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Abstract

The shell model with large-scale configuration mixing (SM-CI) is the theoretical
tool of choice in nuclear spectroscopy. In this chapter, we introduce its basic
concepts and discuss our present understanding of the model in terms of the
competition between the spherical mean field and the nuclear correlations. A key
aspect we shall treat is the choice of the valence spaces and effective interactions.
We shall discuss as well the main collective modes of the nucleus—superfluidity,
associated with the pairing interaction and vibrations and rotations originating
in the multipole-multipole terms—using simple models. The emergence of
permanent quadrupole deformation and rotational bands brings us to study
Elliott’s model and some of its variants. These models make it possible to give
a physically intuitive interpretation of the full-fledged SM-CI calculations. First,
we examine the cases of shape coexistence in two paradigms of doubly magic
nuclei, 40Ca and 56Ni. We then move into the neutron-rich regime, to study the
mechanisms that lead to the appearance of islands of inversion (IoI) at N = 40
and N = 50 and its relationship with the phenomenon of shape coexistence in
68Ni and 78Ni.
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2 A. Poves and F. Nowacki

1.1 Basic Concepts

In the standard model of nuclear structure, the elementary components are nucleons
(N neutrons and Z protons, N+Z = A). The mesonic and quark degrees of freedom
are integrated out. In most cases non-relativistic kinematics is used. The bare
nucleon-nucleon (or nucleon-nucleon-nucleon) interactions are inspired by meson
exchange theories or more recently by chiral effective field theory (χ-EFT) and
must reproduce the nucleon-nucleon phase shifts and the properties of the deuteron
and other few-body systems. The challenge is to find �(r1, r2, r3, . . . rA) such that
H� = E� , with

H =
A∑

i

Ti +
A∑

i,j

V2b(ri , rj ) +
A∑

i,j,k

V3b(ri , rj , rk) (1.1)

The knowledge of the eigenvectors � and the eigenvalues E makes it possible
to obtain electromagnetic moments, transition rates, weak decays, cross sections,
spectroscopic factors, etc. The task is indeed formidable. Only recently and only
for very light nuclei A ≤ 10 the problem has been solved “exactly” thanks to
the pioneer work of Pandharipande, Wiringa and Pieper [1], who used variational
methods (Green function) solved by Monte Carlo (GFMC) techniques. The pertur-
bative approach has been implemented in the framework of the no-core shell model
(NCSM) by Barrett, Navratil and Vary [2]. And even more recently, the techniques
of lattice gauge theory together with χ-EFT interactions have been used with very
promising results in very light nuclei [3]. A mixed approach between the “ab initio”
program based upon effective interactions obtained by χ-EFT, and the shell model
with (large-scale) configuration mixing (SM-CI), is the valence-space in-medium
similarity renormalization group (VS-IMSRG9 approach [4].

A very important outcome of these calculations is the compulsory need to
include three-body forces in order to get correct solutions of the nuclear many-body
problem. The GFMC and the NCSM approaches are severely limited by the huge
size of the calculations when A becomes larger than 12. For the rest of the chart of
nuclides, approximate methods have to be used. Except for the semi-classical ones
(liquid drop) and the α-cluster models, all are based on the independent particle
model (IPM). Beyond the limits of applicability of the fully “ab initio” descriptions,
the methods of choice are the SM-CI and the beyond mean field (BFM) approaches
using energy density functionals (a.k.a. density-dependent effective interactions,
like the Gogny force). There are nowadays renewed efforts to connect rigorously
these two global methods and the bare two- and three-body nuclear interactions by
means of the full palette of the many-body perturbation methods. If this is achieved,
they will deserve the “ab initio” label as well.
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1.1.1 The Independent Particle Model

The basic idea of the independent particle model is to assume that, at the zeroth
order, the result of the complicated two-body interactions among the nucleons is
to produce an average self-binding potential. Mayer and Jensen (1949) proposed a
spherical mean field consisting in the isotropic harmonic oscillator plus a strongly
attractive spin-orbit potential and an orbit-orbit term:

H =
∑

i

h(ri ) (1.2)

h(r) = −V0 + T + 1

2
mω2r2 − Vsol · s − VB l2 (1.3)

where we have used T for the kinetic energy to avoid confusion with the isospin
quantum number T.

Later, other functional forms which follow better the form of the nuclear density
and have a more realistic asymptotic behaviour, e.g. the Woods-Saxon (WS) well,
were adopted:

V (r) = V0

(
1 + e

r−R
a

)−1
(1.4)

with

V0 =
(

−51 + 33
N − Z

A

)
MeV (1.5)

and

Vls(r) = V ls
0

V0
(l · s) r

2
0

r

dV (r)

dr
; V ls

0 = −0.44V0 (1.6)

The eigenvectors of the IPM are characterized by the radial quantum number n,
the orbital angular momentum l, the total angular momentum j and its z projection
m. With the choice of the harmonic oscillator, the eigenvalues are

εnljm = −V0 + h̄ω(2n + l + 3/2)

− Vso
h̄2

2
(j (j + 1) − l(l + 1) − 3/4) − VBh̄2l(l + 1) (1.7)

In order to reproduce the nuclear radii,

h̄ω = 45A−1/3 − 25A−2/3 (1.8)
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With a suitable choice of the parameters, it explains the magic numbers and,
in the large A limit, the volume, the surface and (half) the symmetry terms of the
semi-empirical mass formula as well (more on that later).

The wave functions of the isotropic HO can be written as

�nlm(r, θ, φ) = 1

r
Rnl(r) Ylm(θ, φ) (1.9)

By convention the ns start at zero; therefore the eigen-energies read:

Enl = (2n + l + 3/2) h̄ω = (p + 3/2)h̄ω (1.10)

Ylm(θ, φ) are the spherical harmonics and

Rnl(r) = (−1)l
(

2 (2ν)l+3/2 n!

(n + l + 3/2)

)1/2

rl+1 e−νr2 L
l+1/2
n (2νr2) (1.11)

The parameter ν is defined as
mω

2h̄
, and it is related to the length parameter of the

HO 2ν = 1

b2
. The degeneracy of each shell is (p + 1)(p + 2), and the functions L

are the Laguerre (associated) polynomials.
When the spin-orbit coupling is taken into account, we must include explicitly

the spin part of the wave function and change the coupling scheme from [L S] to [J
J]:

• VOCABULARY
– STATE: a solution of the Schrödinger equation with a one-body potential,

e.g. HO or WS. It is characterized by the quantum numbers nljm and by its
neutron or proton nature (or equivalently by the projection of the isospin tz).

– ORBIT: the ensemble of states with the same nlj , e.g. the 0d5/2 orbit. Its
degeneracy is (2j + 1).

– SHELL: an ensemble of orbits quasi-degenerated in energy, e.g. the sd-shell,
that includes the orbits 0d5/2, 1s1/2 and 0d3/2.

– MAGIC NUMBERS: the numbers of protons or neutrons that fill orderly a
certain number of shells. For instance, 28 corresponds to the filling of the
s(2), p(6) and sd(12) shells plus the orbit 0f7/2(8) and 50 to the filling of the
s, p, sd , and pf (20) shells plus the orbit 0g9/2(10).

– GAP: the energy difference between two shells.
– SPE, single-particle energies: the eigenvalues of the IPM Hamiltonian.
– ESPE, effective single-particle energies: the eigenvalues of the monopole

Hamiltonian to be introduced in Sect. 1.4.
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1.1.2 The Independent Particle Model and the Liquid-DropMass
Formula

The IPM explains the magic numbers, spins and parities of the ground states
and some excited states of doubly magic nuclei plus or minus one nucleon, their
magnetic moments, etc. With the addition of a schematic pairing term between like
particles, it can go a bit further in semi-magic nuclei (Schmidt lines). What is less
well known is that in the large A limit, the IPM can reproduce the volume, the
surface and the symmetry terms of the semi-empirical mass formula as well.

Let’s take the IPM with an HO potential and neglect the spin-orbit term. Then

H =
∑

i

Ti − V0 + 1

2
mω2r2i (1.12)

The single-particle energies are εi = −V0+ h̄ω(pi +3/2) and< r2i >= b2(pi +
3/2) with b2 = h̄

mω
.

Assuming N = Z, to accommodate A
2 identical particles, we need to fill all the

shells up to a maximum value of p = pF . Experimentally, the radius of the nucleus
is given by < r2 >= 3

5R
2 = 3

5 (1.2A
1/3)2 and in the IPM by

< r2 >= 2

A

A/2∑

i

< r2i >= 2

A

pF∑

p=0

b2(p + 3/2)(p + 1)(p + 2) (1.13)

From

A

2
=

pF∑
(p + 1)(p + 2) (1.14)

it obtains at leading order

A

2
= 1

3
pF

3 (1.15)

Hence, pF = ( 32A)1/3. Inserting this value in Eq. (1.13) it is easy to find that at
leading order in pF , b2 = A1/3 and h̄ω = 41 ·A−1/3. We can now compute the total
binding energy as

B =
A∑

i=1

(−V0 + h̄ω(pi + 3/2)) (1.16)
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that gives at leading order:

B

A
+ V0 = h̄ω · p4

F

4
· 2

A
= h̄ω

(
3A

2

)4/3 1

2A
= h̄ωA1/3 1

2

(
3

2

)4/3

(1.17)

Finally we have

B

A
= −V0 + 41 × 0.86 (1.18)

and we recover the volume term of the semi-empirical mass formula for V0 ∼ 50
MeV.

If we go to next to leading order, keeping the terms in p3
F , we recover the surface

term and with a coefficient that agrees with the empirically determined one. We can
repeat the calculation at leading order but with N �= Z and obtain

B = −AV0 + h̄ω

4
((pν

F )4 + (pπ
F )4) = −AV0 + h̄ω

4
((3N)4/3 + (3Z)4/3) (1.19)

Making a Taylor expansion around the minimum at N = Z and using the
previously determined values, we find an extra term of the form (N − Z)2/A with
a coefficient which does not agree with the one resulting from the fit of the semi-
empirical mass formula to the experimental binding energies (asym = 23MeV).
This reflects the fact that the nuclear two-body neutron-proton interaction is in
average more attractive than the neutron-neutron and the proton-proton ones, and
it is related as well to the experimental evidence of the near equality of the neutron
and proton radii for N �= Z. Therefore we should use different values of h̄ω and V0s
for protons and neutrons in the derivation, which complicates a lot the calculation
because both effects go in opposite directions.

1.2 TheMeaning of the Independent Particle Model

The usual procedure to generate a mean field in a system of N interacting fermions,
starting from their free interaction, is the Hartree–Fock (HF) approximation,
extremely successful in atomic physics. Whatever the origin of the mean field, the
eigenstates of the N-body problem are Slater determinants, i.e. antisymmetrized
products of N single-particle wave functions. In the nucleus, there is a catch,
because the very strong short-range repulsion and the tensor force make the HF
approximation based upon the bare nucleon-nucleon force impracticable. However,
at low energy, the nucleus does manifest itself as a system of independent particles
in many cases, and when it does not, it is due to the medium-range correlations that
produce strong configuration mixing and not to the short-range repulsion. Does the
success of the shell model really “prove” that nucleons move independently in a
fully occupied Fermi sea as assumed in HF approaches? In fact, the single-particle
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Table 1.1 The parameters
of the Brink and Boeker
interaction

i μi (fm) vi (MeV) mi

1 0.7 471.1 −0.43

2 1.4 −163.8 0.51

motion can persist at low energies in fermion systems due to the suppression of
collisions by the Pauli exclusion principle (see Pandharipande et al. [5]). Brueckner
theory takes advantage of the Pauli blocking to regularize the bare nucleon-nucleon
interaction, in the form of density-dependent effective interactions of use in HF
calculations or G-matrices for large-scale shell model calculations.

An example of regularized interaction is the one proposed by Brink and Boeker
[6], whose central part is

Vc(|r1 − r2|) =
2∑

i=1

[1 − mi(1 + Pσ Pτ )] vi e−|r1−r2|2/μ2
i (1.20)

where μ are the widths of the Gaussians and P the spin and isospin projectors.
The values of m are fitted to produce the attraction in the S=0, T=1 and S=1, T=0
channels and repulsion in the others, whereas the νs give the energy scale of the two
Gaussians. For the spin-orbit term, they took a one-body approximation (Table 1.1):

Vls = −12 MeV

h̄2
√

A
l · s (1.21)

To be more realistic, one should refine the channel dependence of the central
terms, include a two-body spin-orbit interaction and more importantly add a
term which depends on the density. After this re-vamping, the Brink and Boeker
interaction becomes the Gogny interaction [7] extremely successful in numerous
mean field applications (and beyond).

The wave function of the ground state of a nucleus in the IPM is the product of
a Slater determinant for the Z protons that occupy the Z lowest states in the mean
field and another Slater determinant for the N neutrons in the N lowest states of the
mean field. In the second quantization, this state can be written as

|N〉 · |Z〉 (1.22)

with

|N〉 = n
†
1n

†
2 . . . n

†
N |0〉 (1.23)

|Z〉 = z
†
1z

†
2 . . . z

†
Z |0〉 (1.24)
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In a system of noninteracting fermions, the occupied states have occupation
number 1, and the empty ones occupation number 0. In reality there is a dilution
of the strength leading to a nonzero value above the Fermi level. In spite of that,
the nuclear quasi-particles resemble extraordinarily to the mean field solutions of
the IPM. This was demonstrated by the beautiful electron scattering experiment of
Cavedon et al. [8] in which they extracted the charge density difference between
206Pb and 205Tl that in the IPM limit is just the square of the 2s1/2 orbit wave
function. The shape of the 2s1/2 orbit is very well given by a mean field calculation
with the Gogny functional. To make the agreement quantitative, the calculated
density had to be scaled down with the occupation number. This is a first example of
the necessity of using effective transition operators consistent with the regularized
interactions that provide the natural basis for the many-body description of nuclei.
For a very pedagogical discussion of the basis of the IPM, see Ref. [5].

1.3 Beyond the Independent Particle Model

It is quite obvious that the IPM cannot encompass the extreme variety of manifes-
tations of the nuclear dynamics. In fact, even in the most favourable cases, as at the
doubly magic nuclei, its limitations are dramatically evident. Let’s take 40Ca as an
example. In the IPM limit, we expect a 0+ ground state (no problem) and a gap of
about h̄ω (9 MeV) before finding a bunch of quasi-degenerate levels of particle-hole
type and negative parity. In fact, the first excited state lies at 3.5 MeV and is again
a 0+, which, upon experimental and theoretical scrutiny, turns out to be the band
head of a rotational band of 4p-4h nature. Even more exotic is another 0+ at 5.1
MeV, which is the band head of a superdeformed band of 8p-8h structure. Going
beyond the mean field is compulsory because the nuclear dynamics is dominated in
most cases by the correlations. We shall show in what follows how these coexisting
structures can be reproduced by large-scale shell model calculations and interpreted
using analytic models.

To go beyond the IPM, there are two main routes: In the mean field way,
the correlations are taken into account by explicitly breaking the symmetries of
the mean field HF wave functions and employ density-dependent interactions of
different sorts: Skyrme, Gogny or relativistic mean field parametrizations. They are
often referred to as “intrinsic” descriptions. Projections before (VAP) or after (PAV)
variation are enforced to restore the conserved quantum numbers. Ideally, config-
uration mixing is also implemented through the generator coordinate method. The
other route pertains to the SM-CI which can be seen as an approximation to the exact
solution of the nuclear A-body problem using effective interactions in restricted
spaces. The SM-CI wave functions respect the symmetries of the Hamiltonian, and
these approaches are sometimes called “laboratory frame” descriptions.
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Let’s proceed through a kind of formal solution to the A-body problem. The
single-particle states (i, j, k, . . .), which are the solutions of the IPM, provide as
well a basis in the space of the occupation numbers (Fock space). The many-body
wave functions are Slater determinants:

� = a
†
i1
, a

†
i2
, a

†
i3
, . . . a

†
iA

|0〉 (1.25)

We can distribute the A particles in all the possible ways in the available single-
particle states. This provides a complete basis in the Fock space. The number of
Slater determinants will be huge but not infinite because the theory is no longer valid
beyond a certain energy cut-off. Therefore, the “exact” solution can be expressed as
a linear combination of the basis states:

� =
∑

α

cα�α (1.26)

and the solution of the many-body Schödinger equation

H� = E� (1.27)

is transformed in the diagonalization of the matrix:

Hα,β = 〈�α|H |�β〉 (1.28)

whose eigenvalues and eigenvectors provide the “physical” energies and wave
functions. A shell model calculation thus amounts to diagonalizing the effective
nuclear Hamiltonian in the basis of all the Slater determinants that can be built
distributing the valence particles in a set of orbits which is called “valence space”.
The orbits that are always full form the “core”. If we could include all the
orbits in the valence space (a full no-core calculation), we should get the “exact”
solution. The effective interactions for SM-CI calculations are obtained from the
bare nucleon-nucleon interaction by means of a regularization procedure aimed to
soften the short-range repulsion. In other words, using effective interactions we
can treat the A-nucleon system in a basis of independent quasi-particles. As we
reduce the valence space, the interaction has to be renormalized again using many-
body perturbation theory. Up to this point, these calculations can be labelled as “ab
initio”. In fact, the realistic NN interactions seem to be correct except for its simplest
part, the monopole Hamiltonian responsible for the evolution of the spherical mean
field. Therefore, we surmise that the three-body forces will mainly contribute to the
monopole Hamiltonian.

The three basic ingredients of the SM-CI approach are then the effective
interactions, the valence spaces and the algorithms and codes put at work to solve
the huge computational challenges posed by the solution of this secular problem.
See, for instance, Ref. [9] for a full-fledged presentation of our approach.
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1.4 The Effective Interactions in Fock Space

Using the creation and annihilation operators of particles in the states of the
underlying spherical mean field in the coupled representation, we can write the
Hamiltonian as

H =
∑

rr ′
εrr ′(a+

r ar ′)0 +
∑

r≤s,t≤u,


W

rstuZ

+
rs
 · Ztu
 (1.29)

where Z+

 ( Z
) is the coupled product of two creation (annihilation) operators:

Z+
rs
 = [a†r a†s ]
 (1.30)


 is a shorthand for (J,T), r , s . . . run over the orbits of the valence space, εrr ′ are
the single-particle energies (or the kinetic energies in the no-core calculations) and
W


rstu the antisymmetrized two-body matrix elements:

W

rstu = 〈jrjs(JT )|V |jt ju(JT )〉 (1.31)

In the occupation number representation (Fock space), all the information about
the interaction is contained in its two-body matrix elements. The many-body
problem then reduces to the manipulation of the creation and annihilation operators
using the Wick theorem and techniques alike.

The most general method to compute the two-body matrix elements is due to
Slater and carries his name. When the independent particle wave functions are those
of the harmonic oscillator or if they can be represented by linear combination of a
few harmonic oscillator states, the method of choice is that of Brody and Moshinsky
[10]. Both methods are described in detail in Ref. [11].

1.4.1 Monopole andMultipole Components of the Interaction

Without losing the simplicity of the Fock space representation, we can recast the
two-body matrix elements of any effective interaction in a way full of physical
insight, following Dufour–Zuker rules [12].

“Any effective interaction can be split in two parts:

H = Hm(monopole) + HM(multipole) (1.32)

where Hm contains all the terms that are affected by a spherical Hartree–Fock
variation; hence it is responsible for the global saturation properties and for the
evolution of the spherical single-particle energies”.
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Considering two-body interactions only, we can write

Hm =
∑

εini +
∑[

1

(1 + δij )
aij ni(nj − δij )

+ 1

2
bij

(
Ti · Tj − 3ni

4
δij

) ]
(1.33)

where ni and Ti are the number and isospin operators for the orbit i. The coefficients
a and b are defined in terms of the centroïds (angular averages):

V T
ij =

∑
J WJT

ijij [J ]
∑

J [J ] (1.34)

as aij = 1
4 (3V

1
ij +V 0

ij ), bij = V 1
ij −V 0

ij , the sums running over Pauli allowed values
[J ] is a shorthand for (2j + 1).

It is easy to verify that the expectation value of the full Hamiltonian in a Slater
determinant for closed shells has the same expression than the Hartree–Fock energy:

〈H 〉 =
∑

i

〈i|T|i〉 +
∑

ij

〈ij |V |ij 〉 (1.35)

where i and j run over the occupied states. T is the kinetic energy and V

the effective interaction. If the two-body matrix elements are written in coupled
formalism and we denote the orbits by α, β, . . . , the expression reads

〈H 〉 =
∑

α

(2jα + 1)〈α|T|α〉 +
∑

α≤β

∑

J,T

(2J + 1)(2T + 1)〈jαjβ(JT )|V |jαjβ(JT )〉

(1.36)

The monopole Hamiltonian governs the evolution of effective spherical single-
particle energies (ESPE) with the number of particles in the valence space,
schematically:

εj ({ni}) = εj ({ni = 0}) +
∑

i

aij ni (1.37)

Notice that the ESPEs not only evolve along isotopic and isotonic chains inside
the valence space (shell evolution) but can change for different configurations in
the same nucleus (configuration dependent or Type II shell evolution). It is very
important to realize that even small defects in the centroids can produce large
changes in the relative position of the different configurations due to the appearance
of quadratic terms involving the number of particles in the different orbits.



12 A. Poves and F. Nowacki

The multipole Hamiltonian HM can be written in two representations, particle-
particle and particle-hole:

HM =
∑

r≤s,t≤u,


W

rstuZ

+
rs
 · Ztu
 (1.38)

HM =
∑

rstu


[γ ]1/2 (1 + δrs)
1/2(1 + δtu)

1/2

4
ω

γ
rtsu(S

γ
rtS

γ
su)

0 (1.39)

where Sγ is the product of one creation and one annihilation operator coupled to γ

(i.e. λτ ):

S
γ
rs = [a†r as]γ (1.40)

The W and ω matrix elements are related by a Racah transformation:

ω
γ
rtsu =

∑




(−)s+t−γ−


{
r s 


u t γ

}
W


rstu[
] (1.41)

W

rstu =

∑

γ

(−)s+t−γ−


{
r s 


u t γ

}
ω

γ
rtsu[γ ] (1.42)

The operators S
γ=0
rr are just the number operators for the orbits r and the

terms S
γ=0
rr ′ produce the spherical Hartree–Fock particle-hole jumps. The latter

must have null coefficients if the monopole Hamiltonian satisfies the Hartree–
Fock self-consistency. The operator Z+

rr
=0 creates a pair of particle coupled to
J = 0. The terms W


rrss Z+
rr
 = 0 · Zss
 = 0 represent different kinds of pairing

Hamiltonians. The operators S
γ
rs are typical one-body operators of multipolarity γ .

For instance, γ = (J = 1, L = 0, T = 1) contains a (σ · σ ) (τ · τ ) term which is
nothing else but the Gamow-Teller component of the nuclear interaction. The terms
S

γ
rsγ = (J = 2, T = 0) are of quadrupole type r2Y2. They are responsible for

the existence of deformed nuclei, and they are specially large and attractive when
jr − js = 2 and lr − ls = 2.

A careful analysis of the available realistic effective nucleon-nucleon interactions
obtained with different methods reveals that the multipole Hamiltonian is universal
and dominated by BCS-like isovector and isoscalar pairing plus quadrupole-
quadrupole and octupole-octupole terms of very simple nature (rλYλ · rλYλ). As
an example we list in Table 1.2 the strengths of the coherent multipole components
of different interactions for the pf -shell.
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Table 1.2 Strengths (in MeV) of the coherent multipole components of different interactions for
the pf -shell

Particle-particle Particle-hole

Interaction JT = 01 JT = 10 λτ = 20 λτ = 40 λτ = 11

KB3 −4.75 −4.46 −2.79 −1.39 +2.46

FPD6 −5.06 −5.08 −3.11 −1.67 +3.17

GOGNY −4.07 −5.74 −3.23 −1.77 +2.46

GXPF1 −4.18 −5.07 −2.92 −1.39 +2.47

BONNC −4.20 −5.60 −3.33 −1.29 +2.70

1.4.2 Valence Spaces and Codes

An ideal valence space should incorporate the most relevant degrees of freedom
for the nuclei under study and be computationally tractable. Classical 0h̄ω valence
spaces are provided by the major oscillator shells p, sd and pf. As we move far from
stability, other choices are compulsory; for instance, for the very neutron-rich nuclei
around N = 28, a good choice is to take the sd-shell for protons and the pf -shell
for neutrons, and for the very neutron-rich Cr, Fe, Ni and Zn, one should rather
take r3 − (0g9/2, 1d5/2) for the neutrons and pf for protons (in a major harmonic
oscillator shell of principal quantum number p, the orbit j = p + 1/2 is called
intruder , and the remaining ones are denoted by rp; for instance, in the pf -shell,
the intruder orbit is the 0f7/2, and r3 includes the orbits 1p3/2, 1p1/2 and 0f5/2). To
describe the intruders around N and/or Z = 20, a good valence space is r2 − pf .
For the nuclei above 100Sn, the valence space r4 − h11/2 has been also widely used.

The solution of the secular problem of the SM-CI is computationally very
demanding. Direct diagonalization is of very limited utility, and other algorithms
like the Lanczos method, Monte Carlo shell model, quantum Monte Carlo diago-
nalization, density matrix renormalization group, etc., are employed. There are also
a number of different extrapolation ansatzs. The Strasbourg-Madrid codes (Antoine,
Nathan) [9] can deal with problems involving the basis of 1011 Slater determinants,
using relatively modest computational resources. Other competitive codes which
have been released publicly are Oxbash [13], Nushell [14] and Kshell [15].

1.5 Collectivity in Nuclei

For a given interaction, a many-body system would or would not display coherent
features at low energy depending on the structure of the mean field around the
Fermi level. So, when the spherical mean field around the Fermi surface favours
the pairing interaction, as in the case of having only neutrons and protons on top
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of a doubly magic core, the nucleus tends to become superfluid. However, if the
quadrupole-quadrupole interaction is dominant, for instance, if both protons and
neutrons are available in open orbits, the nucleus acquires permanent deformation.
In the extreme (unrealistic) limit in which the monopole Hamiltonian is negligible,
the multipole interaction would maximize the deformation and together with the
pairing interaction produce a kind of superfluid nuclear needles. Magic nuclei resist
the strong multipole interaction, because the large gaps in the nuclear mean field at
the Fermi surface block the correlations.

Let’s consider a simple model consisting of two states that have diagonal
energies that differ by � and an off-diagonal matrix element δ. The eigenvalues
and eigenvectors of this problem are obtained diagonalizing the matrix:

(
0 δ

δ �

)
(1.43)

In the limit δ << �, we can use perturbation theory, and no special coherence
is found. On the contrary in the degenerate case, � → 0, the eigenvalues of
the problem are ±δ, and the eigenstates are the 50% mixing of the unperturbed
ones with different signs. They are the germ of the maximally correlated (or
anticorrelated) states.

We can generalize this example by considering a degenerate case with N Slater
determinants with equal (and attractive) diagonal matrix elements (−�) and off-
diagonal ones of the same magnitude. The problem now is that of diagonalizing the
matrix:

− �

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . .

1 1 1 . . .

1 1 1 . . .

. . . . . .

. . . . . .

. . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(1.44)

which has range 1 and whose eigenvalues are all zero except one which has the
value −N�. This is the coherent state. Its corresponding eigenvector is a mixing of
the N unperturbed states with amplitudes 1√

N
.
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1.5.1 Nuclear Superfluidity: Pairing Collectivity

The pairing Hamiltonian for one shell expressed in the m-scheme basis of two
particles has a very similar matrix representation:

− G

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 . . .

−1 1 −1 . . .

1 −1 1 . . .

. . . . . .

. . . . . .

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1.45)

and its coherent solution is just the state of the two particles coupled to zero which
gains an energy−G� (� = j +1/2 is the degeneracy of the shell). It can be written
as

Z
†
j |0〉 = 1√

�

∑

m>0

(−1)j+ma
†
jma

†
j−m|0〉 (1.46)

Using the commutation relations,

[
Zj ,Z

†
j

]
= 1 − n̂

�
; and

[
H,Z

†
j

]
= −G(� − n̂ + 2)Z†

j (1.47)

where n̂ is the operator number of particle, it is possible to construct the eigenstates
of H for n particles consisting of n/2 pairs coupled to J = 0. These states are
labelled as seniority zero states. The quantum number v (seniority) counts the
number of particles not coupled to angular momentum zero:

|n, v = 0〉 = (Z
†
j )

n
2 |0〉 and E(n, v = 0) = −G

4
n(2� − n + 2) (1.48)

We can construct also eigenstates with higher seniority using the operators B
†
J

which create a pair of particles coupled to J �= 0. These operators satisfy the
relation:

[
H,B

†
J

]
|0〉 = 0 (1.49)

States which contain m B
†
J operators have seniority v = 2m. Their eigen-energies

relative to the seniority zero state are

E(n, v) − E(n, v = 0) = G

4
v(2� − v + 2) (1.50)
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Notice that the gap is independent of the number of particles. The generalization
to the odd number of particles is trivial.

For n protons and neutrons in the same shell of degeneracy � coupled to total
isospin T, the eigenvalues of the J = 0 (L = 0) T = 1 pairing Hamiltonian can be
written as

E(�, n, v, t, T ) = −G((n − v)(4� + 6 − n − v)/8 + t (t + 1)/2 − T (T + 1)/2)
(1.51)

where ν is the sum of the seniorities of protons and neutrons and t the reduced
isospin, one half of their difference.

The case of two particles in several shells is also tractable and has a great heuristic
value. The problem in a matrix form reads:

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

2ε1 − G�1 −G
√

�1�2 −G
√

�1�3 . . .

−G
√

�2�1 2ε2 − G�2 −G
√

�2�3 . . .

−G
√

�3�1 −G
√

�3�2 2ε3 − G�3 . . .

. . . . . .

. . . . . .

. . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(1.52)

There is a limit in which maximum coherence is achieved, when the orbits have
the same � and they are degenerate. Then the coherent pair is evenly distributed
among the shells, and its energy is E = −G

∑
i �. All the other solutions remain

at their unperturbed energies.
A textbook case of nuclear superfluidity is provided by the tin isotopes from

N = 52 to N = 80. The five orbits comprised between the magic closures 50 and
82 are closely packed, and one should expect pairing dominance in several shells.
The pairing gap is measured by the excitation energy of the first 2+ state and should
be independent of the neutron number. Indeed that is what the experiments tell us
and what the SM-CI calculations reproduce nicely as can be seen in Fig. 1.1.
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Fig. 1.1 Low energy excited states of the tin isotopes; experiment compared with SM-CI
calculations in the r4-h11/2. space with the gcn50:82 interaction [16]; 2+ circles, 4+ squares, th.
(filled) exp. (empty)
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The problem can be turned into a dispersion relation as well. Let us write the
most general solution as

|α〉 =
∑

j

Xα
j Z

†
j |0〉 (1.53)

Plugging it in the Schrödinger equation, H |α〉 = Eα|α〉, we get

(2εk − Eα)Xα
k = G

∑

j

√
�j�kX

α
j (1.54)

Multiplying by
√

�k both sides and summing over k, we obtain the dispersion
relation:

1

G
=

∑

k

�k

2εk − Eα

(1.55)

The dispersion relation can be solved graphically or iteratively. As we have seen
before, we expect one coherent solution (the collective pair) to gain a lot of energy
and the rest of the solutions to be very close to the unperturbed ones. If we assume
that the single-particle energies are degenerate and take εk =< ε >, we obtain

Eα = 2 < ε > −G
∑

k

�k (1.56)

In this limit the energy gain is equivalent to the one in a single shell of degeneracy∑
k �k .
For the case of many particles in non-degenerate orbits, the problem is usually

solved in the BCS or Hartree–Fock–Bogoliubov approximations. Other approaches,
which do not break the particle number conservation, are either the SM-CI or others
based on it; these include the interacting boson model and its variants and different
group theoretical approximations.

1.5.2 Vibrational Spectra: Quadrupole and Octupole Collectivity

In the semi-classical approach, vibrational spectra are described as the quantized
harmonic modes of vibration of the surface of a liquid drop. The restoring force
comes from the competition of the surface tension and the Coulomb repulsion. This
is hardly germane to reality and to the microscopic description that we will develop
in a simplified way. Let’s just remind which are the characteristic features of a
nuclear vibrator; first, a harmonic spectrum as the one shown in Fig. 1.2 and second,
enhanced Eλ transitions between the states differing in one vibrational phonon.
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Fig. 1.2 Schematic
depiction of a perfect
vibrational spectrum

0+, 2+, ....... (2 )+,

0+

�

�

Imagine that for a given even-even nucleus, the orbits around the Fermi level are
such as depicted in Fig. 1.3. Its ground state has Jπ = 0+, and, in the IPM, the
lowest excited states correspond to promoting one particle from the occupied orbits
to the empty ones. They are many, quasi-degenerate, and should appear at excitation
energies �.

Let’s take now into account the multipole Hamiltonian, which for simplicity will
be of separable form, and choose as valence space just the particle-hole states, |mi〉,
that correspond to making a hole in the orbit i and adding a particle in the orbit m,
and then

〈nj |V |mi〉 = βλQ
λ
njQ

λ
mi (1.57)

the wave function can be developed in the p-h basis as

� =
∑

Cmi |mi〉 (1.58)

the Schödinger equation H� = E� can thus be written as

Cnj (E − εnj ) =
∑

mi

βλCmiQ
λ
njQ

λ
mi (1.59)

Fig. 1.3 A valence space for
the description of the nuclear
vibrations (see text)

m, n, l, ...... (empty)

D

i, j, k, , ...... (full)
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and

Cnj = βλQ
λ
nj

E − εnj

∑

mi

CmiQ
λ
mi (1.60)

trivially

1 = βλ

∑

nj

(Qλ
nj )

2

E − εnj

(1.61)

A graphical analysis of this equation shows that all its solutions except one are
very close to the unperturbed values εnj . The remaining one is the lowest, and it is
well separated from the others, very much as in the pairing case discussed before.
Taking for all the εnj the average value εnj = �, we obtain

E = � + βλ

∑

nj

(Qλ
nj )

2 (1.62)

If the interaction is attractive βλ < 0, the lowest state gains an energy which
is proportional to βλ, the strength of the multipole interaction, and to the coherent
sum of the squared one-body matrix elements of the one-body multipole operators
between the particle and hole orbits in the space. This mechanism of coherence
explains the appearance of vibrational states in the nucleus and represents the basic
microscopic description of the nuclear “phonons”. Because the couplings βλ are
constant except for a global scaling, the onset of collectivity requires the presence
of several quasi-degenerate orbits above and below the Fermi level. In addition,
these orbits must have large matrix elements with the multipole operator of interest.

The wave function of the coherent (collective) state (phonon, vibration) has the
following form:

�c(J = λ) =

∑
nj

Qλ
nj |nj 〉

∑
nj

(Qλ
nj )

2
(1.63)

The collective state is coherent with the transition operator Qλ because the
probability of its electromagnetic Eλ decay to the 0+ ground state is very much
enhanced:

B(Eλ) ∼ |〈0+|Qλ|�c(J = λ)〉|2 =
∑

nj

(Qλ
nj )

2 (1.64)

which should be much larger than the single-particle limit (many Weisskopft units
(WU)). Clearly, a large value of the B(Eλ) does not imply necessarily the existence
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of permanent deformation in the ground state. Notice also that nothing prevents that

|βλ

∑

nj

(Qλ
nj )

2| > � (1.65)

In this case the vibrational phonon is more bound than the ground state, and the
model is no longer valid.What happens is that a phase transition from the vibrational
to the rotational regime takes place as the nucleus acquires permanent deformation
of multipolarity λ. The separation between filled and empty orbits does not hold
anymore, and both have to be treated at the same footing.

1.6 Deformed Nuclei: Intrinsic vs. Laboratory Frame
Approaches

The route to the description of permanently deformed nuclear rotors bifurcates now
into laboratory frame and intrinsic descriptions. The latter include the deformed
shell model (Nilsson) and the deformed Hartree–Fock approximation, plus the
beyond mean field approaches such as angular momentum projection and config-
uration mixing with the generator coordinate method. The former, the SM-CI and in
cases of full dominance of the quadrupole-quadrupole interaction group theoretical
treatments like Elliott’s SU(3) and its variants [17–19].

A case where the two approaches could be confronted is 48Cr (four protons and
four neutrons on top of 40Ca) where an SM-CI description in the full pf -shell was
for the first time possible more than two decades ago [20]. The mean field intrinsic
description was a cranked Hartree–Fock–Bogoliubov (CHFB) approximation using
the Gogny force. The results are presented in Fig. 1.4. Both calculations reproduce
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Fig. 1.4 The yrast band of 48Cr; experimental data compared with the SM-CI with the KB3G
interaction and the two-body matrix element of the Gogny functional and the CHFB calculations
with the Gogny functional
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Table 1.3 Quadrupole
properties of the yrast band of
48Cr, in e2fm4 and efm2

J B(E2)exp B(E2)th Q0(t))

2 321(41) 228 107

4 330(100) 312 105

6 300(80) 311 100

8 220(60) 285 93

10 185(40) 201 77

12 170(25) 146 65

14 100(16) 115 55

16 37(6) 60 40

the rotor like behaviour at low and medium spin and the existence of a backbending
at J = 12. However, the CHFB description misses the size of the moment of inertia
due to the absence of neutron-proton pairing correlations in its wave functions. The
Gogny force does contain the right proton-neutron T = 0 and T = 1 pairing as
shown by the results of the SM-CI calculation with its two-body matrix elements.
Hence the blame is on the CHFB method and not on the Gogny functional.

The laboratory frame wave functions are indeed collective as can be seen in
Table 1.3 where we have listed the B(E2)s and compared with the experiment.
From the calculated values, we can extract the intrinsic quadrupole moments Q0(t)

using Eq. (1.85). They are roughly independent of J below the backbending as in
a well-behaved Bohr–Mottelson rotor. From the intrinsic quadrupole moment, a
deformation parameter can be calculated using

β =
√
5π

3

Q0(t)

ZR2 (1.66)

The resulting value, β = 0.28, is in very good agreement with the CHFB result
(Table 1.3).

1.6.1 The NilssonModel

TheNilsson model is an approximation to the solution of the IPM plus a quadrupole-
quadrupole interaction:

H =
∑

i

h(ri ) + h̄ωκ
∑

i<j

Qi · Qj (1.67)

h(r) = −V0 + T + 1

2
mω2r2 − Vsol · s − VB l2 (1.68)

which amounts to linearizing the quadrupole-quadrupole interaction, replacing one
of the operators by the expectation value of the quadrupole moment (or by the
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deformation parameter). Thus, the resulting physical problem is that of the IPM
subject to a quadrupole field, which obviously breaks rotational symmetry:

HNilsson =
∑

i

h(ri ) − 1

3
h̄ωδQ0(i) (1.69)

The problem is equivalent to the diagonalization of the quadrupole operator in
the basis of the IPM eigenstates. The resulting (Nilsson) levels are characterized by
their magnetic projection on the symmetry axis m, also denoted K and the parity.

The formulae below make it possible to build the relevant matrices:

〈pl|r2|pl〉 = p + 3/2 : 〈pl|r2|pl + 2〉 = −[(p − l)(p + l + 3)]1/2 (1.70)

Q0 = 2r2C2 = 2r2
√
4π/(2l + 1)Y 20 : 〈jm|C2|jm〉 = j (j + 1) − 3m2

2j (2j + 2)
(1.71)

〈jm|C2|j + 2m〉 = 3

2

{ [(j + 2)2 − m2][(j + 1)2 − m2]
(2j + 2)2(2j + 4)2

}1/2

(1.72)

〈jm|C2|j + 1m〉 = −3m[(j + 1)2 − m2]1/2
j (2j + 4)(2j + 2)

(1.73)

The intrinsic wave functions provided by the Nilsson model correspond to the
Slater determinants built putting the neutrons and the protons in the lowest Nilsson
levels (each one has degeneracy two, ±m). Therefore, for even-even nuclei K = 0,
for odd nuclei K = m of the last half occupied orbit, and for odd-odd, there are
different empirical rules, not always very reliable. The Nilsson diagrams for the
sd-shell are plotted in Fig. 1.5. The laboratory frame wave functions are obtained
rotating the intrinsic frame with theWigner matrices, i.e. correspond to the solutions
of the quantum rotor problem. In the even-even case, this leads trivially to the energy
formula:

E(J ) =
∑

i

(εi )Nilsson + h̄2

2I
J (J + 1)

1.6.2 The SU3 Symmetry of the HO and Elliott’s Model

The mechanism that produces permanent deformation and rotational spectra in
nuclei is much better understood in the framework of the SU(3) symmetry of the
isotropic harmonic oscillator and its implementation in Elliott’s model [17]. The
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Fig. 1.5 Nilsson diagrams for the sd-shell: K = 5/2 (black), K = 3/2 (red) and K = 1/2 (blue).
Energies of the states in MeV as a function of the deformation parameter

basic simplification of the model is threefold: (i) the valence space is limited to
one major harmonic oscillator (HO) shell, (ii) the monopole Hamiltonian makes
the orbits of this shell degenerate and (iii) the multipole Hamiltonian only contains
the quadrupole-quadrupole interaction. This implies (mainly) that the spin-orbit
splitting and the pairing interaction are put to zero. Let’s then start with the isotropic
HO which in units m = 1ω = 1 can be written as

H0 = 1

2

(
p2 + r2

)
= 1

2
(p + ir)(p − ir) + 3

2
h̄ = h̄

(
A†A + 3

2

)
(1.74)

with

A† = 1√
2h̄

(p + ir) A = 1√
2h̄

(p − ir) (1.75)

which have bosonic commutation relations. H0 is invariant under all the trans-
formations which leave invariant the scalar product A†A. As the vectors are
three-dimensional and complex, the symmetry group is U(3). We can build the
generators of U(3) as bi-linear operators in the As. The antisymmetric combinations
produce the three components of the orbital angular momentum Lx , Ly and Lz,
which are in turn the generators of the rotation group O(3). From the six symmetric
bi-linears, we can remove the trace that is a constant: the mean field energy. Taking
it out we move into the group SU(3). The five remaining generators are the five
components of the quadrupole operator:

q(2)
μ =

√
6

2h̄
(r ∧ r)(2)μ +

√
6

2h̄
(p ∧ p)(2)μ (1.76)
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The generators of SU(3) transform single-nucleon wave functions of a given p
(principal quantum number) into themselves. In a single-nucleon state, there are p
oscillator quanta which behave as l = 1 bosons. When we have several particles, we
need to construct the irreps of SU(3) which are characterized by the Young tableaux
(n1, n2, n3) with n1 ≥ n2 ≥ n3 and n1 + n2 + n3 = Np(N being the number of
particles in the open shell). The states of one particle in the p shell correspond to
the representation (p, 0, 0). Given the constancy of Np, the irreps can be labelled
with only two numbers. Elliott’s choice was λ = n1 − n3 and μ = n2 − n3. In
the Cartesian basis, we have nx = a + μ, ny = a and nz = a + λ + μ, with
3a + λ + 2μ = Np.

The quadratic Casimir operator of SU(3) is built from the generators:

L =
N∑

i=1

l(i) Q(2)
α =

N∑

i=1

q(2)
α (i) (1.77)

as

CSU(3) = 3

4
(L · L) + 1

4
(Q(2) · Q(2)) (1.78)

and commutes with them.With the usual techniques of group theory, it can be shown
that the eigenvalues of the Casimir operator in a given representation (λ,μ) are

C(λ,μ) = λ2 + λμ + μ2 + 3(λ + μ) (1.79)

Once these tools are ready, we come back to the physics problem as posed by
Elliott’s Hamiltonian:

H = H0 + χ(Q(2) · Q(2)) (1.80)

which can be rewritten as

H = H0 + 4χCSU(3) − 3χ(L · L) (1.81)

The eigenvectors of this problem are thus characterized by the quantum numbers
λ, μ and L. We can choose to label our states with these quantum numbers because
O(3) is a subgroup of SU(3) and therefore the problem has an analytical solution:

E(λ,μ,L) = Nh̄ω(p+ 3

2
)+4χ(λ2+λμ+μ2+3(λ+μ))−3χL(L+1) (1.82)

This important result can be interpreted as follows: For an attractive quadrupole-
quadrupole interaction, χ < 0, the ground state of the problem pertains to
the representation which maximizes the value of the Casimir operator, and this
corresponds to maximizing λ or μ (the choice is arbitrary). If we solve the problem
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in the Cartesian basis, this state is the one which has the maximum number of
oscillator quanta in the z-direction, thus breaking the rotational symmetry at the
intrinsic level. We can then speak of a deformed solution even if its wave function
conserves the good quantum numbers of the rotation group, i.e. L and Lz. For that
one (and every) (λ,μ) representation, there are different values of L which are
permitted, for instance, for the representation (λ, 0) L = 0, 2, 4 . . . λ. And their
energies satisfy the L(L + 1) law, thus giving the spectrum of a rigid rotor. The
problem of the description of the deformed nuclear rotors in the laboratory frame is
thus formally solved.

We can describe the intrinsic states and their relationship with the physical ones
using another chain of subgroups of SU(3). The chain we have used until now is
SU(3)⊃O(3)⊃U(1) which corresponds to labelling the states as �([f̃ ](λμ)LM).

[f̃ ] is the representation of U(�) (� = 1/2 (p + 1) (p + 2)) conjugate of the
U(4) spin-isospin representation which guarantees the antisymmetry of the total
wave function. For instance, in the case of 20Ne, the fundamental representation
(8,0) (four particles in p = 2) is fully symmetric, [f̃ ] = [4], and its conjugate
representation in the U(4) of Wigner [1, 1, 1, 1], fully antisymmetric. The other
chain of subgroups, SU(3)⊃SU(2)⊃U(1), does not contain O(3), and therefore the
total orbital angular momentum is not a good quantum number anymore. Instead
we can label the wave functions as �([f̃ ](λμ)q0�K), where q0 is the intrinsic
quadrupolemoment whosemaximumvalue is q0 = 2λ+μ. K is the projection of the
angular momentum on the Z-axis, and � is an angular momentum without physical
meaning. Both representations provide a complete basis; therefore it is possible to
write the physical states in the basis of the intrinsic ones. Actually, the physical
states can be projected out of the intrinsic states with maximum quadrupolemoment
as

�([f̃ ](λμ)LM) = 2L + 1

a(λμKL)

∫
DL

MK(ω)�ω([f̃ ](λμ)(q0)max�K)dω (1.83)

Remarkably, this is the same kind of expression used in the unified model of
Bohr and Mottelson, the Wigner functions D being the eigenfunctions of the rigid
rotor and the intrinsic functions the solutions of the Nilsson model.

Elliott’s model was initially applied to nuclei belonging to the sd-shell that show
rotational features like 20Ne and 24Mg. The fundamental representation for 20Ne is
(8,0), and its intrinsic quadrupole moment, Q0 = (2λ + μ + 3) b2 = 19 b2 ≈
60 efm2 (b is the length parameter of the HO). For 24Mg we have (8,4) and 23 b2 ≈
70 efm2. To compare these figures with the experimental values, we need to know
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the transformation rules from intrinsic to laboratory frame quantities and vice versa.
In the Bohr Mottelson model, these are

Q0(s) = (J + 1) (2J + 3)

3K2 − J (J + 1)
Qspec(J ), K �= 1 (1.84)

B(E2, J → J − 2) = 5

16π
e2|〈JK20|J − 2,K〉|2 Q0(t)

2 K �= 1/2, 1

(1.85)

Qspec(J ) =< JJ |z2 − r2|JJ > (1.86)

The expression for the quadrupole moments is also valid in Elliott’s model.
However the one for the B(E2)s is only approximately valid for very low spins.
Using them it can be easily verified that the SU(3) predictions compare nicely
with the experimental results Qspec(2+) = −23(3) efm2 and B(E2)(2+ → 0+) =
66(3) e2 fm4 for 20Ne and Qspec(2+) = −17(1) efm2 and B(E2)(2+ → 0+) =
70(3) e2 fm4 for 24Mg.

Besides Elliott’s SU(3) there are other approximate symmetries related to
the quadrupole-quadrupole interaction which are of great interest. Pseudo-SU(3)
applies when the valence space consists of a quasi-degenerate harmonic oscillator
shell except for the orbit with maximum j ; this space has been denoted by rp before.
Its quadrupole properties are the SU(3) ones of the shell with (p − 1) [18]. Quasi-
SU(3) [19] applies in a regime of large spin-orbit splitting, when the valence space
contains the intruder orbit and the �j = 2,�l = 2; �j = 4, �l = 4; etc., orbits
which are obtained from it. Its quadrupole properties are described in Ref. [9]. These
symmetries turn out to be at the root of the appearance of islands of inversion far
from stability. They are more prominent at the neutron-rich side and occur when
the configurations which correspond to the neutron shell closures at N = 8, 20,
28 and 40 are less bound than the intruder ones (more often deformed) built by
promoting neutrons across the Fermi level gap. The reason of the inversion is that the
intruder configurations maximize the quadrupole correlations and thus their energy
gains. This is only possible when the orbits around the Fermi level can develop the
symmetries of the quadrupole interaction. For instance, atN = 20 the intruder states
in 32Mg have four sd protons in quasi-SU(3), two sd neutron holes in pseudo-SU(3)
and two pf neutrons in quasi-SU(3). This leads to a huge gain of correlation energy
(typically 12MeV) which suffices to turn the intruders into ground states.

1.7 Nuclear Deformation in the Laboratory Frame: SM-CI
Approaches

As stated above, large-scale SM-CI calculations, when doable, are the spectroscopic
tool of choice in theoretical nuclear structure. When they are interpreted adequately,
they may provide us with the link between the experimental data and the “ab
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initio” approaches. Indeed, the monopole anomaly of the realistic NN interactions
may turn out to be the fingerprint of residual three-body effects [21, 22]. A non-
negligible fraction of the Segré chart is nowadays amenable to SM-CI descriptions.
As explained in detail in [9], the choice of a valence space which can encompass the
physics dictated by the effective interaction is the crucial one in SM work. Magic
numbers provide the natural borders of the SM valence spaces, because they are
supposed to correspond to large gaps in the spherical mean field. Nevertheless,
sometimes, if the gaps are weakened, this may not hold anymore.

The pf -shell provides a valence space which can cope successfully with the
physics of severalN = Z nuclei. From the point of view of the quadrupole coupling
schemes which will be dealt with in the next section, 48Cr and 52Fe are good quasi-
SU(3)-deformed nuclei. 56Ni is doubly magic albeit the closed shell amounts just
to 60–70% depending on the calculations. 60Zn is transitional, and 64Ge looks very
much like a pseudo-SU(3) mildly deformed nucleus. Beyond, we need to change
the valence space [25].

The next valence space, r3g, has a core of 56Ni and comprises the orbits 1p3/2,
0f5/2, 1p1/2 and 0g9/2. 68Se is a natural inhabitant of this space. However, its region
of applicability at or close to N = Z does not extend very far. Already at 72Kr,
oblate-prolate coexistence sets in. This requires the inclusion of the quadrupole
partners of the 0g9/2 orbit, the 1d5/2 and 2s1/2 ones, in the valence space [25].
This leads to the r3gds space. The next (and last) doubly magic N = Z nucleus,
100Sn, can be taken as the core of another valence space, r4h, which spans between
the magic numbers 50 and 82.

1.7.1 The Quadrupole Interaction: Intrinsic States and Coherence

In order to gauge the quadrupole coherence of a given nucleus, it is customary to
compare its quadrupole properties with perfect Bohr–Mottelson rotors, i.e. to verify
that the E2 transition rates and the spectroscopic quadrupole moments of the states
of the yrast band can be derived from a single intrinsic quadrupole moment using
Eqs. (1.84), (1.85) and (1.86).

If Q0(s) ≈ Q0(t) and constant, we can speak of good rotors. The excitation
energies of the yrast band should follow approximately the J (J + 1) law as well.
However, in light and medium mass nuclei, pairing might distort the lower part of
the spectrum, giving extra binding to the 0+ ground states. It is therefore advisable
to verify the J (J +1) law excluding the ground state. Another caveat here has to do
with the (bad) habit of blindly extracting deformation parameters β from the B(E2)
values, even in cases in which the existence of an intrinsic deformed state is not
guaranteed at all.

The only rigorous (but far more demanding) way of characterizing the
quadrupole deformation in the laboratory frame is through the quadrupole invariants
introduced by Kumar [23]. Very recently, its scope has been enlarged to make it
possible to extract not only the mean values of β and γ but also their variances.
Indeed, when these are very large, the notion of intrinsic state makes no sense [24].
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Quadrupole coherence may be associated with a single shell (Eq. (1.71)), with
a full rp space (pseudo-SU(3)), and in this case the intrinsic single-particle states
are obtained diagonalizing the quadrupole operator using Eqs. (1.71), (1.72) and
(1.73) or with a full HO major shell; thus the Nilsson-like orbits of Elliott’s SU3
[17] are obtained. If this is done in the �j = 2 HO sequences (quasi SU(3)),
one can diagonalize the quadrupole operator using Eqs. (1.71) and (1.72) or the
corresponding expressions in LS coupling as adopted in [19]. We shall work with
the latter choice unless explicitly stated otherwise. The radial integrals are given
in Eq. (1.70). We use adimensional r2 and Q0 = 2r2C2 and quadrupole effective
charges equal to 0.5 and 1.5 for neutrons and protons, respectively. To recover
dimensions, r2 → r2b2.

1.7.2 The Quadrupole Interaction in a Single Orbit

The intrinsic quadrupole moment for n particles in an orbit j with principal HO
quantum number p is given by the formula:

Q0

b2
=

∑

m

2r2〈jm|C2|jm〉 =
∑

m

(p + 3/2)
j (j + 1) − 3m2

j (j + 1)
(1.87)

If we fill orderly the magnetic sub-states with increasing |m|, we obtain prolate
intrinsic states. If we do it the other way around, we obtain oblate intrinsic states.
In Table 1.4, we list the Q0 values for the 0g9/2 orbit and N = Z. For n < (2j +
1) the oblate solutions have the larger Q0 (and therefore the larger binding if the
quadrupole interaction is dominant). For n > (2j + 1) the prolate solutions lead.
For n = (2j + 1) both are degenerate.

1.7.3 SU(3) and Pseudo-SU(3)

For a full HO shell, q0 = 2nz − nx − ny , with nx + ny + nz= p, where ni are the
numbers of oscillator quanta in each spatial direction. For p = 2, the intrinsic states
are [nznxny ] = [200], [110], [101], [020], [011], [002].

The quadrupole moments of the intrinsic states of the p = 4 shell are plotted in
Fig. 1.6 (for p = 3 remove the upper row and change the values in the y-axis to

Table 1.4 Intrinsic quadrupole moments for n particles in the 0g9/2 orbit and N = Z (in units
of b2)

n 2 4 6 8 10 12 14 16 18

Prolate 5.33 10.66 14.66 18.66 20 21.33 18.66 16 8

Oblate −8 −16 −18.66 −21.33 −20 −18.66 −14.66 −10.66 −5.33
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Fig. 1.6 Quadrupole moments of the intrinsic states of SU(3) for the p = 4 HO shell
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Fig. 1.7 Quadrupole moments of the intrinsic states of pseudo-SU(3) for the r3 valence space
(black) compared with those of SU(3) in the p = 2 HO shell (red)

−6,−3, 0,+3), and (for p = 2 remove the two upper rows and change the values
in the y-axis to −4,−1,+2). Orderly fillings in the figure produce eigenstates of
h = qq − λL(L + 1) and a fortiori rotational bands.

The values of the quadrupole moments in a pseudo-SU(3) space [18] in shell p
would be the ones of SU(3) in shell p-1, except for the fact that the radial integrals
are not the same. This introduces factors in the range (p + 3/2)/(p + 1/2) and√

(p + 4)/p + 2). In Fig. 1.7 we have plotted the quadrupole moments in pseudo-
SU(3) for the r3 valence space compared with those of SU(3) in the p = 2 HO shell.
Notice that the lowest prolate states have quadrupole moments that are about 20%
larger than the SU(3) ones for p = 2.
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Table 1.5 Intrinsic quadrupole moments for n holes in r3 in the pseudo-SU(3) limit (in units of
b2)

n 2 4 6 8 10 12

Oblate −9.74 −19.48 −22.06 −24.65 −27.20 −29.77

n 22 20 18 16 14

Oblate −5.14 −10.28 −15.43 −20.57 −25.17
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Fig. 1.8 Quadrupole moments of the intrinsic states of quasi-SU(3) for the p=4 HO shell

Table 1.6 Intrinsic quadrupole moments for n particles in the quasi-SU(3) sector of the p = 4
HO shell, in units of b2, assuming N = Z

n 2 4 6 8 10 12 14 16

Prolate 15 30 39 48 51 54 57 60

In Table 1.5 we list the intrinsic quadrupole moments for n holes in r3 for later
use. Only the oblate solutions are explicitly included. To get the prolate ones, take
for n holes the oblate value corresponding to 24-n, and change sign.

1.7.4 Quasi-SU3

In the case of a �j = 2 HO sequence, the resulting scheme is very much like that of
SU(3) except that some degeneracies are not present and the quadrupole collectivity
is a bit smaller as shown in Fig. 1.8. The schematic quasi-SU(3) results are in red
and the exact ones in black.

In Table 1.6 we have listed the intrinsic quadrupole moments for n particles in
the quasi-SU(3) sector of the p = 4 HO shell. Only the prolate cases are considered.
Remember that in all the SU3-like cases the total intrinsic quadrupole moment
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obtained from the eigenvalues of q0 has to be increased by 3 b2 as explained in
Ref. [26].

1.8 Coexistence: Single-Particle, Deformed
and Superdeformed States in 40Ca

Let’s describe the structure of 40Ca with a SM-CI calculation in the valence space of
two major shells and interpret the results in the framework of SU(3) and its variants.
The orbits of the valence space are sketched in Fig. 1.9.

The relevant configurations are [sd]24 0p-0h, spherical; [sd]20 [pf ]4 4p-4h,
deformed (ND); and [sd]16 [pf ]8 8p-8h, superdeformed (SD).

The results presented in Fig. 1.10 show clearly the importance of the correlations.
In the 8p-8h configuration, the correlations amount to 18.5 MeV. From these, 5.5
MeV is due to pairing, and the remaining 13 MeV is most likely of quadrupole

0f5 2
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1p3 2
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pf -shell
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Fig. 1.9 The sd-pf valence space
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Fig. 1.10 Energies of the np-nh configurations: uncorrelated energies (blue), full mixing at fixed
np-nh (black) and full mixing (red)
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origin. In the 4p-4h configuration, the pairing contribution is similar, but the
quadrupole one is smaller at about 4.5 MeV. The closed shell gains 5MeV of pairing
energy by mixing (30%) with the 2p-2h states, the ND band head 2 MeV and the
SD band head essentially nothing.

Concerning the character of the solutions, we can see that for the 4p-4h intrinsic
state of 40Ca, the two neutrons and the two protons in the pf -shell can be placed in
the lowest K = 1/2 quasi-SU3 level of the p = 3 shell. This gives a contribution
to the intrinsic quadrupole moment of q0 = 25 b2. In the pseudo-sd-shell, p =
2, we are left with eight particles that contribute with q0 = 7 b2. In the 8p-8h
configuration, the values are q0 = 35 b2 and q0 = 11 b2. Using the proper value of
the oscillator length, it obtains:

• 40Ca 4p-4h band Q0=125 e fm2

• 40Ca 8p-8h band Q0=180 e fm2

These results are in very good accord with the data (Q0 = 120 efm2 and Q0 =
180 efm2). Assuming full SU(3) symmetry in both shells, we should get Q0 =
148 efm2 and Q0 = 226 efm2, respectively. The SM-CI results almost saturate the
quasi-SU(3) bounds. The SU(3) values are a 25% larger.

Finally we compare the SM-CI-level scheme with the experiment in Fig. 1.11.
The agreement is extremely satisfactory.
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1.8.1 56Ni: The Lightest Spin-Orbit Doubly Magic Nucleus

A crucial difference between the HO and the SO magic closures is that in the former
the orbits below and above the Fermi level have different parities, whereas in the
latter, they have the same. This implies that the lowest excited states are of positive
parity and of 1p-1h nature. For instance, in 56Ni the first excited state is a 2+ at
2.7 MeV whose configuration is (0f7/2)15 (1p3/2)

1. Therefore, the E2 transition
to the ground state is allowed and even enhanced due to the favoured quadrupole
connexion between the two orbits at play. Indeed, the experimental value amounts
to 9 WU, a rather large value for a doubly magic nucleus, much larger than the
corresponding one in 40Ca. However, the rest of their low energy spectra resemble
to each other with the appearance of low-lying 0+ states with multiparticle-hole
configuration that can be the band heads of rotational structures. This is the case
of the band built on the 0+ at 5 MeV, which, according to theory, is a 4p-4h state.
As in the 40Ca case, a lot of correlation energy is needed to compensate for the
cost of promoting four particles across a N = Z = 28 gap of about 5 MeV. But
we can look at it the other way round; should the gap have been slightly smaller,
the deformed 4p-4h configuration would have become the ground state and 56Ni
expelled of the doubly magic club. In fact if one uses the original Kuo-Brown
interaction, that is what occurs. In reality, due to the presence of a substantial gap,
it is the quasi-degeneracy of the orbits 1p3/2, 1p1/2 and 0f5/2, which enhances the
quadrupole collectivity through the action of the pseudo-SU(3) coupling and favours
the polarization of the 0f7/2 orbit, as discussed in previous sections. This is another
example of the relevance of the shell evolution, because these orbits, which are split
apart in 48Ca, become much closer in 56Ni when protons fill the 0f7/2 orbit, due
to the proton-neutron monopole interaction. Higher-lying bands involve excitations
into the 0g9/2 orbit [28]. All in all, this is another example of the coexistence of
single particle and collective degrees of freedom already at the very doubly magic
nuclei.

1.9 Islands of Inversion at the Neutron-Rich Shores

Among the nuclear structure topics at the forefront of present-day experimental and
theoretical research, the study of very neutron-rich nuclei plays a central role, and
future facilities will make it even more prominent. We refer to three very recent
review articles that give a global view of the status of the field [29–31]. A unifying
theme in this research is the so-called islands of inversion (IoI). We use this term
for regions of nuclei, close to a magic neutron closure, that, instead of having the
expected semi-magic nature, are deformed in their ground states. The name was
coined in Ref. [32] for the region surrounding 31Na (N = 20). Reference [31]
contains a detailed account of the history of the IoIs. The physics of the IoI is a prime
example of the competition between the spherical mean field (a.k.a. shell evolution)
and the correlations which involve excitations across the Fermi level, the same type
of configurations that are responsible for the phenomenon of shape coexistence,
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ubiquitous in the nuclear chart. The first IoI occurs at N=8 but was overlooked for
many years, among other things, because the dominant physics there was related
to the appearance of nuclear halos. We refer to [31] for the second (N = 20) and
third (N = 28) ones and their merger and will dwell with the heavier ones in what
follows.

1.9.1 68Ni and theN = 40 Island of Inversion

Twelve neutrons away from the N = Z line, we reach the HO closure N = 40,
which is the most debated one, as it only behaves like such for the protons in
combination with theN = 50 SO closure for the neutrons in 90Zr. The experimental
spectrum shows a rather unclear situation: Three 0+ states below 2.5 MeV of
excitation energy, with a first excited 0+ at 1.6 MeV and 2+ at 2.0 MeV.

The natural valence space to capture the dynamics of this nucleus should contain
at least the full pf -shell for the protons and the orbits below and above the N = 40
HO closure for the neutrons, i.e. 1p3/2, 1p1/2, 0f5/2, 0g9/2 and 1d5/2 (ideally the
orbit 2s1/2 should be added as well). From the point of view of the development
of quadrupole collectivity, this space is quite complete, because the neutron holes
may live in a pseudo-SU3 regime as the proton particles do, whereas the neutron
particles may take advantage of the quasi-SU(3) coupling scheme.

A monopole-adapted realistic interaction, dubbed LNPS-U, proposed for this
valence space in reference [33], does provide a very satisfactory description of
the level scheme of 68Ni as can be seen in Fig. 1.12. According to this and other
subsequent calculations, the ground state 0+ is dominated at 65% by the doubly
magic configuration N = 40 Z = 28. The second 0+ can be said to be moderately
deformed and oblate with the 2+ and 4+ states belonging to the same band and
dominant 2p-2h (neutron) and 1p-1h (proton) configuration. The more interesting
physics comes with the third 0+ and the second 2+ which are the germ of a highly
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Fig. 1.12 68Ni, experiment vs the results of the SM-CI calculation with the interaction LNPS-U
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deformed prolate band of many particle-hole structures as expected in the pseudo-
plus quasi-SU(3) limit. In fact, this shape coexisting structure is the portal to the
fourth IoI.

The shell evolution encoded in the LNPS-U interaction submits that at Z = 20,
in 60Ca the N = 40 gap is much smaller than at Z = 28, and the ordering of
the orbits 0g9/2, 1d5/2 is inverted, a behaviour very close to that occurring in the
N = 20 IoI between Z = 8, 28O and doubly magic 34Si. In the latter case, the
orbits 0f7/2 and 1p3/2 are the ones which get inverted. It is the joint effect of the
gap reduction and the quadrupole energy gains of the multiparticle-hole intruder
states that produces the inversion of configurations characteristic of the IoI. The
predictions of the LNPS-U calculation are displayed in Fig. 1.13 and compared with
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the experimental data. The most recent measurement [34] has provided the first
spectroscopic data on 62Ti in full accord with the LNPS-U predictions.

Figure 1.13 shows the abrupt reduction of the excitation energy of the 2+ and
the simultaneous increase of the B(E2)s for 66Fe, 64Cr and 62Ti, a signature of their
location inside the IoI. As expected, their structure is very similar to that of the
prolate excited band in 68Ni. According to the calculations, 60Ca should not be a
doubly magic nucleus; instead it behaves as a pairing frustrated rotor fuelled by the
neutron-neutron quadrupole interaction. A more detailed discussion can be found
in ref. [31]. Therefore, neither the combination of the HO magic numbers N =
40, Z = 20 in 60Ca nor N = 40, Z = 40 in 80Zr survive to the competition with
the quadrupole correlations.

1.9.2 78Ni: TheN = 50 and theN = 40 IoI’s Merge

The next milestone is 78Ni, 22 neutrons away from N = Z. This nucleus has been
a golden goal for experimentalists for decades, because it is a waiting-point nucleus
candidate, whose structure, in particular whether it is doubly magic or not, has a
large impact in the evolution of the r-process of nucleosynthesis. Now two HO
closures are at play, N = 50 and Z = 28. From the SM-CI point of view, it
has an appealing property that the valence space better suited for its description
consists in two major oscillator shells, pf for the protons and sdg for the neutrons,
a rather interesting circumstance. One can imagine a situation in which the N = 50
and Z = 28 gaps collapse. This would bring us close to the SU(3) limit. A back-
of-an-envelope calculation using the formulas of Sect. 1.7 gives an intrinsic mass
quadrupole moment Qm

0 = 600 fm2 or βm = 0.45, a huge deformation indeed,
larger than the record in the region at 76Sr. In reality if the gaps are large enough
to preserve the doubly magic nature of 78Ni, the dominant quadrupole coupling
scheme is pseudo-SU(3) both for the neutrons above N = 50 and for the protons
above Z = 28, whereas the holes in the 0f7/2 proton orbit and in the 0g9/2
neutron orbit add prolate coherence to the intruder configurations. Nonetheless, the
maximum quadrupole coherence attainable in the realistic scheme is far from the
SU(3) limit.

For the pf -proton sdg-neutron valence space, an extension of the LNPS interac-
tion was devised, guaranteeing a smooth transition between N = 40 and N = 50.
The results of this study were published in [35], and we proceed to mention its more
salient aspects, keeping an eye on Fig. 1.14. First of all, the calculation supports
the doubly magic character of the ground state of 78Ni, with about 70% of closed
N = 50 and Z = 28. The states of 1p-1h structure, depicted to the left of Fig. 1.14,
are very much correlated, but without losing their identity. The lowest one is a 2+
at about 3 MeV excitation energy. However the first excited state according to the
calculation is a 0+ that, as can be gathered visually on the right part of Fig. 1.14,
is the head of a well-deformed rotational band, which is the counterpart of the one
found in 68Ni on top of its third 0+, discussed in the preceding section. Here again,
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Fig. 1.14 78Ni, predictions
of the SM-CI calculation with
the interaction PFSDG
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the coexistence of a deformed phase with the doubly magic ground state invites to
surmise that another IoI might occur in the more neutron-rich isotones. It is indeed
what the calculations predict, as can be seen in Fig. 1.15.

The figure shows in a very pictorial way how the deformed intruder configura-
tion, which is excited in 78Ni, becomes the ground state band as we move towards
70Ca. At odds with the situation in N = 40, the semi-magic 0+ state seems to
survive at low excitation energy in 76Fe and 70Ca, causing a certain distortion of the
energetics of the bands. On the contrary, the yrast band of 74Cr is strictly identical
to the excited band of 78Ni and that of 72Ti nearly so, albeit with a slightly smaller
moment of inertia.

The first spectroscopy of 78Ni has been obtained very recently in a ground-
breaking experiment at RIKEN [36]. Two γ rays are reported which are consistent
with the decays of two 2+ states to the ground state, as predicted by the SM-CI
calculations. Although the evidence is still scarce, the image of coexistence put
forward by the calculation seems to be valid.

How are the fourth and fifth IoIs connected? We answer this question in
Fig. 1.16. We have plotted the excitation energy of the first 2+ as a proxy for
magicity/deformation as a function of the neutron number. We compare theory
and experiment where possible. The former results are obtained in the two valence



38 A. Poves and F. Nowacki

78
Ni           

76
Fe       

74
Cr       

72
Ti       

70
Ca

0

1

2

3

4

M
eV

0
+

2
+

4
+

2
+

0
+

0
+

0
+

2
+

4
+

0
+

2
+

4
+

0
+

2
+

4
+

0
+

2
+

4
+

4
+

Fig. 1.15 The fifth IoI as predicted by the SM-CI calculation with the interaction PFSDG
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Fig. 1.16 The merging of the IoIs at N = 40 and N = 50 in the chromium isotopes, compared
with the nickel chain. The excitation energy of the first 2+ is used as control parameter

spaces discussed in this section and show clearly that the transition is smooth, with
the crossover taking place around N = 45. Overall, the agreement with experiment
is outstanding. In the nickel chain, we observe the persistence of the magic numbers
N = 40 andN = 50. On the contrary, both closures are washed out in the chromium
chain (in the iron and titanium as well, but we have not plotted them not to make the
figure too busy), and the 2+ excitation energy remains constant all along. Therefore
we can say that the two IoIs merge.What turns out to be the same behaviour is found
in the N = 20 and N = 28 IoIs for the neon, sodium and magnesium isotopes: a
kind of universal behaviour indeed.
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1.10 Epilogue

These lectures include a very basic introduction to the microscopic approach to the
structure of the nucleus in the laboratory frame. Large-scale SM-CI calculations
are a safe way to approach the exact solution of the many-body problem. However
the explosion of the dimensions of the basis to be used prevents the brute force
treatment. Hence, one must resort to the use of effective theories to design valence
spaces that contain the more relevant degrees of freedom, renormalizing consistently
the Hamiltonian and the transition operators. But, another ingredient, particular to
the nuclear system, is the uncertainty of our knowledge of the nucleon-nucleon
interaction, and it’s poorly knownmany-body terms. As we have discussed in detail,
close-to-exact solutions of the nuclear many-body problem for few nucleon systems
(VMC, NCSM) require the explicit use of three-body forces in order to explain the
full body of experimental data. Nuclear interactions obtained in χ-EFT do produce
such three-body interactions naturally.

Our endeavour, monopole-adapted interaction, plus multipole-guided valence
spaces, offers a solid bridge between the purely phenomenological approach, based
on the fit of all the two-body matrix elements in a given valence space to the
available experimental data (pioneered by B. H. Wildenthal and his USD interaction
[37]), and the “ab initio” campaign (see, for instance, [4]).

We submit, and we have explained it in these lectures that once the monopole
behaviour is corrected, the pairing and the multipole-multipole contents of the
realistic interactions obtained via renormalized G-matrices make it possible to
reproduce a large amount of experimental data with great accuracy and in some
cases to predict new physics, as, for instance, the existence of IoIs. It is important to
recall that the monopole Hamiltonian is responsible for all the extensive properties
of the nucleus, basically its saturation point in the Coester plot, one of the long-
standing problems in nuclear physics which appears in the nuclear spectroscopy
hidden in the shell evolution. No reason for the latter to be right if the former is
wrong. In a nutshell, we rely in these three pillars: the multipole part of the realistic
interactions, a monopole Hamiltonian which reproduces what is experimentally
known of the spherical mean field evolution with N and Z and the invaluable help
of the SU(3) heuristic to define the minimal valence spaces to be used in the SM-CI
approach.

How to make explicit the connection with the “ab initio” program? Indeed we
all will be more than happy if there were a single QCD complying NN+NNN+?
interaction and a rigorous reduction of these bare interactions to tractable Fock
space bases. This is not the case yet, because the number of χ-EFT interactions
is still too large, and sometimes the better ones for the many-body problem are not
the best for the two- and three-body cases (see the contribution of R. Roth in this
volume for a detailed description of the present state of the field). At present, the
final step of the “ab initio” approach, from a spectroscopic point of view, consists
in the derivation of two-body interactions to be used in SM-CI diagonalizations
(VS-IMSRG). Hence, they are subject to the same dimensionality limitations of the
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standard SM-CI calculations. Obviously, they also rely in a physically sound choice
of the valence spaces. We are afraid that the sensitivity of the outcome of the SM-
CI calculations to (not so big) modifications of the spherical mean field can make it
difficult for the “pure ab initio” approach to reach an optimum level of spectroscopic
quality. However, the mere fact of understanding the monopole crisis of the realistic
interactions in terms of three-body forces is a huge step ahead in our mastering on
the nuclear dynamics. Another important asset of the “ab initio” calculations are
the studies of the basic physics involved in the quenching of the στ (and related)
operators in the nucleus, most notably in the neutrinoless double beta decay process.
But, in our opinion, a first meeting point, and a much simpler one, would be to
produce a kind of “ab initio” monopole Hamiltonian including three-body terms.

Finally, let us mention that in order to overcome the dimensionality barriers of the
SM-CI calculations, there is a new line of thought that proposes the use of beyond
mean field techniques, like projected Hartree–Fock plus generator coordinator
configuration mixing, in shell model valence spaces, which we find very promising
[38, 39].

Disclaimer In these lectures we have drawn freely from many standard nuclear
structure books. In particular:

• P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer 1980)
• K. Heyde, The Nuclear Shell Model (Springer 1994)
• A. Bohr and B. Mottelson, Nuclear Structure, vols. I y II, (World Scientific 1998)
• J. Suhonen, From Nucleons to Nucleus (Springer 2007)
• A. De Shalit and H. Feshbach, Theoretical Nuclear Physics, vol I, Nuclear

Structure (Wiley 1974)
• P. Brussaard and P. Glaudemans, Shell Model Applications in Nuclear Spec-

troscopy (North Holland 1977)
• I. Talmi, Simple Models of Complex Nuclei (Harwood, 1993)
• G. Brown, Unified Theory of Nuclear Models and Forces (North Holland 1971)

For the less standard aspects of the presentation, we follow the work of the
Strasbourg Madrid Shell Model collaboration, notably the review of Ref. [9].
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