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Abstract. To give concise explanations for a conclusion obtained by
reasoning over ontologies, justifications have been proposed as minimal
subsets of an ontology that entail the given conclusion. Even though
computing one justification can be done in polynomial time for tractable
Description Logics such as EL+, computing all justifications is compli-
cated and often challenging for real-world ontologies. In this paper, based
on a graph representation of EL+-ontologies, we propose a new set of
inference rules (called H-rules) and take advantage of them for provid-
ing a new method of computing all justifications for a given conclusion.
The advantage of our setting is that most of the time, it reduces the
number of inferences (generated by H-rules) required to derive a given
conclusion. This accelerates the enumeration of justifications relying on
these inferences. We validate our approach by running real-world ontol-
ogy experiments. Our graph-based approach outperforms PULi [14], the
state-of-the-art algorithm, in most of cases.

1 Introduction

Ontologies provide structured representations of domain knowledge that are suit-
able for AI reasoning. They are used in various domains, including medicine,
biology, and finance. In the domain of ontologies, one of the interesting topics is
to provide explanations of reasoning conclusions. To this end, justifications have
been proposed to offer users a brief explanation for a given conclusion. Comput-
ing justifications has been widely explored for different tasks, for instance for
debugging ontologies [1,9,11] and computing ontology modules [6]. Extracting
just one justification can be easy for tractable ontologies, such as EL+ [17]. For
instance, we can find one justification by deleting unnecessary axioms one by
one. However, there may exist more than one justification for a given conclu-
sion. Computing all such justifications is computationally complex and reveals
itself to be a challenging problem [18].

There are mainly two different approaches [17] to compute all justifications
for a given conclusion, the black-box approach and the glass-box approach.
The black-box approach [11] relies only on a reasoner and, as such, can be
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used for ontologies in any existing Description Logics. For example, a simple
(naive) black-box approach would check all the subsets of the ontology using an
existing reasoner and then filter the subset-minimal ones (i.e., justifications).
Many advanced and optimized black-box algorithms have been proposed since
2007 [10]. Meanwhile, the glass-box approaches have achieved better perfor-
mances over certain specific ontology languages (such as EL+-ontology) by going
deep into the reasoning process. Among them, the class of SAT-based methods
[1–3,14,16] performs the best. The main idea developed by SAT-based methods
is to trace, in a first step, a complete set of inferences (complete set for short)
that contribute to the derivation of a given conclusion, and then, in a second step,
to use SAT-tools or resolution to extract all justifications from these inferences.
A detailed example is provided in Sect. 4.1.

In the real world, ontologies are always huge. For instance, the SnomedCT
ontology contains more than 300,000 axioms. Thus, the traced complete set can
be large, which could make it challenging to extract the justifications over them.
Several techniques could be applied to reduce the size of the traced complete set,
like the locality-based modules [8] and the goal-directed tracing algorithm [12].
One of their shared ideas is to identify, for a given conclusion, a particular part of
the ontology relevant for the extraction of justifications. For example, the state-
of-the-art algorithm, PULi [14], uses a goal-directed tracing algorithm. However,
even for PULi, a simple ontology O = {Ai � Ai+1 | 1 ≤ i ≤ n − 1} with the
conclusion A0 � An leads to a complete set containing n− 1 inferences. This set
can not be reduced further even with the previously mentioned optimizations.
From this observation, we decided to explore a new SAT-based glass-box method
to handle such situations better.

Now, let us look carefully at the ontology O above, and let us regard each
Ai as a graph node NAi

. Then we are able to construct, for O, a directed graph
whose edges are of the form NAi

→ NAi+1 . It turns out that all the justifications
for the conclusion A0 � An are extracted from all the paths from NA0 to NAn

,
and here we have only one such path. We can easily extend this idea on EL+-
ontology because most of the EL+-axioms can be interpreted as direct edges
except one case (i.e., A ≡ B1�· · ·�Bn), for which we need a hyperedge (for more
details see Definition 3). However, for more expressive ontologies, this translation
becomes more complicated. For example, it is hard to map ALC-axioms to edges
as those axioms may contain negation or disjunction of concepts.

This example inspired us to explore a hypergraph representation of the ontol-
ogy and reformulate inferences and justifications. Roughly, our inferences are
built from elementary paths of the hypergraph and lead to particular paths
called H-paths. Then, computing all the justifications for a given conclusion
is made using such H-paths. For the previous ontology O and the conclusion
A0 � An, our complete set is reduced to only two inferences (no matter the
value of n) corresponding to the unique path from NA0 to NAn

. The source
of improvement provided by our method is twofold. On the one hand, it comes
from the fact that elementary paths are pre-computed while extracting the infer-
ences and that existing algorithms like depth-first search can efficiently compute
such paths. On the other hand, yet as a consequence, decreasing the size of the
complete sets of inferences leads to smaller inputs for the SAT-based algorithm
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extracting justifications from the complete set (recall here that our method is a
SAT-based glass-box method).

The paper is organized as follows. Section 2 introduces preliminary defini-
tions and notions. In Sect. 3, we associate a hypergraph representation to EL+-
ontology and introduce a new set of inference rules, called H-rules, that generate
our inferences. In Sect. 4, we develop the algorithm minH, which compute justifi-
cations based on our inferences. Section 5 shows experimental results and Sect. 6
summarizes our work.

2 Preliminaries

2.1 EL+-Ontology

Given sets of atomic concepts NC = {A,B, · · · } and atomic roles NR =
{r, s, t, · · · }, the set of EL+concepts C and axioms α are built by the follow-
ing grammar rules:

C ::= � | A | C � C | ∃r.C, a ::= C � C | C ≡ C | r � s | r1 ◦ · · · ◦ rn � s.

A EL+-ontology O is a finite set of EL+-axioms. An interpretation I =
(
I , ·I) of O consists of a non-empty set 
I and a mapping from atomic
concepts A ∈ NC to a subset AI ⊆ 
I and from roles r ∈ NR to a sub-
set rI ⊆ 
I × 
I . For a concept C built from the grammar rules, we define
CI inductively by: (�)I = 
I , (C � D)I = CI ∩ DI , (∃r.C)I = {a ∈ 
I |
∃b, (a, b) ∈ rI , b ∈ CI}, (r◦s)I = {(a, b) ∈ 
I ×
I | ∃c, (a, c) ∈ rI , (c, b) ∈ sI}.
An interpretation is a model of O if it is compatible with all axioms in
O, i.e., for all C � D,C ≡ D, r � s, r1 ◦ · · · ◦ rn � s ∈ O, we have
CI ⊆ DI , CI = DI , rI ⊆ sI , (r1 ◦ · · · ◦ rn)I ⊆ sI , respectively. We say O |= a
where α is an axiom iff each model of O is compatible with α. A concept A is
subsumed by B w.r.t. O if O |= A � B.

Next, we use A,B, · · · , G (possibly with subscripts) to denote atomic con-
cepts and we use X,Y,Z (possibly with subscripts) to denote atomic concepts
A, · · · , G, or complex concepts ∃r.A, · · · , ∃r.G.

We assume that ontologies are normalized. A EL+-ontology O is normalized
if all its axioms are of the form A ≡ B1 � · · · � Bm, A � B1 � · · · � Bm, A ≡
∃r.B,A � ∃r.B, r � s, or r ◦ s � t, where A,B,Bi ∈ NC , and r, s, t ∈ NR. Every
EL+-ontology can be normalised in polynomial time by introducing new atomic
concepts and atomic roles.

Example 1. The following set of axioms is a EL+-ontology:
O = { a1:A � D, a2:D � ∃r.E, a3:E � F, a4:B ≡ ∃t.F, a5:r � t, a6:G ≡
C � B , a7:C � A}.

It is clear that O |= A � ∃r.E as for all models I, we have AI ⊆ DI by the
axiom a1 and DI ⊆ (∃r.E)I by a2.



Hypergraph-Based Inference Rules 313

Table 1. Inference rules over EL+-ontology.

R1 :
A�A1, · · ·, A�An, A1�A2� · · · �An�B

A�B

R2 :
A�A1, A1�∃r.B

A�∃r.B R3 :
A � ∃r.B1, B1 � B2, ∃r.B2�B

A � B

R4 :
A0�∃r1.A1, · · ·, An−1�∃rn.An, r1◦ · · · ◦rn�r

A0�∃r.An

2.2 Inference, Support and Justification

Given a EL+-ontology O, a major reasoning task over O is classification, which
aims at finding all subsumptions O |= A � B for atomic concepts A,B occurring
in O. Generally, it can be solved by applying inferences recursively over O [5].

An inference ρ is a pair 〈ρpre, ρcon〉 whose premise set ρpre consists of EL+-
axioms and conclusion ρcon is a single EL+-axiom. As usual, a sequence of
inferences ρ1, · · · , ρn is a derivation of an axiom α from O if ρncon = α and for
any β ∈ ρipre, 1 ≤ i ≤ n, we have β ∈ O or β = ρjcon for some j < i.

As usual, inference rules are used to generate inferences. For instance,
Table 1 [1,5] shows a set of inference rules for EL+-ontologies. Next, we use
O � A � B to denote that A � B is derivable from O using inferences generated
by the rules in Table 1. The set of inference rules in Table 1 is sound and complete
for classification [5], i.e., O |= A � B iff O � A � B for any A,B ∈ NC .

A support of A � B over O is a sub-ontology O′ ⊆ O such that O′ |= A � B.
The justifications for A � B are subset-minimal supports of A � B. We denote
the collection of all justifications for A � B w.r.t. O by JO(A � B).

We say S is a complete set (of inferences) for A � B if for any justifications
O′ of A � B, we can derive A � B from O′ using only the inferences in S.

Example 2 (Example 1 cont’d). Before applying inference rules, axioms in
O are preprocessed in order to be compatible with Table 1. For example, a4 is
replaced by B � ∃t.F and ∃t.F � B. Then, according to the inference rules of
Table 1, we may produce the following inferences: ρ = 〈{A � D,D � ∃r.E}, A �
∃r.E〉, ρ′ = 〈{A � ∃r.E, r � t}, A � ∃t.E〉 and ρ′′ = 〈{A � ∃t.E,E � F,∃t.F �
B}, A � B〉 generated by rule R2, R4 and R3 respectively. Then O � A � B
since A � B is derivable from O by the sequence ρ, ρ′, ρ′′.

Notice that O′ = {a1, a2, a3, a4, a5} is a support for A � B, and thus, any
superset O′′ of O′ is a support of A � B. O′ is also one of the justifications for
A � B as for any O′′′ ⊂ O′, we have O′′′ �|= A � B. Moreover, here the three
inferences ρ, ρ′, ρ′′ provide a complete set for A � B.

3 Hypergraph-Based Inference Rules

3.1 H-Inferences

In general, a (directed) hypergraph G = (V, E) is defined by a set of nodes V and
a set of hyperedges E [4,7]. A hyperedge is of the form e = (S1, S2), S1, S2 ⊆ V.
In this paper, a hypergraph is associated to an ontology as follows:
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Definition 3. For a given EL+-ontology O, the associated hypergraph is GO =
(VO, EO) where (i) the set of nodes VO = {NA, Nr, N∃r.A | A ∈ NC , r ∈ NR} and
(ii) the set of edges EO is defined by f(O) where f is the multi-valued mapping
shown in Fig. 1. Given a hyperedge e of EO, the inverse image of e, f−1(e), is
defined in the obvious manner. For a set E of hyperedges, f−1(E) = ∪e∈Ef−1(e).

Fig. 1. Definition of f (left) and graphical illustrations of f(α) (right)

Notice that, the hyperedges associated with A ≡ B1 � · · · � Bm are (i) the
hyperedge ({NB1 , · · · , NBm

}, {NA}) and (2) of course, the edges corresponding
to A � B1 � · · · � Bm.

Example 4 (Example 1 cont’d). The hypergraph GO for O is shown in
Fig. 2, where e0 = ({NC}, {NA}), e1 = ({NA}, {ND}), e2 = ({ND}, {N∃r.E}),
etc. Also, f−1(e0) = C � A, f−1(e1) = A � D, and f−1(e2) = D � ∃r.E, etc.

Fig. 2. The hypergraph associated with the ontology O.

As for graphs, a path (next called regular path) from nodes N1 to N2 in a
hypergraph is a sequence of edges:

e0 = (S0
1 , S0

2), e1 = (S1
1 , S1

2), · · · , en = (Sn
1 , Sn

2 ) (1)

where N1 ∈ S0
1 , N2 ∈ Sn

2 and Si−1
2 =Si

1, 1 ≤ i ≤ n. Next, the existence of a
regular path from NX to NY in a hypergraph GO is denoted NX � NY . Now,
we introduce hypergraph-based inferences which are based on the existence of
regular paths as follows:
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Table 2. H-rules over GO = (VO, EO).

H0 :
NX�NY

NX
h�NY

H2 :
NX

h�N∃r.B1 , NB1
h�NB2 , N∃r.B2�NY

NX
h�NY

H1 :
NX

h�NB1 , · · · , NX
h�NBm , NA�NY , e

NX
h�NY

: e=({NB1 , · · · , NBm}, {NA})∈EO

H3 :
NX

h�N∃r.A1 , NA1
h�N∃s.A2 , N∃t.A2�NY , e

NX
h�NY

: e=({Nr, Ns}, {Ns, Nt})∈EO

Definition 5. Given a hypergraph GO, Table 2 gives a set of inference rules
called H-rules. Inferences based on H-rules are called H-inferences. Next, we
denote by O �h NX

h� NY (or simply NX
h� NY ) the fact that NX

h� NY can
be derived from GO using the H-inferences.

Example 6 (Example 4 cont’d). As shown in Fig. 2, we have NA � N∃r.E,
NE � NF , N∃r.F � NB from the existence of regular paths. Then we can
derive NA

h� NB from GO by the H-rules H0, H0 and H2 which generate the H-
inferences ρ1, ρ2, ρ3, where ρ1 = 〈{NA � N∃r.E}, NA

h� N∃r.E〉, ρ2 = 〈{NE �
NF }, NE

h� NF 〉 and ρ3 = 〈{NA
h� N∃r.E , NE

h� NF , N∃r.F � NB}, NA
h�

NB〉, respectively.

Note that the first rule H0, the initialization rule, makes regular paths the
elementary components of H-rules. Moreover, Proposition 7 formally states that,
in our H-inference system, we do not need to add the transitive inference rule:

NX
h� NZ , NZ

h� NY

NX
h� NY

.

Proposition 7. If O �h NX
h� NZ and O �h NZ

h� NY then O �h NX
h� NY .

3.2 Completeness and Soundness of H-Inferences

The following result is the main result of this section. It states the equivalence
of NX

h� NY derivation (by Table 2) and ontology entailment for X � Y , and
thus states that our H-rules are sound and complete for EL+-ontology.

Theorem 8. If O is an EL+-ontology, then O |= X � Y iff O �h NX
h� NY ,

where X,Y are concepts of either form A or ∃r.B.

Proof. “⇐” is obvious by induction over Table 2 and the fact that NX � NY

implies O |= X � Y , so we only need to prove the direction “⇒”.
Assume that O |= X � Y . We consider two cases:
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Case 1. We assume O � X � Y 1. Let d(X,Y ) be the length of one shortest
derivation of X � Y from O using Table 1. We prove “⇒” by induction on
d(X,Y ).

– Assume d(X,Y ) = 0. In this case O must contain axioms of the form X ≡
Y � · · · or X � Y � · · · . Clearly we have NX � NY thus O �h NX

h� NY .
– Assuming “⇒” holds when d(X,Y ) < k, let us prove “⇒” holds for

d(X,Y ) = k. Suppose ρlast is the last inference in one shortest derivation of
X � Y using Table 1. Two cases arise:
1. Assume ρlast is generated by R1(n > 1),R3 or R4(n = 2). For example,

assume ρlast = 〈{X � ∃r.B1, B1 � B2,∃r.B2 � Y },X � Y 〉 comes from
R3. We have d(X,∃r.B1), d(B1, B2), d(∃r.B2, Y ) < k because their cor-
responding subsumptions can be derived without ρlast. By the assump-
tion O �h NX

h� N∃r.B1 , NB1

h� NB2 , N∃r.B2

h� NY . Then we have
O �h NX

h� N∃r.B2 by first deriving NX
h� N∃r.B1 , NB1

h� NB2 , and
then applying H-inference:

ρnew = 〈{NX
h� N∃r.B1 , NB1

h�NB2 , N∃r.B2 � N∃r.B2}, NX
h� N∃r.B2〉.

Then O �h NX
h� NY by Proposition 7 since O �h NX

h�
N∃r.B2 , N∃r.B2

h� NB . The argument also holds for R1(n > 1)(or
R4(n = 2)) by applying H1 (or H3) instead of H2.

2. Assume ρlast is generated by R1(n = 1),R2 or R4(n = 1). Then, in each
case, we have ρlast has the form 〈{X � Z,Z � Y },X � Y 〉. As in
case 1, we have d(X,Z), d(Z, Y ) < k. By the assumption, O �h NX

h�
NZ , NZ

h� NY , then O �h NX
h� NY by Proposition 7.

Case 2. If O � X � Y does not hold, then X or Y is not atomic. In this case,
we introduce new axioms A ≡ X, B ≡ Y with new atomic concepts A,B and
denote the extended ontology by O′. Clearly, O′ |= A � B and thus O′ � A � B

since Table 1 is sound and complete. Therefore, we have O′ �h NA
h� NB by the

same arguments as above. Now, notice that GO′ is obtained from GO by adding
4 edges: ({NA}, {NX}), ({NX}, {NA}), ({NB}, {NY }) and ({NY }, {NB}), thus
we have O′ �h NA

h�NB iff O �h NX
h� NY .

3.3 Extracting Justifications from GO

Now, we formally define H-paths as a hypergraph representation of classical
derivations based on H-rules. The reader should pay attention to the fact that
H-paths are not classical hyperpaths [7]. Next, for the sake of homogeneity, we
consider a regular path from NX to NY as the set of its edges and denote it as
PX,Y .
1 The reader should recall that the equivalence (O |= X � Y iff O � X � Y ) only

holds when X and Y are atomic concepts wrt. the inference system presented in
Table 1.
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Definition 9 (H-paths). In the hypergraph GO, an H-path HX,Y from NX to
NY is a set of edges recursively generated by the following composition rules:

0. A regular path PX,Y is an H-path from NX to NY ;
1. If e = ({NB1 , · · · , NBm

}, {NA}) ∈ VO, if HX,Bi
are H-paths for i = 1..m,

and if PA,Y is a regular path, then HX,B1 ∪ · · · ∪ HX,Bm
∪ PA,Y ∪ {e} is an

H-path from NX to NY ;
2. If HX,∃r.B1 ,HB1,B2 are H-paths and P∃r.B2,Y is a regular path, then HX,∃r.B1∪

HB1,B2 ∪ P∃r.B2,Y is an H-path from NX to NY ;
3. If e = ({Nr, Ns}, {Ns, Nt}) ∈ VO, if HX,∃r.A1 ,HA1,∃s.A2 are H-paths and if

P∃t.A2,B is a regular path, then HX,∃r.A1 ∪ HA1,∃s.A2 ∪ P∃t.A2,B ∪ {e} is an
H-path from NX to NY .

Fig. 3. Structure of H-paths from NX to NY

Figure 3 gives an illustration of H-paths: the blue arrows � correspond to
regular paths, and the red ones h� to H-paths. It is straightforward to compare
composition rules building H-paths with H-rules building derivations in Table 2.
One may also consider H-paths as deviation-trees with leaves corresponding to
the edges in GO. However, our approach provides a more direct characterization
of justifications as shown in Theorem 10.

We say that an H-path HX,Y is minimal if there is no H-path H ′
X,Y such

that H ′
X,Y ⊂ HX,Y .

Now, we are ready to explain how H-paths and justifications are related. We
can compute justifications from minimal H-paths as stated below:

Theorem 10. Given X,Y of either form A or ∃r.B. Let

S = {f−1(HX,Y ) | HX,Y is a minimal H-path from NX to NY }.

Then JO(X � Y ) = {s ∈ S | s′ �⊂ s,∀s′ ∈ S}. That is, all justifications for
X � Y are the minimal subsets in S.
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Proof. For any justification O′ of X � Y , there exists a minimal H-path HX,Y

such that O′ = f−1(HX,Y ). The reason is that, since O′ |= X � Y , there
exists an H-path HX,Y from NX to NY on GO′ by Theorem 8. Without loss of
generality, we can assume HX,Y is minimal on GO′ , then it is also minimal on
GO since GO′ is a sub-graph of GO. We have O′ = f−1(HX,Y ) because otherwise
there exists O′′ � O′ such that O′′ = f−1(HX,Y ), and thus O′′ |= X � Y by
Theorem 8 again. Therefore, O′ is not a justification. Contradiction.

Now, we know S contains all justifications for X � Y . Moreover,
f−1(HX,Y ) |= X � Y for any H-path HX,Y . Therefore, we have JO(X � Y ) =
{s ∈ S | s′ �⊂ s,∀s′ ∈ S} by the definition of justifications.

Example 11. (Example 4 cont’d). The regular paths from NA to N∃r.E and
from NE to NF produce two H-paths HA,∃rE = {e1, e2, e3} and HE,F = {e4}.
Then, applying the third composition rule with HA,∃rE ,HE,F and P∃r.F,B =
{e6}, we get HA,B = {e1, e2, e3, e4, e6}, which is the unique H-path from NA to
NB. Thus, by Theorem 10, we have {α1, α2, α3, α4, α5}, the only justification for
A � B.

4 Implementation: Computing Justifications

4.1 SAT-Based Method

In this section, we describe briefly how PULi [14], the state-of-the-art glass-
box algorithm, proceeds. Given an ontology O, computing JO(X � Y ) is done
through 2 steps: (1) tracing a complete set for X � Y , (2) using resolution to
extract the justifications from the complete set. The following example illustrates
both steps:

Example 12 (Example 1 cont’d). Let us compute JO(G � D) using PULi’s
method.

1. Using the goal-directed tracing algorithm in [12], the first step produces a
complete set of inferences2 {ρ1, ρ2} for G � D, where ρ1 = 〈{G � C,C �
A}, G � A〉, ρ2 = 〈{G � A,A � D}, G � D〉.

2. This step is again composed of two parts:
(a) The first part proceeds to the translation of the inferences into clauses.

Let us denote p1:G � C, p2:C � A, p3:A � D, p4:G � A, p5:G � D.
Here the literals p1, p2, p3 (with a bar) are called answer literals as they
correspond to the axioms a6, a7, a1 in O. Thus, we obtain C = {¬p1 ∨
¬p2 ∨ p4,¬p4 ∨ ¬p3 ∨ p5} by rewriting the inferences ρ1, ρ2 as clauses.

(b) Secondly, a new clause ¬p5 is added to C, where p5 corresponds to the
conclusion G � D, and resolution is applied over C. The set of all justi-
fications JO(G � D) is obtained by considering (i) the clauses formed of

2 For the sake of simplicity, we use the inference rules in Table 1 although PULi uses
a slightly different set of inference rules [13].
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Algorithm 1: minH
input : X�Y
output: J: JO(X�Y ).

1 J ← ∅;

2 U ← CompleteH(NX
h�NY );

3 min hpaths ← resolution(clauses(U));
4 for h ∈ min hpaths do
5 if f−1(h’) �⊂ f−1(h) for any h’ ∈ min hpaths then
6 J.add(f−1(h))
7 end

8 end

answer literals only and (ii) among them keeping the minimal ones3. In
this example, after the resolution phase, the only clause that consists of
merely answer literals is ¬p1∨¬p2∨¬p3. Thus, the set of all justifications
is JO(G � D) = {{a1, a6, a7}}.

Our method for computing justifications follows the same steps as PULi
although here the major difference is that the first step computes a complete set
of H-inferences instead of a complete set of inferences wrt. Table 1.

4.2 Computing Justification by Minimal H-Paths

In this section, given an ontology O and its associated hypergraph GO, we present
minH (Algorithm 1) that computes all justifications for X0 � Y0 using the min-
imal H-paths from NX0 to NY0 over GO. The algorithm minH proceeds in two
steps described below.

Step 1. First, at Line 2, minH computes a complete set of inferences U for
NX0

h� NY0 using CompleteH (See Algorithm 2). Here, U is complete in the
sense that for any H-path HX,Y , we can derive NX

h� NY using inferences in U
from the edge set HX,Y . CompleteH computes U as follows:

– Line 3–12 of Algorithm 2: The recursive application of trace one turn
(See Algorithm 3) outputs the set of all H-inferences whose conclusion is the
given input NX1

h� NY1 ;
– Line 13–17 of Algorithm 2: Let path be the depth-first search algorithm

that computes all regular paths from NX to NY in GO with input (NX , NY ).
Intuitively, the purpose is to shift inferences from regular paths to edges.

Step 2. Then Algorithm minH computes all justifications for X0 � Y0 as follows:

3 Here a clause c is smaller than c1 if all the literals of c are in c1.
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Algorithm 2: CompleteH

input : NX
h�NY

output: U : a complete set of inferences for NX
h�NY .

1 U , history, Q ← ∅ ; // Q is a queue

2 Q.add(NX
h�NY );

3 while Q �= ∅ do

4 NX1
h�NY1 ← Q.takeNext();

5 history.add(NX1
h�NY1);

6 U ← U ⋃
trace one turn(NX1

h�NY1);

7 for NX2
h�NY2 appearing in trace one turn(NX1

h�NY1) do

8 if NX2
h�NY2 �∈ history and NX2

h�NY2 �∈ Q then

9 Q.add(NX2
h�NY2)

10 end

11 end

12 end
13 for NX2�NY2 appearing in U do
14 for p={e1, e2, · · · , en} ∈path(NX2 , NY2) do
15 U .add(〈{e1, e2, · · · , en}, NX2�NY2〉);
16 end

17 end

– Line 3 of Algorithm 1: It computes all minimal H-paths from NX0 to NY0

using resolution, which is developed by PULi4, over the clauses generated
from U as illustrated in Sect. 4.1. Here, a literal p is associated with each
edge e, each NX

h� NY , and each NX � NY in U . The answer literals are
those associated with edges.

– Line 4–8 of Algorithm 1: It computes justifications by mapping back all
the minimal H-paths and select the subset-minimal sets as stated in Theorem
10.

Example 13 (Example 4 cont’d). Assume X0 = G and Y0 = D are the input
of minH. Then at line 2 of minH, we have U = {ρ1, ρ2}, where ρ1 = 〈{NG �
ND}, NG

h� ND〉 is H-inference obtained by CompleteH (line 3–12) and ρ2 =
〈{e0, e1, e8}, NG � ND〉 is produced from regular paths obtained by CompleteH

(line 13–17). Let us denote p0:e0, p1:e1, p2:e8 as answer literals and p3:NG �
ND, p4:NG

h� ND. Then clauses(U) = {¬p3 ∨ p4, ¬p0 ∨ ¬p1 ∨ ¬p2 ∨ p3}.
By resolution over clauses(U), we obtain min hpaths= {{e0, e1, e8}} at line

3 of minH. Then the output of minH is J= {{a1, a6, a7}}, which is the set of all
justifications for G � D.

4 Available at https://github.com/liveontologies/pinpointing-experiments.

https://github.com/liveontologies/pinpointing-experiments
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Algorithm 3: trace one turn

input : NX
h�NY

output: the set result of all H-inferences whose conclusion is NX
h�NY .

1 result ← ∅;

2 P1(X, Y ) ← {({NB1 , · · ·, NBm}, {NA}) ∈ EO | O|=X�A�Y };
3 for ({NB1 , · · ·, NBm}, {NA}) ∈ P1(X, Y ) do
4 if path(NA, NY )�= ∅ or Y =A then

5 result.add(〈{NX
h�NB1 , · · · , NX

h�NBm , NA�NY }, NX
h�NY 〉) ;

6 end

7 end

8 P2(X, Y ) ← {(r, B1, B2) | O|=X�∃r.B1, B1�B2, ∃r.B2�Y };
9 for (r, B1, B2) ∈ P2(X, Y ) do

10 if path(N∃r.B2 , NY )�= ∅ or Y =∃r.B2 then

11 result.add(〈{NX
h�N∃r.B1 , NB1

h�NB2 , N∃r.B2�NY }, NX
h�NY 〉);

12 end

13 end

14 P3(X, Y ) ← {(r, s, t, A1, A2) | r◦s�t∈O, O|=X�∃r.A1, A1�∃s.A2, ∃t.A2�Y };
for (r, s, t, A1, A2) ∈ P3(X, Y ) do

15 if path(N∃t.A2 , NY )�= ∅ or Y =∃t.A2 then

16 result.add(〈{NX
h�N∃r.A1 , NA1

h�N∃s.A2 , N∃t.A2�NY , ({Nr, Nt}, {Ns, Nt})},

{Ns, Nt})}, NX
h�NY 〉);

17 end

18 end

4.3 Optimization

Below we present two optimizations that have been implemented in order to
accelerate the computation of all justifications.

1. In Algorithm 3, for the H-inference added at Line 5, we require that there
exists at least one regular path from NA to NY that does not contain an edge
ei = ({NA}, {NBi

}) for some 1 ≤ i ≤ m. Otherwise, as shown in Fig. 4, H-
paths corresponding to this H-inference are not minimal, as they all contain
one H-path from NX to NY of the form HX,Bi

∪ (PA,Y − {ei}). In the same
spirit, we require that the H-path from NX to NBi

does not pass by NA.
2. If we have an H-path HA,B = HA,∃r.B1 ∪ HB1,B2 ∪ P∃r.B2,B where

HA,∃r.B1 = HA,∃r.C ∪ HC,B1 . (2)

then HC,B2 = HC,B1∪HB1,B2 is also an H-path and HA,B = HA,∃r.C∪HC,B2∪
P∃r.B2,B . The two different ways to decompose HA,B above are already con-

sidered in Line 8 when executing Algorithm3 with the input NA
h� NB . It

means that the decomposition (2) is redundant. We can avoid such redun-
dancy by requiring ∃r.B2 �= Y at Line 11.
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Fig. 4. Illustration of Optimization 1

5 Experiments

To evaluate and validate our approach, we compare minH5 with PULi [14], the
state-of-the-art algorithm for computing justifications at this moment. Both
methods compute all justifications based on resolution but with different infer-
ence rules generated in different ways. PULi uses a complete set (next denoted
by elk) generated by the ELK reasoner [13], which uses inference rules slightly
different from those in Table 1. Our method uses the complete set U generated
by Step 1 of minH, described in Sect. 4.2. To analyze the performance of our
setting, we make the following two measures: (1) we compare the size of elk with
that of U , (2) we compare the time cost of PULi with that of minH. All the
experiments were conducted on a machine with an INTEL Xeon 2.6 GHz and
128 GiB of RAM.

The experiments were processed with four different ontologies6: go-plus,
galen7, SnomedCT (version Jan. 2015 and Jan. 2021). All the non-EL+ axioms
are deleted. Here, go-plus, galen7 are the same ontologies used in [14]. We denote
the four ontologies above by go-plus, galen7, snt2015 and snt2021. The number of
axioms, concepts, relations, and queries for each ontology are shown in Table 3.

Next a query refers to a direct subsumption7 A � B. In our experiments,
for the four ontologies, the set of all justifications JO(A � B) is computed for
each query A � B. A query A � B is called trivial iff all minimal H-paths from
NA to NB are regular paths, otherwise, the query is non-trivial.

Comparing Complete Sets: U vs. elk. We summarize our results in Table 4
and Fig. 5. Table 4 shows that on all four ontologies, U is much smaller than elk
on average. Especially on galen7, the difference between elk and U is even up
to 50 times. The gap is even more significant for the median value since a large
part of the queries is trivial. However, the gap is much smaller for the maximal
number. On snt2021, the largest U in size is three times larger than that of elk.

5 A prototype is available at https://gitlab.lisn.upsaclay.fr/yang/minH.
6 Available at https://osf.io/9sj8n/, https://www.snomed.org/.
7 i.e., O |= A � B and there is no other atomic concept A′ such that O |= A �

A′, A′ � B. Direct subsumptions can be computed by a reasoner supporting ontology
classification.

https://gitlab.lisn.upsaclay.fr/yang/minH
https://osf.io/9sj8n/
https://www.snomed.org/
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Table 3. Summary of sizes of the input ontologies.

go-plus galen7 snt2015 snt2021

#axioms 105557 44475 311466 362638

#concepts 57173 28482 311480 361226

#roles 157 964 58 132

#queries 90443 91332 461854 566797

Table 4. Summary of size of elk, U .

go-plus galen7 snt2015 snt2021

elk average 166.9 3602.0 114.7 67.3

median 43.0 3648.0 10.0 31.0

max 7919.0 81501.0 2357 2226

U average 34.2 74.6 29.4 19.4

median 4.0 5.0 1.0 3.0

max 7772 24103 2002 6452

#non-trivial query 50272 62470 195082 304321

In Fig. 5, for a given query, if the complete set elk contains fewer inference
rules than U , the corresponding blue point is below the red line. The percentage
of such cases are: 0.34% for go-plus, 0.066% for galen7, 0.79% for snt2015, and
1.01% for snt2021. It means that for most of the queries, the corresponding U is
smaller than elk.

As shown in Table 4 and in Fig. 5, sometimes minH generates bigger complete
set U than PULi. It may happen when, for example, there might be exponen-
tially many different regular paths occurring in the computation process of minH.
Therefore, minH could produce a huge complete set. Also, U can be bigger than
elk when all the regular paths involved are simple. For example, if all regular
paths contain only one edge, then the complete set U includes many clauses
of the form ¬pe ∨ pNA�NB

, which happens because H-rules use regular paths.
Indeed, the clause ¬pe ∨ pNA�NB

is redundant since we can omit this clause by
replacing pNA�NB

by pe. For elk, this does not happen.

Comparing Time Cost: minH vs. PULi. In the following, we only compare
the time cost on non-trivial queries. For trivial queries, all H-path are regular
paths. Thus all the justifications have already been enumerated by path in minH.
It is also easy to compute all the justifications for trivial queries for PULi.

We set a limit of 60 s for each query. The timed-out queries contribute of 60 s
to the total time cost. To compare minH with PULi, we test all three different
strategies, threshold, top down, bottom up of the resolution algorithm proposed
in [14]. We summarize in Table 5 the total time cost (top) and the timed-out
queries (bottom). Figure 6 gives the comparisons over queries that are successful
for both minH and PULi.
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(a) go-plus (b) galen7

(c) snt2015 (d) snt2021

Fig. 5. Each blue point has coordinate (log(#|U|), log(#|elk|)), where U , elk are gen-
erated from a non-trivial query, the red line is x = y. (Color figure online)

As shown in Table 5, when using the threshold strategy, minH is more time
consuming in total (+5%) on snt2021, and minH has more timed-out queries
than PULi on snt2015 and snt2021. This is in part due to the fact that U is
larger than elk for relatively many queries on snt2015 and snt2021 as shown in
Fig. 5. For the remaining 11 cases, minH performs better than PULi in terms of
total time cost and the number of timed-out queries. Especially on galen7, the
gap between the two methods is even up to ten times for the total time cost.
We can see from Table 5 that the threshold strategy performs the best for PULi
on all four ontologies. This strategy is also the best strategy for minH except for
galen7, for which the bottom up strategy is the best with minH.

For each strategy detailed in Fig. 6, the black curve (the ordered time costs
of minH on successful queries) is always below the red curve (the ordered time
costs of PULi on successful queries) for all the ontologies. This suggests that
minH spends less time over successful queries. Also, most of the green points are
below the red lines, which suggests that minH performs better than PULi most of
the time for a given query. In some cases, we can see that PULi is more efficient
than minH. One of the reasons might be as follows. Note that when computing
justifications by resolution, we have to compare two different clauses and delete
the redundant one (i.e., the non-minimal one). When regular paths are big, minH
might be time consuming because of these comparisons.
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(a) go-plus

(b) galen7

(c) snt2015

(d) snt2021

Fig. 6. For each line, the left, middle and right charts correspond to threshold, top
down, bottom up strategies respectively. The y-axis is the log value of time(s). The red
(resp. black) curve presents the ascending ordered (log value of) time cost of PULi (resp.
minH). For a green point (x, y), ey is the time cost of minH for the query corresponding
to the red line point (x, y′). (Color figure online)
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Table 5. Total time cost and number of timed-out queries.

threshold top down bottom up

total times(s)
(PULi/minH)

go-plus 8482.7/7350.3 16352.3/8935.6 73629.1/17950.9

galen7 10796.2/3681.4 43372.9/10607.9 36300.9/3156.3

snt2015 1956.8/973.5 13650.7/1107.6 15058.3/11392.2

snt2021 2116.1/2222.6 11573.9/2361.6 19402.1/17154.9

timed-out queries
(PULi/minH/both)

go-plus 116/103 /93 202/117/114 935/223/223

galen7 48/43/43 370/123/120 228/38/38

snt2015 0/3/0 49/3/3 96/88/83

snt2021 2/8/1 39/9/9 144/133/128

6 Conclusion

In this paper, we introduce and investigate a new set of sound and complete
inference rules based on a hypergraph representation of ontologies. We design the
algorithm minH that leverages these inference rules to compute all justifications
for a given conclusion. The key of the performance of our method is that regular
paths are used as elementary components of H-paths and this leads to reducing
the size of complete sets because (1) rules are more compact than standard
ones, (2) redundant inferences are captured and eliminated by regular paths
(see Sect. 4.3). The efficiency of the algorithm minH has been validated by our
experiments showing that it outperforms PULi in most of the cases.

There are still many possible extensions and applications of the hypergraph
approach. For instance, to get even more compact inference rules, we could
extend the notion of regular path to a more general one that will encapsulate the
inference rule H2 in the same way as regular paths are encapsulated in H-rules.
Moreover, we will try to apply our approach for other tasks like classification
and to compute logical differences [15].
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