot electron transfer mechanisms and localized heat. 

Some authors working with enzyme-like properties of metallic nanoparticles 
choose not to describe their systems as ‘nanozymes’ or use their analytic approach 
based on Michaelis–Menten modeling. Instead, they use the classical catalytic 
approaches to evaluate the efficiency of the nanocatalysts. Thus, the lack of unifor-
mity in the terminology among these two approaches makes gathering information 
about LSPR nanozymes a critical challenge to be faced. 

The literature concerning non-electrochemical systems of nanozymes for either 
LSPR optical sensors or plasmon-driven catalysis is extensive. The understanding of 
these mechanisms has significantly advanced in the last decade, which allowed an 
expanded variety of applications in real samples.
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Fig. 15 LSPR stimulated AgAu hollow nanoshells used as nanozymes for hydrogen peroxide 
sensing. TEM micrographs of AgAu/SiO2 (A,C) and AgAu/GO (B,D). Calibration curves gener-
ated by chronoamperometry for AgAu/SiO2 and AgAu/GO in dark and upon different wavelength 
stimulus (E,F). UV–Vis spectrum of AgAu/GO and AgAu/SiO2 and enhancement in sensitivity 
found upon each laser stimulus. Reprinted with permission from[32]. Copyright 2022 American 
Chemical Society
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However, despite the recent development of nanozymes as either electrochemical 
LSPR sensors or electrochemical LSPR-stimulated systems, there is still plenty of 
room for improvement. The outcomes of LSPR stimuli alongside electrical stimulus 
are yet to be fully comprehended, and its use in biological applications is at the 
beginning stagesy [2]. 
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Carbon Nanomaterials 
in Electrochemical Biodevices 

Thiago da Costa Oliveira and Steffane Quaresma Nascimento 

Abstract A biosensor is a measuring system that contains a biological receptor unit 
that is highly selective for target analytes (DNA/RNA, proteins, or simple chemicals 
like glucose or hydrogen peroxide). Carbon nanomaterials (CNMs) are appealing 
possibilities for enhancing biosensor sensitivity while maintaining low detection 
limits due to their ability to immobilize a high number of bioreceptor units in a small 
space while also acting as a transducer. Furthermore, CNMs can be functionalized 
and conjugated with organic compounds or metallic nanoparticles; the generation of 
surface functional groups leads to the formation of nanomaterials with novel capa-
bilities (electrical, physical, chemical, optical, and mechanical). CNMs have been 
frequently used in biosensor applications due to their fascinating features. Carbon 
nanotubes (CNTs) and carbon fibers (CFs) are used as scaffolds for biomolecule 
immobilization at their surfaces, as well as transducers for signal conversion involved 
in biological analyte recognition. This chapter provides an in-depth examination of 
the synthesis and functionalization of CNMs, as well as their potential applications 
in electrochemical devices (based primarily on the detection of current, potential, 
impedance, or other electrical property). 

Keyword Carbon nanotubes · Carbon nanofibers · Nanomaterials 
functionalization · Biodevices · Electrochemical detection 

1 Overview  

Carbon atoms have a narrow band gap between their 2s and 2p electronic shells 
can undergo sp, sp2, and sp3 hybridizations. The two most well-known allotropic 
forms of carbon are diamond (sp3 hybridization) and graphite (sp2 hybridization) 
[1]. Graphite is the most widely used natural material option, with applications in a 
wide range of large-scale industrial technical problems. Because of the high demand 
for synthetic graphite in the market, its use has increased significantly in recent years.
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Widespread scientific in-depth investigation into graphite has shown that its exclu-
sive integration of physical and chemical features of stacked layers of hexagonal 
sp2 carbon arrays. Over the last two decades, graphite has been used as a precursor 
material to generate a wide range of carbon nanomaterials using enhanced manufac-
turing processes and nanostructured materials, most notably fullerenes, single- and 
multi-walled nanotubes, and grapheme [2]. The geometrical structure of nanoma-
terial particles is the primary criterion for their classification, since nanomaterials 
have size-dependent physical, chemical, and biological properties. These particles 
may take the form of tubes, horns, spheres, or ellipsoids. CNTs and carbon nanohorns 
(CNHs) are tube or horn-shaped particles, respectively; fullerenes contain spherical 
or ellipsoidal nanoparticles [3]. Due to low toxicity and large-scale demand, CNMs 
have numerous technical uses in micro and nanoelectronics, gas storage, the fabri-
cation of conductive polymers, composites, paints, textiles, batteries with extended 
lives, and biosensors [4]. 

According to their structural dimensions, NMs are divided into four classes 
(Fig. 1). Zero-dimensional nanomaterials (0D-NMs, i.e., fullerenes, particulate 
diamonds, and carbon dots) are nanoscale materials in all dimensions. One-
dimensional nanoscale materials (1D-NMs, i.e., CNTs, CNFs, and diamond 
nanorods) have one dimension larger than nanoscale. Thin-sheet materials with 
nanoscale thickness are commonly referred to as two-dimensional NMs (2D-NMs, 
i.e., graphene, graphite sheets). Fibrous, powdery, polycrystalline, and multilayer 
materials are all examples of three-dimensional NMs (3D-NMs), which are made up 
of various building blocks, such as 0D-, 1D-, and 2D-NMs [5]. 2D hexagonal carbon 
lattices make up the majority of carbon nanostructures. However, in fact, employing 
a carbon lattice as a starting material hinders the creation of carbon nanostructures. 
Graphitic nanostructures are typically made by reorganizing carbon atoms from 
sources such as graphite, organic gases, or volatile organic compounds, as opposed 
to graphene nanoplatelets and multilayer carbon nanosheets that can be isolated from 
naturally occurring graphite, using instrumental techniques. Carbon vapor deposition 
(CVD), laser ablation, and arc discharge are the most popular methods [6, 7]. 

Because of their large surface area, CNMs have been widely used in electro-
chemical biosensors because many detection events can occur simultaneously on 
their surface and biomolecule attachment is easy. These materials have electrical, 
photonic, physical, and mechanical qualities that allow them to be used in biosen-
sors [8]. These materials are inexpensive, have a wide voltage range over which the 
CNM electrode can perform, and have good electrocatalytic activity for a variety 
of redox systems (chemical and biological). Biosensors’ electrochemical perfor-
mance can be enhanced by altering their structure to modify their electrical, chemical, 
and structural properties for a given application [9]. CNMs-based surfaces can be 
easily tailored through various covalent and non-covalent functionalization methods, 
which improve their electrochemical sensing capabilities. Furthermore, these mate-
rials are highly biocompatible. Electrochemical sensors based on CNTs have higher 
sensitivity, selectivity, fast electron transfer rate, and low detection limits [10, 11]. 

Doping can have a significant impact on the electronic, mechanical, and 
conducting properties of CNTs [12]. Furthermore, the different types of CNMs
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Fig. 1 Carbon nanoallotropes: Carbon dots, nanodiamond, fullerenes, carbon nanotubes, carbon 
nanohorns, graphene, carbon nanoribbons, and combined superstructures. Reprinted from [5] with 
permission

have different densities of states. The density of states of the CNMs-based elec-
trode determines the electron transfer capabilities with target molecules. For a faster 
electron transfer process, the energy of electrons in the electrode should be equiva-
lent to the energy of electrons in the redox reaction. The chance of electrons having 
enough high energy to transfer to the redox system grows as the density of states 
increases. The density of states in CNMs varies with structure and can be altered by 
modulating their atomic bonding patterns. It is also determined by the tube diam-
eter in the case of CNTS. By carefully peeling off CNTs, the density of states can 
be enhanced. By altering the electronic structure of multi-walled CNTS, controlled 
oxidation can improve their electrochemical performance [5, 13]. Inorganic parti-
cles can be effectively chemically linked to CNMs to modify the electronic structure 
of each component, resulting in hybrid structures with synergistic electrocatalytic 
activity [9]. 



88 T. da Costa Oliveira and S. Q. Nascimento

2 Carbon Nanomaterials 

Fullerenes, C60 molecules of varying sizes (30–3000 carbon atoms), were found 
in the early 1980s. Fullerenes are closed hollow cages composed of sp2-hybridized 
carbon atoms organized in 12 pentagons and a calculable number of hexagons based 
on the total amount of carbon atoms. A fullerene containing 20 + 2n carbon atoms 
will include n hexagons [5]. The closed shapes of the fullerenes dictate the number 
of pentagons, which is always 12 in those with perfect structures known as truncated 
icosahedral (stable carbon nanostructures). As a result, C60 and other fullerenes (C70, 
C76, C82, and C84) can be thought of as a carbon nanoallotrope with hybridization 
between sp2 and sp3 [8]. The carbon atom arrangement is pyramidalized rather than 
planar, and thus, a “pseudo”-sp3-bonding component must be present in the essen-
tially sp2 carbons. C60 is succinctly a spherical molecule with an exterior diameter 
of 0.71 nm and chemical characteristics that are extremely comparable to organic 
molecules. It is, nonetheless, the smallest carbon nanostructure and a representa-
tive 0D carbon nanoallotrope [7]. Because of its ability to avoid the formation of 
double bonds in the pentagonal rings, the C60 molecule is commonly stated to be 
not superaromatic. There are two types of bond lengths discovered using an X-ray 
diffraction pattern, one with a length of 1.38 Å connecting C-atoms common to a 
couple of neighboring hexagons and the other with a length of 1.45 Å connecting 
C-atoms common to the pentagon-hexagon pair. Nowadays, vaporization of graphite 
by pyrolysis, radio-frequency-plasma, or arc discharge-plasma processes is widely 
used for commercial-scale production of fullerenes [14, 15]. 

Among the many investigations on fullerene, one of the most admirable discov-
eries is the ability of the C60 molecule to acquire from one to six electrons, even 
though it is already rich in electrons, forming equivalent anions. This is only feasible 
because the C60 molecule’s non-binding LUMO molecular orbitals have an extremely 
low energy level [5]. Fullerenes also have good chemical stability, huge surface 
area, high mechanical resistance, and the ability to create a superconductor when 
mixed with alkali metals and can be easily modified with a wide range of function-
alized chemicals via structural flaws or the intermediary production of epoxy rings 
[7]. Furthermore, fullerenes can interact hydrophobically with CNTs and graphene 
materials. Nevertheless, fullerenes have a high electron exchange capacity and can 
mediate electron transfer in the construction of various electrochemical sensors and 
biosensors with electrocatalytic response [15]. 

Carbon nanotubes (CNTs) are one of the allotropic modifications of carbon that 
were discovered in 1991 by Japanese scientist Iijima [16]. Using sp2 hybridization, 
each carbon atom with three electrons forms trigonally coordinated bonds to three 
other carbon atoms in CNTs. CNT is made up of one layer of graphene that has been 
seamlessly rolled into the shape of a hollow tube. Carbon nanotubes are distinguished 
by rolled graphene sheets stacked in cylindrical/tubular structures with diameters 
of several nanometers. CNTs can vary in length, diameter, number of layers, and 
chirality vectors (symmetry of the nulled graphite sheet) [7].
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CNTs are classified into two types based on their structures: single-walled carbon 
nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). SWCNTs 
are made by rolling a single layer of graphite (referred to as a graphene layer) into 
a seamless cylinder (long wrapped graphene sheets). SWCNTs have a length-to-
diameter ratio of 1000 or larger, allowing them to be called a nearly one-dimensional 
structure, as previously stated. The majority of SWCNTs have a diameter of approx-
imately 1–3 nm, (whereas MWCNTs have a diameter of 5–25 nm and a length of 
approximately 10 nm) [6]. Two separate areas with diverse physical and chemical 
properties form a SWCNT. The tube’s sidewall is the first, and the tube’s end cap is 
the second. The terminating cap is made up of pentagons and hexagons. The well-
known C60 hemisphere appears to be the smallest cap that fits on to the cylinder of 
the carbon tube. This cap is well supported by the smallest experimental value of 
CNT diameter of 0.7 nm [17]. 

MWCNTs are a cluster of concentric SWCNTs of varied diameters (made of 
many layers of graphite rolled in on themselves to produce a tube shape). The length 
and diameter of these structures, as well as their characteristics, differ greatly from 
those of SWCNTs. MWCNTs have an interlayer distance of about 3.3 Å, which is 
comparable to the gap between graphene layers in graphite [6]. MWCNTs (double-
walled carbon nanotubes, or DWCNTs) are a unique case that must be noted due 
to their morphology and features that are extremely similar to SWCNTs [18]. The 
gram-scale synthesis of DWCNTs was first proposed in 2003 by the chemical vapor 
deposition (CVD) technique, which involves the selective reduction of oxide solid 
solutions in methane and hydrogen [19]. 

The single layer of graphene in CNTs can be rolled in a variety of ways. The CNTs 
are classified as zigzag, armchair, or chiral based on the number of unit vectors in 
the graphene crystal lattice along two directions in the honeycomb structure, as can 
be seen in Fig. 2a. The chirality of carbon nanotubes has a significant impact on 
their properties. SWCNTs’ electrical properties are determined by their chirality 
or hexagon orientation with respect to the tube axis [20]. The chirality of a CNT 
determines whether it is metallic or semiconducting in nature. The electrochemical 
properties of SWCNTs are determined by their roll-up vectors (n, m). The SWCNTs 
are metallic if the roll-up vectors n − m = 3q, where q can be any integer/zero. If 
n − m = 3q, the SWCNTs are semi-conductive. If n = m, the nanotubes are referred 
to as armchair. If m = 0, they are referred to as zigzag; otherwise, they are referred 
to as chiral [21]. Furthermore, depending on the diameter of the tubes, SWCNTs can 
exhibit electrical conductivity or semi-conductive properties. Armchair SWCNTs 
have higher electrical conductivity than copper, whereas zigzag and chiral SWCNTs 
have semi-conductive properties that allow them to be used in sensor fabrication 
[20–23]. 

When compared to other fibrous materials, CNTs have superior physical proper-
ties such as rigidity, strength, and elasticity. They have a higher aspect ratio (length-
to-diameter ratio) than other materials. CNTs’ high aspect ratios can range from 
102 to 107 [23]. Because of their smaller diameter, SWCNTs have a higher aspect 
ratio than MWCNTs. In addition, they have high thermal and electrical conductiv-
ities when compared to other conductive materials. CNTs have a strength that is
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Fig. 2 Structure and models of carbon nanotubes in function of their number of walls. a Single-wall 
carbon nanotubes (SWCNTs) structures in function of their chirality (zigzag, armchair, and chiral); 
b double-walled carbon nanotubes (DWCNTs); and c multi-walled carbon nanotubes (MWCNTs) 
made up of several concentric sheets. Reprinted from [24] with permission

10–100 times that of strong steel at a fraction of the weight [25]. These nanomate-
rials do have such distinguishing characteristics that make them potential candidates 
for use in technological fields. Because of their high electron transfer capabilities, 
carbon nanotubes have been used as an electrode in electrochemical reactions [7, 26]. 
They can be used in electrochemical sensors because they allow electron transfer in 
chemical reactions at the electrode interface. CNTs have numerous applications in 
nano-electro-mechanical systems [4, 27, 28]. 
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3 Synthesis 

As aforementioned, carbon nanotubes were discovered in the carbon soot of graphite 
electrodes during an arc discharge experiment in 1991, using a current of 100 amps to 
produce fullerenes [16]. However, two researchers at NEC’s Fundamental Research 
Laboratory produced the first macroscopic CNTs in 1992 [29]. The same method 
was used as in 1991. Because of the high temperatures caused by the discharge, the 
carbon contained in the negative electrode sublimates during this process. Because 
carbon nanotubes were discovered using this method, it has become the most widely 
used method of CNT synthesis. 

First, a carbon arc discharge with a suitable catalyst was used to synthesize 
SWCNTs or MWCNTs with a high yield and greater control over the size of the 
synthesized nanotubes [6]. The CVD method has resulted in CNTs with smaller 
diameters, lower yield, but higher quality. The laser ablation method produces a 
lower yield and a much smaller diameter, but it produces much finer quality. Metallic 
and semi-conductive carbon nanotubes can be synthesized via selective functional-
ization, selective destruction via electrical heating, or separation via density gradient 
ultra-centrifugation [23]. 

Using transition metal nanoparticle catalysts, CVD was used to produce high-
quality SWCNTs and MWCNTs in vertically aligned arrays. They were synthesized 
on a massive scale using arc discharge and CVD methods (Co-Mo catalysts). The 
CVD method, which requires simple equipment and mild temperature and pres-
sure conditions, is better suited for large-scale CNT production than the other two 
methods. Vertically aligned arrays of CNTs were created using metallic and quasi-
crystalline substrates. CNTs have been reported to be synthesized by pyrolyzing 
metal carbonyls in the presence of other hydrocarbons. The presence of transition 
metals in graphite electrodes has resulted in CNTs with higher product output and 
reproducibility [5]. Transition metal catalysts and the CVD method have been inves-
tigated to obtain high-quality CNTs in vertically aligned arrays. Catalysts are used 
in the CVD synthesis to grow nanotubes on substrates. Metallic nanoparticles are 
used as catalysts, and their size is determined by the diameter of the nanotubes to 
be synthesized (0.5–5 nm for SWCNTs, 8–10 nm for MWCNTs) [7]. Ni, Co, and 
Fe nanoparticles have been used as nano catalysts in the synthesis of CNTs. The 
CVD reactors use inert gas methane to produce SWCNTs and ethylene to produce 
MWCNTs. The substrate is heated to 850–1000 °C for SWCNTs and 550–700 °C 
for MWCNTs synthesis [6, 23]. Carbon is produced during the thermal decompo-
sition of hydrocarbons and is dissolved in the metal nanocatalyst. When a certain 
concentration of carbon is reached, a semi-fullerene cap forms, which serves as the 
fundamental unit for the growth of the nanotube. Carbon is continuously flowed from 
the hydrocarbon source to the catalyst particle. Finally, CNTs are obtained following 
a purification process and the removal of catalysts from the tips and surfaces of 
nanotubes [30]. The final step is being researched so that high-quality synthesized 
material can be obtained.
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When different carbon nanomaterials are purified, often with acid(s) at elevated 
temperatures and for extended periods of time, changes in the amount of metallic 
catalyst nanoparticles, surface functionalization of carbon, and overall morphology 
occur. Spectroscopic studies revealed that changes in the morphology of CNF, for 
example, were significant depending on their original morphology [31]. Although arc 
discharge and laser ablation methods produce a large amount of SWCNTs, they have 
drawbacks as well, such as the need to evaporate C-atoms from solid state sources 
at very high temperatures (>3000 °C), and the nanotubes bundle together during 
formation, which limits their applications [32]. The length of a CNT is determined 
by the time it takes for it to grow. The diameter of synthesized SWCNTs ranges from 
0.7 to 3 nm, while MWCNTs range from 10 to 200 nm. Because of their large surface 
area, CNTs can effectively load various types of drugs on their internal and external 
surfaces [27]. 

Graphene nanoribbons (GNR): Thin ribbons of graphene monolayers are a 
new type of graphene that is gaining a lot of attention in the scientific commu-
nity. The majority of research on these materials has concentrated on the thin elon-
gated graphene monolayer strips that can be created by “unzipping” CNTs [9, 33]. 
Graphene nanoribbons are frequently described as a one-dimensional sp2-hybridized 
carbon strip of finite dimension with defined edges, with carbon atoms that are not 
three-coordinated. Graphene nanoribbons are classified into three types based on 
their edge termination: (i) armchair, (ii) zigzag, (iii), and chiral nanoribbons [34]. 
Edge reconstruction is possible because the edge carbon atoms are not bound satu-
rated. While the edge pattern of the armchair graphene nanoribbon is stable due to 
the presence of strong dangling bonds, edge reconstructions are expected at high 
temperatures for zigzag graphene nanoribbons. Hydrogen saturation is commonly 
used to stabilize the edge structure [35]. Other edge profiles involving pentagonal 
and heptagonal carbon rings have been observed; however, such edge reconstruc-
tions are extremely rare. Graphene nanoribbons, like graphene, can have bilayered 
or few-layered configurations; the design is designated a graphitic nanoribbon when 
more layers of finite graphene strips are placed together [36, 37]. 

Carbon nanodiamonds (CNDs) are a structural family of nanocarbons that 
includes fullerens, tubes, onions, and horns. The first nanoscale diamond particles 
were created in the 1960s by detonating carbon-containing explosives. However, 
it took nearly three decades after the initial discovery for these nanodiamonds to 
become more well-known in the scientific world. Only in the late 1990s did nanodi-
amonds begin to be studied more thoroughly, and they gradually began to find their 
way into various applications [31]. CNDs are diamondoid-like sp3 carbon nanopar-
ticles with sizes more than 1–2 nm but less than 20 nm. They are not dispersible, 
and thus, top-down processes like jet milling or microdiamond abrasion are used 
to make them. With diameters greater than 20 nm, this form of nanostructure acts 
as bulk diamonds [9]. Diamondoids, on the other hand, are naturally occurring sp3 

carbon nanostructures with diameters less than 1 nm found in petroleum deposits. 
The sp3-hybridized surface-bound carbon atoms of these diamondoids are generally 
attached to hydrogen or other non-carbon atoms. As a result, they have properties 
that are more akin to organic molecules than bulk diamonds [31]. As the diameter of
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the sp3 carbon cluster increases, the percentage of carbon atoms at the surface drops, 
and the diamond feature of the nanoparticles becomes more prominent [38]. 

Nanodiamonds’ size, shape, and quality are determined by the procedures 
employed to make them. Detonating an explosive mixture of carbon-containing 
substances such as trinitrotoluene and hexogen is the most well-known method for 
mass-producing nanodiamonds. Up to 75% of the resulting soot is made up of nanodi-
amonds with diameters of 4–5 nm and a limited size distribution. Because of their 
small size and narrow size distribution, they are a popular research topic. They tend 
to aggregate with each other if not thoroughly cleaned. Furthermore, they are rela-
tively chemically inert while remaining reactive enough to allow functionalization. 
Another benefit is their large relative surface area, which can be used to effectively 
attach various compounds. They have high hardness, thermal conductivity, refrac-
tive index, coefficient of friction, insulation properties, and high biocompatibility 
[31, 39]. 

Carbon nanohorns. Iijima discovered SWNHs in 1999 while researching CNT 
formation [40]. Nanohorns are tubular/conical structures made of a single graphenic 
layer. They are typically found in large spherical aggregates with diameters ranging 
from 80 to 100 nm and resembling dahlia flowers. Individual nanohorns have diame-
ters of 1–2 nm at the tips and 45 nm at the base of the cone. The wall-to-wall distance 
between SWNHs is approximately 0.4 nm [9]. Other types of SWNH aggregations 
were observed that resembled the characteristics of buds and seeds. Cones are formed 
by cutting a wedge from a single graphenic layer and connecting the exposed edges 
in a seamless manner. They are more easily synthesized than CNTs, on a larger 
scale, at room temperature without the use of metal catalysts. They can be created 
through the use of carbon rod arc discharge, laser ablation of pure graphite, and Joule 
heating. CNHs have a high surface area and good porosity, which can be used to their 
advantage in the field of biosensing [8]. 

Carbon dots (CDs) are quasi-spherical carbon nanoparticles with diameters of 
2–10 nm that have a high oxygen content and composed of various volumetric ratios 
of graphitic and turbostratic carbon. CDs are typically amorphous and contain mostly 
sp3-hybridized carbon [9]. Carbon nanodot, carbon quantum dot, and graphene 
quantum dot classes are mentioned in addition to CD classes. As a result, graphene 
quantum dots are frequently used in electrochemical sensors. They have a lateral 
dimension of about 100 nm and are made up of up to ten single atom layers with a 
visible graphene lattice [14]. CDs have been proved to be non-toxic in vitro exper-
iments. They were also a promising candidate for biosensor components because 
of their capacity to operate as an electron donor and receiver. As a result, CDs are 
the CNM with the most biosensor publications, trailing only graphene and carbon 
nanotubes. Carbon nanodots are relatively smaller (spherical particles of about 10 nm 
in diameter). They are typically used in electrochemical sensor assemblies after being 
functionalized with redox labels or receptors [15]. 

Carbon nanodots are created utilizing a variety of processes, and there has been a 
surge of interest in carbon nanomaterials in recent years. Carbon nanodots are typi-
cally manufactured utilizing a top-down process based on a laser ablation strategy and 
treated mixes of graphite powder and cement. This process creates the main structure
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of the carbon dots, which will then be treated with oxidative to enrich the surfaces of 
the carbon dots with reactive oxygen groups [14, 15]. Surface passivation occurs with 
a range of organic compounds and oligomers that are often incorporated on carbon 
dots. Because of the multiple advantages of the electrochemical etching strategy, such 
as abundant conductive carbonaceous substrates (graphite rod), abundant natural 
resources, and low cost, the electrochemical etching method, a top-down approach, 
is a viable method to create carbon nanodots [2]. Carbon nanodots’ dimensions and 
chemical compositions can be easily adjusted by adjusting a variety of synthetic 
parameters such as pH, concentration, electrolyte composition, and electrochemical 
mode of electrolysis (potentiostatic, galvanostatic, and potential varying techniques, 
etc.). However, long-term stability, which is one of the most crucial features in a 
biosensor, is hardly obtained [5]. 

Carbon black (CB) belongs to the amorphous nanocarbon family, with average 
diameters ranging from 3 to 100 nm, and has lately been used in biosensing appli-
cations, compared to nanocarbons that are notable in biosensor applications [9]. It 
is a potential nanocarbon for biosensing applications because of its low cost, high 
analytical sensitivity, experimental simplicity, mobility, and good selectivity. CB has 
also been claimed to be a feasible alternative to other members of the family, such 
as graphene and graphene-like structures, fullerenes, and CNTs, and to boost the 
activity in enzyme biosensors, due to its high conductivity [5, 41]. Particle size, 
porosity, surface chemical characteristics, aggregate morphology, and surface area 
define the physical properties of CB, which is made up of sp2 and sp3 hybridized 
carbon atoms. CB is also frequently seen as a loosely bound agglomerates piled on 
top of one another [15]. This makes it difficult to collect consistent and rigorous data 
in the production operations of biomolecular applications of CB, such as obtained 
with graphene and graphene-like structures [7]. In addition, characterization methods 
for these structures, which are each a few unit cell size, are required. 

4 Functionalization of CNMs 

CNMs are regarded to be excellent building blocks for manufacturing nanoscale 
functionalized materials due to their huge surface area and outstanding electrical 
and mechanical capabilities. In order to develop diverse functionalized CNMs, a 
wide range of organic and inorganic NMs have been investigated to date. Based 
on the difference in bonding between CNMs and their functionalized derivatives, 
these techniques are categorized into two categories: covalent and non-covalent 
functionalization [2, 42]. 

Covalent functionalization in CNMs depends on reactions with oxygen-containing 
groups bonded to the CNMs’-conjugated skeleton. Non-covalent functionalization 
involves the use of various functional molecules or active species as assembly medi-
ators to functionalize the surface of CNMs through non-covalent interactions [43]. 
The most straightforward method for chemical functionalization of CNMs is to insert 
carboxylic acid (–COOH) groups on the surface via an oxidation process that uses
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Fig. 3 Reaction scheme for EDC and EDC-NHS-based covalent crosslinking of biomolecule with 
carbon nanotube. Reprinted from [43] with permission 

concentrated acids such as H2SO4, HNO3, HCl, or H2O2, or acid mixture [2, 44]. 
Furthermore, the structure of these carboxylic acids can be used for covalent attach-
ment of organic or inorganic groups, resulting in highly dispersible carbon mate-
rials [12]. Carbodiimide compounds (Fig. 3), which can activate carboxyl groups 
on CNTs for direct reactivity with primary amines in biomolecules, can be used to 
react carboxylated CNTs with biomolecules. N-ethyl-N’-(3-dimethylaminopropyl) 
carbodiimide hydrochloride is a common water-soluble carbodiimide (EDC). When 
EDC combines with carboxyl groups, it forms an intermediate o-acylisourea ester 
that can be easily displaced by primary amine in the biomolecule [45]. 

Surface modification of CNMs is critical for biomedical applications. Firstly, 
most CNMs are insoluble in aqueous solutions. Nonetheless, several biomedical 
applications of these materials could be understood on the basis of their water solu-
bility and ease of use in a biological system [27]. These materials’ solubility can 
be increased with the right surface modification. Second, the surface treatment can 
imbue the CNMs with properties that can be used in various applications. The surface 
treatment is also effective in reducing the toxicity of CNMs [46–48]. 

The modification of CNMs with metal and metal oxide NPs, with strict control 
over the size, shape, and crystalline structure, has become critical for nanotech-
nology applications in many fields such as medicine, catalysis, and electronics [8]. 
Surface deposition of metals and metal oxides onto CNMs has traditionally been 
accomplished through a bottom-up approach. Many wet chemistry methods, such as 
hydrothermal, microwave synthesis, and sol–gel processing, have been developed to 
date for the synthesis of metal and metal oxide NPs [48]. The role of hydrothermal
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synthesis is performed in an autoclave using an aqueous solution reaction. The inner 
temperature of the autoclave can be raised above the boiling point of water, reaching 
the pressure of vapor saturation. Hydrothermal synthesis is commonly used for 
depositing metal and metal oxide NPs on CNMs such as graphene and CNTs, which 
can be easily obtained by hydrothermally treating peptized precipitates of a metal 
precursor with water. By controlling the solution composition, reaction temperature, 
pressure, solvent properties, additives, and aging time, the hydrothermal method can 
be used to monitor particle size, morphology, crystalline phase, and surface chemistry 
[8]. 

5 Application of CNMs in Biosensing 

The sensors and biosensors developed are usually evaluated for some parameters 
that determine their analytical performance, such as sensitivity, selectivity, limit 
of detection (LOD) and quantification (LOQ), repeatability, and reproducibility, in 
order to guarantee the quality of the results obtained and to validate the analytical 
method. Different modifications to the same base electrode can result in sensors with 
varying specificities for a given analyte. Numerous studies involving electrochemical 
sensors and biosensors based on graphene, carbon nanotubes, and fullerene have been 
described in recent literature for the detection of drugs and compounds of clinical 
interest. 

Arvand and Hemmati developed a nanocomposite of graphene quantum dots 
(GQDs), Fe3O4 nanoparticles, and functionalized MWCNT (Fe3O4@GQD/f – 
MWCNT) for sensitive detection of progesterone (P4). The estimated LOD and 
sensitivity were 2.18 nmol L−1 and 16.84 μA L  μmol−1, respectively. This sensor 
demonstrated outstanding stability, selectivity, sensitivity, and repeatability, and it 
could be successfully used to determine P4 in human serum samples and pharmaceu-
tical items with high recoveries and without interference from interfering substances 
[49]. 

Sutradhar and Patnaik using thiol-capped gold nanoparticle-based nanocomposite 
with 3-amino-5-mercapto-1,2,4-triazole as the ligand created a gold nanoparticle-
functionalized fullerene (C60)-modified vitreous carbon electrode for glucose detec-
tion (Fig. 4). The electrocatalytic behavior of the AuNPs@C60/GCE sensor was inves-
tigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy 
(EIS). The highly stable and low onset potential non-enzymatic sensor exhibited 
high electrocatalytic activity and effective electron transfer from the electro-catalyst 
to the substrate electrode in a linear concentration range of 0.025–0.8 mmol L−1 and 
a higher sensitivity response of 1.2 μAμmol−1 L cm−2 with good reproducibility, 
long-term stability, free of interference from chlorine and oxygen, and detection limit 
of 22.0 μmol L−1 [50]. 

By covering and attaching SWNT with conductive polymer, Jin et al. create 
stretchable and transparent electrochemical sensors based on single-walled carbon 
nanotubes (SWNTs). Poly-(3,4-ethylenedioxythiophene), PEDOT, was chosen as a
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Fig. 4 Schematic representation for synthetic route of AuNPs@C60 nanocomposite. Reprinted 
from [50] with permission 

binder for its high conductivity, strong electrochemical activity, and biocompatibility. 
Additionally, as an excellent conductive coating and binder, it minimizes contact 
resistance and considerably improves the electrochemical performance of SWNTs 
films. Furthermore, the optoelectronic and electrochemical sensing performance is 
exceptionally stable during the stretching and bending processes. Proof-of-concept 
tests were carried out, which involved recording NO release from mechanically sensi-
tive endothelial cells cultivated on the stretchable sensor, revealing its promising 
potential in real-time monitoring of mechanically induced biochemical signals from 
living cells and tissues [51]. 

The determination of L-Dopa is critical because it is the immediate precursor of 
dopamine (DA) and is used to treat Parkinson’s disease. Because DA does not cross 
the blood–brain barrier, it cannot be administered orally. Thus, L-Dopa is adminis-
tered and converted into dopamine by the enzyme dopa-decarboxylase, stimulating 
dopamine production in the body. Sooraj and colleagues developed a sensor for L-
Dopa determination in human urine and pharmaceutical samples by grafting copper 
nanoparticles with molecular imprinted polymer on MWCNTs (CuNPs/MWCNT-
MIPs). The non-covalent interaction between L-Dopa and the functional groups 
present in the polymer composite sorbent’s selective binding sites is primarily respon-
sible for the recognition capacity toward L-Dopa with a detection limit of 7.23 nmol 
L−1. The electrochemical investigation reveals that the imprinted (CuNPs/MWCNT-
MIP) material has adequate selectivity, distinguishing between L-Dopa and struc-
turally related compounds like DA, uric acid (UA), 3,4-dihydroxyphenylacetic acid, 
and homovanillic acid [52]. 

Anojčić et al.  [53] developed carbonaceous nanomaterial-modified carbon paste 
electrodes (CPEs) with MWCNTs in their native and functionalized (ox-MWCNT) 
forms to determine DA. The method demonstrated a linear concentration range of 
16.15–192.70 ng mL−1, low detection limit of 4.89 ng mL−1, and a relative stan-
dard deviation (RSD) of less than 1.3%, under optimized conditions. Interferences 
from ascorbic acid were also insignificant. The developed method was successfully 
applied for DA determination in injection/selected infusion matrix solutions, with 
the obtained results being in good agreement with the DA content declared by the 
producer and the method’s RSD being less than 1.0% [53]. 

Upadhyay and Srivastava [54] describe an enantioselective electrochemical sensor 
that distinguishes atorvastatin isomers for the first time (ATS). The sensor was created
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using a glassy carbon electrode (GCE) that had been modified with a functionalized 
MWCNT containing hydroxypropyl-β-cyclodextrin (HBC). The developed method 
demonstrated the outstanding benefits of chiral nanocomposite-modified electrodes, 
such as excellent enantioselectivity, high stereospecificity, and good reproducibility 
[54]. 

Zhang and Li [55] used a glassy carbon electrode modified with non-covalent 
self-assembly of porphyrin-diazocine-porphyrin (PDP) and fullerene (C60), PDP-
C60/GCE for DA detection. This process, widely employed for the production of 
novel functional optoelectronic materials, involves the combination of electron-
rich and electron-withdrawing chemical moieties inside a donor–acceptor (D-A) 
systems. DA electrochemical activity was measured using cyclic voltammetry (CV) 
and differential pulse voltammetry (DPV). The anodic peak current rose linearly with 
increasing DA concentration in the 0–200 μmol L−1 range, and the detection limit 
was determined to be 0.015 μmol L−1. Thus, the suggested sensor demonstrated 
good sensitivity, acceptable selectivity, outstanding repeatability, and stability, indi-
cating that PDP–C60/GCE is a viable electrode material for dopamine analysis in 
real samples [55]. 

The examples listed above illustrate some characteristics of biodevices built from 
modifications and/or combinations of CNMs, such as CNTs, C60 and CDs. Next, 
carbon fibers (CFs), another type of CNM, will be discussed. 

6 Carbon Fibers 

The electrochemistry of carbon materials has been prominent recently in the scien-
tific community due to properties such as reproducibility, low cost, high sensitivity, 
and easy handling [56]. Among these materials, carbon fibers (CFs) have drawn 
attention in 1950s when Bacon produced the first CFs [57]. CFs are long filaments 
that have 90% by weight of carbon in their composition and exhibit these properties 
high modulus, compressive and tensile strength, flexibility, and adjustable electro-
chemical performance that candidates these materials for a range of applications. 
Aerospace, automobiles, chemicals, transportation, construction, sewage treatment, 
and other areas are examples [58, 59]. Furthermore, chemical and electrochemical 
techniques are used to functionalize CFs to promote the production of reactive groups 
for attaching electrochemically active molecules such as noble metals, metal oxides, 
polymers, and proteins [60–62]. CFs are used to make electrochemical sensors with 
high sensitivity and adaptability, as well as energy equipment (supercapacitors and 
batteries) with high energy/power density, because of this change [63]. Thus, this 
topic will discuss the characteristics, fabrication methods of fibers, and their applica-
tions, focusing on the current progress on biosensors based on CFs. Figure 5 describes 
the interest and focus of this topic.
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Fig. 5 Description of the interest and focus of this topic 

6.1 Structure of Carbon Fibers 

CFs can have a crystalline, amorphous, or partially crystalline structure and can 
be short, long, or continuous. Carbon fiber has an atomic structure comparable to 
graphite, with a spacing of 3.35 (d, d (002) in the c direction between the planes 
of the layers. It is composed of layers of carbon atoms arranged in a pattern [64]. 
Shaped hexagonal (Fig. 6.) It has a high modulus of 0.18–0.35 GPa; however, in a 
wet environment, its shear strength along the axis is poor [65]. 

In graphitic microdomains, the fiber structure is made up of sp2 hybridized carbon 
atoms organized in a two-dimensional hexagonal structure stacked parallel to each 
other in a regular pattern bonded by van der Waals forces [65, 66]. The carbon atoms 
in the graphite layer are covalently linked to this structural configuration due to the

Fig. 6 Structure of carbon fibers in their graphitic form
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superposition of the sp2 orbitals and the delocalization of electrons. This structural 
configuration is responsible for graphite’s high electrical and thermal conductivity 
[67]. The primary structural unit of most fibers is stacked turbostratic layers [68]. The 
spacing between the turbostratic layers is greater than the graphitic layers (Fig. 6).

The basic structural unit can split, fold, twist, and connect the other basic structural 
units in an irregular or random pattern to form microdomains. Carbon fibers have 
a non-uniform structure as a result [64]. The d spacing was raised to 3.44 because 
of sp3 binding and uneven stacking. The fiber production process, which includes 
precursors and processing conditions, determines the structural unit. Carbon fibers 
with alternative precursors, such as polyacrylonitrile (PAN), have a turbostratic struc-
ture, whereas mesophase pitch and steam-grown carbon fibers have a well-stacked 
graphitic crystal structure [69]. During graphitization of stabilized PAN-based fibers, 
the crystalline domain is produced by amalgamation with nearby crystallites or inte-
gration of the surrounding disordered carbons. In addition, by rotation and displace-
ment, the layer planes inside the crystalline domain were repositioned. Graphite 
fibers, on the other hand, nevertheless have enormous turbostratic domains since 
these configurations occur only locally [70]. 

6.2 Fabrication of Carbon Fibers 

The discovery of CFs took place over a century ago. The most frequent precursors 
utilized in the manufacture of CFs are PAN, pitch, and rayon. In these cases, 90% 
of CFs made of PAN, and the remaining 10% are made of pitch, rayon, or other 
materials. Because PAN-based CFs have higher strength, modulus, and voltage, as 
well as higher throughput [59, 71, 72]. 

Most of the time, the fiber production process combines chemical and mechanical 
stages. Three fundamental processes are typical in the case of polymeric precursors, 
as they are in the case of PAN: spinning, thermostabilization, and carbonization. The 
graphitization phase is a follow-up to the carbonization process, in which the heat 
treatment temperature is increased to about 3000 °C [57]. Figure 7 depicts a simple 
PAN fiber fabrication process. 

The initial step is spinning, which can be accomplished in three ways: melt spin-
ning, wet spinning, or dry spinning. The precursor is melted and extruded in the

Fig. 7 Illustrative diagram that describes the carbon fiber fabrication process
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first step. After the filaments emerge, they cool and solidify into the desired shape 
[73, 74]. It is the favored approach since it does not require any resources other 
than the melting of basic materials. In the second scenario, a concentrated precursor 
solution is extruded through the pores in a coagulation bath. Because the solvent is 
more soluble in the coagulation fluid than the precursor, the precursor precipitates 
as a fiber as the solution emerges through the perforations. A concentrated precursor 
solution is used in the dry spinning process. In a drying chamber, extrude the yarn 
such that the solvent evaporates, and the precursor crystallizes as a fiber. Dry or 
wet centrifugation is indicated if the raw material degrades at melting temperature 
[73, 75].

The extruded material in the spinning process must be heat-treated to improve its 
glass transition temperature. During the carbonization process, which converts the 
PAN from thermoplastic to thermoset, this phase is necessary to ensure the material’s 
infusibility. Because it is one of the priciest aspects of the process, optimization 
studies have been used to reduce the time it takes to stabilize while maintaining the 
required characteristics [76]. If a thermostabilization procedure is not completed, 
fiber quality suffers. The procedure must be heated at an acceptable rate such that T g 

rises faster than the thermostabilization temperature and the supplied groups oxidize 
[59]. 

For organic materials, carbonization and graphitization are similar processes, 
which differ only in the degree of orientation and crystallization obtained based 
on temperature. The proposal to carbonize the fiber is to produce flat sheets of 
graphene, graphene, or hybrid, with high carbon content [57, 65]. During this stage, 
the majority of the non-carbon components in the fiber are volatilized as methane, 
hydrogen, cyanide, water, carbon monoxide, carbon dioxide, ammonia, and a range 
of other gases, enriching the carbon bonds and enhancing the fiber’s mechanical, 
electrical, and thermal characteristics [57, 69]. 

Precursors with many heteroatoms lose more carbon during gasification, resulting 
in a fiber with a lot of pores and poor mechanical characteristics. The amount of mass 
lost at this step differs depending on the precursor. PAN has a density of 55–60%, 
whereas isotropic pitches have a density of 20–45%, with substantial dimensional 
contraction [77]. The carbonization stage increases the carbon content, but the graphi-
tization step transforms carbon into graphite, which has a unique structure [70, 78]. 
At 1500 °C, the maximum tensile strength is achieved. There is a rise in modulus and 
a decrease in strength above this temperature. A fast carbonization rate causes fiber 
defects, while slow rates cause a very large loss of heteroatoms [64]. An optimization 
of the process is recommended. 

6.3 Classification of Carbon Fibers 

CFs have been classified in three different ways, namely performance, precursor, and 
commercial availability. Based on performance as CFs, they can be classified into 
the following groups: ultra-high modulus (UHM), high modulus (HM), intermediate
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modulus (IM), standard modulus type (HT), and low modulus type (LM). The UHM 
and HM CFs are highly graphitized between 2000 and 3000 °C, characterized by 
a high modulus (>450 GPa) and (>350 GPa), respectively. As type IM CFs have 
carbon fiber tensile strength greater than (>200 GPa). The HT type is isotropic carbon 
fibers, which show a random orientation of the crystals and have a modulus less than 
(<100 GPa). As LM-type CFs have lower tensile strength (>4.5 GPA) [57, 65]. 

Carbon fibers are created by heating and stretching synthetic fibers (precursor 
fibers). Processing carbon fibers from diverse precursors needs a variety of circum-
stances to generate acceptable end products. The fundamental features are the same 
in both cases. The processing routes for many precursors are comparable on a macro 
level. Furthermore, carbon fiber precursor materials are crucial because the first 
precursor materials have a significant impact on the combination of diverse mechan-
ical, physical, and chemical properties and behaviors in carbon fibers [57, 65]. PAN, 
pitch, Rayan, and cellulose are among the precursors that may be used to classify 
fibers. 

They are categorized as high-performance carbon fibers (HPCF), general-purpose 
carbon fibers (GPCF), and activated carbon fibers based (ACF) on their commercial 
availability as fibers. HPFCs are distinguished by their high graphitic carbon content, 
which gives them mechanical strength. They are primarily utilized in carbon fiber 
reinforced polymer composites (CFRPs) for the aerospace sector [79]. They have 
low tensile strength and modulus as type GPCF, but they are inexpensive, thanks to 
isotropic carbon fibers, which are mostly utilized in the textile sector. Because of 
their unusual characteristics, including as adsorptive capabilities, ACF-type fibers 
have recently attracted interest in materials. Because of their nanopore architectures 
and particular CO2 affinity of ACF surface, ACFs absorb more CO2 than well-
known adsorbent materials such as MOF-5, zeolite, and active carbon [80]. Figure 8 
shows the classification of carbon fibers according to performance, precursor, and 
commercial availability. 

Fig. 8 Classification of carbon fibers
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6.4 Application of Carbon Fibers in Biosensing 

Because of its superior mechanical properties, high-performance carbon fibers are 
utilized in aerospace, aeronautics, transportation, sports, compressed gas storage, and 
civil engineering. Carbon fibers have recently acquired popularity as a foundation 
material for biodevice manufacturing [65]. Because of the remarkable characteristics 
of CFs, including as low relative density, high mechanical strength, high conductivity, 
high temperature resistance, and flexibility, fiber-based electrochemical biosensors 
have stood out in this context. Thus, the next paragraphs describe the application of 
carbon fibers in the most diverse electrochemical biodevices. 

Although the first analytical application of carbon fibers was made in 1975 by 
Jennings et al., their interest in electrochemical devices only grew after work carried 
out in 1979 by Armstrong-James, Ponchon and collaborators [81, 82]. The results 
found by these researchers showed a remarkable improvement in the quality of 
voltammetric results due to the unique characteristics of carbon fibers. From these 
works, the interest in the use of this material in the construction of sensors and 
biosensors has grown, and it is currently possible to observe a growing increase in 
the number of publications on the use of carbon fibers in electrochemical measure-
ments. Carbon fiber-based electrochemical biosensors are widely used for the detec-
tion of physiological and cancer biomarkers and for wearable electrochemical sensor 
applications. 

The work by Liu Deng and associates, which describes a carbon fiber biosensor 
modified with Au@Pt nanoparticles for microbial detection, is an example of carbon 
fiber-based electrochemical biosensors. In this study, the relative suppression of E. 
coli activity is linear and has a LOD of 0.09 mg L−1. The use of carbon fiber modified 
with NPs Au@Pt and its high conductivity, biocompatibility, and electrocatalytic 
activity, according to the scientists, improved the microbial biosensor. The microbial 
biosensor of this material has the potential to be used in environmental monitoring 
[83]. 

Human physiological indices and cellular activity components are also monitored 
using CF-based biosensors. One of the most significant indicators is glucose, and 
keeping track of it is critical for avoiding health concerns including hypertension, 
heart disease, and neurological issues. Salazar and colleagues describe the develop-
ment of a glucose biosensor using a Prussian Blue modified carbon fiber electrode. 
Carbon fibers and PB film have electrocatalytic characteristics that allow for enzy-
matic by-product (H2O2) identification. Against a variety of physiologically inter-
fering substances, the biosensor showed good glucose selectivity. Furthermore, the 
biosensor’s sensitivity and stability are adequate to monitor multiphase and reversible 
changes in brain ECF glucose levels throughout physiological tests, demonstrating 
the biosensor’s good characteristics and use in neuroscience [84]. 

With the 0.132 μmol L−1 LOD and rapid reaction time for an AU detection 
in GE/CFE, Jiao and colleagues developed a simple and cost-effective graphene-
modified carbon fiber (GE/CFE) biosensor for uric acid (UA) determination. With a
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relative standard deviation of 2.8%, the UA with GE/CFE determination is extremely 
selective and repeatable [85]. 

Iost and colleagues also describe the development of a carbon fiber-based 
biosensor for glucose detection. An electrochemical mediator and glucose oxidase 
enzyme are used to modify biosensors like carbon fibers. The sensor was shown to 
detect 30 mg dL−1 in a normal and 200 mg dL−1 in a diabetic  state in vivo.  The  
biosensor has shown promise in terms of potential implanted bioelectronic device 
applications [86]. The research presented in this issue demonstrates the rising need 
for electrochemical biodevices made of carbon fibers, as well as their relevance in 
the scientific community for medical applications. 

Yan Zhang and colleagues created a flexible carbon fiber-based biosensor enclosed 
by gold nanoparticles and adorned with nitrogen-doped carbon nanotube arrays, 
CF@NCNTAs–AuNPs (Fig. 9), and investigated its practical use in electrochemical 
detection in situ H2O2 produced by live cancer cells. With a LOD of 50 nmol L−1, 
this biosensor has outstanding electrocatalytic capabilities [87]. An electrochemical 
H2O2 biosensor was also published by Yuan et al. To construct a two-dimensional 
core–shell structure, carbon sheets doped with VS2@VC@N and decorated with 
ultra-fine Pd nanoparticles grown vertically in CFs are used. With the 50 nmol L−1

Fig. 9 Manufacturing of the CF@NCNTAs–GNPs nanocomposite is depicted schematically. a 
Digital microscope pictures of the CF@NCNTAs–AuNPs microelectrode, which was placed near 
the cells using a micromanipulator. b Current responses of the CF@NCNTAs–GNPs microelectrode 
in amperometric mode. Reproduced with the author’s permission [87]
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LOD, this biosensor exhibited strong electron transfer capability, electrocatalytic 
activity, stability, and biocompatibility to detect H2O2 in live cancer cells and cancer 
tissue in real time, although the unique rosette-like matrix structure [88].

In addition to traditional carbon fiber-based biosensors, flexible electronic and 
wearable smart devices have evolved substantially recently. Rather of lowering sensi-
tivity and accuracy, they make the device smaller, more portable, and more intelli-
gent. As a result, these devices have stood out. Vomero and colleagues, for example, 
describe the development of a flexible biosensor made of carbon fibers that may be 
implanted in mouse brain tissue. The micromachining technique is used to insert 
flexible CFS in this study. The whole electrocorticography (ECoG) electrode set 
is made entirely of single carbon fiber, with no joints or metal linkages. In vitro, 
the produced super flexible neural biodevice exhibited high electrochemical stability 
and outstanding mechanical characteristics, and after in vivo implantation, it displays 
good recording performance [89]. 

In carbon fiber microelectrodes, Asrat and colleagues demonstrated direct detec-
tion of DNA and RNA. And they show that this detection is effective even in complex 
serum samples, and according to the author, this measurement is not masked due to 
the properties of the combination of the FSCV technique and CFs. This is the first 
paper to show that FSCV can co-detect nucleobases when polymerized into DNA or 
RNA when employed with CFMEs, and it might open the way for future therapeutic, 
diagnostic, and research applications [90]. 

7 Concluding Remarks 

Carbon nanomaterials (CNMs) pose as a versatile group of nanomaterials that can be 
used to fabricate or modify biodevices. Such versatility comes from the possibility of 
creating different functional groups that act as binding sites for different biomolecules 
or tissues. Carbon nanostructures, which have unique electrical, optical, physical, and 
chemical properties, have gotten a lot of attention. In recent decades, the number of 
published works reporting the use of these nanomaterials draws attention due to 
their range of applications, covering fields of research as varied as energy storage 
and supercapacitors to nanomedicine. In addition, the compatibility shown by carbon 
nanomaterials allows the creation of composites that have additional advantages to 
the original materials, such as higher biocompatibility and dispersibility. 

The incorporation of different nanomaterials into the design of electrochemical 
biosensors has substantially enhanced their detection sensitivity. Alternatively, flex-
ible and wearable point-of-care (POC) electrochemical sensor can be developed to 
quantify sweat metabolites and secretions in real time. It is thought to be a promising
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approach for real-time monitoring of mechanically produced biochemical signals in 
sensitive cells and tissues during mechano-transduction. 
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Summary 

ACF Activated Carbon Fibers 
AuNPS Gold Nanoparticles 
CB Carbon Black 
CDs Carbon Dots 
CFRPs Carbon Fiber Reinforced Polymer Composites 
CFs Carbon Fibers 
CND Carbon Nanodiamonds 
CNH Carbon Nanohorns 
CNM Carbon Nanomaterials 
CNT Carbon Nanotubes 
CPEs Carbon Paste Electrodes 
CuNPs Cooper Nanoparticles 
CVD Chemical Vapor Deposition 
DA Dopamine 
DNA Deoxyribonucleic Acid 
DWCNTs Double-Walled Carbon Nanotubes 
ECoG Electrocorticography 
EIS Electrochemical Impedance Spectroscopy 
FSCV Fast-Scan Cyclic Voltammetry 
GCE Glassy Carbon Electrode
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GNR Graphene Nanoribbons 
GPCF General-Purpose Carbon Fibers 
GQDs Graphene Quantum Dots 
HBC Hydroxypropyl-B-Cyclodextrin 
HM High Modulus 
HPCF High-Performance Carbon Fibers 
HT Standard Modulus 
IM Intermediate Modulus 
LM Low Modulus 
LOD Limit Of Detection 
LUMO Lowest Unoccupied Molecular Orbital 
MIP Molecular Imprinted Polymer 
MWCNT Multi-Walled Carbon Nanotubes 
NCNTAs Nitrogen-Doped Carbon Nanotube Arrays 
PAN Polyacrylonitrile 
PB Prussian Blue Fe4[Fe(CN)6]3 
POC Point-of-care 
RNA Ribonucleic Acid 
RSD Relative Standard Deviation 
SWCNT Single-Walled Carbon Nanotubes 
UA Uric Acid 
UHM Ultra-High Modulus 
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Abstract Modern coordination chemistry is a multidisciplinary and transversal 
science that makes a bridge between inorganic and bioanalytical chemistry. Due to 
the possibility of designing coordination complexes with different types of ligands, 
its application extends to colorimetric, magnetic, and electrochemical biosensors. In 
this chapter, the applications of inorganic complexes and metal-based biomarkers 
sensors will be addressed, with focus on the physical and chemical properties. We 
shall explore some examples of application in electrochemical biosensors, with the 
aim of improving human health care in clinical diagnosis. 

Keywords Inorganic complexes · Metal-base materials · Electrochemistry ·
Biomarkers · Clinical diagnosis 

1 Inorganic Complexes 

The theory of the chemistry of coordination compounds was developed from the 
research of Alfred Werner and Sophus Mads Jörgensen, who observed compounds 
with characteristics similar to those of double salts, but which had different proper-
ties, such as solubility, less species in solution, conductivity, different color, dipole 
moment, and besides the valence rules were not respected. These compounds are 
called complexes or coordination compounds [1]. Coordination compounds are 
molecules formed by covalent bonds between the central metal atom or metal ion 
(Lewis acid) and neutral molecules or anions, called ligands (Lewis base), where 
the number of points to which the ligand binds to metal is called the coordination 
number [2, 3]. These complexes may be electrically neutral or charged and may have 
monodentate, ambidentate, bidentate, tri, etc., ligands. Thus, inorganic complexes 
are characterized by the nature of the central metal atom or ion, the oxidation state, 
and the number, type, and arrangement of ligands [2–4].
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The attention given to inorganic complexes is due to the presence of different phys-
ical and chemical properties, such as color, magnetic susceptibility, solubility and 
volatility, capacity to undergo oxidation–reduction reactions, and catalytic activity. 
The size, charge, and electronic configuration are some of the properties of the 
metallic ion, while the ligands present as properties the size and charge, steric and 
electronic factors, and among others. The main types of coordination compounds are 
the aquo complexes, halo, carbonyl, nitrosyl, cyano and isocyano, organometallic, 
isopoly, and heteropoly anions [5]. 

Coordination compound reactions include acid–base, substitution, lability and 
inertness, isomerization, and oxidation reduction. Various methods are used in the 
synthesis of inorganic complexes: single solution reaction, diffusion reaction and 
mechanical grinding reaction, Schlenk line techniques, hydrothermal/solvothermal 
method and in situ metal/binder reaction approach, assemblies and self-assembly, 
electrochemical methods, microwave heating, and biphasic synthesis [5–14]. 
Different geometric structures are possible depending on the coordination number of 
the compounds, which can be linear, flat triangle, tetrahedral, octahedral, and among 
others. When the coordination number of the complex is six, tetragonal distortions 
can occur for compounds of the trans-[MA4B2] type. Tetragonal distortions also 
appear in regular octahedrons with asymmetric electron configuration, as in Cu2+ 

compounds, d9, due to the Jahn–Teller effect [2, 3]. 
Some complex properties, such as stability and reactivity in a chemical or biolog-

ical environment, are modified by isomerism [15, 16]. Coordination compounds 
have different types of isomerism: geometric, optical, binding, coordination, ligand, 
ionization, and hydration. In structural isomerism, the structure of the compound is 
changed, while in spatial isomerism or stereoisomerism, the ligands differ in their 
spatial arrangement. For example, [MA4B2]-type complexes may present cis and 
trans geometric isomers, while [MA3L3]-type compounds may present meridional 
(mer) and facial (fac) geometric isomers [15–18]. Optical isomers have the same 
physical properties, but they differ from polarized light, as these enantiomers are 
optically active compounds that do not have a plane of symmetry and can shift polar-
ized light to the right (right-hand) or to the left (levorotary) [15, 19]. Bond isomerism 
occurs when the compound has an ambidentate ligand, such as the nitrite ion (NO2

−) 
for example, in which the bond with the metal can be by nitrogen (M-NO2) or  
oxygen (M-ONO) [20, 21]. When two ligands that form coordination compounds 
with different metals, one being a cationic complex ion, and the other an anionic 
complex ion, can behave as counterions to each other forming coordination isomers 
[22, 23]. If the ligand has isomers, these can form two compounds, resulting in ligand 
isomerism. Ionization isomerism occurs when one of the ligands and the counterion 
can act as both a ligand and a counterion. Hydration isomerism is similar to ionization 
isomerism, but in this case, the ligands are water and an ion that will be a counterion 
in one isomer and a ligand in the other [22–26]. 

The theories of valence bonds, crystalline field, binding field, and molecular 
orbitals were developed in order to understand the chemistry of coordination 
compounds. These theories complement each other in ways that fill gaps in each other,
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helping to understand the characteristics and properties of inorganic complexes, but 
these theories will not be covered in this chapter [27]. 

Several coordination compounds stand out for their role in nature, the human body, 
health, and industry (Fig. 1). Complexes of natural origin are essential for the execu-
tion of certain biological processes [28]. For instance, hemoglobin acts in the trans-
port of oxygen, as it has iron-porphyrin complexes in which the iron atoms coordinate 
the oxygen molecules in a reversible way. Metalloenzymes (metal complexes) regu-
late biological processes, chlorophyll (magnesium–porphyrin complex), a natural 
pigment present in plant chloroplasts, and Vitamin B12 (cobalt complex-corrin), 
essential for the normal functioning of the nervous system and red blood cell 
maturation are also part of this class of compounds that have biological relevance 
[29]. 

In industry, Prussian blue (Fe4[Fe(CN)6]3) which was discovered at the begin-
ning of the eighteenth century, but whose structure was determined more than three 
hundred years later, continues to be widely used as a dye and pigment due to its 
intense coloration [30]. Inorganic complexes are also used in electroplating, metal 
extraction from ores, to estimate water hardness and as catalysts [27]. 

Inorganic complexes have been used in medicine to treat various diseases, such as 
cancer, arthritis, acting as antimicrobial agents, metalloenzyme inhibitors, and among 
others. Among these complexes, cisplatin is one of the main coordination compounds 
used in the treatment of testicular, ovarian, neck, head, bladder, and lung cancer.

Fig. 1 Some inorganic complexes relevant to health, nature, and industry: iron-porphyrin complex 
present in hemoglobin, chlorophyll (magnesium-porphyrin complex) present in plants, and Prussian 
Blue, synthetic pigment



116 C. L. C. Carvalho et al.

Fig. 2 Structures of three clinically approved Pt(II)-based anticancer drugs. Reprinted with 
permission from Ref. [35]. Copyright 2019 Elsevier 

The discovery of cisplatin allowed the study and use of new complexes, including 
platinum, ruthenium, gold, and copper, in order to obtain effective and safe drugs 
[31]. Currently, almost half of cancer patients undergoing chemotherapy undergo 
treatment with Pt(II) complexes such as cisplatin, carboplatin, or oxaliplatin (Fig. 2). 
These drugs have antitumor activity because they form stable adducts with DNA 
(Pt–DNA), resulting in the interference of replication and transcription processes, 
thus inducing apoptosis. These complexes also react with RNA, mitochondrial DNA, 
and proteins [32–38].

The chemical industry performs the synthesis of organic polymers of great 
commercial importance, which are the raw materials for the production of medicines, 
plastics, and other components. These synthetic organic polymers need catalysts to 
be produced, and therefore, inorganic complexes are an important class of catalysts 
used in these processes. For example, Ziegler and Natta won the Nobel Prize in 1963 
for the development of a titanium-based catalyst (with TiCl3 and Al(C2H5)2Cl), 
which was used in the polymerization of alkenes at atmospheric pressure and room 
temperature [39]. Furthermore, biotechnological or organocatalytic methods can be 
used to reduce or eliminate the production of harmful substances [40]. Ligand inner 
bands, d-d bands, and charge transfer bands are some interesting spectral charac-
teristics of coordination compounds. Furthermore, depending on the oxidation state 
of the metal and the strength of the binding field, the complexes can be diamag-
netic and paramagnetic, with high spin or low spin, resulting in their magnetic 
properties. Coupled with this, the optical, electrochemical, and catalytic properties 
make the inorganic complexes excellent candidates for photoluminescent, electro-
chemical, and electrochemiluminescent applications, as well as in disease diagnosis, 
among other biomedical applications [4, 41, 42]. Discrete coordination compounds 
and coordination polymers are sources of interest in research due to their range of 
applications, including adsorption, separation, catalysis, electrical, magnetic, and 
optical applications. Porous coordination polymers (PCPs) or metal–organic struc-
tures (MOFs) stand out for their applications including adsorption and separation, 
catalysis, luminescence, detection, and molecular magnets [5]. The properties of inor-
ganic complexes allow their use in the diagnosis of diseases. Their low molecular 
weight, catalytic and photophysical properties, as well as tuning ability contribute to
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their application as signal generation probes in photoluminescence, electrochemistry, 
and electrochemiluminescence for the detection of substances [41, 43–47]. Coordi-
nation compounds that exhibit photoluminescence have interesting properties such 
as long-lasting phosphorescence, significant stokes changes, and emission by ligand 
composition [48–50]. 

2 Metal-Based Nanomaterials 

Metallic nanoparticles are part of the nanomaterials that arouse interest due to the 
possibility of different applications, such as in catalysis, electronics, and biomedicine. 
The properties that these nanomaterials may have include magnetic, electrochem-
ical, thermal, catalytic, electronic, optical, and reactive properties [51, 52]. Some 
examples of metallic nanoparticles are shown in Fig. 3. They can be classified as 
metal nanoparticles (silver, gold, platinum, palladium, zinc, iron, etc.), nanoparti-
cles of metal oxide (e.g., titanium dioxide and zinc oxide), doped metal/metal and 
metal/metal oxide nanoparticles, metal sulfide nanomaterials, and MOFs [52]. 

AuNPs are very attractive due to their photothermal and optical properties, as well 
as low toxicity, ease of preparation, and favorable binding with biological molecules, 
allowing their use in detection and diagnosis, biomarking, drug delivery, photo-
voltaics, catalysis, and other applications [52–54]. Likewise, nanostructured metal 
oxides have attracted attention because they have nanomorphological, functional, 
biocompatible, non-toxic, and catalytic properties. These properties allow their use 
as immobilizing matrices for the development of biosensors [55]. TiO2, for example, 
is an n-type semiconductor widely explored in the areas of photocatalysis, biosensors,

Fig. 3 Different types of metal-based nanomaterials. Adapted and reprinted with permission from 
Ref. [52].. Copyright 2019 Elsevier
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photovoltaics or energy storage due to its properties, which include high chemical 
stability, biocompatibility, and morphological versatility [56]. In general, metal oxide 
nanoparticles are used as catalysts, superconductors, semiconductors, ceramics, and 
gas sensors, as well as in biomedicine for their potential antibacterial activity [55].

The doped metal/metal and metal/metal oxide nanoparticles are capable of 
improving the efficiency of metal oxides in biomedical applications, due to safety 
and increased stability. Siriwong et al. [57] compared the activity of Fe-doped TiO2, 
WO3-doped ZnO, and Fe-doped CeO2 nanomaterials, and found that doped metal 
oxides can improve the photocatalytic activity of pure metal oxides. These metal 
oxides are almost inactive under visible light illumination. Doping with transition 
metals can lead to conspicuous absorption in the visible region and thus makes the 
photocatalysis process more attractive as it is possible to use visible light or irra-
diation of sunlight. In place of expensive UV lighting. Other applications resulting 
from metal oxide nanoparticles doping include photocurrent generation, H2 produc-
tion, antibacterial treatment, gas sensing, photocatalytic degradation, O2 evolution, 
light-induced cell death, and reduction of CO2 [58]. 

MOFs are compounds that have large surface areas, large pore volume, adjustable 
structure, thermal and chemical stability, and functionality, being applied in electro-
chemistry and other areas, such as catalysis. Metalophthalocyanines (Fig. 4a) have 
in their structure four isoindole units, linked by nitrogen in the aza position, in which 
the center of the molecule is a metallic atom [59], resulting in a molecule with a 
flat, highly conjugated structure, high chemical and thermal stability, rich surface 
chemistries and well defined, excellent redox activities, which has electrochemical 
properties, semiconductivity, and photoconductivity [60, 61]. The intense coloration 
of metallophthalocyanines occurs due to the π-π* transitions of the conjugated ring 
of the macrocycle, as well as the transitions between the ground state A1g (a1u2) and 
the first singlet excited state with Eu symmetry (of configuration a1u1 eg1) [62]. 

Metalloporphyrins (Fig. 4b) are another class of compounds that have similar char-
acteristics, such as stability, intense color, and conjugated system, resulting in biolog-
ical, photophysical, and photochemical properties [63–66]. These macromolecules 
have four pyrrole units, linked by carbons in the meso position, with Mn and Cr linked 
to the basic principles of the macrocycle. The busiest orbitals, a1u and a2u, are nearly 
degenerate, but have two different electron distributions and two different orbits. The

Fig. 4 Molecular structure 
of a metal phtalocyanine 
(MPc, M=Fe, Co) and b 
metal porphyrin (MP, M=Fe, 
Co) 
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Fig. 5 Representation of the cubic structure of Prussian blue and Prussian blue analog. Adapted 
and reprinted with permission from Ref. [76] 

properties of metalloporphyrins allow their use as contrast agents for MRI, photo-
dynamic cancer therapy, bioimaging, and other applications, as well as in catalysis, 
pigments, and sensors [59, 63–66]. Iron-porphyrin-based MOFs, for example, can 
be applied as artificial enzymes for catalytic oxidation, such as hydroxylation and 
epoxidation of hydrocarbons [67].

Prussian blue (PB) or iron(III) hexacyanoferrate(II) (Fe4[Fe(CN)6]3) is a dark 
blue pigment that was discovered in the early eighteenth century, but which had the 
structure determined more than three hundred years later, it is still widely used as a dye 
and pigment, in addition to other applications. [30] This compound is synthesized by 
the co-precipitation method in water through the reaction of de [FeIII(CN)6]3− and a 
FeII salt or by mixing [FeII(CN)6]4− with a FeIII salt.[68] The intense coloration of PB 
occurs due to the transfer of a metal-to-metal charge with an intense interval around 
700 nm associated with Fe2+ –CN– Fe3+. [69] PB is a mixed-valence coordination 
compound that has a face-centered cubic unit cell (cfc), alternating Fe3+ and Fe2+ 

bonded by a cyanide bridge. Ligands influence the solubility of PB: when Prussian 
blue presents cyanides and water molecules as binders, it is insoluble, while if the 
binders are only cyanides, PB is soluble [70]. The replacement of Fe(II) and/or 
Fe(III) by other transition metals, such as manganese, cobalt, nickel, and copper, 
in the PB structure results in Prussian blue analogues (PBAs) (Fig. 5) of general 
formula AxMJ [MK (CN)6] · n H2O (A = alkali metal ion—Na+, Li+ , or K+, MJ and 
MK = transition metal ions, Fe2+, Co2+, Cu2+, Zn2+, Mn3+, Fe3+, Co3+, and Cr3+), 
with different applications such as energy storage, sensors, medicine and catalysis 
[69, 71–73]. Thus, PB and its analogs are useful in the electrochemical, biochemical, 
biomedical, and electromagnetic fields [73–75]. 

3 Electrochemistry of Inorganic Compounds 

The structural properties of inorganic complexes and metal-based nanomaterials 
described in the previous section play an important role in electrochemical behavior
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of these inorganic compounds. For this reason, the fundamentals the metal-based 
compounds electrochemistry must be known to investigate the performance of 
sensors for biomarkers. The electrochemistry of inorganic compounds can be defined 
like the one that investigates the redox reactions or electrochemical properties of inor-
ganic species which contains at least one metal center in their chemical structure. 
Thus, transition metal complexes (hexacyanometallates) and metal-based materials 
(metal and metal oxide nanoparticles) are inorganic compounds that showed unique 
electrochemical behavior due to their exceptional properties such as good electrical 
conductivity, electrocatalytic activities, large surface areas, tunable pores, and modi-
fiable surface [77–80]. From understanding of these advantageous properties, we 
wish to focus our discussion here in the inherent electrochemical properties, in partic-
ular, the well-defined redox processes this metal-based materials [81]. In this case, 
the term “inherent electrochemistry” is used to describe the standard electrochem-
ical behavior of different inorganic compounds when used as electrode modifiers 
in applications that involves electrochemical biosensing and electrocatalysis [81]. 
Nonetheless, electrochemical behavior of the inorganic material-modified electrodes 
is guided by oxidation/reduction of the metallic center. Importantly, these charge-
transfer reactions depended of experimental conditions such as pH, ionic force, nature 
of the electrolyte, and potentials applied [81]. 

In general, the redox processes of metal and metal oxide nanoparticles involve 
the charge-transfer reactions (in basic electrolyte) between metallic species and their 
transition metal-base oxides (M + OH− � MO + e−) or between metal oxide and 
their derivates (MO + OH− � MOOH + e−), where M is usually Ag, Au, Cu, and 
Co [82, 83]. Moosavifard et al. observed a well-defined electrochemical behavior of 
nanoporous CuO electrodes in KOH aqueous electrolyte with strong redox pair of 
anodic and cathodic peak in 0.40 V and 0.10 V (vs. SCE, saturated calomel electrode) 
[84]. Despite of the defined electrochemical behavior, few researches use these redox 
reactions as central question of the applications in electrocatalysis and electroanalyt-
ical. For instance, for studies of electrochemical detection of a target analyte, gener-
ally the metal and metal oxide nanoparticles can act as electrocatalysts, improving 
the transport of electrons of the oxidation/reduction (redox) reactions of analyte onto 
electrode surface. In this case, metal and metal oxide nanoparticles act as electrocat-
alysts, improving the transport of electrons of the redox reactions of analyte. This 
electrocatalytic effect is evidenced by increase of the current densities and decrease 
in the redox potential, which enhance the sensitivity and selectivity of target product 
selectivity, minimizing energy loss. [85] This performance in the electrocatalysis and 
electrochemical biosensing because increase of electroactive surface, mass-transport 
rate, smallest charge-transfer energy, and fast electron transfer [78, 82, 85, 86]. 

Among the mixed-valence transition metal complexes, Prussian blue and its 
analogs have attracted attention of the scientific community due large specific 
surfaces areas, diverse morphologies, adjusted pore diameters, and easily control-
lable size [77, 87]. Also, PB and PBA show unique properties (e.g., excellent elec-
trocatalytic activities and well-defined redox reactions) and act as efficient electron 
transfer mediators in a wide spectrum of electrochemical applications [77, 88]. The 
open-framework structure with cubic wide channels nanoporous can insert alkali and
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alkali earth metals that are useful in the reactions of charge-transfer reactions [88]. 
Thus, the general electrochemistry behavior of the PB and PBA is represented by 
Eq. 1: [88] 

Ax M J 
⎡ 
M K (CN)6 

⎤ 
1−y · nH2O + A+ + e− � Ax+1 M J 

⎡ 
M K −1 (CN)6 

⎤ 
1−y · nH2O 

(1) 

were value of y representing the fraction of vacancies of the metal hexacyanomet-
allate ion (the primary lattice defect). To this class of inorganic compounds, the 
well-defined redox process occurs in acid and neutral electrolyte. Consequently, PB 
and PBAs can be used for indirect electrochemical detection of (bio)analyte onto 
electrode surface. This means that the electrochemical properties (e.g., decrease 
of peak current densities) of the transition metal complexes can change because of 
specific interactions between the analyte structure and mettalic center [89]. Regarding 
other applications, the insertion of ions in the open framework along with the corre-
sponding redox reaction of the transition metals influence in the electrochemical 
performance energy storage device [90, 91]. Therefore, the physico/chemical prop-
erties of inorganic compounds are crucial aspects in the electroactive behavior of 
metallic center. The control of these properties can allow create a favorable microen-
vironment to occur well-defined redox reactions with good performance various 
fields of electrochemistry (Fig. 6). 

In particular, electronic structure of PB and PBAs causes two types of redox 
processes more common, the metal-to-ligand (MLCT) and ligand-to-metal charge-
transfer (LMCT) reactions onto electrode surface [93, 94]. For example, the cyanido-
bridged bimetallic coordination structure defined by AxCoy[Fe(CN)6] · nH2O (A: 
alkaline metal) occurs charge-transfer processes between the cobalt and iron centers. 
In this case, the electron transfer (MLCT) involves the alternation between paramag-
netic (FeLS III (S=1/2)–CN–CoHS II (S=3/2)) and diamagnetic (FeLS II (S=0)–CN–CoLS III (S=0)) 
entities (were LS: Low spin state and HS: High spin state) [94]. Jiménez and 
collaborators reported the charge transfer behavior the cyanide-bridged cubic switch 
containing a Cs+ cation (Cs ⊂{Mn4Fe4}) as a molecular model of the mixed-
valence of Mnx[Fe(CN)6]y PBA [95]. As a results, the cyclic voltammogramms 
of Cs ⊂{Mn4Fe4} showed four quasi-reversible redox assigned to the oxida-
tion/reduction of the four iron ions of the cubic structure. The Fe2 IIFe2 III structure 
is referent to initial state that can display LMCT of type Fe2 IIFe2 III → Fe4 III in the 
{FeIII(Tp)CN3}units and MLCT (Fe2 IIFe2 III → Fe4 II) {FeII(Tp)CN3}units, where 
Tp = hydrotris(pyrazol-1-yl)borate [95]. 

The charge-transfer processes of PB and PBA-based nanostructure are important 
to investigate the mechanisms of electrochemical (bio) sensing in the clinical diag-
nostic fields [96, 97]. A nanocomposite constituted by toluidine blue (TB) functional-
ized NiFe Prussian blue analog nanocubes (NiFe PBA nanocubes@TB) was used as a 
signal amplifier for the detection of procalcitonin (PCT) [98]. The glassy carbon elec-
trode (GCE) was modified with NiFe PBA nanocubes@TB and glutaraldehyde (GA) 
that used as cross linker of procalcitonin antibody (PCT Ab), bovine serum albumin
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Fig. 6 Scheme of the well-defined electrochemical behavior, structures and properties of main 
inorganic compounds. Adapted and reprinted with permission from Refs. [84, 92]. Copyright (2015, 
2021) ACS publications and Elsevier 

(BSA) and procalcitonin antigen (PCT Ag), respectively (Fig. 7). The signal genera-
tion mechanism and electrochemical detection onto surface of the PCT Ag/BSA/PCT 
Ab/GA/NiFe PBA nanocubes@TB/GCE bioelectrode was based in the metallic frag-
ments Ni2+–CN–Fe2+ were near the surface of the nanocubes [98]. In this case, 
the covalent interaction between TB and NiFe PBA increased the concentration of 
[Fe(CN)6]4− species and improve electrochemical response of as-prepared nanoma-
terials with signal current significantly amplified. Moreover, NiFe PBA nanocubes 
with open-framework showed large electrochemically active surface area to load 
abundant antibodies. Electrochemical behavior of bioactive surface exhibited signal 
current decreased with the increase of PCT contents from 0.001 to 25 ng mL−1. 

3.1 Electrochemistry of Prussian Blue and Analog 

Metal hexacyanoferrates (MHCF) have interesting electrochemical properties that 
allow applications in several areas of chemistry, mainly in electrochemistry. For 
this reason, it is necessary to know the fundamental studies present in the obtaining 
these complexes on the surface of carbon electrode by electrochemical methods. It
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Fig. 7 Schematic representation of preparation of the PCT Ag/BSA/PCT Ab/GA/NiFe PBA 
nanocubes@TB/GCE bioelectrode. Adapted and reprinted with permission from Reference [98]. 
Copyright 2019 Elsevier 

is also important to attribute the redox processes and redox reactions of MHCF on 
the electrode surface, the proposition of possible redox mechanisms to obtain these 
complexes in new systems, as well as the first investigations in chemically modified 
electrodes (CMEs) with MHCF to propose future applications in electrochemical 
sensors. 

3.1.1 Obtaining of Prussian Blue and Cobalt Hexacyanoferrate 
by Electrosynthesis 

The MHCF has zeolite-shaped structure, which is important for the selection of 
certain metal ion, being great redox mediators in electroanalytical applications. [99– 
101] The surface modification of electrodes with metal hexacyanoferrate (MHCF) is 
efficient for electrochemical investigations and to propose future applications of these 
CMEs. CMEs with MHCF are obtained by deposition of this metal complex on the 
electrode surface [102], photochemical synthesis in the presence of [FeIII(CN)6]3− 

[103] layer-by-layer self-assembly with a metal ion solution and [FeIII(CN)6]3− 

[104], combination of electrodeposition and chemical methods [105], and also elec-
trodeposition in the solution of metal ion and [FeIII(CN)6]3− [106]. It is noteworthy
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that the MHCF obtained by electrosynthesis has aroused interest in electrochemical 
research, as it is known that CMEs with MHCF acquire an increase in the electroactive 
area and have excellent electrocatalytic activities [101, 107]. 

The PB and cobalt hexacyanoferrate (CoHCF) are examples of MHCF that stand 
out for being used to modify the surface of electrodes for applications such as voltam-
metric, amperiometric [101, 108], and potentiometric [109] sensors. The use of elec-
trosynthesis to obtain CMEs with PB and CoHCF is advantageous because it provides 
an increase in the electroactive area of the electrode surface, a smaller number of 
reaction steps, and because it allows the in-situ formation of CMEs. 

Electrodeposition is the main electrochemical route for the formation of PB [110], 
CoHCF [111] and the hybrid complex of PB and CoHCF (Fe-CoHCF) [112]. In this 
electrosynthesis procedure, solutions of Fe3+ salts and ferricyanide [FeIII(CN)6]3− 

are used for electroforming PB in the presence of electrolytes containing K+ ion. 
The solution of the Co2+ and [FeIII(CN)6]3− salt in an electrolyte containing Na+ 

ion is used in the electrochemical formation of CoHCF. The hybrid complex of Fe-
CoHCF is obtained by electrosynthesis in electrolytes containing solutions K+ and 
Na+ ions, as well as Co2+, Fe3+ , and [FeIII(CN)6]3− ions. The literature also reports 
the electroformation of PB in acidic solution (pH < 2) containing only [FeIII(CN)6]3− 

[105]. An electrodeposition procedure adopted in the electroforming of PB in HCl-
KCl at pH 2.0 electrolyte is illustrated in Fig. 8. The use of an acid electrolyte 
containing K+ ion is important for the efficient formation and adsorption of PB on 
the electrode surface and for obtaining defined redox processes for the Fe2+/Fe3+ and 
Fe3+/Fe2+ transitions. In this electrosynthesis procedure, redox scans are applied in 
the range of −0.600 V to 1.00 V at 50 mVs−1, in which the increase of the scan 
cycles provides PB electroformation on the electrode surface, obtaining in situ an 
CMEs with PB. 

3.1.2 Electrosynthesis of CMEs with MHCF 

A procedure for simultaneous obtaining of PB and CoHCF by electrosynthesis was 
proposed by Furtado and Magalhães [113], where CMEs with PB and CoHCF was 
obtained. In this method, an edge-plane pyrolytic graphite electrodes (EPPGE) modi-
fied nanoparticle of CoFe2O4/Chit/PTCA (where CoFe2O4 = cobalt ferrite, Chit = 
chitosan, and PTCA = Perylene-3,4,9,10-tetracarboxylic acid) was used. Where the 
source of Fe3+ and Co2+ ions were the intrinsic metals of this nanoparticle. 

In the proposed electrosynthesis procedure, the EPPGE surface must be cleaned 
for adsorption of the CoFe2O4/Chit/PTCA nanoparticle as follows: First, it is polished 
using fine sandpaper (2000 μm porosity) and with an alumina suspension (0.50 μm 
porosity), then the EPPGE is sonicated in isopropyl alcohol for 20 min. The efficiency 
of the cleaning process must be evaluated by cyclic voltammetry measurements 
between −0.600 and +0.800 V. Then, an aliquot of 10 μL of the aqueous dispersion 
at 1.25 g L−1 of the nanoparticle is deposited on the surface of EPPGE and dried in 
an oven at 40 °C for 40 min (see Fig. 9).
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Fig. 8 Hypothetical illustration of the electrochemical formation of PB in a solution containing 
Fe3+ and [FeIII(CN)6]3− ions in the presence of KCl–HCl electrolyte 

In the following steps, the precursor electrode III′ (EPPGE/ CoFe2O4/Chit/PTCA) 
is immersed in BR buffer pH 1.60, then cyclic voltammograms (CVs) is recorded in 
the potential range between −0.600 V to +0.800 V at 50 mV s−1. This procedure is 
performed to know the voltammetric profile of the electrode III′ in Britton-Robinson 
(BR) buffer at pH 1.60 before electrosynthesis. The PB and CoHCF are obtained by 
electrosynthesis by immersing the electrode III′ in a solution of K4[Fe(CN)6]·3H2O 
at 1.00 mmol L−1 dissolved in BR buffer pH 1.60 and applying 100 scan cycles of the 
redox potential between −0.600 and +0.800 V at 50 mV s−1. After 100 scan cycles, 
the electrode III produced must be washed with jets of ultrapure water and immersed 
only in BR buffer at pH 1.60. CVs are registered in the same redox potential interval 
and scan rate, verifying in the CVs of electrode III (III’/PB/CoHCF) the voltam-
metric profile of redox peaks attributed the presence of PB and CoHCF, showing 
simultaneous electroformation of these MHCF. Vishnu and Kumar [114] used the  
intrinsic iron present in the impurity of the graphite pencil lead and obtained PB on 
the surface of pencil graphite electrode (PGE), the procedure used is summarized in 
Fig. 10. This electrode of PGE modified with PB obtained by electrosynthesis was
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Fig. 9 Illustration of the EPPGE modification with CoFe2O4/Chit/PTCA, forming the precursor 
electrode III′ (EPPGE/CoFe2O4/Chit/PTCA) 

used for the determination of H2O2, showing that the PGE/PB has application with 
electrochemical sensor. 

Electrochemical Behavior of CMEs with PB and CoHCF 

The CMEs with PB and CoHCF obtained by simultaneous electrosynthesis have 
very characteristic redox peaks and are well known in the literature of MHCF. In 
Fig. 11a, b, A1/C1 redox peak observed between +0.300 to −0.400 V is attributed 
to the Fe3+/Fe2+ redox reaction characteristic of the transition from PB to Prussian 
White (PW) [115–117], in the soluble (Eq. 2) and insoluble (Eq. 3) form of PB. These 
same redox peaks were also found for hybrid film of PB and CoHCF (Fe-CoHCF) 
modifying a ceramic carbon electrode (CCE) [112], as shown in Fig. 11b. 

NaFeIII
⎡ 
FeII (CN)6 

⎤ 
(PB) + Na+ + e− � Na2Fe

II
⎡ 
FeII (CN)6 

⎤ 
(PW) (2) 

FeIII 4 

⎡ 
FeII (CN)6 

⎤ 
3(PB) + 4Na+ + 4e− � Na4Fe

II 
4 

⎡ 
FeII (CN)6 

⎤ 
3 (PW) (3)
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Fig. 10 Cartoon for the role of intrinsic iron in pencil lead electrode for the in-situ electrochem-
ical derivatization as PGE-PB (case-1) and PGE-Fe(bpy)3 2+ (case-2) hybrids with Fe(CN)6 3− and 
surface adsorbed bpy precursors. Inset cartoon is the structure of graphite and clay in the pencil 
lead. Reprinted with permission from Reference. [114]. Copyright 2017 Elsevier 

The electrochemical formation of CoHCF was suggested by the presence of 
the A3/C3 redox peak pair between +0.300 to +0.600 V. This pair redox peaks 
is attributed to the Co3+/Co2+ reactions (Eqs. 4 and 5), Fe3+/Fe2+ (Eqs. 6 and 7) 
of CoHCF formed by electrosynthesis in the presence of a solution with Co2+, 
[FeIII(CN)6]3− and Na+ ion of the electrolyte. 

NaCoIII
⎡ 
FeII (CN)6 

⎤ + Na+ + e− � Na2Co
II
⎡ 
FeII (CN)6 

⎤ 
(4) 

or 

CoIII 3 

⎡ 
FeII (CN)6 

⎤ 
2 + 2 Na+ + 3e− � Na2Co

II 
3 

⎡ 
FeII (CN)6 

⎤ 
2 (5) 

NaCoII
⎡ 
FeIII (CN)6 

⎤ + Na+ + e− � Na2Co
II⎡ FeII (CN)6 

⎤ 
(6) 

or



128 C. L. C. Carvalho et al.

Fig. 11 Cyclic 
voltammograms: a in BR 
buffer at pH 1.60. Adapted 
and reprinted with 
permission from Ref. [113]. 
Copyright 2020 Elsevier. b 
The hybrid cobalto-iron 
hexacyanoferrate 
nanoparticles modified 
electrode ceramic carbon 
electrode (CCE) in 0.10 mol 
L−1 NaCl + 0.05 mol L−1 

HAc-NaAc buffer at scan 
rates 20 mV s−1. Adapted 
and reprinted with 
permission from Reference. 
[112] Copyright 2013 
Elsevier 

CoII 3 
⎡ 
FeIII (CN)6 

⎤ 
2 + 2Na+ + 2e− � Na2Co

II 
3 

⎡ 
FeII (CN)6 

⎤ 
2 (7) 

It is also observed in Fig. 11a that there is no redox peak in the cyclic voltammo-
gram of bare EPPGE when it is immersed only in BR buffer at pH 1.60. However, for 
electrode III, there are three pairs redox peaks, two being assigned to PB (A1/C1 and 
A4/C4) and one to CoHCF (A3/C3). The A4/C4 redox peak with E1/2 = +0.947 V 
refers to the Fe3+/Fe2+ transition from Prussian Green (PG) to PB [110, 118], as 
represented in Eq. 8. 

FeIII
⎡ 
FeIII (CN)6 

⎤ 
(PG) + Na+ + e− � NaFeIII

⎡ 
FeII (CN)6 

⎤ 
(PB) (8) 

The presence of A3/C3 redox peak with E1/2 = 0.548 V in the EPPGE/CoHCF 
(Fig. 11a) also suggests the electroformation of CoHCF on the surface of the bare 
EPPGE. This observation shows that this redox peak in the EPPGE/CoHCF is located 
in the same potential range in which the A3/C3 redox peak in electrode III was 
verified, giving evidence that PB and CoHCF are formed simultaneously during
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electrosynthesis. The electrode systems modified with Fe and Co hexacyanoferrates 
have applications in the area of electrochemical sensors, and to know the feasibility 
of these systems, some initial investigations need to be carried out, and this will be 
addressed in the next item of this chapter. 

3.1.3 Applications of PB and CoHCF 

The interaction of the redox chemical species [Fe(CN)6]4−/3− on the surface of modi-
fied electrodes is used to know the electrochemical properties of these electrodes in 
comparison to the bare electrode and also to evaluate the binding between peptides 
in biosensors used in the determination of biomarkers.[119] In Fig.  12, electrode III 
has a higher anodic (ipa) and cathodic (ipc) peak current value which is attributed to 
the increase in the estimated area increase value electroactivity of this modified elec-
trode compared to bare EPPGE. The well-defined [Fe(CN)6]4−/3− redox processes 
(Fig. 12), showing that the preparation steps were efficient to obtain modified elec-
trodes with better electrochemical properties (for example, electrode with higher 
electroactive area) [113], which is necessary for future research applications focused 
in ion exchange system [120], electrochemical and potentiometric sensors [109]. 

Ceramic carbon electrode (CCE) modified with PB and CoHCF hybrid films 
(Co-FeHCF/MWCNT/CCE) showed excellent electrocatalytic activity for isoniazid 
oxidation [112]. The large increase in ip values is observed in Fig. 13 due to the 
presence of MHCF on the electrode surface. This modified electrode also has similar 
characteristics to electrode III in Fig. 12. This feature shows that this system is 
promising as an electrochemical sensor for isoniazid determination and that it can 
also be tested for other analytes. 

Fig. 12 Cyclic 
voltammograms of different 
electrodes in 0.10 mol L−1 

KCl containing 1.00 mmol 
L−1 [Fe(CN)6]4−/3−
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Fig. 13 Cyclic 
voltammograms of 
MWCNT/CCE in 0.10 mol 
L−1 NaCl + 0.05 mol L−1 

HAc–NaAc buffer with the 
presence (a) and absence 
(b) of 2.5 mM isoniazid, 
scan rate, 20 mV s−1. 
Reprinted with permission 
from Ref. [112]. Copyright 
2013 Elsevier 

The literature shows the development of electrochemical sensors [100, 105, 121], 
electrochemical immunosensor [122], and biosensors [99] made with different hexa-
cyanoferrates and their application in the determination of different analytes. In a 
stage of the development of electrochemical sensors, studies with cyclic voltammetry 
are necessary to know the voltammetric profile of the electroactive chemical species 
that are modifying the electrode surface. Cyclic voltammogram of Fig. 14 shows elec-
trode III (black line) in the presence of BR buffer pH at 1.60, where only the redox 
pairs A1/C1 and A3/C3 referring to PB and CoHCF, respectively, were evidenced. It 
was observed in Fig. 14 that the increase in the dopamine (DA) concentration caused 
an increase in the ip values referring to the DA redox pair, thus making it possible 
to correlate the DA concentration with the ip values. This suggests the possibility 
of using a more sensitive voltammetric technique [123, 124], such as differential 
pulse or square wave voltammetry, to construct a calibration curve, aiming at the 
development of a future electrochemical sensor for DA determination in matrices of 
interest. 

In the detection of biomarkers, the literature presents electrochemical immunosen-
sors system that contain MHCF in its composition. Xiaoran Gao et al. [125] used  
PB nanoparticles for tumor diagnosis and provided in his paper a summary of strate-
gies that employ PB nanoparticles as a mediator of electron transfer and also being 
important for biomedical applications involving tumors. In the following items, other 
modified electrode systems will be presented as sensors for the determination of some 
biomarkers.
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Fig. 14 Cyclic 
voltammograms of electrode 
III in the presence of 
different DA concentrations 

3.2 Eletrochemistry of Metal-Based Nanomaterials 

Currently, the electrochemistry of metal-based nanomaterials (NMs) has aroused 
the interest of researchers in multidisciplinary areas, due to its applications in catal-
ysis, energy conversion and storage, and sensors [126–131]. The activity of NMs 
depends strongly on their size, shape, and surface morphology [132–136]. Further-
more, high surface area to mass ratio and high density of active sites are key factors 
in electrodic reactions [137, 138]. Among the variety of NMs available, metal-based 
nanomaterials, e.g., silver, gold, and platinum, are among the main sensing materials 
for electrochemical, biological, and biomedical applications (Fig. 15) [139, 140]. In 
particular, these nanomaterials are effectively applied in electrochemistry due to high 
chemical stability and offer advantages in electrode preparation for electrochemical 
sensors, such as ease of preparation and simple manufacturing process [141–144]. 

Advancement of nanotechnology has favored the growth in the number of appli-
cations of silver nanomaterials (Ag–NMs) in the environmental, biomedical, indus-
trial, and electrochemical areas [134, 138–140]. In electrochemistry, a large number 
of various sensors based on Ag–NMs are being developed based on nanoparticle 
detection interfaces functionalized by polymers or molecular and for the construc-
tion of different biosensors, including enzyme-based electrodes and immunosensors 
[138–140]. 

Metallic nanomaterials are widely used to modify electrode surfaces to signifi-
cantly increase the electrode’s ability to transport electrons and improve the adsorp-
tion of substances [139, 140]. In this sense, Ozkan and colleagues showed through 
electrochemical methods that a glassy carbon electrode (GCE) modified with 
carboxylate-functionalized multiwalled carbon nanotube (COOH-fMWCNT) and 
AgNPs exhibited better selectivity and greater sensitivity for emedastine difumarate 
(EDD) when compared to AgNPs/GCE, MWCNT/GCE, or COOH-fMWCNT/GCE.
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Fig. 15 Schematic 
illustration of nanomaterials 
employed as sensing 
materials for 
electrochemical, biological, 
and biomedical applications. 
Reprinted with permission 
from Ref. [140]. Copyright 
2018 Elsevier 

Figure 16 show the electrochemical behavior of EDD compound using cyclic voltam-
metry (CV) method in 5 mM K3[Fe(CN)6]/K4Fe[(CN)6], solution as redox probe for 
glassy carbon electrode (GCE) modified. It is possible to observe that Ag-based 
nanomaterials increase the conductivity of the composite on the GCE surface which 
make COOH-fMWCNT/AgNPs/GCE nanosensor sensitive and good electrocatalytic 
activity toward emedastine difumarate electro-oxidation [141]. 

Fig. 16 CVs of bare GCE 
(red line), AgNPs/GCE 
(magenta line), 
MWCNT/GCE (green Line), 
COOH-fMWCNT/GCE 
(cyan line), and COOH-
fMWCNT/AgNPs/GCE 
(black line) in 5 mM 
K3[Fe(CN)6]/K4Fe[(CN)6] 
of  0.1 mM EDD  in  0.1 M PB  
solution pH 2.0 [140]. 
Copyright 2020 Elsevier
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In the case of biosensors for DNA, gold nanomaterials (Au-NMs). The physical 
and chemical characteristics of Au-NMs favor the immobilization of biomolecules, 
as shown in the schematic of Fig. 17. In this sense, use of Au-NMs possible obtain 
electrochemical biosensors, one of the most representative of all biosensors, with 
further sensitivity and excellent analytical performance, favoring the bioactivity of 
the device [138, 142, 143]. 

These nanomaterials acting as “electron wires” can facilitate the direct transfer of 
electrons between redox proteins and bulk electrode materials, thus allowing electro-
chemical detection without redox mediators [144–146]. Redox center of most oxido 
reductases is electrically insulated by the protein. In this sense, different strategies 
are proposed to develop enzymatic electrodes based on Au-NMs, such as: immobi-
lization of the enzyme directly on the electrode surface [147, 148], direct attachment 
by the use of cysteine [149, 150], via thiol linkers [151–153], and through covalent 
bonds [154, 155]. Zhang and co-workers (2018) developed a sensitive and selective 
electrochemical biosensor for polynucleotide kinase (PNK) using gold nanoparti-
cles (AuNPs) [144]. The preparation of this device occurred as shown in Fig. 18

Fig. 17 Physical properties of AuNPs and schematic illustration of a AuNP-based detection system. 
Reprinted with permission from Ref. [141]. Copyright 2011 American Chemical Society
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Fig. 18 Schematic illustration of an electrochemical biosensor for PNK assay based on AuNP-
mediated lambda exonuclease cleavage-induced signal amplification. Reprinted with permission 
from Ref. [144]. Copyright 2018 Elsevier. Society 

Briefly, mercaptohexanol was immobilized via gold sulfur chemistry onto gold elec-
trode surface (d = 2 mm). Then, DNA strands (i.e., strand 1 and strand 2) interacted 
with AuNP to form AuNP-strand 2 conjugates. Thus, strand 2- modified electrode 
surface can form AuNP-strand 2- strand 1 conjugates. The [Ru(NH3)6]3+ was used as 
electrochemically active indicator to electrostatically interact with the DNA strands 
immobilized on electrode surface.

P3T film doped with Ag showed a high sensitivity compared to those doped with 
other metallic particles such as Cu, Co, Au, and Pd, also the detection using square 
wave voltammetry (SWV) increases the oxidation signals than cyclic voltammetry 
(CV). A sensitivity and oxidation process these electrodes were investigated by cyclic 
voltammetry and square wave voltammetry (SWV). Among the prepared electrodes, 
the P3T film doped with Ag showed a high sensitivity compared to those doped with 
other metallic particles such as Cu, Co, Au, and Pd, also the detection using SWV 
increases the oxidation signals than CV, as shown in Fig. 19a, b [161]. All electrodes 
show the peak of irreversible oxidation of AA obtained on a platinum, in a potential 
range from 0.443 to 0.089 V (Fig. 19a). The difference in potential values corre-
sponding to the peaks of AA oxidation may be related to the electrocatalytic activity 
of the material immobilized on the electrode. The good sensitivity of the P3T-Ag 
film in relation to the target molecule AA, due to the high electronic conductivity 
and good stability of silver nanoparticles in aqueous solution [162]. Furthermore, the 
authors showed that the developed electrochemical sensor (P3T-Ag) is selective for



Inorganic Complexes and Metal-Based for Biomarkers Sensors 135

Fig. 19 a cyclic 
voltammograms responses 
corresponding to the 
electroanalysis of AA 
(5 mM) in the solution (PBS, 
0.1 M, pH 7.4) using 
working electrode: Platinum 
disk (a), unmodified P3T 
film (b), P3T–Au (c), 
Cu–P3T (d), Co–P3T (e), 
P3T–Pd (f ), and P3T–Ag 
(g). b Selectivity: 
electrochemical responses of 
ascorbic acid, dopamine and 
quercetin at P3T–Ag films 
using square wave 
voltammetry. Adapted and 
reprinted with permission 
from Ref. [162]. Copyright 
2015 Elsevier 

other molecules such as ascorbic acid, dopamine, and quercetin (Fig. 19b). There-
fore, NMs and metal-based compounds are excellent materials that can be applied 
to modify electrode surfaces used in electrochemical analysis [163–165]. A more 
detailed discussion about modified electrodes will be presented in item 4 of this 
chapter. 

4 Electrodes Modified with Inorganic Compounds 

The search for improvement in the selectivity and sensitivity of sensors and biosen-
sors has aroused the interest of the scientific community over the years [166]. Thus, 
the use of inorganic compounds for the modification of electrode surfaces appears 
as an alternative to improve the electrochemical response of sensors and biosensors,
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Fig. 20 Schematic representation of main inorganic compounds used for modified electrode 
surfaces. Source of structures from Refs. [167–169], public domain 

thus reducing their limitations. Figure 20 shows the schematic representation of main 
inorganic compounds used for modified electrode surfaces. 

PB and PBA complexes show promise for modifying the surface of electrodes, 
due to their thermal, structural, and electrochemical properties [170, 171]. Katic et al. 
[172] modified the surface of the 3D printed graphene electrode with Prussian Blue 
(3DGrE/PB) and after characterization, compared the performance of 3DGrE/PB 
with conventional electrodes: glassy carbon, gold, and platinum in real samples. 
The anchoring of PB nanoparticles on the surface of the graphene electrode was 
made possible by the oxygenated functional groups formed by the electrochem-
ical treatment undergone by the electrode, which allows electrostatic interactions 
between the Fe3+ cations of the PB NPs and negatively charged oxygen of the treated 
graphene. The electrochemical performance of 3DGrE/PB was satisfactory compared 
to conventional electrodes, demonstrating that it is promising for detecting molecular 
targets [172]. 

Another group of inorganic compounds widely used for surface modification of 
electrodes, due to their excellent electrocatalytic properties are metallic phthalo-
cyanines (PcM). These molecules can shift sensor selectivity toward the desired 
analyte [173]. In this sense, Sánchez-Calvo et al. [174] used cobalt (II) phthalicin
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(CoPc) suspended in an aqueous medium to modify the surface of paper-based elec-
trodes initially modified with carbon-based nanomaterials. The authors combined 
CoPc nanoparticles with different carbon-based nanomaterials to form hybrids with 
catalytic performance. Paper electrodes based on graphene oxide modified with 
cobalt phthalicin (GO-CoPc) demonstrated better results in the sensing of glucose 
and H2O2 compared to the other developed electrodes [174]. On the other hand, 
Nantaphol et al. [175] used cobalt phytalocyanin II (CoPc) to modify a screen-printed 
carbon electrode forming a new, inexpensive, simple, and sensitive paper-based elec-
trochemical device (CoPc-SPCE) for determination of 8-hydroxyquinoline (8-HQ). 
Figure 21 shows (a) image of the developed device. The authors also investigated 
the electrochemical behavior of 8-HQ in the electrode modified with CoPc by cyclic 
voltammetry. The 8-HQ anode peak potential shifted to more negative values (from 
0.46 to 0.39 V), as shown in Fig. 21b. This is due to the rapid transfer of electrons on 
the surface of the modified electrode, resulting in a reduction in the over potential for 
the oxidation of 8-HQ and an increase in the oxidation current. Therefore, according 
to the results obtained, the reaction mechanism for the oxidation of 8-HQ in CoPc-
SPCE was proposed in Fig. 21c. CoPc-SPCE also showed good linear correlation 
and low detection limit (0.89 μM) [175]. 

Nanostructured materials are among the most suitable when you want to improve 
the performance of a sensor (detection limit, sensitivity, and response time). Among 
the nanostructured semiconductor oxides, ZnO shows promise for applications in 
(bio)sensing due to its chemical stability, cost-effectiveness, non-toxicity, and its 
high isoelectric point [176]. Thus, Manavalan et al. [177] used ZnO nanostars linked 
to graphene oxide nanosheets to modify a screen-printed carbon electrode (SPCE). 
The modified SPCE had a wide linear dynamic range (0.03–670 μM), low detec-
tion limit (1.2 nM; at S/N = 3), a comparatively low working voltage (−0.69 V vs. 
Ag/AgCl); and excellent sensitivity (16.5 μA μM−1 cm−2). The excellent electro-
chemical performance of the modified electrode was attributed to the high conduc-
tivity of graphene oxide and the catalytic activities of zinc oxide [177]. On the 
other hand, Bahrami et al. [166] used the electrodeposition technique to develop a 
new voltammetric biosensor by modifying pencil graphite electrodes (PGEs) with 
Cu/CuxO nanoparticles. The developed electrode presented a low detection limit 
(LOD) of 1.06 μM, high sensitivity of 0.51 μA/μM and high selectivity (EUA − 
EDA = 0.14 V) for the detection of dopamine showing itself more efficient than 
biosensors modified by rod-shaped CuO, ZnO, TiO2 and AuNPs already reported in 
the literature [166]. 

Properties such as high surface area, small size, good conductivity, and catalytic 
properties give nanoparticles the possibility of being used as electrode modification 
agents. In this sense, Muhammad et al. [178] developed a screen-printed electro-
chemical sensor (SPE) modified with carbon nanotubes (CNTs) and gold nanoparti-
cles (Au NPs) using ethylenediamine (en) as a crosslinker. The modified electrode, 
SPE/CNT/en/AuNPs, Fig. 22a, was sensitive for the determination of thiamphenicol 
(TAP), with a wide linear range (0.1–30 μM), low detection limit (0.003 μM) in 
addition to of good stability, reproducibility, repeatability and high sensitivity. When 
investigating the electrochemical behavior of SPE as well as during modifications
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Fig. 21 a A photograph of electrochemical paper-based analytical device consisting of screen-
printed working, reference, and counter electrodes. b CVs of the unmodified SPCE (purple line) 
and CoPc-SPCE (red line) in a ratio of 85:15 of Britton–Robinson buffer (pH 7):ethanol. CVs of the 
oxidation of 0.1 mM 8-HQ at the unmodified SPCE (blue line) and CoPc-SPCE (green line). Scan 
rate: 50 mV s−1 and c Electrochemical oxidation mechanism of 8-HQ at a CoPc-SPCE. Adapted 
and reprinted with permission from Ref. [175]. Copyright 2019 Elsevier

with CNTs and AuNPs (1 mM CV, 0.1 M KCl) the authors observed for SPE a pair 
of discrete redox peaks due to low electron transfer rate and surface area limited, 
Fig. 22a. On the other hand, when there is modification with CNTs, Fig. 22b, there 
is an increase in peak currents due to the versatile properties of CNTs that improve 
conductivity and surface area. After modification with CNT/en/AuNPs, there is an 
even more pronounced increase in peak currents, due to the synergistic effect between 
AuNPs and CNTs that caused an increase in electron transfer and effective surface 
area, Fig. 22b. The authors also proposed the charge transport mechanism that takes 
place on the surface of the modified electrode, Fig. 22 c, since, with the data obtained, 
it can be concluded that there is an oxidation reaction of TAP in SPE/CNT/en/AuNPs 
involves two protons and two electrons [178]. 
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Fig. 22 a Illustration of electrode modified; b CVs of bare SPE (a), SPE/CNTs (b), and 
SPE/CNT/en/AuNPs (c) inK3Fe(CN)6 (1 mM, 0.1 M KCl); c The proposed mechanism for determi-
nation of TAP based on the adsorptive stripping voltammetry on the surface SPE/CNTs/en/AuNPs. 
Reproduced from Ref. [178] with permission from the Royal Society of Chemistry 

5 Inorganic Compounds Applied to the Detection 
of Biomarkers 

A fast and accurate diagnosis is essential for pathogen identification and appropriate 
treatment. The application of inorganic complexes and metal-based nanomaterials is 
an excellent strategy in the development of diagnostic platforms that allow rapid and 
cost-effective early detection of diseases through electrochemical devices [179], as 
illustrated in Fig. 23. 

Among the diseases that most affect women are breast cancer [180]. Carcinoem-
bryonic antigen (CEA) is a substance found on the surface of some cells. In a normal, 
healthy adult, the level is relatively low unless certain diseases, including certain 
forms of cancer, are present. Lin and colleagues proposed the construction of an 
unlabeled electrochemical immunosensor (Ab/Au/pDA/Au–PB/CNT/GCE) for the
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Fig. 23 Schematic illustration of the main applications of sensors for biomarkers 

early and effective diagnosis of cancer based on tumor biomarkers. The electrochem-
ical immunoassay platform was constructed using a glassy carbon electrode (GCE) 
modified with carbon nanotubes (CNT). The nanocomposite of PB and Au nanopar-
ticles (Au–PB) was prepared by electrochemical coprecipitation on the modified 
glassy carbon electrode CNT/GCE, Fig. 24a). While PB is used as a redox probe, Au 
nanoparticles (AuNPs) were used to facilitate electrical conductivity. The stability of 
the Au–PB nanocomposite was improved by an in situ polymerized polydopamine 
(pDA) layer, as a bifunctional ligand which also acts as a reducing agent for the 
subsequent deposition of the second layer of Au nanoparticles. Then, the recognition 
antibody was attached to Au nanoparticles, which provide the recognition interface. 
The manufactured immunosensor has good stability and is capable of detecting CEA 
without reagent over a wide range (0.005–50 ng mL−1) with high reproducibility. The 
detection mechanism of the marker-free electrochemical immunosensor is based on 
the reduction of the PB signal measured by cyclic voltammetry (CV) and differential 
pulse voltammetry (DPV) due to the increase of the isolation on the electrode surface 
by the formation of the CEA-antibody compound, as shown in Fig. 24b) [181]. 

C-reactive protein (CRP) is an essential protein that appears to have high concen-
trations during inflammatory conditions. Early detection of inflammatory media-
tors, including C-reactive protein, is of great diagnostic importance in many human 
diseases [97].
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Fig. 24 Illustrative scheme of electrode construction (Ab/Au/pDA/Au–PB/CNT/GCE). a Increase 
in load transfer caused by the presence of AuNP and CNT. b Reduction of the PB signal measured 
by CV and DPV, after the formation of the CEA-antibody compound. Adapted and reprinted with 
permission from Ref. [181]. Copyright 2020, The Royal Society of Chemistry
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To increase specificity and sensitivity in C-reactive protein electrochemical 
biosensor measurements, Dong et al. [183] developed a new electrochemical 
immunosensor based on ZnO in a porous carbon matrix (ZnO/MPC) through thermol-
ysis of a mixed ligand metal–organic framework (MOF) (Zn-BDC-TED). The excel-
lent properties of ZnO nanostructures such as low toxicity, high surface-to-volume 
ratio, excellent biocompatibility, chemical stability, and electrochemical activities, 
in addition to electrostatic interactions with enzymes or proteins, combined with the 
excellent properties of carbon structures, arouse great interest in applications of these 
hybrid materials in electrochemical sensors. The electrochemical immunosensor 
for C-reactive protein (CRP) was prepared as show the Fig. 25a). The ZnO/MPC 
nanocomposite interacted with ionic liquid (IL) in the carbon paste electrode (CPE) 
to form ZnO/MPC/ILCPE. Then, antibodies (anti-CRP) were absorbed for specif-
ically interact with CRP. The analytical performance of immunosensor based on 
ZnO/MPC against the various concentrations of CRP was evaluated by DPV, as 
shown in Fig. 25b). It is observed that, with increasing CRP concentration (0.01– 
1000 ng·mL−1), the immunosensor current peaks decrease, which indicates the 
formation of the immune complex on the electrode surface, thus having a blocking 
electron transport, which occurs because the insulating properties of antibodies make 
it difficult for interfacial electrons to move [182]. 

Heart disease affects thousands of people around the world [183]. Myocardial 
infarction (MI) is a leading cause of human death, in which it is caused when the 
coronary arteries become completely blocked in certain areas of the myocardium and 
do not receive enough blood and oxygen to the related ischemic regions [184]. The 
troponin plays an essential role in the cardiac contraction system [185]. Troponin 
I (TnI) is considered an inhibitor of actomyosinATPase, in which increased levels 
of cardiac TnI can be seen in the patient’s bloodstream after myocardial injury due 
to an MI, being used as a cardiac biomarker in the diagnosis of myocardial damage 
[186]. Negahdary describes the use of an electrochemical troponin I aptasensors 
using a sheet metal from titanium (Ti) as a working electrode modified with gold 
NPs. Subsequently, a high-affinity TnI thiol-functionalized aptamer was prepared 
and immobilized on the surface of the Ti/Au NPs electrode. The sulfhydryl group 
of the aptamer formed a covalent bond bond Au–S with the gold NPs and a self-
assembled monolayer of TnI aptamer was formed on the surface of the working 
electrode, Fig. 26. The detection mechanism was based on decreasing the electro-
catalytic activity (oxidation signal) of [Fe(CN)6]3−/4− as a redox marker. When TnI 
was present in the environment, the negatively charged TnI molecules were captured 
by the aptamer strands and led to a further decrease in the TnI current voltammetry 
of differential pulse (DPV) related to the redox marker. The range of linear detection 
of this signaling aptasensor was from 1 to 1100 pM with an LOD of 0.18 pM [187]. 

Prostate cancer is one of the main male health concerns in the world, being the 
second most common type of cancer among men. The use of screening and early 
detection testing, such as prostate-specific antigen (PSA), is one of the common 
methods to reduce prostate cancer mortality rates, where it is possible to verify the 
emergence of the tumor by monitoring PSA levels in biological fluids, in particular 
blood. PSA is a 32–33 kDa single-chain glycoprotein produced by the prostate that is
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Fig. 25 a Schematic diagram of the processes to prepare CRP immunosensor. b DPV responses of 
BSA/anti-CRP/ZnO/MPC/IL-CPE to different CRP concentration (0.01, 0.1, 1, 10, 50, 100, 300, 
500, 1000 ng·mL−1). Adapted and reprinted with permission from Ref. [182]. Copyright 2016, 
Elsevier

present in serum, seminal plasma and benign hyperplastic and prostatic fluids; there-
fore, it is a special tumor biomarker for prostate cancer screening and post-treatment 
monitoring [188]. Akbariand co-workers (2019) proposed the construction of an elec-
trochemical biosensor (GO/AuNPs/Ab1), Fig. 27a) in the presence of [Fe(CN)6]3−/4− 

as a redox marker for prostate-specific antigen (PSA) detection. The voltammograms 
(Fig. 27b) showed an increase in the active surface area, indicating that GO/AuNPs 
increased the active surface of the electrode for the conjugation of more biomarker 
(curve a). Immobilization of antibodies and antigens on the electrode surface leads
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Fig. 26 Schematic representation of apt sensor based on gold NPs, PB NP for the detection of TnI. 
Adapted and reprinted with permission from Ref. [187]. Copyright 2016, Elsevier 

to a decrease in the active surface area of the electrode due to the hampering effect 
on the electron transfer rate which results in the attenuation of redox peaks. (c–e 
curves), demonstrating that this biosensor can be used as a diagnostic tool for the 
detection of tumor markers, prostate cancer, and clinical analyzes [189].

Prion diseases (or transmissible spongiform encephalopathies) are a group of 
invariably fatal neurodegenerative diseases characterized by progressive dementia 
and motor dysfunction and may be spontaneous, genetic, or acquired [190]. Prion 
diseases in mammals are associated with a conformational transition of the cellular 
prion protein from its native conformation (PrPC) to a pathological isoform called 
“scrapie prion protein” (PrPSc). Its abnormal shape, called prion protein (PrPC) forms  
fibers that accumulate inside the cell, affecting its function, spread to neighboring 
cells, causing brain damage and, ultimately, the death of the organism [191]. Li and 
collaborators proposed the construction of a immunosensor for the sensitive detection 
of (PrPC) based on nanocubes of Prussian blue analogs Co–Co (Co–Co PBA), modi-
fied by gold nanoparticles (PBA-AuNPs) with the presence of the antibody (Ab2) 
of immobilized PrPC on the surface (Ab2-PBA-AuNPs), Fig. 28a). In this study, the 
authors state that the biosensor shows a linear dependence of the peak currents in 
the DPV with the increase of the PrPC concentration, as shown in Fig. 28b), with 
a concentration varying between 0.075 and 100 pg mL−1 and a detection limit of 
0.014 pg mL−1 [192].



Inorganic Complexes and Metal-Based for Biomarkers Sensors 145

Fig. 27 a Schematic representation of the construction of the electrochemical biosensor for detec-
tion of prostate-specific antigen (PSA). b Electrochemical behavior of the electrode surface: a 
single GC, b G/GNP, c G/GNP/Ab1, d G/GNP/Ab1/Ag, and e G/GNP/Ab1/Ag/Ab2. Adapted and 
reprinted with permission from Ref. [189]. Copyright 2019, WILEY–VCH Verlag GmbH & Co
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Fig. 28 a Schematic representation of the construction of the immunosensor (Ab2-PBA-AuNPs) 
for detection prion protein (PrPC).b Electrochemical response of the dependence of I on logarithmic 
values of concentrations (PrPC). Adapted and reprinted with permission from Ref. [192]. Copyright 
2016, Elsevier
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6 Prospects and Challenges 

This chapter reviews inorganic complexes and metal-based as excellent candidates 
for the development of biomarkers sensors. For this purpose, various compounds 
are employed in the modification of the electrodes’ surface, such as Prussian Blue 
and analog, hexacyanoferrate and analog, nanoparticles of Au, Ti, ZnO, and metal-
modified NTCs. We were highlighted that the appropriate choice of inorganic 
complex, strategy mechanism of functionalization of electrodes, and optimization 
of the organizational structure play a fundamental role in designing new biomarkers 
sensors for fast and accurate diagnosis. Thus, researchers in this area seek to develop 
essentials tools for the identification and more appropriate treatment of diseases. 
Moreover, this chapter also points out more suitable ways to build more efficient 
devices. 
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Bioelectrodes with Enzyme Cascade 
Reactions 

Jefferson Honorio Franco and Adalgisa R. De Andrade 

Abstract We will discuss different approaches toward obtaining deep or total fuel 
oxidation in biofuel cells. We will explore the reactions involved in enzyme cascades 
(two or more enzymes) and hybrid configurations (which combine an organic catalyst 
with an enzyme, to cleave carbon–carbon bonds and to harvest all electrons from 
fuels) adopted in enzymatic biofuel cells (EBFCs) to catalyze the oxidation of fuels 
with high energy density. We will focus on the recent developments in catalytic 
cascades in EBFCs aimed at enhanced energy production. We will also discuss EBFC 
stability and lifetime. The fundamental knowledge gained about EBFCs will soon 
allow them to be applied in portable or implantable electronic devices. Finally, we 
will discuss future directions based on the development and evaluation of a novel 
and suitable EBFC design for potential applications. 

Keywords Enzymatic fuel cell · Enzyme cascade · Hybrid system ·
Electrochemical oxidation · Catalytic activity; power sources 

1 Introduction 

1.1 Biofuel Cells—Concepts and General Considerations 

1.1.1 Fuel Cells (FCs) 

FCs are electrochemical devices that convert chemical energy to electrical energy [1]. 
FCs produce energy by oxidizing compounds at the anode and reducing oxygen at the 
cathode. Noble metals are usually employed to oxidize fuels (such as hydrogen [2], 
methanol [3], ethanol [4], glycerol [5], and glucose [6]) at the anode compartment. 
Electron transfer to the cathode side occurs through an external circuit, and electricity
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Fig. 1 Simplified schematic diagram of a hydrogen–oxygen fuel cell 

production is completed via reaction with an oxidant, commonly oxygen. Both reac-
tions take place simultaneously [7]. Figure 1 displays a schematic representation of 
an FC. 

Overall, FCs produce high energy and power rates. However, some factors limit 
their application: Noble metal catalysts (based on Pt, Pd, and other noble metals) are 
expensive, catalysts can be poisoned, electrodes can be passivated, and noble metals 
will soon become scarce in the Earth’s crust [7–9]. An important drawback of FCs 
that operate at average temperatures (<100 °C) is that noble metals cannot oxidize 
more complex products or oxidize the fuel completely because these metals cannot 
cleave the fuel carbon–carbon bond in this condition [10]. 

1.1.2 Biofuel Cells (BFCs) 

In addition to FCs based on metallic catalysts, there are BFCs, which are divided into 
three classes: enzymatic, microbial, and organelle-based fuel cells [11]. BFCs use 
biocatalysts instead of metals to oxidize high energy density fuels and hence produce 
energy [12]. Biocatalysts are advantageous because they are renewable and easy to 
produce, do not depend on finite reserves, and do not require extreme pH values or 
high temperatures [9]. BFCs have drawn the attention of research groups working in 
the field of bioelectrochemistry because they generate high energy. This allows them 
to be applied in small electronic devices, where they act as a small battery [13]. In 
1911, Potter et al. used a Saccharomyces cerevisiae culture to produce energy [14]. 
In 1964, Yahiro et al. reported the first enzymatic fuel cell based on the enzymes
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(a) (b) 

(c) 

Fig. 2 Publications in the Web of Science™ database for the subject biofuel cell (a). Data from 
the Science direct database for publications for the subject biofuel cell (b) and countries of origin 
of these publications (c) 

glucose oxidase (GOx) and D-amino acid oxidase to catalyze glucose and D-alanine 
oxidation, respectively [15]. 

Despite these advances, research into BFCs did not increase significantly from the 
1960s to the 1980s. Nevertheless, in the late 1990s, BFCs reawakened researchers’ 
interest. Figure 2 shows that the number of scientific publications on BFCs grew 
significantly after the 2000s, due to technological improvements in the areas of 
nanomaterials [16], enzyme immobilization [17], hybrid systems [18], and molecular 
engineering [19] and to the urgency about obtaining alternative sources of energy 
generation. Therefore, researchers have focused on producing small devices that 
require low power [20] including self-powered sensors [8] and implantable [21] or  
wearable devices [22]. 

1.1.3 Enzymatic Biofuel Cells (EBFCs) 

EBFCs employ enzymes as catalysts to oxidize fuels or to reduce oxygen [23]. 
Enzymes are attractive catalysts because they present high catalytic activity and speci-
ficity; they allow membraneless EBFC devices to be constructed, thereby avoiding 
complications due to cross-over reactions [24]; they are renewable; they can be 
produced on large scale; unlike noble metals, they do not need finite natural reserves;
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Fig. 3 Schematic representation of an ethanol enzymatic biofuel cell operating at a semi-bio 
condition (note that the cathode still employs a Pt-catalyst) 

and they enable EBFCs to operate at physiological pH and room temperature, 
providing a mild and safe reaction medium [24, 25]. 

Figure 3 shows an example of a cascade reaction for ethanol oxidation in an 
EBFC, where a group of enzymes acts as catalysts at the anode, to oxidize the fuel 
completely; oxygen is reduced at the cathode side. 

The energy generated by EBFCs is lower than the energy generated by metal-
based FCs [7], so EBFCs surely will not be used to generate power in battle tanks, 
aircraft, or giant batteries for city supplies. In fact, EBFCs have potential applications 
in the range of μA and mA, which makes them a promising energy source in small 
devices. When it comes to EBFCs, one of the researcher’s main goals is to obtain 
the maximum energy from the employed fuel, to increase the delivered energy. 

2 First Steps in EBFC Development 

Researchers have used EBFCs to oxidize several fuels. Given that most enzymes are 
highly selective, pioneering investigators employed only one enzyme to produce the 
bio-enzymatic film at the electrode, which allowed oxidation to occur in a single 
catabolic step, with two electrons being collected from the fuel. 

Nanomaterials like carbon nanotubes (CNTs) are used to enhance performance in 
diverse research fields; for example, CNTs help to improve the electronic, thermal, 
and mechanical properties of electrochemical systems and make these systems more 
compatible with enzymes [26, 27]. CNTs have high electrical conductivity, so they 
have promising applications in EBFCs. Furthermore, they can be modified with 
functional groups, to which biomolecules can be immobilized [26, 27]. CNTs can



Bioelectrodes with Enzyme Cascade Reactions 161

increase the electron transfer rate between the enzyme active site and the electrode 
surface by either direct electron transfer (DET) or mediated electron transfer (MET, 
which occurs by using a mediator molecule) [28, 29]. Although MET generates a 
higher power density, DET provides a simpler architecture and lower loss of EBFC 
performance [28]. Thus, integrating CNTs into the bioelectrode improves the elec-
tronic and catalytic properties of said electrode, affording synergistic power sources 
that are potentially applicable in EBFCs [30]. 

One example of integrating CNTs into EBFCs is the combination of GOx with 
modified multi-walled carbon nanotubes (MWCNTs) immobilized on the elec-
trode surface, to oxidize glucose to gluconolactone (two electrons). The presence 
of MWCNTs in the EBFC facilitates direct electron transfer between the enzyme 
active site and the electrode surface, which could help to simplify and to miniaturize 
an effective and reliable membraneless EBFC. However, more detailed studies on 
the electrocatalytic rate, lifetime, and reproducibility of this EBFC during glucose 
oxidation are needed [31]. 

The literature contains good reviews on enhanced lifetime and communication 
between the enzyme and the electrode surface in EBFCs [23, 24, 32]. 

3 Key Issues Faced During EFBC Development 

One of the most important concerns during EBFC development is achieving high 
current and power density values to make its commercial application viable. As 
discussed previously, EBFC lifetime and efficiency issues must be faced before this 
technology can be accepted in the market [25]. Moreover, for an outstanding catalytic 
activity to be obtained, the total energy available in the fuel must be harnessed; that 
is, all the electrons from the oxidation reaction must be collected. Because of the 
high selectivity of most enzymes bearing in mind, the energy metabolism of all 
living organisms more than one enzyme must be used in an EBFC for complete fuel 
oxidation to be achieved. 

4 Enzyme Cascades in EBFCs 

At least two catabolic steps are required to obtain high energy and complete fuel 
oxidation through harvesting of all the electrons from the fuel molecule. For this 
purpose, an enzyme cascade, involving at least two enzymes, is necessary to improve 
the oxidation reaction pathway [33]. Indeed, researchers have used enzyme cascades 
to achieve complete fuel oxidation [12, 34, 35]. 

Palmore et al. [36] reported the first enzyme cascade-based EBFC for complete 
alcohol oxidation; more specifically, these authors employed a series of three 
enzymes to harvest all the electrons from methanol. First, NAD+-dependent alcohol 
dehydrogenase (ADH) oxidized methanol to formaldehyde, collecting two electrons.
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Fig. 4 Methanol oxidation to carbon dioxide catalyzed by NAD+-dependent alcohol-(ADH), 
aldehyde-(AldDH), and formate-(FDH) dehydrogenases (shown within the box) proposed by 
Palmore et al. [36]. Reprinted with permission from Palmore et al. (1998). A methanol/dioxygen 
biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: Application of an electro-
enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. Journal 
of Electroanalytical Chemistry, v. 443, p. 155–161. Copyright 2022, Elsevier 

Then, NAD+-dependent aldehyde dehydrogenase (AldDH) oxidized formaldehyde to 
formic acid, collecting two more electrons. Finally, NAD+-dependent formate dehy-
drogenase (FDH) oxidized formic acid to the final product, carbon dioxide (CO2), 
collecting two additional electrons. NAD+ was electro-enzymatically regenerated by 
coupling an enzyme to the anode via a redox mediator. Figure 4 shows the scheme 
of the proposed methanol EBFC [36]. 

Xu et al. reported an enzyme cascade involving six enzymes—glucose dehydroge-
nase, gluconate 2-dehydrogenase, aldolase, ADH, AldDH, and oxalate oxidase—to 
obtain deep glucose oxidation [37], as represented in Fig. 5. Compared to the cascade 
involving only two enzymes, the power (6.74 ± 1.43 μW cm−2) and current density 
(31.5 ± 6.5 μA cm−2) were 46.8 and 33.9 times higher, respectively [37]. In 2017, 
Wu et al. used an enzyme cascade involving the enzymes ADH, AldH, and FDH 
immobilized on carbon nanodots (CNDs) for methanol oxidation [38]. As in the 
pioneering work of Palmore et al. [36], this bioanode was coated with a redox medi-
ator, polymerized methylene blue, to lower the overpotential for NADH oxidation. 
The biocatalytic system reached an OCP of 0.71 ± 0.02 V and a power density of 
68.7 ± 0.4 μW cm−2, confirming that the CNDs enhanced the catalytic activity by 
improving electron transfer and producing highly conductive EFC architectures [38]. 

Another elegant approach in enzyme cascades entails mimicking the citric acid 
metabolic cycle for ethanol oxidation [39]. To this end, 10 enzymes were immobilized 
on a membrane layer consisting of quaternary ammonium bromide salt-modified 
Nafion® placed on the electrode surface. The power density value of this cascade 
was nine times higher than the value achieved with a single enzyme [39]. Later, Sokic-
Lazic et al. applied a similar enzyme cascade comprising eight enzymes (pyruvate 
dehydrogenase, succinyl CoA synthetase, fumarase, aconitase, isocitrate dehydro-
genase, malate dehydrogenase, citrate synthase, and α-ketoglutarate dehydrogenase)
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Fig. 5 Schematic representation of a six-enzyme cascade for glucose oxidation. Reprinted with 
permission from Xu and Minteer [37]. Copyright 2022, ACS Publications
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Fig. 6 Deep lactate oxidation in the lactate/air biofuel cell. Reprinted with permission from Sokic-
Lazic D, de Andrade AR, Minteer SD (2011). Utilization of enzyme cascades for complete oxidation 
of lactate in an enzymatic biofuel cell. Electrochimica Acta, v. 56, p. 10,772–10,775. Copyright 
2022, Elsevier 

to oxidize lactate completely (Fig. 6) [40]. The cascade gave 18- and 21-times higher 
power density (827 ± 21 μW cm−2) and current density (3.32 ± 0.11 mA cm−2) 
values, respectively, than the system containing only one enzyme.

Zhang et al. applied an in vitro pathway involving 15 enzymes for simultaneous 
oxidation of glucose, sucrose, and fructose (mixed sugars present in soft drinks) and 
obtained Faradaic efficiency of 95% and maximum power density between 0.80 and 
1.08 mW cm−2 [41]. Although the enzyme cascade operated with great fuel flexibility, 
the authors reported that lifetime, stability, and power density enhancement must be 
further investigated [41]. 

Numerous investigations have shown that the amount of energy subtracted from 
fuels increases with the number of enzymes on the electrode surface, as depicted in 
Fig. 7a for lactate oxidation. However, fuel concentration generally affects power 
and current density values, impacting EBFC performance. For instance, Fig. 7b 
demonstrates that power density initially increases with fuel concentration, but it 
plunges at higher fuel concentrations, indicating that the ionic strength generated 
by the increasing fuel concentration affects the enzyme kinetics and impairs EBFC 
performance. Therefore, new enzyme cascades that tolerate high fuel concentrations 
must be developed [40].
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(a) (b) 

Fig. 7 Power curves for lactate enzymatic biofuel cell for a successive additions of different dehy-
drogenases in 100 mM sodium lactate. b bioanode containing one enzyme (LDH) in the presence 
of different lactate concentrations. Reprinted with permission from Sokic-Lazic D, de Andrade 
AR, Minteer SD (2011). Utilization of enzyme cascades for complete oxidation of lactate in an 
enzymatic biofuel cell. Electrochimica Acta, v. 56, p. 10,772–10,775. Copyright 2022, Elsevier 

Enzyme cascades usually generate high energy when deep oxidation is achieved 
[42]. Nevertheless, when the number of enzymes immobilized on the electrode 
surface increases, there is a fine balance between electron gain and stability loss. Thus, 
building a complex and robust architecture capable of accommodating a large number 
of enzymes for effective and complete fuel oxidation becomes a difficult task [12]. 
Neto et al. showed that an increase in the number of enzymes immobilized on the elec-
trode surface decreased the cascade stability [10]. These authors immobilized seven 
enzymes, namely ADH, AldDH, aconitase, citrate synthase, isocitric, S-acetyl-CoA, 
and synthetase, on the electrode surface by using the linear ethyleneimine polymer 
(LEIP) as immobilization matrix and ethylene glycol diglycidyl ether (EGDGE) as 
a crosslinking agent, to obtain complete ethanol oxidation. The third step of the 
cascade performed less efficiently than the first two steps when ADH and AldDH 
were employed. This confirmed that the addition of several enzymes to a complex 
immobilization structure decreases the power density and hence the EBFC catalytic 
activity, a consequence of steric hindrance to fuel approach to the enzyme catalytic 
sites [10]. 

As reviewed by Sokic-Lazic et al. [42], the specific activity of each enzyme 
involved in the cascade is another important issue. Ideally, bottlenecks between 
enzymes must be avoided so that a continuous cycle is maintained. However, this 
will only be possible if all the enzymes have similar enzymatic activity—units/mg 
(1U means that the enzyme converts one mol of the substrate (fuel) per minute), but 
such a cascade is not easy to project. One example of such cascade can be observed 
in Fig. 8, which illustrates the enzymes involved in the Krebs cycle employed for 
deep oxidation of ethanol [39], lactate [40], and pyruvate [43]. 

Although metabolic enzyme cascades work perfectly for the total oxidation of 
several fuels, there is a lack of energy/electron generation in this kind of EBFC. 
Most enzymes used in these cascades are non-oxidoreductase enzymes, implying
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Fig. 8 Specific activity of the enzymes involved in the mimetic Krebs cycle. Reprinted with permis-
sion from Sokic-Lazic D, Arechederra RL, Treu BL, Minteer SD (2010). Oxidation of biofuels: Fuel 
Diversity and Effectiveness of Fuel Oxidation through Multiple Enzyme Cascades. Electroanalysis, 
v. 22, p. 757–764. Copyright 2022, Wiley Online Library 

that the electrode demands low power density [37]. The amount of energy delivered 
in an EBFC cascade can be optimized by employing oxidoreductase enzymes. 

Therefore, when it comes to deep fuel oxidation in EBFCs, two main challenges 
must be faced: specific activities of the enzymes and stabilization of the multi-
enzyme cascade immobilized on the electrode surface. Overcoming these challenges 
is complex and depends on factors such as type of enzyme immobilization, the addi-
tion of implemented nanostructures to increase electron transfer between the enzymes 
and the electrode surface, and electrode surface area [1]. 

One of the great advantages of EBFCs is that sugars or alcohols, with low toxicity 
and high energy density, can be employed as fuel [42]. However, using two or more 
enzymes in the cascade might fail to oxidize the fuel completely, probably due to 
cascade inhibition by reaction products or intermediates. This could culminate in 
low energy density and efficiency, which are essential parameters for energy sources. 
Thus, researchers must engineer enzyme cascades with a degree of complexity that 
can generate high energy rates while allowing EBFCs for practical applications to 
be developed [44]. 

Table 1 summarizes some enzyme cascades for various fuels; the number of 
enzymes involved in the cascade and the generated power is emphasized.
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Table 1 Enzyme cascades in enzymatic biofuel cells 

Number of enzymes 
in the cascade 

Fuel OCP (V) Maximum power 
density 
(μA cm−2) 

Imax (μA cm−2) Reference 

3 Methanol 0.71 68.7 ± 0.4 220 ± 0.8 [38] 

3 Methanol 0.80 670 ± 6.0 * [36] 

3 Methanol * 261 ± 7.6 845 ± 35.5 [45] 

2 Glycerol * 1210 ± 0.15 2250 ± 0.25 [34] 

2 Ethanol 0.82 2040 ± 0.05 2730 ± 0.15 [46] 

10 Ethanol * 1010 ± 0.01 3600 ± 0.23 [39] 

6 Lactate * 3320 ± 110 827 ± 21 [40] 

6 Glucose 0.571 6.74 ± 1.43 31.5 ± 6.5 [37] 

2 Glucose * 322 ± 0.017 * [47] 

5 Pyruvate * 3920 ± 0.48 931 ± 0.09 [43] 

15 Sucrose 0.80 690 * [41] 

* Unreported value 

5 New Approach in EBFCs: Use of Hybrid Cascades 
to Improve Electrooxidation Pathways 

As discussed above, several enzymes used in enzymatic cascade studies are limited 
by their stability, high specificity, and operating conditions (pH, temperature, and 
electrolytes). Hybrid systems, which combine the advantages of enzymatic oxida-
tion with another organic or inorganic catalyst, can help to overcome the stability 
issues that arise when a large number of enzymes are immobilized on the electrode 
surface. Studies on such hybrid systems have described the use of an abiotic catalyst, 
which only acts to improve characteristics including electrode area and conductivity. 
However, this type of catalyst does not act together with the enzyme or directly on 
fuel oxidation [19, 48, 49]. In other studies, metallic electrocatalysts have been added 
to systems containing enzymes to increase the biofuel cell energy output [48, 50]. For 
example, Kwon et al. combined gold-modified cotton fibers with GOx for glucose 
oxidation, to achieve a power density of 3.7 mW cm−2. The authors claimed that the 
metallic fibers increased the conductivity between the enzyme and the electrode [51]. 
For hydrogen oxidation, the amino acid arginine was incorporated into the nickel bis-
diphosphine complex ([NiII(PCy 2NArg 

2)2]7+) and immobilized onto CNTs modified 
with naphthoic acid groups [52]. Nevertheless, hybrid systems combining an abiotic 
catalyst and an enzyme still have deficiencies like low power density and failure in 
collecting all electrons—fuel oxidation is incomplete because these systems cannot 
break the fuel carbon–carbon bonds. 

To address this problem, the enzyme oxalate oxidase (OxOx) has been employed 
to cleave carbon–carbon bonds of acids and oxalate. OxOx catalyzes oxalate oxida-
tion to two  CO2 molecules [53, 54]. The analogous enzyme oxalate decarboxylase
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(OxDc), which catalyzes oxalate carbon–carbon cleavage, to give formate and CO2, 
has also been applied [55]. These enzymes have similar function and activity [56, 57] 
and have been satisfactorily used in the total oxidation of alcohols such as glycerol 
[58], glucose [37], and ethanol [59]. 

In the case of alcohol oxidation, the OH groups must be oxidized first, which can be 
achieved with the organic catalyst N-oxyl-2,2,6,6-tetramethylpiperidine (TEMPO). 
This organic catalyst has been used to oxidize groups containing oxygen, nitrogen, 
and sulfur [58], such as alcohols and aldehydes [60], and to oxidize amines to alde-
hydes, ketones, or nitriles to their respective acids [61] at room temperature. TEMPO 
and its derivatives are widely applied in syntheses because they are safe and inex-
pensive [62]; they are also employed in some specific oxidations [63]. Figure 9 
illustrates the mechanism of action of TEMPO. The catalytically active oxoammo-
nium cation originates from the nitroxyl radical (I). Then, oxoammonium (II) is 
reduced to the hydroxylamine (III) form, which performs the second oxidation and 
regenerates the oxyammonium cation [64, 65]. TEMPO modification improves the 
catalyst properties for the desired application in EBFCs [65]. 

Concomitant use of TEMPO and OxOx or OxDc in the hybrid cascade overcomes 
the individual limitations of these catalysts and enables total electron harvesting from 
fuels [66, 67]. This hybrid system is more robust and employs less protein, facilitating 
biofilm formation and stabilization [59]. 

Fig. 9 Schematic representation of the TEMPO oxidation mechanism. Step I—nitroxyl radical. 
Step II—oxoammonium cation. Step III—hydroxylamine
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5.1 Recent Studies Using Hybrid Cascade Systems 
for Complete Oxidation 

Given the need to improve how complex electrooxidative cascades perform, 
researchers have studied hybrid catalytic motifs. Hu et al. developed a hybrid 
system by combining TEMPO and GOx for glucose oxidation. The hybrid bioelec-
trode harvested four electrons from glucose and gave a maximum power density of 
38.1 μWcm−2, showing that the joint action of TEMPO and GOx enhanced catalytic 
activity, opening possibilities for developing a more promising energy conversion 
device [68]. 

Many studies on such hybrid systems are focused on alcohols such as glycerol and 
ethanol. Hickey et al. [58] applied the organic catalyst 4-amino-TEMPO (TEMPO-
NH2) and OxOx in the glycerol//O2 EBFC. Nuclear magnetic resonance (13C NMR) 
analyzes identified CO2, confirming complete glycerol oxidation. The authors stated 
that an important approach is to combine different catalysts under conditions where 
both operate under their maximum activity (pH, temperature). This hybrid system 
allowed an enhanced bi-catalytic cascade for complete glycerol oxidation to be 
developed [58]. 

A similar strategy has been reported for lactate oxidation: A hybrid biofilm 
containing TEMPO-NH2/OxDc oxidized lactate to a high degree, with high catalytic 
activity (0.15 mA cm−2) [69]. Important features of this hybrid bioanode were its 
higher stability and efficiency. The synergistic action of the organic catalyst and the 
enzyme provided complete lactate oxidation, confirming that the hybrid architecture 
can operate in the catabolic steps of several fuels [69]. 

Despite the satisfactory results obtained by combining TEMPO-NH2 and enzymes 
such as OxOx and OxDc to oxidize glycerol [58], lactate [69], and ethanol [70], new 
approaches are required to promote cascade reactions that provide high-performance 
EBFCs, enabling practical and efficient applications [70]. Therefore, researchers have 
explored different ways to immobilize the organic catalyst, so that system perfor-
mance is enhanced even further. In this context, covalent TEMPO immobilization 
onto a linear ethyleneimine polymer (LEIP) backbone crosslinked onto a carbon 
electrode has been proposed for oxidation of many fuels [71, 72]. Based on the 
results, higher current density was achieved as compared to the analogous system 
involving homogeneous TEMPO. The new material presented promising character-
istics for oxidation of several fuels, facilitating improvement of the catabolic reaction 
for hybrid catalytic cascades [66, 71]. 

A tri-catalytic-motif architecture has been developed for glycerol oxidation [67], 
with the hybrid system TEMPO-LEIP/MWCNT/(OxDc) providing increased elec-
trocatalytic activity. According to the results, TEMPO-LEIP oxidized the first five 
glycerol oxidation steps, MWCNTs-OxDc cleaved the mexolate carbon–carbon 
bonds, and catalyzed oxalate decarboxylation, to give formate and CO2. Thus, this 
tri-catalytic system increased current density by collecting all the 14 electrons from 
the glycerol molecule and represents an opportunity for constructing a promising 
bioanode architecture for deep electrochemical oxidation of fuels [67].
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Complete ethanol oxidation has been demonstrated by employing an immobi-
lized hybrid system containing MWCNT-COOH, TEMPO-LEIP, and OxOx [59]. 
This catalytic system relied on the synergistic effect of its components. Current 
density increased by 3- and 2.5-fold as compared to the MWCNT-COOH/OxOx and 
MWCNT-COOH/TEMPO-LEIP systems, respectively. Electrochemical and chro-
matographic experiments confirmed that OxOx was able to cleave the acetic acid 
C–C bond efficiently, generating formic acid. In turn, TEMPO acted on formic acid 
oxidation, producing CO2 and harvesting all the 12 electrons from ethanol [59]. 
Figure 10 illustrates complete ethanol oxidation by the hybrid system MWCNT-
COOH/TEMPO-LEIP/OxOx, through which all the catabolic steps occurring in the 
presence of the catalysts combined on the electrode surface can be followed. 

Countless efforts have been made to produce complex and efficient systems for 
application in the field of bioelectrochemistry. Recent studies have shown the use of 
organic catalysts tethered to pyrene and of organic catalysts as non-covalent anchors 
based on π–π stacking interactions between pyrene and CNTs [18, 67]. For example, 
the catalytic activity of pyrene-TEMPO/MWNCT was higher compared to TEMPO-
NH2, generating more energy due to enhanced electrochemical oxidation [73, 74]. 

Andersen and collaborators developed an electroanalytical system based on paper-
based platforms to evaluate deep glycerol oxidation in multi-step reactions [75]. 
The electrochemical platforms allowed for fast characterization of the intermediate

Fig. 10 Proposed scheme for complete ethanol oxidation at the hybrid system MWCNT-
COOH/TEMPO-LEIP/OxOx. The blue arrow represents the oxidation mediated by the organic 
catalyst TEMPO, and the red arrow represents the bio-enzymatic oxidation due to the action of the 
enzyme OxOx
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Table 2 Hybrid cascade systems in enzymatic biofuel cells 

System Fuel OCP 
(V) 

Power 
density(μA 
cm−2) 

Imax (μA 
cm−2) 

Reference 

GAAuNPs/CNFs Glucose * 91.4 304 [76] 

TEMPO/GOx Glucose * 38.1 651.4 [68] 

TEMPO-NH2 + OxOx Glycerol * * 875 [58] 

MWCNT/TEMPO-LEIP/OxDc Glycerol * * 1300 [67] 

Pt65Sn35/MWCNTs + OxOx Ethylene 
glycol 

0.643 332 930 [77] 

MG/MWCNTs/TEMPO-LPEI/ADH + 
AldDH + NAD+ 

Ethanol 0.649 378.2 1087 [66] 

MWCNT-COOH/TEMPO-LEIP/OxOx Ethanol 0.492 302.5 821.1 [59] 

MWCNT-COOH/Pyrene-TEMPO/OxDc Ethanol 0.598 388 690 [18] 

TEMPO-NH2/OxDc Ethanol 0.468 78 353 [70] 

ADH/TiO2NTs-TCPP Ethanol 1.13 270 360 [78] 

Poly-(MG-PYR) + MWCNTs + Nafion 
+ ADH/AldDH/NAD + 

Ethanol 0.503 275 1040 [79] 

MWCNTs-COOH-Au/ADH Ethanol 0.61 155 990 [48] 

* Unreported value 

products formed during the triple catalytic cascade comprising the organic cata-
lyst pyrene-TEMPO, metallic palladium supported on 3D graphene nanosheets (Pd-
GNS), and OxDc. This paper-based microfluidic device can be used in environmental 
and clinical analyses [75].

Despite the advances in EBFCs in recent years, they are not yet fully effective 
for application as an autonomous energy source. A detailed study of the energy 
storage capacity of these hybrid systems is crucial. Table 2 lists the literature papers 
describing the use of hybrid cascades in EBFC development. 

6 Enzymatic Cascades Applied for Operating Power 
Sources 

6.1 Wearable Devices for EBFCs 

EBFCs can be applied in glucose sensors, pacemakers, and wearable devices [44]. A 
direct consequence of using hybrid catalytic cascades is their application in wearable 
electronic devices [80]. These devices have become commercially attractive—the 
development of small devices such as smartwatches, fitness bands, and wearable 
detectors has drawn the attention of the population because they consume little power
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and are suitable, body-compliant power sources [81]. Wang et al. developed the first 
example of a fully imprinted and stretchable bifunctional biosupercapacitor to collect 
and to store energy generated by lactate from sweat [82]. The hybrid system proved 
to be self-charging via the redox reactions of the lactate biofuel cell, providing high 
power density (0.343 mW cm−2). The wearable electronic device can be produced 
with low-cost materials such as elastic adhesive films, allowing contact with the 
human skin during rigorous exercise, thereby acting as a powerful energy source 
(Fig. 11). Although the epidermal device provides a simple and efficient design, 
future studies must be carried out to adjust the stability of the system, so that the 
large-scale production of a wearable device that generates energy through human 
sweat produced during physical exercise can soon be implemented [82]. 

A biosensor that can detect the alcohol content in the body through sweat has also 
been reported [83], paving the way for the development of devices that can detect 
alcohol in other fluids such as tears and saliva for real-time alcohol monitoring 
[81, 83, 84]. 

(b) 

(b) 

(a) 

Fig. 11 a Image of a headband-based textile biofuel cell and the DC/DC converter along with a 
scheme of the half-cell reaction taking place at the two electrodes. Real-time generation of usable 
electrical energy from human sweat to power b LED and c wrist-watch. Reprinted with permission 
from Bandodkar AJ, Wang J (2016). Wearable Biofuel Cells: A Review. Electroanalysis, v. 28, 
p. 1188–1200. Copyright 2022, Wiley Online Library
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6.2 EFC Self-powered Biosensors 

Since the pioneering work of Adam Heller, who employed a miniaturized glucose 
EBFC to monitor and to convert blood sugar to energy, many improvements have 
been made in this field [85, 86]. There have been continuous efforts to increase the 
energy production, lifetime, and stability of miniaturized enzymatic biofuel cells 
(mEBFCs) [85]. A self-powered glucose sensor to measure glucose in body fluids 
has been proposed: The sensor combines a miniaturized organic electrochemical 
transistor (OECT) and an EBFC that uses redox enzymes to generate energy [86]. This 
autonomous biosensor is stable, easy to prepare, and inexpensive, and it has a wide 
detection range (10–20 mM). It also acts as an organic electrochemical transistor, 
generating high energy rates upon contact with relevant glucose concentrations in 
the human fluid. Remarkably, the new design acts as a technological advance for 
self-powered micrometric-scale sensory devices for glucose detection [86]. 

Gouranlou et al. built an ethanol EBFC by immobilizing ADH with poly-
diallyldimethylammonium chloride (PDDA) and MWCNTs on the anode. The 
supporting agent (PDDA) acted as a polyelectrolyte that dispersed the MWCNTs 
and prolonged the ADH activity, improving bioanode performance. The EBFC 
produced power density and open-circuit potential (OCP) equal to 1.713 mW cm−2 

and 0.281 V, respectively. The hybrid system PDDA/MWCNT/ADH improved 
the surface area electronic conductivity, making the system promising for future 
commercial applications [87]. 

The field of bioelectrochemistry has received growing attention. Parameters such 
as different types of enzyme immobilization [88] and study of other important factors 
aiming to improve electron transfer between the enzyme and electrode [48] and 
catalytic activity [78, 89] are fundamental steps to obtain robust EBFCs. 

Autonomous self-powered biodevices have focused mainly on systems that have 
low power. In this case, EBFCs can simultaneously be employed as a power source 
and biosensor [90]. The major advantage of these sensors is that they do not need an 
external power source. Katz and Willner were the first to report on self-powered 
biosensors: They determined analyte concentration by measuring the power or 
current output generated by the EBFC [91]. The analyte was detected by increasing 
or decreasing the EFC power output. A self-powered device can replace large, expen-
sive types of equipment and reduces the need for high technical training [92]. This 
type of sensor has been reported for several analytes, including ethanol [20], lactate 
[93], nitroaromatic explosives [94], glucose [95], acetaldehyde [96], and cholesterol 
[97]. 

The most promising advancement reported recently has been the development 
of hybrid supercapacitor/biofuel cells (SC-EBFCs), which combine strategies to 
improve energy storage and conversion [98]. One advantage of SCs is their rapid 
charge–discharge, allowing for instantaneous energy generation. These new concept 
SC-EBFCs combine a hybrid bi-catalytic bioelectrode with a charge-store energy 
matrix, which is expanded to develop an SC-EBFC device [99]. This system effi-
ciently acts as a self-powered device for energy storage and generation—the enzyme
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can recharge the system, eliminating the need for an external source [100]. These 
promising features will allow implantable or usable small bioelectronic devices to 
be produced [100, 101]. Furthermore, despite the advances in SC-EBFCs, finding 
biocompatibility between two complex systems remains a challenge [100, 102, 103]. 
Notably, constructing new improved systems is a new strategy to obtain efficient 
and suitable elements that store charge in the SC through robust energy genera-
tion by the EBFC, opening a new design for the fabrication of high-performance 
bioelectrochemical systems. 

7 Conclusions and Futures Perspective 

We have shown that deep or total oxidation of complex fuels requires a complete 
enzymatic cascade or a hybrid system. These systems furnish higher power density 
as compared to the single-enzyme counterpart. Biofilm complexity directly affects 
stability and the amount of delivered power. Hybrid systems are simpler because 
they demand a smaller amount of catalyst to provide the same outcome as a large 
number of enzymes (>6–10). Notwithstanding the efficient approaches employed in 
the bi-catalytic bioelectrode for cascade reactions, some crucial issues such as short 
lifetime, low stability, and unsatisfactory power density need to be solved. Overall, 
the main possibility for EBFCs to move from fundamental research to the market 
may go through its coupling with SC in self-powered electronic devices, which has 
potential application in the future. 
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(Bio)electrodes on Paper Platforms 
as Simple and Portable Analytical Tools 
for Bioanalytical Applications 

Habdias A. Silva-Neto, Danielly S. Rocha, Lauro A. Pradela-Filho, 
Thiago R. L. C. Paixão, and Wendell K. T. Coltro 

Abstract Conductive material based on carbon particles is the most usual structure 
fully incorporated upon cellulose microfibers due to intrinsic properties such as low-
electrical resistivity, accessibility, low-cost, dispersion on solvents, and high-contact 
surface. In this chapter, we introduced the most popular examples of microfabrica-
tion protocols for manufacturing paper-based electrodes. The procedure step-by-step 
for transferring or creating conductive sites on a paper will be indicated. In addition, 
this chapter also discusses in detail the main examples reported in literature asso-
ciated with paper-based electrodes and bioanalytical applications. Some strategies 
of electrode modification, redox activities, and electrochemical analysis involving 
biomarkers of diabetes, cancer, Alzheimer’s disease, and COVID-19 will be explored. 

Keywords Cellulose substrate · Carbon allotrope · Material transference ·
Paper-based electrochemical sensor · Bioanalysis 

1 Introduction 

Suitable interconnects between conductive particles and cellulose-based substrates 
have been powerful in producing compact electrochemical devices [1–3]. Tradi-
tional electronic devices can be utilized for realizing the interfacing between the 
target molecule present on chemical samples and analytical detectors. The elec-
trodes surface, when induced by potentiostat, can be catalyzed directly or indirectly 
by the electrochemical reaction of the target molecule. Then, the electron flow from 
reactions is monitored by the software. In the last years, the conductive materials,
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including polymers, metals, and carbon allotropes, are the most standard compo-
nents for creating conductive structures with suitable electron transfer performance 
in the modern electrochemistry field. While material composed of cellulose is huge 
recommended as a substrate due to due to accessibility, chemical stability, mechan-
ical resistance, capillarity and ly to, presence of fibers, and greater adherence with 
conductive inks [2, 4–9]. 

Material combination through solid–solid and liquid–solid processes is the most 
traditional for constructing paper-based electrodes, also nominated as electrochem-
ical paper-based analytical devices (ePAD). Manufacturing strategies that can transfer 
or generating conductive structures upon paper substrates includencil printing, [10] 
pencil drawing [11], and laser scribing [12]. These protocols are the best exam-
ples that can be successfully employed in the microfabrication field due to the use 
low-cost and accessible materials, and the Fig. 1 illustrates the above-mentioned 
techniques. Highlighted literature showed many examples of these devices for high-
impact sensing applicationss such as forensic, pharmaceutical, food, environmental, 
and clinical. However, this chapter is dedicated to reviewing recent tendencies in 
bioanalysis on a paper. 

The construction of electrodes on paper is quite attractive to day-to-day uses in the 
modern analytical chemistry. Considering relevant clinical analysis, the ePAD asso-
ciated with electrochemical responses has been provided as an interesting alternative 
for solving infinite situation involving bioanalysis [13]. The key to success of these 
analytical devices is probably associated with the portability and the possibility of 
integrating with some detector, as amperometry, square wave voltammetry (SWV), 
and differential pulse voltammetry (DPV), per example. Another suitable technique

Next station: cellulose substrate 

Pencil-drawing  

Laser-scribing  

Stencil-printing  

Fig. 1 Illustration of most popular microfabrication protocols for constructing paper-based 
electrodes
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is electrochemical impedance spectroscopy (EIS) which is traditionally coupled with 
biosensors.

The above-mentioned electrochemical methods exhibited similar performance in 
terms of detectability from found responses through traditional analytical instrumen-
tation such as UV–VIS spectrophotometry, HPLC–MS, and ICP-MS, for example 
[14, 15]. In contrast, some methodologic challenges observed in conventional instru-
mentatio, such as the calibration steps, sample preparation, and long analyst train 
time, are not found when employing the electrochemical methods [16]. It is important 
to mention that when the surface of ePADs exhibited inefficient sensing performance, 
some additional steps are recommended to improve the target analysis, including 
proposing activations of the electrode surface and modifying the electrode surface 
with nanocomposites biomaterials. Examples of modification included graphene 
oxide, carbon nanotube, aptamer, and enzymes [5, 16]. 

The electrochemical bioanalysis traditionally catalyzed on electrodes is realized in 
biological matrices collected in two distinct fluids, such as invasive and non-invasive. 
Invasive sampling from human blood can be pre-treated converting in plasm and 
serum to reduce the solid-phase interferences. Non-invasive samples can be collected 
in sweat, tear, urine, saliva, and swab. 

This chapter introduced the last information on the paper-based electrodes dedi-
cated to bioanalysis. The main properties of cellulose-based material and the most 
popular manufacturing techniques employed for constructing ePADs will be carefully 
demonstrated. Considering the most popular bioanalysis, the advances in sensing 
performance and clinically relevant application are also discussed. Posteriorly, we 
conclude this chapter indicating some notes and challenges observed in their devices 
for realizing bioanalysis. 

2 Cellulose-Based Substrate 

Paper substrate is a material of varying porositconsisting of cellulose, the most abun-
dant natural renewable polymer [17]. While a raw material, it can be obtained from 
numerous sources, including biomaterials such as trees, plants, vegetables, and some 
wastes. Cellulose is classified as a polysaccharide consisting of numerous D-glucose 
units through unbranched bonds of the type β(1 → 4).[18, 19] In terms of chemical 
properties, cellulose can be characterized as hydrophilic with both intermolecular 
and intramolecular hydrogen bonds and van der Waals forces [19]. Figure 2 presents 
a real image of the structures of the fiber in a cellulose-based substrate from the 
scanning electron microscopy (SEM) technique (a), a schematic representation of 
the fibers, as well as the structure of the chains of the cellulose molecule (b). 

A few intrinsic characteristics of the paper substrate include flexibility, high avail-
ability, biocompatibility, portability, biodegradability, versatility, recyclability and 
being considered a low-cost material [9, 20, 21]. Furthermore, the paper is naturally 
tasteless, odorless, with high-chemical resistance to solvents, and has a surface that 
is easily and adaptable with biological recognition agents [9, 22]. In this way, all
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Microfibrils 

Chains of celulose molecules 

Cellulose fibers 
(b) 

Fig. 2 a Scanning electron microscopy analysis showing the cellulose fibers on the paper surface. b 
Structural representation of cellulose fiber. It was reprinted from [18] with permission of American 
Chemical Society 

these attractive properties mentioned above have consolidated the paper substrate as 
a promising platform for constructing analytical devices for numerous applications 
in the field of analytical chemistry. 

3 Fabrication of Paper-Based Electrodes 

In the last years, paper-based electrodes have been successfully manufactured and 
applied in the most relevant bioanalytical field. In this way, this section is totally 
dedicated for demonstrating the main examples of microfabrication protocols asso-
ciated with constructing ePADs which consist of a working electrode (WE), reference 
electrode (RE), and auxiliary electrode (AE). Fabrication methods, including stencil 
printing, pencil drawing, and laser scribing, will be carefully discussed. It is possible 
to see in Fig.  3 that the schematic illustrates most usual protocols used for creating 
paper-based electrodes. 

3.1 Stencil Printing 

Stencil printing is a simple and low-cost approach used to produce disposable elec-
trochemical sensors. Figure 4 shows a schematic representation of the most popular
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Fig. 3 Schematic representation of process to construct paper-based electrodes. a Stencil printing 
strategy; b pencil drawing approach; c laser scribing method. Reference electrode (RE); working 
electrode (WE); auxiliary electrode (AE) 

Fig. 4 Schematic representation of the electrode fabrication using the stencil printing technique. a 
Reprinted from [23] with permission of Elsevier; b reprinted from [24] with permission of Elsevier; 
c reprinted from [26] with permission of Elsevier; d reprinted from [25] with permission of Elsevier

examples of stencil-printed electrodes manufactured on paper [23–26]. Considering 
the step-by-step fabrication, the procedure initially involves attaching an open mask 
to the paper substrate. This mask is made of adhesive tape or transparent film used 
as a mold. This is important to design the shape and size of the electrodes. The
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conductive ink with high viscosity is then applied to the top of the mask using a 
syringe. This ink is spread on the mask using a squeegee, filling the exposed paper 
area. The mask is subsequently removed from the substrate. Silver ink is applied 
onto the reference electrode (RE) using a small paintbrush, generating the silver 
pseudo-RE. After drying, wax is stamped on the back of the paper device, resulting 
in hydrophobic barriers to define the area of the electrochemical cell.

The above-mentioned fabrication method is similar to the screen printing 
approach. However, stencil printing does not depend on sophisticated screen appa-
ratus, [1] making this technique feasible to produce disposable sensors in resource-
limited laboratories. Higher viscosity inks are necessary to avoid their dispersion 
across the mask boundaries, ensuring the conductive ink remains uniformly spread 
only on the exposed paper areas. Conductive inks are commercially available with 
different prices and compositions [27]. Considering an excess of conductive ink is 
required to make the electrodes, the fabrication process can be limited depending 
on the ink price. Inks based on carbon sources have received considerable atten-
tion due to their good electrical conductivity and ease of making with alternative 
materials, significantly decreasing ink costs. The carbon source is combined with a 
binder to produce the conductive ink, adhering to the substrate. Nail polish, [28] glass  
varnish, [15, 29] shellac glue, [24] and cellulose acetate [30] are examples of binders 
used to produce low-cost conductive inks. The ink formulation can help to modulate 
the electrochemical response of the sensors. Higher carbon percentages typically 
provide better electrical conductivity, enhancing the electrochemical performance of 
the sensors [28]. However, it is important to find the best ratio between the binder and 
carbon-based particle since higher conductive particle percentages can also compro-
mise the mechanical stability of the conductive track, generating fragile sensors. The 
ink viscosity is controlled by the ratio between the ink and solvent. 

Through the stencil printing method is possible to produce disposable electro-
chemical sensors with paper or plastic materials as substrates [31]. The popularity of 
the paper substrate is associated with its intrinsic characteristics previously discussed 
in this chapter and the ability to generate flow without external pumps due to its 
capillary properties. This feature, in special, makes this material a great substrate for 
producing portable microfluidic platforms. Plastic materials also have attractive char-
acteristics, such as flexibility, hydrophobicity, and transparency. Overhead projector 
sheets are examples of plastic sources used to fabricate disposable electrochemical 
sensors [32]. They are thin films composed of polyvinyl alcohol polyester. Despite 
the possibility of using different substrates, the choice will depend on the analytical 
application since each material can provide extra features to the resulting sensors 
[33]. 

Wang et al. [34] produced paper-based electrochemical devices using the stencil 
printing technique. The proposed system, made using the principle of origami, is 
composed of a detection zone and sampling and reaction zone in a single device. The 
fabrication process involved six steps: (i) the fabrication of microfluidic channels 
onto chromatographic paper using wax printing; (ii) stencil printing electrodes using 
graphite ink; (iii) immobilization of enzyme and cofactor into the reaction zone; (iv)
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drying the system for 6 h at 4 °C in the dark; (v) cutting the paper; (vi) and folding 
the paper device, generating an origami-like device. 

3.2 Pencil Drawing 

The fabrication process of electrochemical sensors using the pencil drawing tech-
nique occurs through a mechanical friction between the pencil and the cellulose 
fibers to promote suitable deposition of graphite flakes upon the substrate surface. 
The transfer method can be considered simples, economically viable, and ecolog-
ically correct [35–38]. Furthermore, the pencil drawing procedure uses accessible 
materials making possible the day-to-day applicability. The first study that success-
fully explored this approach was reported by Dossi et al. [39]. The most popular 
examples of ePADs reported in the literature are summarized in Figs. 6 and 7. These 
protocols indicate that the fabrication time occurs between 5 and 15 min with an 
estimated cost per sensor c.a 0.001–0.1 USD [35, 37, 38, 40–43]. 

Traditional materials used for creating pencil drawn electrodes include paper 
substrate, plastic pre-molds, and pencil, and additionally, hydrophobic binder 
promotes the delimitation of the geometric area from the sensor. Regarding the paper 
substrate, the literature highlights filter paper, watercolor paper, office paper, corru-
gated fiberboard, vegetal paper, and alumina sandpaper [1]. For producing the pre-
molds on paper, the traditional holder can be utilized includes stainless-steel mold, 
stencil, polyester mask, and adhesive paper label. In terms of available commercially 
pencils, there is a popular model nominated as grade B highlighting models 4B, 6B, 
and 9B [44, 45]. For delimitating the geometric area from electrodes, manual depo-
sition of hydrophobic binds, utilization of polyester films wax barrier, self-adhesive 
tape, and even reusable barrier can be explored. 

The choice of the paper substrate and pencil model can be fundamental and reflect 
on device performance. In general, substrates with the a large presence of porous and 
pencil with a high number of conductive particles are most recommended to promote 
low-electrical resistivity on a modified paper surface [44]. 

The carbon atoms present in graphite (carbon allotrope) are formed through 
arrangements that results a planar hexagonal structure linked through covalent bonds. 
This implies that the carbon atoms of the aforementioned system are connected to 
three other atoms resulting in an angle of 120° and bond lengths of a magnitude of 
approximately 1.42 Å. This structure (formed by stacks of parallel two-dimensional 
(2D) graphene sheets) is extremely important to confer suitable electrical resistivity 
[46–48]. 

Additional information on graphite-based structures can be performed using 
Raman spectroscopy analysis and demonstrate microstructures with domains of D, G 
e 2D bands at 1350, 1579, and 2700 cm−1, respectively [49]. On the other hand, scan-
ning electron microscopy (SEM) measurements upon electrode surface indicated the 
large presence of microfibers fully incorporated with graphite flakes (See Fig. 5).
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(a) (b) 

(c) (d) 

Fig. 5 SEM images at different magnifications of 1000 × and 20,000 × showing a office paper. 
b Paper fibers. c Electrode manufactured using the pencil drawing technique. d Graphite flakes. 
Reprinted from [50] with permission of Royal Society of Chemistry 

3.3 Laser Scribing 

The laser scribing technique uses a CO2 laser source [12, 53]. The carbonization 
process generates carbon conductive tracks, promising candidates to produce elec-
trochemical sensors. Unlikely stencil printing, this technique does not require a mask. 
The CO2 laser machine is controlled by a microcomputer, which is managed by the 
software used to engineer the geometry and size of the electrodes. The laser induc-
tion achieves high-local temperatures (>2500 ºC) on the substrate, resulting in the 
carbonization process depending on the material. Materials as paper, [12] polyimide, 
[54] and phenolic resins [55] are examples of substrates carbonized by this technique. 
The carbonization process can also release gas, leading to porous structures. 

Araujo et al. [12] described the fabrication of electrochemical sensors using the 
laser scribing technique and paperboard as substrate (Fig. 8a). The authors reported 
the formation of graphene-like structures on the paperboard, providing high-electrical 
conductivity to the resulting materials. During the fabrication, the carbonization 
parameters have shown a strong influence on the electrical conductivity of the carbon 
path, affecting the electrochemical properties of the sensors. The parameters include 
laser power, scan rate, and distance between the substrate and laser tip. Besides these 
parameters, the paper type is also considered for the fabrication process since it is 
commercially available with different compositions, structures, hydrophobicity, and 
grammage (mass per unit area), impacting the stability and robustness of the sensors.
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Fig. 6 Schematic illustration of pencil drawing approach. a Automatic fabrication of conductive 
sites upon paper. Reprinted from [51] with permission of American Chemical Society Wiley; b 
manufacturing process of ePAD through direct pencil friction upon paper for creating electrophoresis 
chip. Reprinted from [38] with permission of Adapted with permission of Wiley; c representation 
of fully electrode fabrication on a paper platform. It was reprinted from [52] with permission of 
Royal Society of Chemistry 

The manufacturing performance of electrodes exhibited reproducibility responses in 
term of RSD ≤4%, using the redox activity of picric acid as model reaction. 

The system proposed by Tasic et al. [57] consisted of a three-electrode electro-
chemical cell. Once carbonized, silver ink was applied to the reference electrode, 
generating a silver pseudo-RE. The ink was also used to paint the electrical contact 
of the electrodes to enhance the connection with the instrumentation. The detection 
zone was delimited with glue, and then, the sensors were ready to use (Fig. 8c). More 
examples of pyrolyzed electrodes upon paper substrate can be observed in Fig. 8. 

Laser scribing does not rely on chemical reagents and controlled atmospheric 
conditions, resulting in a greener route to producing paper-based electrochemical 
sensors. In addition, laser-scribed sensors might be used in different situations, which 
can be advantageous to ink-based electrodes. Stencil-printed electrodes, for example,
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Fig. 7 a Illustration of fabrication process to construct ePAD on a sandpaper substrate and assem-
bling of device with 3D-printed holder. Reprinted from [49] with permission of Elsevier; b schematic 
representation of step-by-step ePADs fabrication with surface treatment using CO2 laser. Reprinted 
from [50] with permission of Royal Society of Chemistry 

normally have low stability in organic solvents due to ink dissolution. This effect 
is considered a drawback for electroanalysis involving sensors designed for long-
term use. Even though few works have reported the applicability of the paper-based 
sensors fabricated by laser scribing, this technique has great potential to become 
popular once it allows mass-production scale due to its automated nature associated 
with high reproducibility [54, 58]. 

4 Bioanalytical Application 

As mentioned above, the three most popular approaches for manufacturing conduc-
tive structures upon paper fibers aim to create disposable electrode. Through these 
devices are possible to see numerous opportunities of sensing including cases as 
forensic, environmental, food, pharmaceutical, and clinical issues. The literature has 
been showing many studies that contrast the relevance of ePAD in the modern analyt-
ical chemistry. However, the intention of this section is carefully demonstrated only 
the prominent examples of ePADs dedicated to bioanalysis, and Fig. 9 indicates 
some examples of clinical applications. Key information from the target analyte as
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Fig. 8 Examples of laser scribing electrodes manufactured on a paper platform. a Manufacture 
process of ePADs. Reprinted from [12] with permission of Wiley; b real image of laser scribing 
electrodes. Reprinted from [56] with permission of Elsevier; c fabrication and delimitation of 
geometric region of electrochemical cell. Reprinted from [57] with permission of Elsevier; d real 
image of ePADs. Reprinted from [58] with permission of Elsevier; e final image of working electrode 
constructed on a paper by laser scribing method. Reprinted from [3] with permission of Elsevier; 

biological relevance and redox activity will be presented. In addition, bioanalysis’s 
analytical parameters, including electrochemical technique, the limit of detection 
(LOD), selectivity, matrix effect, and analysis time, will also be discussed. 

Dungchai et al. [7] reported the pioneers study employed ePADs in associa-
tion with amperometry for multianalytes detection in biological fluid. The authors 
fabricated microfluidic devices integrated with three carbon-based electrochemical 
cells and showed that the working electrodes surface, when anchored with enzymes 
glucose oxidase, lactate oxidase, and uricase, can be successfully explored for selec-
tive detection of glucose and lactate and uric acid in the human serum sample,
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Fig. 9 Schematic demonstration of main bioanalysis examples that can be realized by using ePADs 

respectively. In addition, the study indicated that the simultaneous redox activities of 
target biomolecules occur at potential 0.0 V versus Ag/AgCl for 100 s and reported 
detectable levels in terms of LOD ranging from 0.21 and 1.38 mmol L−1. 

Probably motivated by the high impact of the above-mentioned study, Nie et al. [8] 
exhibited that ePADs can be also performed for electrochemical analysis of organic 
specie in complex urine samples. They reported that the carbon-based electrode incor-
porated with glucose oxidase and redox mediator ([Fe(CN)6]3−) can be promoted 
the sensing performance of glucose at 0.3 V versus Ag/AgCl for 20 s. The calcu-
lated value of LOD for the analyte was 0.22 mmol L−1 and demonstrated that the 
bioanalysis of glucose in urine samples does not interfere with bovine serum albumin 
(BSA). 

Following the tendency that paper-based devices showed affordable analytical 
performance for bioanalysis, other studies combined the versatility of cellulose-based 
structuresed with disposable electrodes for realizing the separations and detection 
in sequence of biomolecules emerging then, the paper-based separation devices. 
Carvalhal et al. [59] proposed the chromatographic separation and detection of 
molecules ascorbic (AA) and uric (UA) acids by using the microfluidics channels 
integrated with gold electrodes. In the above study, the molecules AA and UA were 
successfully separated through 10 × 7 mm paper-column and electrochemically 
detected applied potential at 0.4 V versus Au for 16 min. The calculated value of 
LOD for both molecules AA and UA was 0.02 mmol L−1. 

Dossi et al. [39] proposed ePAD in association with the amperometric detector 
for performing the separation and analysis of AA and sunset yellow. The authors 
evidenced that the oxidation of target molecules occurs at 0.9 V versus graphite, and 
the calculated values of LOD were 30 and 90 μmol L−1 for AA and sunset yellow, 
respectively.
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Chagas et al. [38] combined PMMA electrophoresis chip with alternative capaci-
tively coupled contactless conductivity detection (C4D) on paper-based electrodes for 
realizing the separations and measurements of inorganic cations ions (K+ and Na+) 
in human tear. The migration time for cations ions separation was 64.5 ± 1.5 and 
80.5 ± 1.8 s. Moreover, the analytical parameters as LOD and linear concentration 
range were (4.9 and 6.8 μmol L−1) and (6–26 and 120–170 μmol L−1), respectively. 
The reported protocol showed satisfactory accuracy performance with quantitative 
measurements of K+ and Na+ ranged between 83.4 and 103.4%. In another study, 
Chagas et al. [52] constructed ePADs integrated with C4D detector to make possible 
the separation and detection of BSA and creatinine molecules in clinical compounds. 
The reported separation performance in terms of migration time showed very repro-
ducible values, and RSD ≤2% considering both chemical species. In addition, the 
detectable levels for BSA and creatinine were 20 and 35 mmol L−1, respectively. 

Pradela et al. [60] developed microfluidic paper-based devices (μPAD) under a 
constant support electrolyte flow inspired by flow injection analysis. The system was 
composed of paper-based devices coupled with thermoplastic electrodes. Amper-
ometry was used as the analytical technique. Continuous flow generation is a chal-
lenge for paper devices due to the increase of the drag force through the microflu-
idic channel, affecting the analytical signal. The system consisted of two reservoirs 
connected to the microfluidic channel (Fig. 10a). The inlet reservoir was constantly 
filled with supporting electrolytes, which flowed by gravity and capillarity. This 
solution flows through the detection system, reaching an outlet reservoir. The outlet 
reservoir is a fan-shaped paper responsible for wicking the carrier fluid. The analyte 
solution (2 μL) was injected at a specific point between the inlet reservoir and the 
electrochemical detector. The electrochemical measurements were started when the

Fig. 10 Schematic representations of the paper-based microfluidic device proposed by a Pradela 
et al. [60] and  b Arantes et al. [61]. RE: carbon pseudo-reference electrode; WE: working electrode; 
AE: auxiliary electrode. Reprinted from [60, 61] with permission of American Chemical Society 
and Elsevier, respectively



194 H. A. Silva-Neto et al.

supporting electrolyte reaches the outlet reservoir since the drag force is consider-
ably decreased at this point, controlling the flow rate. Keeping a constant flow in 
this system is important to ensure signal reproducibility. The proposed device was 
used for amperometric determination of caffeic acid in tea samples through detection 
potential at 0.4 V versus C. The linear concentration range reported values and LOD 
was 10 to 500 and 2.5 μmol L−1, respectively.

Arantes et al. [61] reported another interesting approach with microfluidic devices 
(Fig. 10b). The system involved the combination of batch injection analysis with 
μPAD. The tree-electrode electrochemical system was fabricated on a circular paper 
substrate using the pencil drawn technique combined with CO2 laser pretreatment. 
The analyte solution with supporting electrolyte was directly injected onto the 
working electrode surface, generating transient signals associated with the analyte 
oxidation. During the experiment, the analyte solution (15 μL) gradually spreads on 
the edges of the paper by capillarity. 

Consequently, sequential injections can be performed into the microfluidic 
device. The proposed system was used to determine paracetamol in pharmaceu-
tical samples. Paper-based microfluidic devices are promising analytical platforms 
for field analyzes since they combine low-cost and portability with rapid analyzes. 
In addition, they typically require small sample volumes, which is a great feature for 
analytical quantification in biological samples. 

As discussed above, the ePADs can be applied for realizing the separation and/or 
detection of sugars, cations ions, organic acids, and analgesic. Figures 11, 12, and 
13 outlined the most recent examples of ePADs in association with portable electro-
chemical detectors for realizing bioanalysis. When is considerable the last five years, 
these devices also demonstrated high potentiality for realizing bioanalysis in the most

Fig. 11 Examples of ePADs successfully utilized for hormone (a) and glucose (b) detections in 
biological samples and reprinted from [62] and  [63] with permission of Elsevier
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Fig. 12 Schematic demonstration of ePADs utilized for realizing the detections of cancer antigen 
125 (a) and enzyme butyrylcholinesterase, (b) reprinted [64] and  [65] with permission of Elsevier 

different areas of clinical diagnosis, included endocrine disruption, diabetes, cancer, 
obesity, Alzheimer, and COVID-19, per example.

The paper-based electrodes can be applied for performing analysis of 17β-
estradiol (E2) in serum samples [62]. The molecule E2 is a type of hormone produced 
by human ovaries. Their presence on organism is attributed to some important biolog-
ical functions such as fertility and growth maturation of the female reproductive. 
Also, the presence of molecule E2 can be associated to other vital functions such 
as the development of bones, maintenance, and enhancement of skeletal muscles, 
per example. In this way, the quantification of molecule E2 in biological samples 
it is extremally important and can be realized electronically through immunosensor 
on a paper. As indicated in Fig. 11a, the reported μPADs surface was modified with 
MWCNTs/thionine/AuNPs nanocomposites followed by anti-E2. Before starting the 
electrochemical measurements, the above surface was cleaner with 1% BSA solution 
to block any possible target adsorption. The proposed method successfully showed 
an analysis of E2 in serum samples via DPV responses at −0.2 V versus Ag/AgCl,
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Fig. 13 Schematic representation of paper-based electrodes dedicated for performing the diagnosis 
of COVID-19 and reprinted from [66] with permission of Elsevier 

with a reported value of LOD ~10 pg mL−1 and the absence of interferences involving 
organic acid species. 

As denotated in Fig. 11b, Chaiyo et al. [63] manufactured ePAto realize amper-
ometric glucose measurements in blood serum samples. The presence of molecule 
glucose when detected in dysfunctional blood levels can be associated with diabetes 
diagnosis. This critical issue mentioned above is a large vector of death and disability 
in the human species. Diabetes patients can be indicated several disorders such 
as blindness, nerve degeneration, and kidney failure. For this reason, the diag-
nosis of diabetes is extremely important, and the reported study revealed that the 
paper-based electrodes, when incorporated with graphene and cobalt(II) phthalocya-
nine nanocomposite, are realized selective and sensitive amperometric detection of 
glucose at 0.7 versus C. The authors showed one of the best analytical performances 
in reported literature with values of LOD ~0.64 μmol L−1 and a linear range between 
0.01 and 1.3 mmol L−1.
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It is observed in Fig. 12a that the ePADs reported by Fan et al. [64] can be 
explored for the detection of cancer antigen 125 in serum samples. The antigen 125 
is traditionally related to ovarian cancer, and the recommended for healthy human 
serum is lass then 35 U mL−1. In addition, the mentioned biomarker can be attributed 
to other cancer like lung cancer, endometrial cancer, and breast cancer. For the target 
detection, the authors anchored the paper surface with r-GO/thionine/AuNPs and 
realized the DPV measurements through scanning voltage between− 0.5 V and 0.3 V 
versus Ag/AgCl and using electrolyte supporting composed of 0.1 mol L−1 PBS. The 
reported electrochemical analysis of cancer antigen indicated an LOD value of 0.01 
UmL−1. It was also compared in parallel experiments by using ELISA approach, and 
the both found quantification values of antigen 125 were statically similar, indicating 
the high performance of the paper-based electrodes. It is important to mention that 
the reported method realized full analysis in time less than 25 min. 

In another study, Caratelli et al. [65] constructed ePAD compose of carbon black 
paste and applied the device as precision medicine for Alzheimer’s disease (AD), 
see Fig. 12b. The AD is neurodegenerative situation that is characterized by some 
disturbances such as memory loss and in several cases losing control of bodily func-
tion, per example. The main legacy of the AD is the progressive degradation of 
social relationships formed over long periods. The main biomarkers of AD are the 
enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and there 
are presented poor redox activity. For improving their sensing performance, the 
authors incorporated the electrode surface with nanocomposites based on Prussian 
blue. The target electrochemical detection was performed through the redox behavior 
of enzyme BChE in the presence of inhibitor butyrylthiocholine prepared in 0.05 mol 
L−1 PBS and 0.1 mol L−1 KCl. The amperometry technique as selected with detec-
tion potential at 0.3 V versus Ag/AgCl and the real samples composed by human 
blood (blood dilution: 1:2 (v/v)). The reported analytical performance exhibited suit-
able detectability of enzyme BChE with LOD and repeatability values of 0.005 μ 
mol L−1 and 4.2%, respectively. 

It is possible to see in Fig. 13, and the schematic illustration employed ePAD 
is dedicated to realizing the detection of SARS-CoV-2 spike protein in biolog-
ical samples. SARS-CoV-2 virus can affect the respiratory system and promote 
other infection, fever, and headaches from vomiting and diarrhea, per example. The 
pandemic situation involving COVID-19 caused several problems to public health, 
with over 32 million infected cases. In this way, Yakoh et al. [66] manufactured 
paper-based electrodes in combination with SWV responses and the redox mediator 
[Fe(CN)6]3−/4−. The construction of biosensors involved the incorporations of GO 
following to activation of carboxyl groups in the presence of EDC/NHS (proportion: 
1:2 (v/v)). Then, the electrodes were exposed to a washing step with 0.01 PBS mol 
L−1 and blocked with skim milk. Before the target detection, the authors reported 
that the serum samples previously dopped with antibodies were added onto the elec-
trode surface and incubated at room temperature before the target detection. Finally, 
the electrode was washed with PBS, and the indirect detection of spike protein was 
realized through redox activity of [Fe(CN)6]3−/4−. The peak potential attributed to 
oxidation of redox mediator occurred at ~0.2 V versus Ag/AgCl, with the stability of
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responses ranging from 95 to 105% and a value of LOD ~0.11 ng mL−1. The authors 
also indicated the clinical possibility through analysis of 17 serum samples, and the 
reported responses were statistically similar to found results in ELISA test kit. 

5 Conclusion and Perspectives 

This chapter revised the most important information about low-cost manufacturing 
strategies for constructing paper-based electrodes. Electrode fabrication through 
stencil printing, pencil drawing, and laser scribing has been recommended for 
creating disposable electrochemical devices. The main conductive materials success-
fully used are based on carbon allotropes. The manufacture steps performed for 
constructing paper-based electrodes indicated that the stencil printing and laser 
scribing are more robust and reproducible. On the other hand, the pencil drawing 
approach is extremally simple and instrumental-free. The microfabrication chal-
lenges observed in stencil, pencil, and laser techniques had the viscosity control 
from conductive ink, adherence of graphite particles upon cellulose substrate, and 
increase in mechanical resistance of pyrolyzed electrodes, respectively. As reviewed 
in the bioanalysis examples, the ePADs play suitable analytical performance in 
detectability, repeatability, and selectivity. Most important, the paper-based elec-
trode surface can be employed to catalyze an infinite of redox bioactivity, including 
chemical markers for diabetes, cancer, and SARS-CoV-2 virus, for example. If the 
bare surface of electrodes is poor for realizing the sensing performance, the most 
popular examples successfully suggested some electrode modification strategies that 
can drastically improve the faradaic current of the target bioanalysis. These points 
stated that the ePADs are versatile, accessible, portable, and exhibit potential for 
solving the most bioanalytical challenges observed in modern analytical chemistry. 
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57. Tasić N, Sousa de Oliveira L, Paixão TRLC, Moreira Gonçalves L (2020) Laser-pyrolysed 
paper electrodes for the square-wave anodic stripping voltammetric detection of lead. Medical 
Devices Sensors 3. https://doi.org/10.1002/mds3.10115 
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