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Preface

This book is the sixth volume of the series Lecture Notes in Physics, which collects
a selection of review articles on nuclear physics subjects, based on lectures given at
the Euroschool on Exotic Beams. The Euroschool is an annual event, addressed to
PhD students and young researchers, and consists of several lecture courses given
by specialists in fields related to the physics of radioactive ion beams, starting from
a basic level. Initially funded by the EU, it is now supported by several funding
agencies and large research facilities in Europe. With one exception (in 1999),
the Euroschool on Exotic Beams has been held every year, first in Leuven from
1993 to 2000, and then, starting in 2001, it travelled to various places in Europe:
Jÿvaskÿla (2001, 2011), Les Houches (2002), Valencia (2003), Surrey (2004),
Mainz (2005, 2016), Trento (2006), Houlgate (2007), Piaski (2008), Leuven (2009,
2018), Santiago de Compostela (2010), Athens (2012), Dubna (2013), Padova
(2014), Dubrovnik (2015), Cabourg (2017), and Knebel (2019). The 2020 edition
had to be cancelled due to the pandemic, and in 2021 we organized an online
Euroschool edition for the first time. This year, 2022, the Euroschool will be held in
Spain, in collaboration with the International Scientific Meeting on Nuclear Physics
in La Rábida.

In the last few years, we have experienced a substantial progress in the
understanding of the structure of atomic nuclei and the forces at play in the nuclear
medium. This has been possible due to the important theoretical and experimental
developments achieved. The implementation of ab-initio calculations, the link
between quantum chromodynamics and the development of realistic interactions
used in various models, and the progress in shell model calculations with large-
scale configuration mixing are some examples illustrating this progress. On the
experimental side, the availability of exotic nuclear beams combined with novel
instrumentation has been essential to improve our knowledge of the nuclear struc-
ture properties, allowing for the discovery of new phenomena and constraining and
guiding the theoretical predictions. Moreover, our discipline has a very promising
outlook with the construction and start-up of new facilities capable of providing
intense beams of nuclei far from the valley of stability, as well as more intense
and new stable beams. Training and education of our young researchers is the best
guarantee we have to take advantage of the enormous opportunities and the great
challenges that await us.

v



vi Preface

The Euroschool Lecture Notes aim to provide graduate and PhD students, as
well as young researchers, with a comprehensive and pedagogical introduction to
exciting research topics in nuclear physics with radioactive ion beams and their
applications. They have been part of the program of the Euroschool lectures in
recent years and are here enriched with recent and novel developments. Our goal
is to fill the gap between the academic education and the research activities. Indeed,
the selected topics are not treated in textbooks but mainly in scientific journals. For
this sixth volume, the Board of Directors of the Euroschool on exotic beams has
selected topics that have not been treated in the previous volumes of this collection
as well as those that deserve an updated review. Two chapters of this sixth volume
are devoted to theoretical nuclear physics. They present recent developments in
ab initio approaches and large-scale shell model calculations for the interpretation
and prediction of nuclear structure properties. From an experimental approach,
two different methods to study nuclear structure have been selected: low-energy
Coulomb excitation and nuclear reactions using active targets. Interesting nuclear
astrophysics features are discussed from a theoretical and experimental point of
view. This volume also includes a chapter on the recent developments in gamma-ray
spectrometers. Finally, the application of gamma-ray emission imaging to medical
and safeguards fields completes the book. It is our pleasure to thank the sponsors for
their support over many years; this support makes the Euroschool events possible
and contributes to the education of next-generation scientists. The sponsors, to
whom we are indebted, are:

• ADS, Arenberg Doctoral School (Belgium)
• CEA, Commissariat à l’energie atomique et aux énergies alternatives (France)
• CNRS, Centre national de la recherche scientifique (France)
• Demokritos, National Center for Scientific Research, Athens (Greece)
• ECT*, European Centre for Theoretical Studies in Nuclear Physics and Related

Areas, Trento (Italy)
• GANIL, Grand Accelerateur National d’lons Lourds, Caen (France)
• Gobierno de España, Ministerio de Economia y Competitividad FANUC Net-

work and CPAN Ingenio 2010, Madrid (Spain)
• GSI, Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany)
• HIC-4-FAIR, Helmholtz International Center for FAIR, Darmstadt (Germany)
• IAEA, International Atomic Energy Agency
• IFIC-CSIC, Instituto de Fisica Corpuscular, Consejo Superior de Investigaciones

Cientificas, Madrid (Spain)
• INFN, Istituto Nazionale di Fisica Nucleare (Italy)
• INFN-LNL, Laboratori Nazionali di Legnaro (Italy)
• IRB, Institut Ruder Boskovic (Croatia)
• ISOLDE-CERN, Geneva (Switzerland)
• JINR, Joint Institute for Nuclear Research, Dubna (Russia)
• JYFL, University of Jÿvaskÿla (Finland)
• KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium)
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• KVI-CART, Center for Advanced Radiation Technology, Groningen (the Nether-
lands)

• UCL, Centre de Ressources du Cyclotron, Louvain-la-Neuve (Belgium)
• Università degli Studi di Padova (Italy)
• University of Warsaw (Poland)
• University of Zagreb (Croatia)
• University of Santiago de Compostela (Spain).

We would like to thank all those who have contributed to this volume. First and
foremost, we are very grateful to the authors, world class experts in their domains
and lecturers in past editions of the Euroschool, for their excellent work in preparing
their lectures and these contributions with a very pedagogical and, at the same time,
thorough and rigorous approach. We are grateful to the members of the Board of
Directors of the Euroschool on Exotic Beams, who have helped us select the topics.
Finally, we would like to thank Dr. Lisa Scalone and her colleagues at Springer-
Verlag for their support and encouragement in this adventure. Enjoy the lectures!

Padova, Italy Silvia M. Lenzi
Santiago de Compostela, Spain Dolores Cortina-Gil
May 2022
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1Shell Model Approaches: From N = Z
Towards the Neutron Drip Line

Alfredo Poves and Frédéric Nowacki

Abstract

The shell model with large-scale configuration mixing (SM-CI) is the theoretical
tool of choice in nuclear spectroscopy. In this chapter, we introduce its basic
concepts and discuss our present understanding of the model in terms of the
competition between the spherical mean field and the nuclear correlations. A key
aspect we shall treat is the choice of the valence spaces and effective interactions.
We shall discuss as well the main collective modes of the nucleus—superfluidity,
associated with the pairing interaction and vibrations and rotations originating
in the multipole-multipole terms—using simple models. The emergence of
permanent quadrupole deformation and rotational bands brings us to study
Elliott’s model and some of its variants. These models make it possible to give
a physically intuitive interpretation of the full-fledged SM-CI calculations. First,
we examine the cases of shape coexistence in two paradigms of doubly magic
nuclei, 40Ca and 56Ni. We then move into the neutron-rich regime, to study the
mechanisms that lead to the appearance of islands of inversion (IoI) at N = 40
and N = 50 and its relationship with the phenomenon of shape coexistence in
68Ni and 78Ni.
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2 A. Poves and F. Nowacki

1.1 Basic Concepts

In the standard model of nuclear structure, the elementary components are nucleons
(N neutrons and Z protons, N+Z = A). The mesonic and quark degrees of freedom
are integrated out. In most cases non-relativistic kinematics is used. The bare
nucleon-nucleon (or nucleon-nucleon-nucleon) interactions are inspired by meson
exchange theories or more recently by chiral effective field theory (χ-EFT) and
must reproduce the nucleon-nucleon phase shifts and the properties of the deuteron
and other few-body systems. The challenge is to find �(r1, r2, r3, . . . rA) such that
H� = E� , with

H =
A∑

i

Ti +
A∑

i,j

V2b(ri , rj )+
A∑

i,j,k

V3b(ri , rj , rk) (1.1)

The knowledge of the eigenvectors � and the eigenvalues E makes it possible
to obtain electromagnetic moments, transition rates, weak decays, cross sections,
spectroscopic factors, etc. The task is indeed formidable. Only recently and only
for very light nuclei A ≤ 10 the problem has been solved “exactly” thanks to
the pioneer work of Pandharipande, Wiringa and Pieper [1], who used variational
methods (Green function) solved by Monte Carlo (GFMC) techniques. The pertur-
bative approach has been implemented in the framework of the no-core shell model
(NCSM) by Barrett, Navratil and Vary [2]. And even more recently, the techniques
of lattice gauge theory together with χ-EFT interactions have been used with very
promising results in very light nuclei [3]. A mixed approach between the “ab initio”
program based upon effective interactions obtained by χ-EFT, and the shell model
with (large-scale) configuration mixing (SM-CI), is the valence-space in-medium
similarity renormalization group (VS-IMSRG9 approach [4].

A very important outcome of these calculations is the compulsory need to
include three-body forces in order to get correct solutions of the nuclear many-body
problem. The GFMC and the NCSM approaches are severely limited by the huge
size of the calculations when A becomes larger than 12. For the rest of the chart of
nuclides, approximate methods have to be used. Except for the semi-classical ones
(liquid drop) and the α-cluster models, all are based on the independent particle
model (IPM). Beyond the limits of applicability of the fully “ab initio” descriptions,
the methods of choice are the SM-CI and the beyond mean field (BFM) approaches
using energy density functionals (a.k.a. density-dependent effective interactions,
like the Gogny force). There are nowadays renewed efforts to connect rigorously
these two global methods and the bare two- and three-body nuclear interactions by
means of the full palette of the many-body perturbation methods. If this is achieved,
they will deserve the “ab initio” label as well.
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1.1.1 The Independent Particle Model

The basic idea of the independent particle model is to assume that, at the zeroth
order, the result of the complicated two-body interactions among the nucleons is
to produce an average self-binding potential. Mayer and Jensen (1949) proposed a
spherical mean field consisting in the isotropic harmonic oscillator plus a strongly
attractive spin-orbit potential and an orbit-orbit term:

H =
∑

i

h(ri ) (1.2)

h(r) = −V0 + T+ 1

2
mω2r2 − Vsol · s− VB l2 (1.3)

where we have used T for the kinetic energy to avoid confusion with the isospin
quantum number T.

Later, other functional forms which follow better the form of the nuclear density
and have a more realistic asymptotic behaviour, e.g. the Woods-Saxon (WS) well,
were adopted:

V (r) = V0

(
1+ e

r−R
a

)−1
(1.4)

with

V0 =
(
−51+ 33

N − Z

A

)
MeV (1.5)

and

Vls(r) = V ls
0

V0
(l · s) r2

0

r

dV (r)

dr
; V ls

0 = −0.44V0 (1.6)

The eigenvectors of the IPM are characterized by the radial quantum number n,
the orbital angular momentum l, the total angular momentum j and its z projection
m. With the choice of the harmonic oscillator, the eigenvalues are

εnljm = −V0 + h̄ω(2n+ l + 3/2)

− Vso
h̄2

2
(j (j + 1)− l(l + 1)− 3/4)− VBh̄2l(l + 1) (1.7)

In order to reproduce the nuclear radii,

h̄ω = 45A−1/3 − 25A−2/3 (1.8)
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With a suitable choice of the parameters, it explains the magic numbers and,
in the large A limit, the volume, the surface and (half) the symmetry terms of the
semi-empirical mass formula as well (more on that later).

The wave functions of the isotropic HO can be written as

�nlm(r, θ, φ) = 1

r
Rnl(r) Ylm(θ, φ) (1.9)

By convention the ns start at zero; therefore the eigen-energies read:

Enl = (2n+ l + 3/2) h̄ω = (p + 3/2)h̄ω (1.10)

Ylm(θ, φ) are the spherical harmonics and

Rnl(r) = (−1)l

(
2 (2ν)l+3/2 n!
�(n+ l + 3/2)

)1/2

rl+1 e−νr2
L

l+1/2
n (2νr2) (1.11)

The parameter ν is defined as
mω

2h̄
, and it is related to the length parameter of the

HO 2ν = 1

b2 . The degeneracy of each shell is (p + 1)(p + 2), and the functions L

are the Laguerre (associated) polynomials.
When the spin-orbit coupling is taken into account, we must include explicitly

the spin part of the wave function and change the coupling scheme from [L S] to [J
J]:

• VOCABULARY
– STATE: a solution of the Schrödinger equation with a one-body potential,

e.g. HO or WS. It is characterized by the quantum numbers nljm and by its
neutron or proton nature (or equivalently by the projection of the isospin tz).

– ORBIT: the ensemble of states with the same nlj , e.g. the 0d5/2 orbit. Its
degeneracy is (2j + 1).

– SHELL: an ensemble of orbits quasi-degenerated in energy, e.g. the sd-shell,
that includes the orbits 0d5/2, 1s1/2 and 0d3/2.

– MAGIC NUMBERS: the numbers of protons or neutrons that fill orderly a
certain number of shells. For instance, 28 corresponds to the filling of the
s(2), p(6) and sd(12) shells plus the orbit 0f7/2(8) and 50 to the filling of the
s, p, sd , and pf (20) shells plus the orbit 0g9/2(10).

– GAP: the energy difference between two shells.
– SPE, single-particle energies: the eigenvalues of the IPM Hamiltonian.
– ESPE, effective single-particle energies: the eigenvalues of the monopole

Hamiltonian to be introduced in Sect. 1.4.
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1.1.2 The Independent Particle Model and the Liquid-DropMass
Formula

The IPM explains the magic numbers, spins and parities of the ground states
and some excited states of doubly magic nuclei plus or minus one nucleon, their
magnetic moments, etc. With the addition of a schematic pairing term between like
particles, it can go a bit further in semi-magic nuclei (Schmidt lines). What is less
well known is that in the large A limit, the IPM can reproduce the volume, the
surface and the symmetry terms of the semi-empirical mass formula as well.

Let’s take the IPM with an HO potential and neglect the spin-orbit term. Then

H =
∑

i

Ti − V0 + 1

2
mω2r2

i (1.12)

The single-particle energies are εi = −V0+ h̄ω(pi+3/2) and < r2
i >= b2(pi+

3/2) with b2 = h̄

mω
.

Assuming N = Z, to accommodate A
2 identical particles, we need to fill all the

shells up to a maximum value of p = pF . Experimentally, the radius of the nucleus
is given by < r2 >= 3

5R2 = 3
5 (1.2A1/3)2 and in the IPM by

< r2 >= 2

A

A/2∑

i

< r2
i >= 2

A

pF∑

p=0

b2(p + 3/2)(p + 1)(p + 2) (1.13)

From

A

2
=

pF∑
(p + 1)(p + 2) (1.14)

it obtains at leading order

A

2
= 1

3
pF

3 (1.15)

Hence, pF = ( 3
2 A)1/3. Inserting this value in Eq. (1.13) it is easy to find that at

leading order in pF , b2 = A1/3 and h̄ω = 41 ·A−1/3. We can now compute the total
binding energy as

B =
A∑

i=1

(−V0 + h̄ω(pi + 3/2)) (1.16)
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that gives at leading order:

B

A
+ V0 = h̄ω · p4

F

4
· 2

A
= h̄ω

(
3A

2

)4/3 1

2A
= h̄ωA1/3 1

2

(
3

2

)4/3

(1.17)

Finally we have

B

A
= −V0 + 41× 0.86 (1.18)

and we recover the volume term of the semi-empirical mass formula for V0 ∼ 50
MeV.

If we go to next to leading order, keeping the terms in p3
F , we recover the surface

term and with a coefficient that agrees with the empirically determined one. We can
repeat the calculation at leading order but with N �= Z and obtain

B = −AV0 + h̄ω

4
((pν

F )4 + (pπ
F )4) = −AV0 + h̄ω

4
((3N)4/3 + (3Z)4/3) (1.19)

Making a Taylor expansion around the minimum at N = Z and using the
previously determined values, we find an extra term of the form (N − Z)2/A with
a coefficient which does not agree with the one resulting from the fit of the semi-
empirical mass formula to the experimental binding energies (asym = 23 MeV).
This reflects the fact that the nuclear two-body neutron-proton interaction is in
average more attractive than the neutron-neutron and the proton-proton ones, and
it is related as well to the experimental evidence of the near equality of the neutron
and proton radii for N �= Z. Therefore we should use different values of h̄ω and V0s
for protons and neutrons in the derivation, which complicates a lot the calculation
because both effects go in opposite directions.

1.2 TheMeaning of the Independent Particle Model

The usual procedure to generate a mean field in a system of N interacting fermions,
starting from their free interaction, is the Hartree–Fock (HF) approximation,
extremely successful in atomic physics. Whatever the origin of the mean field, the
eigenstates of the N-body problem are Slater determinants, i.e. antisymmetrized
products of N single-particle wave functions. In the nucleus, there is a catch,
because the very strong short-range repulsion and the tensor force make the HF
approximation based upon the bare nucleon-nucleon force impracticable. However,
at low energy, the nucleus does manifest itself as a system of independent particles
in many cases, and when it does not, it is due to the medium-range correlations that
produce strong configuration mixing and not to the short-range repulsion. Does the
success of the shell model really “prove” that nucleons move independently in a
fully occupied Fermi sea as assumed in HF approaches? In fact, the single-particle
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Table 1.1 The parameters
of the Brink and Boeker
interaction

i μi (fm) vi (MeV) mi

1 0.7 471.1 −0.43

2 1.4 −163.8 0.51

motion can persist at low energies in fermion systems due to the suppression of
collisions by the Pauli exclusion principle (see Pandharipande et al. [5]). Brueckner
theory takes advantage of the Pauli blocking to regularize the bare nucleon-nucleon
interaction, in the form of density-dependent effective interactions of use in HF
calculations or G-matrices for large-scale shell model calculations.

An example of regularized interaction is the one proposed by Brink and Boeker
[6], whose central part is

Vc(|r1 − r2|) =
2∑

i=1

[1−mi(1+ Pσ Pτ )] vi e−|r1−r2|2/μ2
i (1.20)

where μ are the widths of the Gaussians and P the spin and isospin projectors.
The values of m are fitted to produce the attraction in the S=0, T=1 and S=1, T=0
channels and repulsion in the others, whereas the νs give the energy scale of the two
Gaussians. For the spin-orbit term, they took a one-body approximation (Table 1.1):

Vls = −12 MeV

h̄2
√

A
l · s (1.21)

To be more realistic, one should refine the channel dependence of the central
terms, include a two-body spin-orbit interaction and more importantly add a
term which depends on the density. After this re-vamping, the Brink and Boeker
interaction becomes the Gogny interaction [7] extremely successful in numerous
mean field applications (and beyond).

The wave function of the ground state of a nucleus in the IPM is the product of
a Slater determinant for the Z protons that occupy the Z lowest states in the mean
field and another Slater determinant for the N neutrons in the N lowest states of the
mean field. In the second quantization, this state can be written as

|N〉 · |Z〉 (1.22)

with

|N〉 = n
†
1n

†
2 . . . n

†
N |0〉 (1.23)

|Z〉 = z
†
1z

†
2 . . . z

†
Z |0〉 (1.24)
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In a system of noninteracting fermions, the occupied states have occupation
number 1, and the empty ones occupation number 0. In reality there is a dilution
of the strength leading to a nonzero value above the Fermi level. In spite of that,
the nuclear quasi-particles resemble extraordinarily to the mean field solutions of
the IPM. This was demonstrated by the beautiful electron scattering experiment of
Cavedon et al. [8] in which they extracted the charge density difference between
206Pb and 205Tl that in the IPM limit is just the square of the 2s1/2 orbit wave
function. The shape of the 2s1/2 orbit is very well given by a mean field calculation
with the Gogny functional. To make the agreement quantitative, the calculated
density had to be scaled down with the occupation number. This is a first example of
the necessity of using effective transition operators consistent with the regularized
interactions that provide the natural basis for the many-body description of nuclei.
For a very pedagogical discussion of the basis of the IPM, see Ref. [5].

1.3 Beyond the Independent Particle Model

It is quite obvious that the IPM cannot encompass the extreme variety of manifes-
tations of the nuclear dynamics. In fact, even in the most favourable cases, as at the
doubly magic nuclei, its limitations are dramatically evident. Let’s take 40Ca as an
example. In the IPM limit, we expect a 0+ ground state (no problem) and a gap of
about h̄ω (9 MeV) before finding a bunch of quasi-degenerate levels of particle-hole
type and negative parity. In fact, the first excited state lies at 3.5 MeV and is again
a 0+, which, upon experimental and theoretical scrutiny, turns out to be the band
head of a rotational band of 4p-4h nature. Even more exotic is another 0+ at 5.1
MeV, which is the band head of a superdeformed band of 8p-8h structure. Going
beyond the mean field is compulsory because the nuclear dynamics is dominated in
most cases by the correlations. We shall show in what follows how these coexisting
structures can be reproduced by large-scale shell model calculations and interpreted
using analytic models.

To go beyond the IPM, there are two main routes: In the mean field way,
the correlations are taken into account by explicitly breaking the symmetries of
the mean field HF wave functions and employ density-dependent interactions of
different sorts: Skyrme, Gogny or relativistic mean field parametrizations. They are
often referred to as “intrinsic” descriptions. Projections before (VAP) or after (PAV)
variation are enforced to restore the conserved quantum numbers. Ideally, config-
uration mixing is also implemented through the generator coordinate method. The
other route pertains to the SM-CI which can be seen as an approximation to the exact
solution of the nuclear A-body problem using effective interactions in restricted
spaces. The SM-CI wave functions respect the symmetries of the Hamiltonian, and
these approaches are sometimes called “laboratory frame” descriptions.
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Let’s proceed through a kind of formal solution to the A-body problem. The
single-particle states (i, j, k, . . .), which are the solutions of the IPM, provide as
well a basis in the space of the occupation numbers (Fock space). The many-body
wave functions are Slater determinants:

� = a
†
i1

, a
†
i2

, a
†
i3

, . . . a
†
iA
|0〉 (1.25)

We can distribute the A particles in all the possible ways in the available single-
particle states. This provides a complete basis in the Fock space. The number of
Slater determinants will be huge but not infinite because the theory is no longer valid
beyond a certain energy cut-off. Therefore, the “exact” solution can be expressed as
a linear combination of the basis states:

� =
∑

α

cα�α (1.26)

and the solution of the many-body Schödinger equation

H� = E� (1.27)

is transformed in the diagonalization of the matrix:

Hα,β = 〈�α|H |�β〉 (1.28)

whose eigenvalues and eigenvectors provide the “physical” energies and wave
functions. A shell model calculation thus amounts to diagonalizing the effective
nuclear Hamiltonian in the basis of all the Slater determinants that can be built
distributing the valence particles in a set of orbits which is called “valence space”.
The orbits that are always full form the “core”. If we could include all the
orbits in the valence space (a full no-core calculation), we should get the “exact”
solution. The effective interactions for SM-CI calculations are obtained from the
bare nucleon-nucleon interaction by means of a regularization procedure aimed to
soften the short-range repulsion. In other words, using effective interactions we
can treat the A-nucleon system in a basis of independent quasi-particles. As we
reduce the valence space, the interaction has to be renormalized again using many-
body perturbation theory. Up to this point, these calculations can be labelled as “ab
initio”. In fact, the realistic NN interactions seem to be correct except for its simplest
part, the monopole Hamiltonian responsible for the evolution of the spherical mean
field. Therefore, we surmise that the three-body forces will mainly contribute to the
monopole Hamiltonian.

The three basic ingredients of the SM-CI approach are then the effective
interactions, the valence spaces and the algorithms and codes put at work to solve
the huge computational challenges posed by the solution of this secular problem.
See, for instance, Ref. [9] for a full-fledged presentation of our approach.
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1.4 The Effective Interactions in Fock Space

Using the creation and annihilation operators of particles in the states of the
underlying spherical mean field in the coupled representation, we can write the
Hamiltonian as

H =
∑

rr ′
εrr ′(a

+
r ar ′)

0 +
∑

r≤s,t≤u,�

W�
rstuZ+rs� · Ztu� (1.29)

where Z+� ( Z�) is the coupled product of two creation (annihilation) operators:

Z+rs� = [a†
r a†

s ]� (1.30)

� is a shorthand for (J,T), r , s . . . run over the orbits of the valence space, εrr ′ are
the single-particle energies (or the kinetic energies in the no-core calculations) and
W�

rstu the antisymmetrized two-body matrix elements:

W�
rstu = 〈jrjs(JT )|V |jt ju(JT )〉 (1.31)

In the occupation number representation (Fock space), all the information about
the interaction is contained in its two-body matrix elements. The many-body
problem then reduces to the manipulation of the creation and annihilation operators
using the Wick theorem and techniques alike.

The most general method to compute the two-body matrix elements is due to
Slater and carries his name. When the independent particle wave functions are those
of the harmonic oscillator or if they can be represented by linear combination of a
few harmonic oscillator states, the method of choice is that of Brody and Moshinsky
[10]. Both methods are described in detail in Ref. [11].

1.4.1 Monopole andMultipole Components of the Interaction

Without losing the simplicity of the Fock space representation, we can recast the
two-body matrix elements of any effective interaction in a way full of physical
insight, following Dufour–Zuker rules [12].

“Any effective interaction can be split in two parts:

H = Hm(monopole)+HM(multipole) (1.32)

where Hm contains all the terms that are affected by a spherical Hartree–Fock
variation; hence it is responsible for the global saturation properties and for the
evolution of the spherical single-particle energies”.
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Considering two-body interactions only, we can write

Hm =
∑

εini +
∑ [

1

(1+ δij )
aij ni(nj − δij )

+ 1

2
bij

(
Ti · Tj − 3ni

4
δij

) ]
(1.33)

where ni and Ti are the number and isospin operators for the orbit i. The coefficients
a and b are defined in terms of the centroïds (angular averages):

V T
ij =

∑
J WJT

ijij [J ]∑
J [J ]

(1.34)

as aij = 1
4 (3V 1

ij +V 0
ij ), bij = V 1

ij −V 0
ij , the sums running over Pauli allowed values

[J ] is a shorthand for (2j + 1).
It is easy to verify that the expectation value of the full Hamiltonian in a Slater

determinant for closed shells has the same expression than the Hartree–Fock energy:

〈H 〉 =
∑

i

〈i|T|i〉 +
∑

ij

〈ij |V |ij 〉 (1.35)

where i and j run over the occupied states. T is the kinetic energy and V

the effective interaction. If the two-body matrix elements are written in coupled
formalism and we denote the orbits by α, β, . . . , the expression reads

〈H 〉 =
∑

α

(2jα + 1)〈α|T|α〉 +
∑

α≤β

∑

J,T

(2J + 1)(2T + 1)〈jαjβ(JT )|V |jαjβ(JT )〉

(1.36)

The monopole Hamiltonian governs the evolution of effective spherical single-
particle energies (ESPE) with the number of particles in the valence space,
schematically:

εj ({ni}) = εj ({ni = 0})+
∑

i

aij ni (1.37)

Notice that the ESPEs not only evolve along isotopic and isotonic chains inside
the valence space (shell evolution) but can change for different configurations in
the same nucleus (configuration dependent or Type II shell evolution). It is very
important to realize that even small defects in the centroids can produce large
changes in the relative position of the different configurations due to the appearance
of quadratic terms involving the number of particles in the different orbits.
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The multipole Hamiltonian HM can be written in two representations, particle-
particle and particle-hole:

HM =
∑

r≤s,t≤u,�

W�
rstuZ+rs� · Ztu� (1.38)

HM =
∑

rstu�

[γ ]1/2 (1+ δrs)
1/2(1+ δtu)1/2

4
ω

γ
rtsu(S

γ
rtS

γ
su)0 (1.39)

where Sγ is the product of one creation and one annihilation operator coupled to γ

(i.e. λτ ):

S
γ
rs = [a†

r as]γ (1.40)

The W and ω matrix elements are related by a Racah transformation:

ω
γ
rtsu =

∑

�

(−)s+t−γ−�

{
r s �

u t γ

}
W�

rstu[�] (1.41)

W�
rstu =

∑

γ

(−)s+t−γ−�

{
r s �

u t γ

}
ω

γ
rtsu[γ ] (1.42)

The operators S
γ=0
rr are just the number operators for the orbits r and the

terms S
γ=0
rr ′ produce the spherical Hartree–Fock particle-hole jumps. The latter

must have null coefficients if the monopole Hamiltonian satisfies the Hartree–
Fock self-consistency. The operator Z+rr�=0 creates a pair of particle coupled to
J = 0. The terms W�

rrss Z+rr�= 0 · Zss�= 0 represent different kinds of pairing
Hamiltonians. The operators S

γ
rs are typical one-body operators of multipolarity γ .

For instance, γ = (J = 1, L = 0, T = 1) contains a (σ · σ ) (τ · τ ) term which is
nothing else but the Gamow-Teller component of the nuclear interaction. The terms
S

γ
rsγ = (J = 2, T = 0) are of quadrupole type r2Y2. They are responsible for

the existence of deformed nuclei, and they are specially large and attractive when
jr − js = 2 and lr − ls = 2.

A careful analysis of the available realistic effective nucleon-nucleon interactions
obtained with different methods reveals that the multipole Hamiltonian is universal
and dominated by BCS-like isovector and isoscalar pairing plus quadrupole-
quadrupole and octupole-octupole terms of very simple nature (rλYλ · rλYλ). As
an example we list in Table 1.2 the strengths of the coherent multipole components
of different interactions for the pf -shell.
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Table 1.2 Strengths (in MeV) of the coherent multipole components of different interactions for
the pf -shell

Particle-particle Particle-hole

Interaction JT = 01 JT = 10 λτ = 20 λτ = 40 λτ = 11

KB3 −4.75 −4.46 −2.79 −1.39 +2.46

FPD6 −5.06 −5.08 −3.11 −1.67 +3.17

GOGNY −4.07 −5.74 −3.23 −1.77 +2.46

GXPF1 −4.18 −5.07 −2.92 −1.39 +2.47

BONNC −4.20 −5.60 −3.33 −1.29 +2.70

1.4.2 Valence Spaces and Codes

An ideal valence space should incorporate the most relevant degrees of freedom
for the nuclei under study and be computationally tractable. Classical 0h̄ω valence
spaces are provided by the major oscillator shells p, sd and pf. As we move far from
stability, other choices are compulsory; for instance, for the very neutron-rich nuclei
around N = 28, a good choice is to take the sd-shell for protons and the pf -shell
for neutrons, and for the very neutron-rich Cr, Fe, Ni and Zn, one should rather
take r3 − (0g9/2, 1d5/2) for the neutrons and pf for protons (in a major harmonic
oscillator shell of principal quantum number p, the orbit j = p + 1/2 is called
intruder , and the remaining ones are denoted by rp; for instance, in the pf -shell,
the intruder orbit is the 0f7/2, and r3 includes the orbits 1p3/2, 1p1/2 and 0f5/2). To
describe the intruders around N and/or Z = 20, a good valence space is r2 − pf .
For the nuclei above 100Sn, the valence space r4 − h11/2 has been also widely used.

The solution of the secular problem of the SM-CI is computationally very
demanding. Direct diagonalization is of very limited utility, and other algorithms
like the Lanczos method, Monte Carlo shell model, quantum Monte Carlo diago-
nalization, density matrix renormalization group, etc., are employed. There are also
a number of different extrapolation ansatzs. The Strasbourg-Madrid codes (Antoine,
Nathan) [9] can deal with problems involving the basis of 1011 Slater determinants,
using relatively modest computational resources. Other competitive codes which
have been released publicly are Oxbash [13], Nushell [14] and Kshell [15].

1.5 Collectivity in Nuclei

For a given interaction, a many-body system would or would not display coherent
features at low energy depending on the structure of the mean field around the
Fermi level. So, when the spherical mean field around the Fermi surface favours
the pairing interaction, as in the case of having only neutrons and protons on top
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of a doubly magic core, the nucleus tends to become superfluid. However, if the
quadrupole-quadrupole interaction is dominant, for instance, if both protons and
neutrons are available in open orbits, the nucleus acquires permanent deformation.
In the extreme (unrealistic) limit in which the monopole Hamiltonian is negligible,
the multipole interaction would maximize the deformation and together with the
pairing interaction produce a kind of superfluid nuclear needles. Magic nuclei resist
the strong multipole interaction, because the large gaps in the nuclear mean field at
the Fermi surface block the correlations.

Let’s consider a simple model consisting of two states that have diagonal
energies that differ by � and an off-diagonal matrix element δ. The eigenvalues
and eigenvectors of this problem are obtained diagonalizing the matrix:

(
0 δ

δ �

)
(1.43)

In the limit δ << �, we can use perturbation theory, and no special coherence
is found. On the contrary in the degenerate case, � → 0, the eigenvalues of
the problem are ±δ, and the eigenstates are the 50% mixing of the unperturbed
ones with different signs. They are the germ of the maximally correlated (or
anticorrelated) states.

We can generalize this example by considering a degenerate case with N Slater
determinants with equal (and attractive) diagonal matrix elements (−�) and off-
diagonal ones of the same magnitude. The problem now is that of diagonalizing the
matrix:

−�

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . .

1 1 1 . . .

1 1 1 . . .

. . . . . .

. . . . . .

. . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(1.44)

which has range 1 and whose eigenvalues are all zero except one which has the
value−N�. This is the coherent state. Its corresponding eigenvector is a mixing of
the N unperturbed states with amplitudes 1√

N
.
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1.5.1 Nuclear Superfluidity: Pairing Collectivity

The pairing Hamiltonian for one shell expressed in the m-scheme basis of two
particles has a very similar matrix representation:

−G

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 . . .

−1 1 −1 . . .

1 −1 1 . . .

. . . . . .

. . . . . .

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1.45)

and its coherent solution is just the state of the two particles coupled to zero which
gains an energy−G� (� = j+1/2 is the degeneracy of the shell). It can be written
as

Z
†
j |0〉 =

1√
�

∑

m>0

(−1)j+ma
†
jma

†
j−m|0〉 (1.46)

Using the commutation relations,

[
Zj , Z

†
j

]
= 1− n̂

�
; and

[
H, Z

†
j

]
= −G(�− n̂+ 2)Z

†
j (1.47)

where n̂ is the operator number of particle, it is possible to construct the eigenstates
of H for n particles consisting of n/2 pairs coupled to J = 0. These states are
labelled as seniority zero states. The quantum number v (seniority) counts the
number of particles not coupled to angular momentum zero:

|n, v = 0〉 = (Z
†
j )

n
2 |0〉 and E(n, v = 0) = −G

4
n(2�− n+ 2) (1.48)

We can construct also eigenstates with higher seniority using the operators B
†
J

which create a pair of particles coupled to J �= 0. These operators satisfy the
relation:

[
H, B

†
J

]
|0〉 = 0 (1.49)

States which contain m B
†
J operators have seniority v = 2m. Their eigen-energies

relative to the seniority zero state are

E(n, v) − E(n, v = 0) = G

4
v(2�− v + 2) (1.50)
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Notice that the gap is independent of the number of particles. The generalization
to the odd number of particles is trivial.

For n protons and neutrons in the same shell of degeneracy � coupled to total
isospin T, the eigenvalues of the J = 0 (L = 0) T = 1 pairing Hamiltonian can be
written as

E(�, n, v, t, T ) = −G((n− v)(4�+ 6− n− v)/8 + t (t + 1)/2− T (T + 1)/2)

(1.51)

where ν is the sum of the seniorities of protons and neutrons and t the reduced
isospin, one half of their difference.

The case of two particles in several shells is also tractable and has a great heuristic
value. The problem in a matrix form reads:

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

2ε1 −G�1 −G
√

�1�2 −G
√

�1�3 . . .

−G
√

�2�1 2ε2 −G�2 −G
√

�2�3 . . .

−G
√

�3�1 −G
√

�3�2 2ε3 −G�3 . . .

. . . . . .

. . . . . .

. . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(1.52)

There is a limit in which maximum coherence is achieved, when the orbits have
the same � and they are degenerate. Then the coherent pair is evenly distributed
among the shells, and its energy is E = −G

∑
i �. All the other solutions remain

at their unperturbed energies.
A textbook case of nuclear superfluidity is provided by the tin isotopes from

N = 52 to N = 80. The five orbits comprised between the magic closures 50 and
82 are closely packed, and one should expect pairing dominance in several shells.
The pairing gap is measured by the excitation energy of the first 2+ state and should
be independent of the neutron number. Indeed that is what the experiments tell us
and what the SM-CI calculations reproduce nicely as can be seen in Fig. 1.1.

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82
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Fig. 1.1 Low energy excited states of the tin isotopes; experiment compared with SM-CI
calculations in the r4-h11/2. space with the gcn50:82 interaction [16]; 2+ circles, 4+ squares, th.
(filled) exp. (empty)



1 Shell Model Approaches: From N = Z Towards the Neutron Drip Line 17

The problem can be turned into a dispersion relation as well. Let us write the
most general solution as

|α〉 =
∑

j

Xα
j Z

†
j |0〉 (1.53)

Plugging it in the Schrödinger equation, H |α〉 = Eα|α〉, we get

(2εk − Eα)Xα
k = G

∑

j

√
�j�kX

α
j (1.54)

Multiplying by
√

�k both sides and summing over k, we obtain the dispersion
relation:

1

G
=

∑

k

�k

2εk − Eα

(1.55)

The dispersion relation can be solved graphically or iteratively. As we have seen
before, we expect one coherent solution (the collective pair) to gain a lot of energy
and the rest of the solutions to be very close to the unperturbed ones. If we assume
that the single-particle energies are degenerate and take εk =< ε >, we obtain

Eα = 2 < ε > −G
∑

k

�k (1.56)

In this limit the energy gain is equivalent to the one in a single shell of degeneracy∑
k �k .
For the case of many particles in non-degenerate orbits, the problem is usually

solved in the BCS or Hartree–Fock–Bogoliubov approximations. Other approaches,
which do not break the particle number conservation, are either the SM-CI or others
based on it; these include the interacting boson model and its variants and different
group theoretical approximations.

1.5.2 Vibrational Spectra: Quadrupole and Octupole Collectivity

In the semi-classical approach, vibrational spectra are described as the quantized
harmonic modes of vibration of the surface of a liquid drop. The restoring force
comes from the competition of the surface tension and the Coulomb repulsion. This
is hardly germane to reality and to the microscopic description that we will develop
in a simplified way. Let’s just remind which are the characteristic features of a
nuclear vibrator; first, a harmonic spectrum as the one shown in Fig. 1.2 and second,
enhanced Eλ transitions between the states differing in one vibrational phonon.
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Fig. 1.2 Schematic
depiction of a perfect
vibrational spectrum

0+, 2+, ....... (2 )+,

0+

�

�

Imagine that for a given even-even nucleus, the orbits around the Fermi level are
such as depicted in Fig. 1.3. Its ground state has J π = 0+, and, in the IPM, the
lowest excited states correspond to promoting one particle from the occupied orbits
to the empty ones. They are many, quasi-degenerate, and should appear at excitation
energies �.

Let’s take now into account the multipole Hamiltonian, which for simplicity will
be of separable form, and choose as valence space just the particle-hole states, |mi〉,
that correspond to making a hole in the orbit i and adding a particle in the orbit m,
and then

〈nj |V |mi〉 = βλQλ
njQλ

mi (1.57)

the wave function can be developed in the p-h basis as

� =
∑

Cmi |mi〉 (1.58)

the Schödinger equation H� = E� can thus be written as

Cnj (E − εnj ) =
∑

mi

βλCmiQ
λ
nj Qλ

mi (1.59)

Fig. 1.3 A valence space for
the description of the nuclear
vibrations (see text)

m, n, l, ...... (empty)

D

i, j, k, , ...... (full)
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and

Cnj =
βλQλ

nj

E − εnj

∑

mi

CmiQ
λ
mi (1.60)

trivially

1 = βλ

∑

nj

(Qλ
nj )2

E − εnj

(1.61)

A graphical analysis of this equation shows that all its solutions except one are
very close to the unperturbed values εnj . The remaining one is the lowest, and it is
well separated from the others, very much as in the pairing case discussed before.
Taking for all the εnj the average value εnj = �, we obtain

E = �+ βλ

∑

nj

(Qλ
nj )2 (1.62)

If the interaction is attractive βλ < 0, the lowest state gains an energy which
is proportional to βλ, the strength of the multipole interaction, and to the coherent
sum of the squared one-body matrix elements of the one-body multipole operators
between the particle and hole orbits in the space. This mechanism of coherence
explains the appearance of vibrational states in the nucleus and represents the basic
microscopic description of the nuclear “phonons”. Because the couplings βλ are
constant except for a global scaling, the onset of collectivity requires the presence
of several quasi-degenerate orbits above and below the Fermi level. In addition,
these orbits must have large matrix elements with the multipole operator of interest.

The wave function of the coherent (collective) state (phonon, vibration) has the
following form:

�c(J = λ) =

∑
nj

Qλ
nj |nj 〉

∑
nj

(Qλ
nj )2

(1.63)

The collective state is coherent with the transition operator Qλ because the
probability of its electromagnetic Eλ decay to the 0+ ground state is very much
enhanced:

B(Eλ) ∼ |〈0+|Qλ|�c(J = λ)〉|2 =
∑

nj

(Qλ
nj )2 (1.64)

which should be much larger than the single-particle limit (many Weisskopft units
(WU)). Clearly, a large value of the B(Eλ) does not imply necessarily the existence
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of permanent deformation in the ground state. Notice also that nothing prevents that

|βλ

∑

nj

(Qλ
nj )2| > � (1.65)

In this case the vibrational phonon is more bound than the ground state, and the
model is no longer valid. What happens is that a phase transition from the vibrational
to the rotational regime takes place as the nucleus acquires permanent deformation
of multipolarity λ. The separation between filled and empty orbits does not hold
anymore, and both have to be treated at the same footing.

1.6 Deformed Nuclei: Intrinsic vs. Laboratory Frame
Approaches

The route to the description of permanently deformed nuclear rotors bifurcates now
into laboratory frame and intrinsic descriptions. The latter include the deformed
shell model (Nilsson) and the deformed Hartree–Fock approximation, plus the
beyond mean field approaches such as angular momentum projection and config-
uration mixing with the generator coordinate method. The former, the SM-CI and in
cases of full dominance of the quadrupole-quadrupole interaction group theoretical
treatments like Elliott’s SU(3) and its variants [17–19].

A case where the two approaches could be confronted is 48Cr (four protons and
four neutrons on top of 40Ca) where an SM-CI description in the full pf -shell was
for the first time possible more than two decades ago [20]. The mean field intrinsic
description was a cranked Hartree–Fock–Bogoliubov (CHFB) approximation using
the Gogny force. The results are presented in Fig. 1.4. Both calculations reproduce

0 1 2 3 4
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SM with KB3

CHFB
SM with Gogny

(MeV)g

Fig. 1.4 The yrast band of 48Cr; experimental data compared with the SM-CI with the KB3G
interaction and the two-body matrix element of the Gogny functional and the CHFB calculations
with the Gogny functional
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Table 1.3 Quadrupole
properties of the yrast band of
48Cr, in e2fm4 and efm2

J B(E2)exp B(E2)th Q0(t))

2 321(41) 228 107

4 330(100) 312 105

6 300(80) 311 100

8 220(60) 285 93

10 185(40) 201 77

12 170(25) 146 65

14 100(16) 115 55

16 37(6) 60 40

the rotor like behaviour at low and medium spin and the existence of a backbending
at J = 12. However, the CHFB description misses the size of the moment of inertia
due to the absence of neutron-proton pairing correlations in its wave functions. The
Gogny force does contain the right proton-neutron T = 0 and T = 1 pairing as
shown by the results of the SM-CI calculation with its two-body matrix elements.
Hence the blame is on the CHFB method and not on the Gogny functional.

The laboratory frame wave functions are indeed collective as can be seen in
Table 1.3 where we have listed the B(E2)s and compared with the experiment.
From the calculated values, we can extract the intrinsic quadrupole moments Q0(t)

using Eq. (1.85). They are roughly independent of J below the backbending as in
a well-behaved Bohr–Mottelson rotor. From the intrinsic quadrupole moment, a
deformation parameter can be calculated using

β =
√

5π

3

Q0(t)

ZR2 (1.66)

The resulting value, β = 0.28, is in very good agreement with the CHFB result
(Table 1.3).

1.6.1 The NilssonModel

The Nilsson model is an approximation to the solution of the IPM plus a quadrupole-
quadrupole interaction:

H =
∑

i

h(ri )+ h̄ωκ
∑

i<j

Qi ·Qj (1.67)

h(r) = −V0 + T+ 1

2
mω2r2 − Vsol · s− VB l2 (1.68)

which amounts to linearizing the quadrupole-quadrupole interaction, replacing one
of the operators by the expectation value of the quadrupole moment (or by the
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deformation parameter). Thus, the resulting physical problem is that of the IPM
subject to a quadrupole field, which obviously breaks rotational symmetry:

HNilsson =
∑

i

h(ri )− 1

3
h̄ωδQ0(i) (1.69)

The problem is equivalent to the diagonalization of the quadrupole operator in
the basis of the IPM eigenstates. The resulting (Nilsson) levels are characterized by
their magnetic projection on the symmetry axis m, also denoted K and the parity.

The formulae below make it possible to build the relevant matrices:

〈pl|r2|pl〉 = p + 3/2 : 〈pl|r2|pl + 2〉 = −[(p − l)(p + l + 3)]1/2 (1.70)

Q0 = 2r2C2 = 2r2
√

4π/(2l + 1)Y 20 : 〈jm|C2|jm〉 = j (j + 1)− 3m2

2j (2j + 2)
(1.71)

〈jm|C2|j + 2m〉 = 3

2

{ [(j + 2)2 −m2][(j + 1)2 −m2]
(2j + 2)2(2j + 4)2

}1/2

(1.72)

〈jm|C2|j + 1m〉 = −3m[(j + 1)2 −m2]1/2

j (2j + 4)(2j + 2)
(1.73)

The intrinsic wave functions provided by the Nilsson model correspond to the
Slater determinants built putting the neutrons and the protons in the lowest Nilsson
levels (each one has degeneracy two, ±m). Therefore, for even-even nuclei K = 0,
for odd nuclei K = m of the last half occupied orbit, and for odd-odd, there are
different empirical rules, not always very reliable. The Nilsson diagrams for the
sd-shell are plotted in Fig. 1.5. The laboratory frame wave functions are obtained
rotating the intrinsic frame with the Wigner matrices, i.e. correspond to the solutions
of the quantum rotor problem. In the even-even case, this leads trivially to the energy
formula:

E(J ) =
∑

i

(εi )Nilsson + h̄2

2I
J (J + 1)

1.6.2 The SU3 Symmetry of the HO and Elliott’s Model

The mechanism that produces permanent deformation and rotational spectra in
nuclei is much better understood in the framework of the SU(3) symmetry of the
isotropic harmonic oscillator and its implementation in Elliott’s model [17]. The
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Fig. 1.5 Nilsson diagrams for the sd-shell: K = 5/2 (black), K = 3/2 (red) and K = 1/2 (blue).
Energies of the states in MeV as a function of the deformation parameter

basic simplification of the model is threefold: (i) the valence space is limited to
one major harmonic oscillator (HO) shell, (ii) the monopole Hamiltonian makes
the orbits of this shell degenerate and (iii) the multipole Hamiltonian only contains
the quadrupole-quadrupole interaction. This implies (mainly) that the spin-orbit
splitting and the pairing interaction are put to zero. Let’s then start with the isotropic
HO which in units m = 1ω = 1 can be written as

H0 = 1

2

(
p2 + r2

)
= 1

2
(p+ ir)(p− ir)+ 3

2
h̄ = h̄

(
A†A+ 3

2

)
(1.74)

with

A† = 1√
2h̄

(p+ ir) A = 1√
2h̄

(p− ir) (1.75)

which have bosonic commutation relations. H0 is invariant under all the trans-
formations which leave invariant the scalar product A†A. As the vectors are
three-dimensional and complex, the symmetry group is U(3). We can build the
generators of U(3) as bi-linear operators in the As. The antisymmetric combinations
produce the three components of the orbital angular momentum Lx , Ly and Lz,
which are in turn the generators of the rotation group O(3). From the six symmetric
bi-linears, we can remove the trace that is a constant: the mean field energy. Taking
it out we move into the group SU(3). The five remaining generators are the five
components of the quadrupole operator:

q(2)
μ =

√
6

2h̄
(r ∧ r)(2)

μ +
√

6

2h̄
(p ∧ p)(2)

μ (1.76)



24 A. Poves and F. Nowacki

The generators of SU(3) transform single-nucleon wave functions of a given p
(principal quantum number) into themselves. In a single-nucleon state, there are p
oscillator quanta which behave as l = 1 bosons. When we have several particles, we
need to construct the irreps of SU(3) which are characterized by the Young tableaux
(n1, n2, n3) with n1 ≥ n2 ≥ n3 and n1 + n2 + n3 = Np(N being the number of
particles in the open shell). The states of one particle in the p shell correspond to
the representation (p, 0, 0). Given the constancy of Np, the irreps can be labelled
with only two numbers. Elliott’s choice was λ = n1 − n3 and μ = n2 − n3. In
the Cartesian basis, we have nx = a + μ, ny = a and nz = a + λ + μ, with
3a + λ+ 2μ = Np.

The quadratic Casimir operator of SU(3) is built from the generators:

L =
N∑

i=1

l(i) Q(2)
α =

N∑

i=1

q(2)
α (i) (1.77)

as

CSU(3) = 3

4
(L · L)+ 1

4
(Q(2) ·Q(2)) (1.78)

and commutes with them. With the usual techniques of group theory, it can be shown
that the eigenvalues of the Casimir operator in a given representation (λ, μ) are

C(λ, μ) = λ2 + λμ+ μ2 + 3(λ+ μ) (1.79)

Once these tools are ready, we come back to the physics problem as posed by
Elliott’s Hamiltonian:

H = H0 + χ(Q(2) ·Q(2)) (1.80)

which can be rewritten as

H = H0 + 4χCSU(3) − 3χ(L · L) (1.81)

The eigenvectors of this problem are thus characterized by the quantum numbers
λ, μ and L. We can choose to label our states with these quantum numbers because
O(3) is a subgroup of SU(3) and therefore the problem has an analytical solution:

E(λ, μ, L) = Nh̄ω(p+ 3

2
)+4χ(λ2+λμ+μ2+3(λ+μ))−3χL(L+1) (1.82)

This important result can be interpreted as follows: For an attractive quadrupole-
quadrupole interaction, χ < 0, the ground state of the problem pertains to
the representation which maximizes the value of the Casimir operator, and this
corresponds to maximizing λ or μ (the choice is arbitrary). If we solve the problem
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in the Cartesian basis, this state is the one which has the maximum number of
oscillator quanta in the z-direction, thus breaking the rotational symmetry at the
intrinsic level. We can then speak of a deformed solution even if its wave function
conserves the good quantum numbers of the rotation group, i.e. L and Lz. For that
one (and every) (λ, μ) representation, there are different values of L which are
permitted, for instance, for the representation (λ, 0) L = 0, 2, 4 . . . λ. And their
energies satisfy the L(L + 1) law, thus giving the spectrum of a rigid rotor. The
problem of the description of the deformed nuclear rotors in the laboratory frame is
thus formally solved.

We can describe the intrinsic states and their relationship with the physical ones
using another chain of subgroups of SU(3). The chain we have used until now is
SU(3)⊃O(3)⊃U(1) which corresponds to labelling the states as �([f̃ ](λμ)LM).
[f̃ ] is the representation of U(�) (� = 1/2 (p + 1) (p + 2)) conjugate of the

U(4) spin-isospin representation which guarantees the antisymmetry of the total
wave function. For instance, in the case of 20Ne, the fundamental representation
(8,0) (four particles in p = 2) is fully symmetric, [f̃ ] = [4], and its conjugate
representation in the U(4) of Wigner [1, 1, 1, 1], fully antisymmetric. The other
chain of subgroups, SU(3)⊃SU(2)⊃U(1), does not contain O(3), and therefore the
total orbital angular momentum is not a good quantum number anymore. Instead
we can label the wave functions as �([f̃ ](λμ)q0�K), where q0 is the intrinsic
quadrupole moment whose maximum value is q0 = 2λ+μ. K is the projection of the
angular momentum on the Z-axis, and � is an angular momentum without physical
meaning. Both representations provide a complete basis; therefore it is possible to
write the physical states in the basis of the intrinsic ones. Actually, the physical
states can be projected out of the intrinsic states with maximum quadrupole moment
as

�([f̃ ](λμ)LM) = 2L+ 1

a(λμKL)

∫
DL

MK(ω)�ω([f̃ ](λμ)(q0)max�K)dω (1.83)

Remarkably, this is the same kind of expression used in the unified model of
Bohr and Mottelson, the Wigner functions D being the eigenfunctions of the rigid
rotor and the intrinsic functions the solutions of the Nilsson model.

Elliott’s model was initially applied to nuclei belonging to the sd-shell that show
rotational features like 20Ne and 24Mg. The fundamental representation for 20Ne is
(8,0), and its intrinsic quadrupole moment, Q0 = (2λ + μ + 3) b2 = 19 b2 ≈
60 efm2 (b is the length parameter of the HO). For 24Mg we have (8,4) and 23 b2 ≈
70 efm2. To compare these figures with the experimental values, we need to know
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the transformation rules from intrinsic to laboratory frame quantities and vice versa.
In the Bohr Mottelson model, these are

Q0(s) = (J + 1) (2J + 3)

3K2 − J (J + 1)
Qspec(J ), K �= 1 (1.84)

B(E2, J → J − 2) = 5

16π
e2|〈JK20|J − 2, K〉|2 Q0(t)2 K �= 1/2, 1

(1.85)

Qspec(J ) =< JJ |z2 − r2|JJ > (1.86)

The expression for the quadrupole moments is also valid in Elliott’s model.
However the one for the B(E2)s is only approximately valid for very low spins.
Using them it can be easily verified that the SU(3) predictions compare nicely
with the experimental results Qspec(2+) = −23(3) efm2 and B(E2)(2+ → 0+) =
66(3) e2 fm4 for 20Ne and Qspec(2+) = −17(1) efm2 and B(E2)(2+ → 0+) =
70(3) e2 fm4 for 24Mg.

Besides Elliott’s SU(3) there are other approximate symmetries related to
the quadrupole-quadrupole interaction which are of great interest. Pseudo-SU(3)
applies when the valence space consists of a quasi-degenerate harmonic oscillator
shell except for the orbit with maximum j ; this space has been denoted by rp before.
Its quadrupole properties are the SU(3) ones of the shell with (p − 1) [18]. Quasi-
SU(3) [19] applies in a regime of large spin-orbit splitting, when the valence space
contains the intruder orbit and the �j = 2, �l = 2; �j = 4, �l = 4; etc., orbits
which are obtained from it. Its quadrupole properties are described in Ref. [9]. These
symmetries turn out to be at the root of the appearance of islands of inversion far
from stability. They are more prominent at the neutron-rich side and occur when
the configurations which correspond to the neutron shell closures at N = 8, 20,
28 and 40 are less bound than the intruder ones (more often deformed) built by
promoting neutrons across the Fermi level gap. The reason of the inversion is that the
intruder configurations maximize the quadrupole correlations and thus their energy
gains. This is only possible when the orbits around the Fermi level can develop the
symmetries of the quadrupole interaction. For instance, at N = 20 the intruder states
in 32Mg have four sd protons in quasi-SU(3), two sd neutron holes in pseudo-SU(3)
and two pf neutrons in quasi-SU(3). This leads to a huge gain of correlation energy
(typically 12 MeV) which suffices to turn the intruders into ground states.

1.7 Nuclear Deformation in the Laboratory Frame: SM-CI
Approaches

As stated above, large-scale SM-CI calculations, when doable, are the spectroscopic
tool of choice in theoretical nuclear structure. When they are interpreted adequately,
they may provide us with the link between the experimental data and the “ab
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initio” approaches. Indeed, the monopole anomaly of the realistic NN interactions
may turn out to be the fingerprint of residual three-body effects [21, 22]. A non-
negligible fraction of the Segré chart is nowadays amenable to SM-CI descriptions.
As explained in detail in [9], the choice of a valence space which can encompass the
physics dictated by the effective interaction is the crucial one in SM work. Magic
numbers provide the natural borders of the SM valence spaces, because they are
supposed to correspond to large gaps in the spherical mean field. Nevertheless,
sometimes, if the gaps are weakened, this may not hold anymore.

The pf -shell provides a valence space which can cope successfully with the
physics of several N = Z nuclei. From the point of view of the quadrupole coupling
schemes which will be dealt with in the next section, 48Cr and 52Fe are good quasi-
SU(3)-deformed nuclei. 56Ni is doubly magic albeit the closed shell amounts just
to 60–70% depending on the calculations. 60Zn is transitional, and 64Ge looks very
much like a pseudo-SU(3) mildly deformed nucleus. Beyond, we need to change
the valence space [25].

The next valence space, r3g, has a core of 56Ni and comprises the orbits 1p3/2,
0f5/2, 1p1/2 and 0g9/2. 68Se is a natural inhabitant of this space. However, its region
of applicability at or close to N = Z does not extend very far. Already at 72Kr,
oblate-prolate coexistence sets in. This requires the inclusion of the quadrupole
partners of the 0g9/2 orbit, the 1d5/2 and 2s1/2 ones, in the valence space [25].
This leads to the r3gds space. The next (and last) doubly magic N = Z nucleus,
100Sn, can be taken as the core of another valence space, r4h, which spans between
the magic numbers 50 and 82.

1.7.1 The Quadrupole Interaction: Intrinsic States and Coherence

In order to gauge the quadrupole coherence of a given nucleus, it is customary to
compare its quadrupole properties with perfect Bohr–Mottelson rotors, i.e. to verify
that the E2 transition rates and the spectroscopic quadrupole moments of the states
of the yrast band can be derived from a single intrinsic quadrupole moment using
Eqs. (1.84), (1.85) and (1.86).

If Q0(s) ≈ Q0(t) and constant, we can speak of good rotors. The excitation
energies of the yrast band should follow approximately the J (J + 1) law as well.
However, in light and medium mass nuclei, pairing might distort the lower part of
the spectrum, giving extra binding to the 0+ ground states. It is therefore advisable
to verify the J (J +1) law excluding the ground state. Another caveat here has to do
with the (bad) habit of blindly extracting deformation parameters β from the B(E2)
values, even in cases in which the existence of an intrinsic deformed state is not
guaranteed at all.

The only rigorous (but far more demanding) way of characterizing the
quadrupole deformation in the laboratory frame is through the quadrupole invariants
introduced by Kumar [23]. Very recently, its scope has been enlarged to make it
possible to extract not only the mean values of β and γ but also their variances.
Indeed, when these are very large, the notion of intrinsic state makes no sense [24].
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Quadrupole coherence may be associated with a single shell (Eq. (1.71)), with
a full rp space (pseudo-SU(3)), and in this case the intrinsic single-particle states
are obtained diagonalizing the quadrupole operator using Eqs. (1.71), (1.72) and
(1.73) or with a full HO major shell; thus the Nilsson-like orbits of Elliott’s SU3
[17] are obtained. If this is done in the �j = 2 HO sequences (quasi SU(3)),
one can diagonalize the quadrupole operator using Eqs. (1.71) and (1.72) or the
corresponding expressions in LS coupling as adopted in [19]. We shall work with
the latter choice unless explicitly stated otherwise. The radial integrals are given
in Eq. (1.70). We use adimensional r2 and Q0 = 2r2C2 and quadrupole effective
charges equal to 0.5 and 1.5 for neutrons and protons, respectively. To recover
dimensions, r2 → r2b2.

1.7.2 The Quadrupole Interaction in a Single Orbit

The intrinsic quadrupole moment for n particles in an orbit j with principal HO
quantum number p is given by the formula:

Q0

b2 =
∑

m

2r2〈jm|C2|jm〉 =
∑

m

(p + 3/2)
j (j + 1)− 3m2

j (j + 1)
(1.87)

If we fill orderly the magnetic sub-states with increasing |m|, we obtain prolate
intrinsic states. If we do it the other way around, we obtain oblate intrinsic states.
In Table 1.4, we list the Q0 values for the 0g9/2 orbit and N = Z. For n < (2j +
1) the oblate solutions have the larger Q0 (and therefore the larger binding if the
quadrupole interaction is dominant). For n > (2j + 1) the prolate solutions lead.
For n = (2j + 1) both are degenerate.

1.7.3 SU(3) and Pseudo-SU(3)

For a full HO shell, q0 = 2nz − nx − ny , with nx + ny + nz= p, where ni are the
numbers of oscillator quanta in each spatial direction. For p = 2, the intrinsic states
are [nznxny ] = [200], [110], [101], [020], [011], [002].

The quadrupole moments of the intrinsic states of the p = 4 shell are plotted in
Fig. 1.6 (for p = 3 remove the upper row and change the values in the y-axis to

Table 1.4 Intrinsic quadrupole moments for n particles in the 0g9/2 orbit and N = Z (in units
of b2)

n 2 4 6 8 10 12 14 16 18

Prolate 5.33 10.66 14.66 18.66 20 21.33 18.66 16 8

Oblate −8 −16 −18.66 −21.33 −20 −18.66 −14.66 −10.66 −5.33
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Fig. 1.6 Quadrupole moments of the intrinsic states of SU(3) for the p = 4 HO shell
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Fig. 1.7 Quadrupole moments of the intrinsic states of pseudo-SU(3) for the r3 valence space
(black) compared with those of SU(3) in the p = 2 HO shell (red)

−6,−3, 0,+3), and (for p = 2 remove the two upper rows and change the values
in the y-axis to −4,−1,+2). Orderly fillings in the figure produce eigenstates of
h = qq − λL(L + 1) and a fortiori rotational bands.

The values of the quadrupole moments in a pseudo-SU(3) space [18] in shell p
would be the ones of SU(3) in shell p-1, except for the fact that the radial integrals
are not the same. This introduces factors in the range (p + 3/2)/(p + 1/2) and√

(p + 4)/p + 2). In Fig. 1.7 we have plotted the quadrupole moments in pseudo-
SU(3) for the r3 valence space compared with those of SU(3) in the p = 2 HO shell.
Notice that the lowest prolate states have quadrupole moments that are about 20%
larger than the SU(3) ones for p = 2.
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Table 1.5 Intrinsic quadrupole moments for n holes in r3 in the pseudo-SU(3) limit (in units of
b2)

n 2 4 6 8 10 12

Oblate −9.74 −19.48 −22.06 −24.65 −27.20 −29.77

n 22 20 18 16 14

Oblate −5.14 −10.28 −15.43 −20.57 −25.17
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Fig. 1.8 Quadrupole moments of the intrinsic states of quasi-SU(3) for the p=4 HO shell

Table 1.6 Intrinsic quadrupole moments for n particles in the quasi-SU(3) sector of the p = 4
HO shell, in units of b2, assuming N = Z

n 2 4 6 8 10 12 14 16

Prolate 15 30 39 48 51 54 57 60

In Table 1.5 we list the intrinsic quadrupole moments for n holes in r3 for later
use. Only the oblate solutions are explicitly included. To get the prolate ones, take
for n holes the oblate value corresponding to 24-n, and change sign.

1.7.4 Quasi-SU3

In the case of a �j = 2 HO sequence, the resulting scheme is very much like that of
SU(3) except that some degeneracies are not present and the quadrupole collectivity
is a bit smaller as shown in Fig. 1.8. The schematic quasi-SU(3) results are in red
and the exact ones in black.

In Table 1.6 we have listed the intrinsic quadrupole moments for n particles in
the quasi-SU(3) sector of the p = 4 HO shell. Only the prolate cases are considered.
Remember that in all the SU3-like cases the total intrinsic quadrupole moment
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obtained from the eigenvalues of q0 has to be increased by 3 b2 as explained in
Ref. [26].

1.8 Coexistence: Single-Particle, Deformed
and Superdeformed States in 40Ca

Let’s describe the structure of 40Ca with a SM-CI calculation in the valence space of
two major shells and interpret the results in the framework of SU(3) and its variants.
The orbits of the valence space are sketched in Fig. 1.9.

The relevant configurations are [sd]24 0p-0h, spherical; [sd]20 [pf ]4 4p-4h,
deformed (ND); and [sd]16 [pf ]8 8p-8h, superdeformed (SD).

The results presented in Fig. 1.10 show clearly the importance of the correlations.
In the 8p-8h configuration, the correlations amount to 18.5 MeV. From these, 5.5
MeV is due to pairing, and the remaining 13 MeV is most likely of quadrupole

0f5 2
1p1 2
1p3 2
0f7 2

pf -shell
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1s1 2
0d5 2�
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Fig. 1.9 The sd-pf valence space
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Fig. 1.10 Energies of the np-nh configurations: uncorrelated energies (blue), full mixing at fixed
np-nh (black) and full mixing (red)
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origin. In the 4p-4h configuration, the pairing contribution is similar, but the
quadrupole one is smaller at about 4.5 MeV. The closed shell gains 5 MeV of pairing
energy by mixing (30%) with the 2p-2h states, the ND band head 2 MeV and the
SD band head essentially nothing.

Concerning the character of the solutions, we can see that for the 4p-4h intrinsic
state of 40Ca, the two neutrons and the two protons in the pf -shell can be placed in
the lowest K = 1/2 quasi-SU3 level of the p = 3 shell. This gives a contribution
to the intrinsic quadrupole moment of q0 = 25 b2. In the pseudo-sd-shell, p =
2, we are left with eight particles that contribute with q0 = 7 b2. In the 8p-8h
configuration, the values are q0 = 35 b2 and q0 = 11 b2. Using the proper value of
the oscillator length, it obtains:

• 40Ca 4p-4h band Q0=125 e fm2

• 40Ca 8p-8h band Q0=180 e fm2

These results are in very good accord with the data (Q0 = 120 efm2 and Q0 =
180 efm2). Assuming full SU(3) symmetry in both shells, we should get Q0 =
148 efm2 and Q0 = 226 efm2, respectively. The SM-CI results almost saturate the
quasi-SU(3) bounds. The SU(3) values are a 25% larger.

Finally we compare the SM-CI-level scheme with the experiment in Fig. 1.11.
The agreement is extremely satisfactory.
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1.8.1 56Ni: The Lightest Spin-Orbit Doubly Magic Nucleus

A crucial difference between the HO and the SO magic closures is that in the former
the orbits below and above the Fermi level have different parities, whereas in the
latter, they have the same. This implies that the lowest excited states are of positive
parity and of 1p-1h nature. For instance, in 56Ni the first excited state is a 2+ at
2.7 MeV whose configuration is (0f7/2)

15 (1p3/2)
1. Therefore, the E2 transition

to the ground state is allowed and even enhanced due to the favoured quadrupole
connexion between the two orbits at play. Indeed, the experimental value amounts
to 9 WU, a rather large value for a doubly magic nucleus, much larger than the
corresponding one in 40Ca. However, the rest of their low energy spectra resemble
to each other with the appearance of low-lying 0+ states with multiparticle-hole
configuration that can be the band heads of rotational structures. This is the case
of the band built on the 0+ at 5 MeV, which, according to theory, is a 4p-4h state.
As in the 40Ca case, a lot of correlation energy is needed to compensate for the
cost of promoting four particles across a N = Z = 28 gap of about 5 MeV. But
we can look at it the other way round; should the gap have been slightly smaller,
the deformed 4p-4h configuration would have become the ground state and 56Ni
expelled of the doubly magic club. In fact if one uses the original Kuo-Brown
interaction, that is what occurs. In reality, due to the presence of a substantial gap,
it is the quasi-degeneracy of the orbits 1p3/2, 1p1/2 and 0f5/2, which enhances the
quadrupole collectivity through the action of the pseudo-SU(3) coupling and favours
the polarization of the 0f7/2 orbit, as discussed in previous sections. This is another
example of the relevance of the shell evolution, because these orbits, which are split
apart in 48Ca, become much closer in 56Ni when protons fill the 0f7/2 orbit, due
to the proton-neutron monopole interaction. Higher-lying bands involve excitations
into the 0g9/2 orbit [28]. All in all, this is another example of the coexistence of
single particle and collective degrees of freedom already at the very doubly magic
nuclei.

1.9 Islands of Inversion at the Neutron-Rich Shores

Among the nuclear structure topics at the forefront of present-day experimental and
theoretical research, the study of very neutron-rich nuclei plays a central role, and
future facilities will make it even more prominent. We refer to three very recent
review articles that give a global view of the status of the field [29–31]. A unifying
theme in this research is the so-called islands of inversion (IoI). We use this term
for regions of nuclei, close to a magic neutron closure, that, instead of having the
expected semi-magic nature, are deformed in their ground states. The name was
coined in Ref. [32] for the region surrounding 31Na (N = 20). Reference [31]
contains a detailed account of the history of the IoIs. The physics of the IoI is a prime
example of the competition between the spherical mean field (a.k.a. shell evolution)
and the correlations which involve excitations across the Fermi level, the same type
of configurations that are responsible for the phenomenon of shape coexistence,
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ubiquitous in the nuclear chart. The first IoI occurs at N=8 but was overlooked for
many years, among other things, because the dominant physics there was related
to the appearance of nuclear halos. We refer to [31] for the second (N = 20) and
third (N = 28) ones and their merger and will dwell with the heavier ones in what
follows.

1.9.1 68Ni and theN = 40 Island of Inversion

Twelve neutrons away from the N = Z line, we reach the HO closure N = 40,
which is the most debated one, as it only behaves like such for the protons in
combination with the N = 50 SO closure for the neutrons in 90Zr. The experimental
spectrum shows a rather unclear situation: Three 0+ states below 2.5 MeV of
excitation energy, with a first excited 0+ at 1.6 MeV and 2+ at 2.0 MeV.

The natural valence space to capture the dynamics of this nucleus should contain
at least the full pf -shell for the protons and the orbits below and above the N = 40
HO closure for the neutrons, i.e. 1p3/2, 1p1/2, 0f5/2, 0g9/2 and 1d5/2 (ideally the
orbit 2s1/2 should be added as well). From the point of view of the development
of quadrupole collectivity, this space is quite complete, because the neutron holes
may live in a pseudo-SU3 regime as the proton particles do, whereas the neutron
particles may take advantage of the quasi-SU(3) coupling scheme.

A monopole-adapted realistic interaction, dubbed LNPS-U, proposed for this
valence space in reference [33], does provide a very satisfactory description of
the level scheme of 68Ni as can be seen in Fig. 1.12. According to this and other
subsequent calculations, the ground state 0+ is dominated at 65% by the doubly
magic configuration N = 40 Z = 28. The second 0+ can be said to be moderately
deformed and oblate with the 2+ and 4+ states belonging to the same band and
dominant 2p-2h (neutron) and 1p-1h (proton) configuration. The more interesting
physics comes with the third 0+ and the second 2+ which are the germ of a highly
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deformed prolate band of many particle-hole structures as expected in the pseudo-
plus quasi-SU(3) limit. In fact, this shape coexisting structure is the portal to the
fourth IoI.

The shell evolution encoded in the LNPS-U interaction submits that at Z = 20,
in 60Ca the N = 40 gap is much smaller than at Z = 28, and the ordering of
the orbits 0g9/2, 1d5/2 is inverted, a behaviour very close to that occurring in the
N = 20 IoI between Z = 8, 28O and doubly magic 34Si. In the latter case, the
orbits 0f7/2 and 1p3/2 are the ones which get inverted. It is the joint effect of the
gap reduction and the quadrupole energy gains of the multiparticle-hole intruder
states that produces the inversion of configurations characteristic of the IoI. The
predictions of the LNPS-U calculation are displayed in Fig. 1.13 and compared with
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the experimental data. The most recent measurement [34] has provided the first
spectroscopic data on 62Ti in full accord with the LNPS-U predictions.

Figure 1.13 shows the abrupt reduction of the excitation energy of the 2+ and
the simultaneous increase of the B(E2)s for 66Fe, 64Cr and 62Ti, a signature of their
location inside the IoI. As expected, their structure is very similar to that of the
prolate excited band in 68Ni. According to the calculations, 60Ca should not be a
doubly magic nucleus; instead it behaves as a pairing frustrated rotor fuelled by the
neutron-neutron quadrupole interaction. A more detailed discussion can be found
in ref. [31]. Therefore, neither the combination of the HO magic numbers N =
40, Z = 20 in 60Ca nor N = 40, Z = 40 in 80Zr survive to the competition with
the quadrupole correlations.

1.9.2 78Ni: TheN = 50 and theN = 40 IoI’s Merge

The next milestone is 78Ni, 22 neutrons away from N = Z. This nucleus has been
a golden goal for experimentalists for decades, because it is a waiting-point nucleus
candidate, whose structure, in particular whether it is doubly magic or not, has a
large impact in the evolution of the r-process of nucleosynthesis. Now two HO
closures are at play, N = 50 and Z = 28. From the SM-CI point of view, it
has an appealing property that the valence space better suited for its description
consists in two major oscillator shells, pf for the protons and sdg for the neutrons,
a rather interesting circumstance. One can imagine a situation in which the N = 50
and Z = 28 gaps collapse. This would bring us close to the SU(3) limit. A back-
of-an-envelope calculation using the formulas of Sect. 1.7 gives an intrinsic mass
quadrupole moment Qm

0 = 600 fm2 or βm = 0.45, a huge deformation indeed,
larger than the record in the region at 76Sr. In reality if the gaps are large enough
to preserve the doubly magic nature of 78Ni, the dominant quadrupole coupling
scheme is pseudo-SU(3) both for the neutrons above N = 50 and for the protons
above Z = 28, whereas the holes in the 0f7/2 proton orbit and in the 0g9/2
neutron orbit add prolate coherence to the intruder configurations. Nonetheless, the
maximum quadrupole coherence attainable in the realistic scheme is far from the
SU(3) limit.

For the pf -proton sdg-neutron valence space, an extension of the LNPS interac-
tion was devised, guaranteeing a smooth transition between N = 40 and N = 50.
The results of this study were published in [35], and we proceed to mention its more
salient aspects, keeping an eye on Fig. 1.14. First of all, the calculation supports
the doubly magic character of the ground state of 78Ni, with about 70% of closed
N = 50 and Z = 28. The states of 1p-1h structure, depicted to the left of Fig. 1.14,
are very much correlated, but without losing their identity. The lowest one is a 2+
at about 3 MeV excitation energy. However the first excited state according to the
calculation is a 0+ that, as can be gathered visually on the right part of Fig. 1.14,
is the head of a well-deformed rotational band, which is the counterpart of the one
found in 68Ni on top of its third 0+, discussed in the preceding section. Here again,
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Fig. 1.14 78Ni, predictions
of the SM-CI calculation with
the interaction PFSDG
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the coexistence of a deformed phase with the doubly magic ground state invites to
surmise that another IoI might occur in the more neutron-rich isotones. It is indeed
what the calculations predict, as can be seen in Fig. 1.15.

The figure shows in a very pictorial way how the deformed intruder configura-
tion, which is excited in 78Ni, becomes the ground state band as we move towards
70Ca. At odds with the situation in N = 40, the semi-magic 0+ state seems to
survive at low excitation energy in 76Fe and 70Ca, causing a certain distortion of the
energetics of the bands. On the contrary, the yrast band of 74Cr is strictly identical
to the excited band of 78Ni and that of 72Ti nearly so, albeit with a slightly smaller
moment of inertia.

The first spectroscopy of 78Ni has been obtained very recently in a ground-
breaking experiment at RIKEN [36]. Two γ rays are reported which are consistent
with the decays of two 2+ states to the ground state, as predicted by the SM-CI
calculations. Although the evidence is still scarce, the image of coexistence put
forward by the calculation seems to be valid.

How are the fourth and fifth IoIs connected? We answer this question in
Fig. 1.16. We have plotted the excitation energy of the first 2+ as a proxy for
magicity/deformation as a function of the neutron number. We compare theory
and experiment where possible. The former results are obtained in the two valence
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Fig. 1.15 The fifth IoI as predicted by the SM-CI calculation with the interaction PFSDG
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Fig. 1.16 The merging of the IoIs at N = 40 and N = 50 in the chromium isotopes, compared
with the nickel chain. The excitation energy of the first 2+ is used as control parameter

spaces discussed in this section and show clearly that the transition is smooth, with
the crossover taking place around N = 45. Overall, the agreement with experiment
is outstanding. In the nickel chain, we observe the persistence of the magic numbers
N = 40 and N = 50. On the contrary, both closures are washed out in the chromium
chain (in the iron and titanium as well, but we have not plotted them not to make the
figure too busy), and the 2+ excitation energy remains constant all along. Therefore
we can say that the two IoIs merge. What turns out to be the same behaviour is found
in the N = 20 and N = 28 IoIs for the neon, sodium and magnesium isotopes: a
kind of universal behaviour indeed.
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1.10 Epilogue

These lectures include a very basic introduction to the microscopic approach to the
structure of the nucleus in the laboratory frame. Large-scale SM-CI calculations
are a safe way to approach the exact solution of the many-body problem. However
the explosion of the dimensions of the basis to be used prevents the brute force
treatment. Hence, one must resort to the use of effective theories to design valence
spaces that contain the more relevant degrees of freedom, renormalizing consistently
the Hamiltonian and the transition operators. But, another ingredient, particular to
the nuclear system, is the uncertainty of our knowledge of the nucleon-nucleon
interaction, and it’s poorly known many-body terms. As we have discussed in detail,
close-to-exact solutions of the nuclear many-body problem for few nucleon systems
(VMC, NCSM) require the explicit use of three-body forces in order to explain the
full body of experimental data. Nuclear interactions obtained in χ-EFT do produce
such three-body interactions naturally.

Our endeavour, monopole-adapted interaction, plus multipole-guided valence
spaces, offers a solid bridge between the purely phenomenological approach, based
on the fit of all the two-body matrix elements in a given valence space to the
available experimental data (pioneered by B. H. Wildenthal and his USD interaction
[37]), and the “ab initio” campaign (see, for instance, [4]).

We submit, and we have explained it in these lectures that once the monopole
behaviour is corrected, the pairing and the multipole-multipole contents of the
realistic interactions obtained via renormalized G-matrices make it possible to
reproduce a large amount of experimental data with great accuracy and in some
cases to predict new physics, as, for instance, the existence of IoIs. It is important to
recall that the monopole Hamiltonian is responsible for all the extensive properties
of the nucleus, basically its saturation point in the Coester plot, one of the long-
standing problems in nuclear physics which appears in the nuclear spectroscopy
hidden in the shell evolution. No reason for the latter to be right if the former is
wrong. In a nutshell, we rely in these three pillars: the multipole part of the realistic
interactions, a monopole Hamiltonian which reproduces what is experimentally
known of the spherical mean field evolution with N and Z and the invaluable help
of the SU(3) heuristic to define the minimal valence spaces to be used in the SM-CI
approach.

How to make explicit the connection with the “ab initio” program? Indeed we
all will be more than happy if there were a single QCD complying NN+NNN+?
interaction and a rigorous reduction of these bare interactions to tractable Fock
space bases. This is not the case yet, because the number of χ-EFT interactions
is still too large, and sometimes the better ones for the many-body problem are not
the best for the two- and three-body cases (see the contribution of R. Roth in this
volume for a detailed description of the present state of the field). At present, the
final step of the “ab initio” approach, from a spectroscopic point of view, consists
in the derivation of two-body interactions to be used in SM-CI diagonalizations
(VS-IMSRG). Hence, they are subject to the same dimensionality limitations of the
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standard SM-CI calculations. Obviously, they also rely in a physically sound choice
of the valence spaces. We are afraid that the sensitivity of the outcome of the SM-
CI calculations to (not so big) modifications of the spherical mean field can make it
difficult for the “pure ab initio” approach to reach an optimum level of spectroscopic
quality. However, the mere fact of understanding the monopole crisis of the realistic
interactions in terms of three-body forces is a huge step ahead in our mastering on
the nuclear dynamics. Another important asset of the “ab initio” calculations are
the studies of the basic physics involved in the quenching of the στ (and related)
operators in the nucleus, most notably in the neutrinoless double beta decay process.
But, in our opinion, a first meeting point, and a much simpler one, would be to
produce a kind of “ab initio” monopole Hamiltonian including three-body terms.

Finally, let us mention that in order to overcome the dimensionality barriers of the
SM-CI calculations, there is a new line of thought that proposes the use of beyond
mean field techniques, like projected Hartree–Fock plus generator coordinator
configuration mixing, in shell model valence spaces, which we find very promising
[38, 39].

Disclaimer In these lectures we have drawn freely from many standard nuclear
structure books. In particular:

• P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer 1980)
• K. Heyde, The Nuclear Shell Model (Springer 1994)
• A. Bohr and B. Mottelson, Nuclear Structure, vols. I y II, (World Scientific 1998)
• J. Suhonen, From Nucleons to Nucleus (Springer 2007)
• A. De Shalit and H. Feshbach, Theoretical Nuclear Physics, vol I, Nuclear

Structure (Wiley 1974)
• P. Brussaard and P. Glaudemans, Shell Model Applications in Nuclear Spec-

troscopy (North Holland 1977)
• I. Talmi, Simple Models of Complex Nuclei (Harwood, 1993)
• G. Brown, Unified Theory of Nuclear Models and Forces (North Holland 1971)

For the less standard aspects of the presentation, we follow the work of the
Strasbourg Madrid Shell Model collaboration, notably the review of Ref. [9].

Acknowledgments AP’s work is supported in part by the Ministerio de Ciencia, Innovación y
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2Low-Energy Coulomb Excitation
and Nuclear Deformation

Magda Zielińska

Abstract

Coulomb excitation is one of the rare methods available to obtain information
on static electromagnetic moments of short-lived excited nuclear states. In the
scattering of two nuclei, the electromagnetic field that acts between them causes
their excitation. The process selectively populates low-lying collective states and
is therefore ideally suited to study nuclear collectivity. While these experiments
used to be restricted to stable isotopes, the advent of new facilities providing
intense beams of short-lived radioactive species has opened the possibility to
apply this powerful technique to a much wider range of nuclei. In this chapter,
we discuss observables that can be measured in a Coulomb-excitation experiment
and their relation to nuclear-structure parameters and, in particular, the nuclear
shape. Possible solutions for normalisation of the measured γ -ray intensities and
requirements for particle-detection systems are also presented.

2.1 Introduction

In the Coulomb-excitation process, excited states in colliding nuclei are populated
via the mutually generated, time-dependent electromagnetic field that acts between
them. The contribution from the short-range nuclear interaction can be neglected
if the distance between the collision partners is sufficiently large. This condition is
fulfilled for all scattering angles if the total kinetic energy in the centre of mass is
well below the Coulomb barrier, which usually translates into beam energies of a
few MeV/A. For higher beam energies (tens of MeV/A or more), selection of very
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forward projectile scattering angles is necessary to ensure a purely electromagnetic
excitation process. These two experimental approaches are commonly referred
to as low- and intermediate-energy Coulomb excitation, while the term “high-
energy Coulomb excitation” is often applied to processes at ultrarelativistic energies
(few hundreds of MeV/A or more), where straight-line trajectories of collision
partners are a very good approximation. This chapter is focused on low-energy
Coulomb-excitation studies; for an introduction to Coulomb excitation at higher
beam energies, we refer the reader to, e.g. Ref. [1].

For nuclei with A ≈ 30 and heavier, analysis of inelastic scattering and transfer
reaction data collected at beam energies of few MeV/A led to the formulation of the
Cline’s safe-distance criterion for low-energy Coulomb excitation [2], which states
that if the distance of closest approach between the surfaces of the collision partners
exceeds 5 fm, the influence of the nuclear interaction on excitation cross sections
is below 0.5%. If one of the collision partners is lighter than A ≈ 30, sometimes
a more restrictive approach has to be used. For example, nuclear effects have been
observed at distances beyond 5 fm in several experiments using 12C and 16O beams
(see, e.g. [3–8]), and under such conditions, a conservative approach of adopting
6.5 fm as the minimum separation distance has been suggested.

The Coulomb-excitation cross sections depend on electromagnetic matrix ele-
ments between the low-lying states in the nucleus of interest, including diagonal
E2 matrix elements, which are related to spectroscopic quadrupole moments. The
decay of Coulomb-excited states is governed by the same set of electromagnetic
matrix elements, although the impact of specific matrix elements on the excitation
and decay processes may be very different. In the excitation process, the dominant
multipolarities are E2 and E3, and other multipolarities have usually a weak
influence on the low-energy Coulomb-excitation cross sections, as discussed in
Sect. 2.3.1. They may, however, impact the decay, where especially M1 and E1
multipolarities play an important role.

The quantities that can be determined from a low-energy Coulomb-excitation
study are thus:

• Those among E2 and E3 matrix elements coupling the low-lying excited states,
which have the largest influence on the observed excitation cross sections. Under
certain experimental conditions, the first-order perturbation theory is sufficient to
describe the excitation process and relate the measured cross section to populate
an If state to the 〈If ‖EL‖Ig.s.〉 matrix element (L = 2, 3), as described in
Sect. 2.3.1. In general, a set of coupled differential equations needs to be solved
in order to link Coulomb-excitation cross sections to electromagnetic matrix
elements. This formalism is introduced in Sect. 2.2.1.

• Quadrupole moments of short-lived excited states, which affect their excitation
cross sections via the reorientation effect discussed in Sect. 2.3.2.2.

• M1 matrix elements, which can be determined from particle-γ correlations and
angular dependence of the excitation cross section; an example of such analysis
is given in Sect. 2.5.2.
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• Relative signs of electromagnetic matrix elements, influencing excitation cross
sections via interference effects discussed in Sect. 2.3.2.1.

Moreover, the transitional and diagonal E2 matrix elements can be linked to
deformation parameters using non-energy-weighted quadrupole sum rules [2, 9], as
presented in Sect. 2.4.1.

Finally, one should mention that since the low-energy Coulomb-excitation
process selectively populates states that are connected to the ground state by
enhanced E2 and E3 transitions, for some exotic nuclei such studies led to the first
observation of certain excited states. As examples one could cite the experiments
at ISOLDE, which identified the 2+1 states in 78,80Zn [10], rotational ground-state
bands in 97,99Rb [11] and multiple levels in 98Y [12].

The quantities measured in Coulomb-excitation experiments are, most com-
monly, γ -ray yields in coincidence with at least one of the collision partners. It is,
however, also possible to measure Coulomb-excitation cross sections by detecting
only scattered particles or only γ rays. These possibilities will be reviewed in
Sect. 2.5 together with a presentation of selected experimental setups.

While this chapter is illustrated by numerous examples of low-energy Coulomb-
excitation experiments, we do not aim to provide a comprehensive review of recent
results obtained using this experimental method, which can be found elsewhere (see,
for instance, [13]).

2.2 Theoretical Description of Excitation and Decay Processes

In “safe” Coulomb-excitation studies, when the observed excitation is due only
to the well-known electromagnetic interaction, the relevant cross sections can
be calculated with high precision from a given set of electromagnetic matrix
elements. While a full quantum-mechanical treatment is possible, a semi-classical
approach is typically employed to overcome difficulties arising from the long
range of the electromagnetic interaction. In this approximation [14], the quantum-
mechanical treatment is limited to the excitation process, while the kinematics of
the collision is described using classical equations of motion. In this way, the
calculations are significantly simplified, while their accuracy remains better than
typical experimental uncertainties. For the semi-classical approach to be valid, the
wave packets of the collision partners must not overlap, i.e. de Broglie wavelength
of the projectile must be small compared to the distance of closest approach d . This
condition can be expressed using the Sommerfeld parameter η:

η ≡ d

2λ−
= ZpZte

2

h̄v
� 1 , (2.1)

where v is the initial beam velocity. Typical η values in low-energy Coulomb
excitation induced by heavy ions range from a few tens to a few hundreds, but when
light nuclei are involved (i.e. protons, deuterons, α particles), η values drop below
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10 and a full quantum-mechanical analysis is required. In general, the semi-classical
treatment is expected to deviate from exact calculations by terms of the order of 1/η

[14].
For excitation to be possible, the perturbation of the electromagnetic potential

experienced by the nucleus of interest needs to be sudden, i.e. the collision time
τcoll (which is of the order of a/v, where a is the impact parameter) should not be
longer than the fluctuation time of nuclear wave functions given by τnucl = h̄/ΔE,
where ΔE is the excitation energy difference between the initial and final states.
This is usually quantified by introducing the adiabaticity parameter ξ :

ξ ≡ τcoll

τnucl

= aΔE

h̄v
. (2.2)

If ξ � 1, the changes of the electromagnetic field are too gradual for excitations
to occur. This would be the case of very low beam energies, but the adiabaticity
condition also introduces a limitation of energy transfer achievable in low-energy
Coulomb excitation. For commonly used beam energies of a few MeV/A, it leads
to an energy transfer cutoff of about 1–2 MeV. This basically eliminates a potential
issue related to the semi-classical approximation. The classical description of the
kinematics makes it impossible to introduce corrections to the trajectories of the
collision partners due to the energy transfer between them, as it is not known at
which point of the trajectory such transfer occurred. Consequently, for the semi-
classical approximation to be valid, the transferred energy should not modify the
collision kinematics in a significant way, i.e. it should be small with respect to
the total kinetic energy in the centre-of-mass frame. Due to the adiabaticity cutoff,
this condition is satisfied in typical low-energy Coulomb-excitation experiments.
Moreover, the effect of energy transfer on the kinematics is usually accounted for,
in an approximative way, by averaging the parameters of hyperbolic trajectories for
elastic scattering (no energy transfer) and those resulting from decreasing the inci-
dent energy by the energy transferred in the collision. With this treatment, Ref. [14]
reports that total cross sections resulting from the semi-classical approximation
deviate by less than 5% from those resulting from the full quantum-mechanical
analysis for η > 3, while to obtain the same accuracy in the angular distribution
η > 10 is needed.

2.2.1 Coulomb-Excitation Process

The electromagnetic potential describing the interaction between the target and
projectile nuclei can be presented as a sum of three terms:

(i) The monopole-monopole term (Z1Z2e
2/r2(t)) describing the elastic scattering

and yielding the classical hyperbolic orbits, described by the vector r(t), of the
collision partners
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(ii) The monopole-multipole term, which describes inelastic scattering (excitation
of one collision partner by the other one)

(iii) The multipole-multipole term of the order of 1/η2 [14], which is usually
neglected

In this representation, the Schrödinger equation for the nucleus of interest will
contain only the term (ii), and it will take the form:

ih̄
∂

∂t
|Ψ (r, t)〉 =

(
Ĥ 0 + V̂ (r(t))

)
|Ψ (r, t)〉 , (2.3)

where Ĥ 0 is the free Hamiltonian of the nucleus of interest and V̂ (r(t)) is the time-
dependent potential generated by the collision partner.

The solution of (2.3) can be presented as a linear combination of eigenfunctions
of the free Hamiltonian of the nucleus of interest (i.e. wave functions of individual
nuclear states) with time-dependent coefficients an(t), commonly referred to as
excitation amplitudes:

|Ψ (r, t)〉 =
∑

n

an(t) exp

(−iEnt

h̄

)
|φn(r, t)〉 , (2.4)

where En is the energy of the |φn(r, t)〉 state:

Ĥ 0|φn(r, t)〉 = En|φn(r, t)〉 . (2.5)

By substituting (2.4) into the Schrödinger equation (2.3), one obtains a set of
coupled equations for the excitation amplitudes an(t):

ih̄
∑

n

dan

dt
exp

(−iEnt

h̄

)
|φn(r, t)〉 =

∑

n

an(t) exp

(−iEnt

h̄

)
V̂ (r(t))|φn(r, t)〉 ,

(2.6)

which due to the orthonormality of the |φn(r, t)〉 functions can be simplified after
evaluating the expression following the application of the ket 〈φk(r, t)| for a specific
state k:

d

dt
ak(t) = − i

h̄

∑

n

an(t)〈φk(r, t)|V̂ (r(t))|φn(r, t)〉 exp

(−i(En − Ek)t

h̄

)
.

(2.7)

As the nucleus of interest is in its ground state prior to the collision, the initial
condition of (2.7) is ak(t →−∞) = δk0 (index 0 denotes the ground state).

Under the condition that the collision time is very much smaller than the lifetimes
of the excited nuclear states, the excitation amplitudes after the collision can be
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determined from ak(t →∞) and are related to excitation probabilities Pk and cross
sections to populate the |φk(r, t)〉 states:

Pk = | lim
t→∞ ak(t)|2 , (2.8)

(
dσ

dΩ

)

k

=
(

dσ

dΩ

)

Ruth

× Pk , (2.9)

where (dσ/dΩ)Ruth is the Rutherford cross section:

(
dσ

dΩ

)

Ruth

=
(

d

4

)2 1

sin4(θCM/2)
, (2.10)

and d denotes the distance of the closest approach in a head-on collision.
Equation (2.7) can be expressed via matrix elements of the electromagnetic

multipole operator. In order to do that, the potential V̂ (r(t)) needs to be expanded
in a multipole series:

V̂ (r(t)) =
∞∑

λ=1

λ∑

μ=−λ

4πZ2e

2λ+ 1
(−1) μS

E,M
λμ (r, t) × M̂(E

Mλ,−μ) , (2.11)

where M̂(E
Mλ, μ) is the electromagnetic multipole operator of the order λ (E stands

for the electric part and M for magnetic), μ denotes the projection of λ and collision
functions S

E,M
λμ (r, t) have the following form:

SE
λμ(r, t) = Yλμ(ϑ(t), ϕ(t))

r(t)λ+1
(2.12)

for electric excitation, and:

SM
λμ(r, t) = 1

λc
×

dr(t)
dt

(r×∇)

r(t)λ+1 Yλμ(ϑ(t), ϕ(t)) (2.13)

for magnetic excitation. In the equations above, Yλμ(ϑ, ϕ) are spherical harmonics,
and Z2 is the atomic number of the collision partner.

The Wigner–Eckhart theorem (2.14) can be used to relate matrix elements of the
M̂(E

Mλ, μ) operators to reduced matrix elements:

〈Ik, mk|M̂(E
Mλ, μ)|In, mn〉 = 1√

2In + 1
(In, mn, λ, μ|Ik, mk)〈Ik‖M̂(E

Mλ)‖In〉 ,

(2.14)

where (In, mn, λ, μ|Ik, mk) are Clebsch–Gordan coefficients.



2 Low-Energy Coulomb Excitation and Nuclear Deformation 49

Applying this theorem and substituting the V̂ (r(t)) potential (2.11) into (2.7)
leads to a set of coupled differential equations relating the excitation amplitudes
ak(t) with reduced matrix elements of the electromagnetic operator:

d

dt
ak(t) = i

h̄

4πZ2e√
2In + 1

∑

n

an(t) exp

(−i(En − Ek)t

h̄

)
(2.15)

×
∞∑

λ=1

λ∑

μ=−λ

(−1) μ

2λ+ 1
(In, mn, λ, μ|Ik, mk)S

E,M
λμ (r, t)〈Ik‖M̂(E

Mλ)‖In〉 .

Solving the set of coupled equations (2.15) for a given set of 〈Ik‖M̂(E
Mλ)‖In〉

matrix elements yields the populations of nuclear states following Coulomb exci-
tation. One should note that in the above equation the index k runs not only
over individual excited states but also their magnetic substates, which are treated
as independent states in this description. Due to the properties of the S

E,M
λμ (r, t)

functions, the solutions of (2.15) are usually derived in the frame of reference with
the origin in the centre of mass of the target nucleus and one axis defined along the
symmetry axis of the hyperbolic trajectory, pointing towards the projectile.

2.2.2 Electromagnetic Decay of Coulomb-Excited States

An important simplification of the theoretical description comes from the fact that it
is possible to completely separate in time the excitation process and the subsequent
electromagnetic decay. Indeed, the collision time is of the order of 10−19–10−20 s,
while typical lifetimes of low-lying excited states are 10−14 s or longer.

The same set of matrix elements that describes the excitation process also
governs the γ -ray decay of the excited states. Reduced matrix elements are related
to reduced transition probabilities B(E

Mλ) via:

B(E
Mλ; Ii → If ) = 1

2Ii + 1
|〈If ‖M̂(E

Mλ)‖Ii 〉|2 . (2.16)

Those, in turn, can be used to express the probability of a decay via γ -ray
emission:

P(E
Mλ; Ii → If ) = 8π(λ+ 1)

λ ((2λ+ 1)!!)2

1

h̄

(
Eγ

h̄c

)2λ+1

× B(E
Mλ; Ii → If ) . (2.17)

Using excitation amplitudes determined from (2.15), it is possible to calculate γ -
ray intensities following Coulomb excitation. One should note here that alternative
decay paths, such as internal conversion, should also be taken into account.

If the γ -ray emission occurs from a state with an uneven magnetic substate pop-
ulation, the angular distribution of the γ rays can be anisotropic. The polarisation of
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the Coulomb-excited nucleus is described by the statistical tensor:

ρk χ(I) = √2I + 1
∑

m,m′
(−1)I−m′

(
I k I

−m′ χ m

)
a∗Im′aIm , (2.18)

where aIm are the excitation amplitudes for the magnetic substate m of a state of spin
I . In (2.18) the Clebsch–Gordan coefficient is replaced by the Wigner’s 3j symbol
according to the relation:

(J1, m1, J2, m2|J, m) = (−1)−J1+J2−m
√

2J + 1

(
J1 J2 J

m1 m2 −m

)
. (2.19)

The angular distribution of γ radiation can then be expressed as:

d2σ

dΩpdΩγ

= σRuth(θp)
1

2γ (Ii)
√

π

∑

χ,even k

ρ∗k χ (Ii)
∑

λ,λ′
δλδ∗λ′Fk(λλ′IiIf )Yk χ (ϑγ , ϕγ ) ,

(2.20)

where index p denotes the projectile, σRuth(θp) is the Rutherford cross section,
Fk(λλ′IiIf ) are γ -γ correlation coefficients (defined, e.g. in Ref. [15]) and γ (Ii) is
the decay constant including all multipolarities and final states:

γ (Ii) =
∑

λ,f

|δλ(Ii → If )|2 , (2.21)

where δλ are amplitudes of the Ii → If transition of multipolarity λ, defined as:

δλ = i n(λ)
√

P(E
Mλ; Ii → If ) , (2.22)

and n(λ) is equal to λ for electric transitions and to λ + 1 for magnetic transitions.
The probabilities P(E

Mλ; Ii → If ) are defined by (2.17).
The above expressions are valid in the frame of reference that was used to derive

the excitation amplitudes, which was related to the collision kinematics. In contrast,
the γ -ray angular distributions have to be derived in the laboratory frame, and thus
an appropriate transformation of the statistical tensor, taking into account possible
relativistic effects, must be applied.

The observed angular distribution may be influenced by the deorientation effect,
i.e. the depolarisation of the nuclear-state alignment caused by the interaction of
the nuclear magnetic moment with electrons cascading to the lowest atomic shells,
observed when the nucleus of interest, which may be in a highly ionised atomic
state, recoils into a vacuum. Typical time constants of these atomic transitions are
of the order of 10−12 s, similar to lifetimes of nuclear excited states. Consequently,
the deorientation effect may influence the polarisation of the nucleus before γ -ray
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emission, which attenuates the observed γ -ray angular distribution. The precise
modelling of this process is not obvious, and thus attenuation coefficients introduced
to account for deorientation usually rely on simplified empirical models (see,
e.g. [16, 17]).

Equation (2.20) assumes that both the scattering angle and the γ -ray emission
angle are precisely known. In reality, both of them are determined with a certain
limited precision related to the sizes and properties of the particle and γ -ray
detectors. As the excitation amplitudes, and hence the statistical tensor defined by
(2.18), depend on the particle scattering angle, the size of a particle detector is
usually accounted for by performing a numerical integration of the calculated γ -ray
intensities over the angular range covered by it. In contrast, for the γ -ray detectors,
it is more convenient to introduce attenuation factors defined as, e.g. in Ref. [18],
leading to the following expression for the γ -ray angular distribution:

d2σ

dΩpdΩγ

= σRuth(θp)
1

2γ (Ii)
√

π
(2.23)

×
∑

χ,even k

ρ′∗k χ (Ii , θp)
∑

λ,λ′
δλδ∗λ′Fk(λλ′IiIf )GkQkYkχ(ϑγ , ϕγ ) ,

where:

– ρ′∗k χ (Ii , θp) is the statistical tensor ρ∗k χ (Ii) transformed to the laboratory frame.
This transformation is parametrised by the particle scattering angle θp.

– Gk and Qk are attenuation coefficients accounting for the deorientation effect
and the finite size of γ -ray detectors, respectively, which can be derived as
described in, e.g. Refs. [16, 17] (Gk) and [18] (Qk).

2.2.3 Coulomb-Excitation Codes

Due to the complexity of the formalism presented in Sects. 2.2.1 and 2.2.2, dedicated
codes have been developed for calculation of low-energy Coulomb-excitation
probabilities and the subsequent γ -ray decay. The two most widely used are
CLX/DCY [19] and GOSIA [20]. They are both based on the Winther and de Boer
code [21] and rely on the semi-classical approximation discussed in the beginning of
Sect. 2.2. As a main input, they require masses and atomic numbers of both collision
partners, beam energy, the level scheme of the nucleus of interest and the relevant
electromagnetic matrix elements coupling the declared states.

The CLX code calculates Coulomb-excitation cross sections as a function of the
scattering angle θCM at the given beam energy corresponding to the middle of the
target. Its output can be used as an input for the DCY code, which calculates the
corresponding γ -ray yields taking into account the particle and γ -ray detection
geometry and the effects influencing the γ -ray angular distribution discussed in
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Sect. 2.2.2, such as possible deexcitation by internal conversion, deorientation effect
and attenuation due to the finite size of the γ -ray detectors.

The GOSIA code [20] provides similar simulation capabilities as CLX/DCY
but, moreover, offers a possibility to perform a multi-dimensional χ2 fit of
electromagnetic matrix elements to the measured γ -ray yields. Known matrix
elements and complementary spectroscopic data such as lifetimes, branching ratios
and E2/M1 mixing ratios can also be included as independent data points in the
fitting procedure. Data sets corresponding to various projectile-target combinations
and different beam energies or scattering angles can be fitted simultaneously. In
order to speed up the calculations, the fitting procedure uses γ -ray yields calculated
for a specific scattering angle and beam energy, rather than integrating them at
each minimisation step over the range covered by particle detectors and the range
of incident energies resulting from slowing down of beam ions in the target
material. To account for these effects, correction factors CF are applied to the
measured γ -ray yields. Before the minimisation procedure, for each possible γ -
ray transition, GOSIA calculates from a given set of matrix elements the “point”
yield (Ypoint ), corresponding to a specific scattering angle and beam energy, and
the yield integrated over the possible scattering angles and incident energies (Yintg).
Their ratio gives the correction factor CF for each transition:

CF = Ypoint

Yintg

. (2.24)

These correction factors are then applied to the measured γ -ray yields Yexp:

Y corr
exp = Yexp × CF . (2.25)

As this procedure depends, albeit weakly, on the actual values of matrix elements,
it should be repeated periodically over the course of the χ2 minimisation procedure
until a self-consistent solution is found.

For ease of use, the GOSIA code requires as input the measured γ -ray yields
rather than absolute excitation cross sections, and their normalisation is performed
internally by the code. To relate experimentally measured and calculated γ -ray
intensities, normalisation constants Cm are introduced in the χ2 function used by
GOSIA:

χ2 =
∑

m

∑

i

(CmY i,m
c − (Y corr

exp )i,m)2/σ 2
i,m +

∑

n

(
Dn

c −Dn
exp

)2
/σ 2

n , (2.26)

where:

(Y corr
exp )i,m: experimental γ -ray intensity for the ith transition in the mth experiment,
multiplied by the correction factor defined by (2.24)

Y
i,m
c : γ -ray intensity calculated using the current set of matrix elements for the ith

transition in the mth experiment
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Cm: normalisation constant for the mth experiment
Dn

c and Dn
exp: spectroscopic data calculated using the current set of matrix elements

and their experimental values, respectively
σi,m, σn: experimental uncertainties of γ -ray intensities (including the correction

factor) and of the spectroscopic data, respectively

The normalisation constants Cm include the time-integrated beam current, the
absolute efficiency of particle and γ -ray detection and the particle solid angle factor.
The experimental γ -ray yields are compared with the products CmY

i,m
c , which

depend both on the electromagnetic matrix elements and the adopted normalisation.
Therefore, additional constraints on the normalisation constants have to be provided;
otherwise a GOSIA fit may converge but produce unreliable results. Possible
normalisation techniques are discussed in Sect. 2.5.1.

Additionally, a term related with the user-defined “observation limit”, χ2
UPL, may

be added to the χ2 function defined by (2.26). If the calculated intensity of any
unobserved γ -ray transition, divided by the intensity of the normalising transition
specified by the user, Y m

cN , exceeds this upper limit u(m), it will affect the least-
squares fit via:

χ2
UPL =

∑

m

∑

i

(
Y

i,m
c

Y m
cN

− u(m)

)2

× 1

u2(m)
. (2.27)

As in (2.26), index m runs over experiments, and i over the possible γ -ray
transitions. Introduction of proper upper limits should prevent finding unphysical fit
solutions involving γ -ray transitions which have not been experimentally observed.

Since the influence of individual matrix elements on the excitation process varies
strongly, some of them have a very limited, or even null, effect on the calculated
χ2. Consequently, the commonly applied methods of error estimation based on
the inversion of the covariance matrix cannot be applied. Instead, for each matrix
element, GOSIA defines in the vicinity of the χ2 minimum a “maximum correlation
path”, i.e. a curve in the matrix element space x̄, for which the effect of varying
the matrix element in question, xi , is to the greatest extent balanced by changes of
other matrix elements. The uncertainty is then found by requesting that the integral
of the normalised probability distribution contained within error bars equals to the
confidence limit of 68.3%:

∫

l

exp
(
− 1

2 χ2(x̄)
)

dx̄

∫
exp

(
− 1

2 χ2(x̄)
)

dx̄
= 68.3% , (2.28)

where the integration in the numerator is performed along the maximum correlation
path l and in the denominator over all possible values of x̄.
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2.3 First- and Higher-Order Effects in Coulomb Excitation

In typical low-energy Coulomb-excitation studies, the sets of 〈If ‖M̂(E
Mλ)‖Ii〉

matrix elements that influence the excitation and decay process are large. In
order to determine them unambiguously, the number of experimental data (γ -ray
intensities following Coulomb excitation and other spectroscopic data related to
electromagnetic matrix elements, such as lifetimes, branching ratios, mixing ratios)
must be at least equally large. The potential experienced by the nucleus of interest
(2.11) depends on the atomic number of the collision partner Z2 and its trajectory
r(t), given by the centre-of-mass scattering angle θCM . Consequently, independent
experimental information can be obtained by measuring γ -ray intensities corre-
sponding to various ranges of θCM scattering angles and, if possible, using several
beam-target combinations involving the nucleus of interest.

It is also possible to simplify the description of the excitation process by
performing the experiments under conditions where multi-step excitation is strongly
suppressed, and only states that can be reached in a one-step process from the
ground state are populated. Most of early Coulomb-excitation studies in the 1950–
1960s were performed in this way, but when heavy-ion beams with A > 40
and high-resolution Ge detectors became more widely available, this approach has
mostly given way to more complex multi-step experiments that necessitate the
full theoretical formalism described in Sect. 2.2.1. However, limitations in terms
of available beam energies appeared again in early days of post-accelerated ISOL
(Isotope Separator OnLine) beam facilities. Moreover, certain physics questions can
be better addressed with a high-precision one-step Coulomb-excitation measure-
ment than with a complex multi-step study that may suffer from, e.g. ambiguities
related to relative signs of E2 matrix elements, as discussed in the following two
sections. Relative simplicity of the first-order approximation also makes it easier
to demonstrate particular features of the excitation process with respect to the
scattering angle, excitation energy and transition multipolarity.

2.3.1 First-Order Effects

If the interaction between the colliding nuclei is weak, i.e. the excitation probability
is much smaller than 1, Coulomb-excitation amplitudes can be calculated within the
first-order perturbation theory. In this case, the solution of (2.7) can be written as:

af = 1

ih̄

∫ ∞

−∞
exp

(
i(Ef − Ei)t

h̄

)
〈φf (r, t)|V̂ (r(t))|φi(r, t)〉 dt . (2.29)
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Multipole expansion of V̂ (r(t)) (2.11) yields the following expressions for the exci-
tation cross sections, which linearly depend on the reduced transition probabilities
B(E

Mλ; Ii → If ):

σEλ =
(

Z2e

h̄v

)2 (
d

2

)−2λ+2

B(Eλ; Ii → If )

∫ θmax

θmin

dfEλ(ξ, θ)

dΩ
dΩ (2.30)

for the electric excitation and

σMλ =
(

Z2e

h̄c

)2 (
d

2

)−2λ+2

B(Mλ; Ii → If )

∫ θmax

θmin

dfMλ(ξ, θ)

dΩ
dΩ (2.31)

for the excitation caused by the magnetic field, where d is the distance of the closest
approach in backscattering, Z2 is the atomic number of the collision partner and ξ is
the adiabaticity parameter defined by (2.2). The excitation functions fE

M λ(ξ, θ) are
integrated over the angular range corresponding to the scattered particle detection
in the centre-of-mass frame. While we refer the reader to Ref. [14] for the exact
formulae, we will briefly discuss here the properties of these functions. For ξ > 0
they display dome-like shapes as a function of θ , with a maximum shifting towards
larger scattering angles with increasing ξ , which implies that for higher excitation
energies, or lower beam energy, larger scattering angles are preferable. The integrals
of the fE

M λ(ξ, θ) functions over the full range of scattering angles, fE
Mλ(ξ), decrease

roughly exponentially with ξ . One should note here that while increasing of beam
energy leads to lower ξ and, consequently, enhanced excitation cross section, at
some point the distance of the closest approach for the highest centre-of-mass
scattering angle will go below the value required for a “safe” Coulomb-excitation
process. With a further increase of beam energy, the solid angle corresponding to
“safe” Coulomb excitation will decrease, thus reducing the cross section for this
process. This is illustrated in Fig. 2.1.

The excitation functions fE
M λ(ξ, θ) also strongly depend on multipolarity λ;

those for E3 transitions are about one order of magnitude smaller than those for
E2, etc. While the excitation functions for the electric dipole transitions have the
highest values, typical B(E1) values are orders of magnitude smaller than transition
probabilities for higher multipolarities, which makes excitation via E1 negligible.
Moreover, one can immediately notice that while the denominator of (2.30) includes
v, i.e. the initial projectile velocity, it is replaced by c in (2.31). This results in
suppression of magnetic excitations by a factor of (v/c)2 with respect to electric
excitation, making them negligible in low-energy Coulomb-excitation studies for
which (v/c) rarely exceeds 0.1.

The excitation process depends on the kinematics and the mass and atomic
numbers of the target and projectile nuclei. The first-order approximation is usually
sufficiently accurate to describe the population of states excited from the ground
state in experiments employing a light beam or a light target or when small
centre-of-mass scattering angles are used. For example, multiple recent Coulomb-
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excitation experiments aiming at high-precision measurements of the B(E2; 2+1 →
0+1 ) values in Sn isotopes were performed under conditions that minimised the
role of multi-step excitations. A series of experiments at Oak Ridge National
Laboratory [22, 23] were performed in strongly inverse kinematics, with a 12C
target bombarded by 126,128,130,134Sn beams of 3 MeV/A energy. The impact of the
diagonal matrix elements 〈2+1 ||E2||2+1 〉 on the obtained 〈2+1 ||E2||0+1 〉 values was
estimated to be below 0.001 eb, i.e. over one order of magnitude smaller than the
experimental uncertainty dominated by the statistics. A follow-up high-precision
study was carried out in very similar experimental conditions for stable even-even
112–124Sn nuclei [24] in order to map the evolution of the B(E2; 2+1 → 0+1 ) values
in Sn isotopes over a broad range of A. In a complementary experimental campaign
performed at IUAC, New Delhi [25, 26], a reaction partner with a much higher Z

was used: a 58Ni beam of 3 MeV/A impinged on 112,116,118,120,122,124Sn targets.
In this case, however, only events with the Ni beam particles scattered at forward
angles were selected, which again resulted in observation of the 2+1 state only.
Another example of a recent one-step Coulomb-excitation experiment aiming at
a precise B(E2; 2+1 → 0+1 ) measurement is the study of 80Zn [10], performed at
ISOLDE with a 2.8-MeV/A 80Zn beam scattered on a 108Pd target. Even though
in this case a much heavier reaction partner was used, and the angular range
covered by the particle detector extended over a broad range up to θCM ≈ 120◦,
the high excitation energy of the 2+1 state, 1.492 MeV, strongly limited the multi-
step excitation probability. Indeed, the influence of the unobserved 4+1 excitation
on the extracted B(E2; 2+1 → 0+1 ) value was estimated to be below 0.5% [10].
For the same reason, the first-order approximation is also suitable to describe the
population of 2+1 and 3−1 states in 132Sn, located at 4.04-MeV and 4.35-MeV
excitation energy, respectively, in the experiment that used a 5.5 MeV/A 132Sn beam
from HIE-ISOLDE and a 206Pb target [27]. In this case, the probability of multi-step
processes is further limited by the beam energy, which is significantly higher than
in other studies mentioned in this section, resulting in a shorter collision time for
events corresponding to the “safe” Coulomb-excitation process.

2.3.2 Higher-Order Effects

If the electromagnetic field acting between the collision partners is strong enough
and the collision lasts sufficiently long, multi-step excitation becomes possible,
and higher-order contributions to the excitation cross section need to be taken into
account. These contributions lead to the experimental sensitivity to the spectro-
scopic quadrupole moments of excited states via the reorientation effect, as well
as to the relative signs of transitional matrix elements.

The cross section for a two-step excitation proceeding via an intermediate state
In is approximately given by:

σ
(
(E2; Ii → In)× (E2; In → If )

) ≈ σ(E2; Ii → In)× σ(E2; In → If )/σRuth .

(2.32)
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Consequently, transition probabilities between the states that can only be reached
in multi-step excitation are related to ratios of intensities of γ rays deexciting the
final and intermediate states. For example, under the assumption of quadrupole
moments equal to zero, the 4+1 → 2+1 /2+1 → 0+1 intensity ratio observed in Coulomb
excitation of a weakly deformed even-even nucleus depends exclusively on the
〈4+1 ‖E2‖2+1 〉 matrix element; changing the 〈2+1 ‖E2‖0+1 〉 matrix element would
influence the total number of counts in both transitions, but not the ratio.

As discussed earlier, the importance of multi-step excitation increases with
atomic numbers of collision partners, centre-of-mass scattering angle and beam
energy. The latter dependence is illustrated by Fig. 2.1, presenting calculated cross
sections for Coulomb excitation of the 2+1 and 4+1 states in 74Zn scattered on a
208Pb target. At beam energies below 4 MeV/A, the excitation cross section for the
4+1 state increases more rapidly as a function of beam energy than that for the 2+1
state. For example, when going from 2 MeV/A to 4 MeV/A, a gain of one order of
magnitude is observed for the 2+1 state, while it is almost three orders of magnitude
for the 4+1 state. The gradual decrease of cross sections observed for beam energies
above 4 MeV/A is due to the calculation being limited to angles corresponding
to (i) “safe” Coulomb-excitation process and (ii) detection of one of the collision
partners between 20◦ < θLAB < 55◦, i.e. angular coverage of the experimental
setup at ISOLDE (see Sect. 2.5.2). One should note, however, that the total multi-
step excitation cross sections decrease more rapidly with beam energy than those
for the one-step process. This effect, due to shortening of the collision time, leads to
the restriction of the intermediate-energy Coulomb-excitation process to single-step
excitations.

Beam energy [MeV/A]
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
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Fig. 2.1 Cross sections for Coulomb excitation of the 2+1 and 4+1 states in 74Zn scattered on 208Pb,
calculated as a function of the beam energy assuming E2 matrix elements from Ref. [28]. The
cross sections were integrated over the scattering angles corresponding to 20◦ < θLAB < 55◦,
assuming detection of any of the reaction partners but excluding angles where the 5-fm “safe-
distance” criterion for Coulomb excitation is not valid
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2.3.2.1 Relative Signs of Transitional Matrix Elements
In the excitation of a state that can be populated in a one-step process directly from
the ground state or in a two-step process via an intermediate state, interference
effects will appear, resulting from competition of these two excitation modes. As
an example, we can consider a 2+2 state in an even-even nucleus. For each of its
two possible excitation paths, the contribution to the total excitation amplitude is
proportional to the relevant matrix elements: 〈2+2 ||E2||0+g.s.〉 for the direct excitation
and the product of 〈2+2 ||E2||2+1 〉 and 〈2+1 ||E2||0+g.s.〉 for the two-step process.
As the excitation probability P (2+2 ) is given by the square of the sum of the
excitation amplitudes, it will include not only quadratic terms (〈2+2 ||E2||0+g.s.〉2 and
〈2+2 ||E2||2+1 〉2〈2+1 ||E2||0+g.s.〉2) but also a term resulting from interference between
these two excitation paths, namely, 〈2+2 ||E2||0+g.s.〉〈2+2 ||E2||2+1 〉〈2+1 ||E2||0+g.s.〉. As
this term includes non-squared matrix elements, depending on their relative phases,
its contribution can result in an increase of the population of the state in question
(constructive interference, i.e. positive sign of the interference term) or in its
decrease (destructive interference). This effect leads to experimental sensitivity of
Coulomb-excitation data to relative signs of electromagnetic matrix elements.

In typical multi-step Coulomb-excitation experiments, excited states are pop-
ulated through several excitation patterns involving multiple intermediate states,
and thus the measured cross sections are influenced by more complex interference
terms. Therefore it is highly recommended to adopt a transparent sign convention.
A common choice is to assume that signs of all in-band transitional E2 matrix
elements are positive. Moreover, for each band head, one needs to impose a sign for
one transition linking it with a state in a different band. The signs of all remaining
matrix elements can be determined relative to those.

To illustrate how important the influence of the interference terms on the
excitation cross sections may be, we briefly discuss an example of a Coulomb-
excitation study performed with a 42Ca beam impinging on 208Pb and 197Au
targets [29, 30]. In this measurement, performed with the AGATA γ -ray tracking
array [31] at LNL, Legnaro, the signs of two matrix elements coupling low-spin
states in 42Ca, 〈2+2 ‖E2‖0+1 〉 and 〈2+2 ‖E2‖2+1 〉, were found to strongly influence
the observed excitation cross sections. Figure 2.2 presents the effect of the sign
of the 〈2+2 ‖E2‖0+1 〉 matrix element on the intensities of γ -ray transitions following
Coulomb excitation of 42Ca on 208Pb (the influence of the sign of the 〈2+2 ‖E2‖2+1 〉
matrix element on the same observables is discussed in Ref. [32]). The calculations
were performed using magnitudes of matrix elements obtained in Refs. [29, 30].
Those of transitional E2 matrix elements were strongly constrained by the fact
that the lifetimes of all excited states in 42Ca included in the analysis were known
with precision ranging from 2% for the 0+2 state to about 20% for the 4+2 state.
As shown in Fig. 2.2, in the range of scattering angles covered by the particle
detector (105–142◦), the influence of the interference term on Coulomb-excitation
cross sections leads to changes in the population of excited states of a factor of
two or more. Varying the magnitudes of the transitional matrix elements within
the experimental uncertainties resulting from lifetime measurements would only
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Fig. 2.2 Left panel: Low-lying levels of 42Ca, with their energies given in keV. Transition marked
with the dashed arrow is too weak to be observed experimentally, but the corresponding matrix
element impacts excitation cross sections of observed states, as discussed in Sect. 2.3.2.3. Right
panel: Transition intensities in 42Ca normalised to that of 2+1 → 0+1 , following Coulomb excitation
of 42Ca on 208Pb in the experimental conditions of the measurement described in Refs. [29,30]. The
solid lines denote the calculations using the final set of matrix elements obtained in the analysis,
while for the dashed lines, an opposite sign of the 〈2+2 ‖E2‖0+1 〉 matrix element (corresponding to
the transition marked in grey in the left panel) has been imposed. The labels in brackets are used
for the latter curves. The experimental intensity ratios are also shown, both those measured with
the 208Pb target (circles) and in a shorter run with a 197Au target (squares). The latter are rescaled
to take into account the slight difference in cross sections and, for clarity, offset on the X axis. The
shaded area reflects the angular coverage of the particle detection system

produce cross-section changes at the level of the precision of the measured lifetimes,
i.e. about 20%. Under these experimental conditions, the sensitivity of the data
to the relative signs of matrix elements is undeniable. Figure 2.2 also shows that
the evolution of the γ -ray intensities with the scattering angle is non-trivial; while
the effect of the interference term on the population of the 2+2 state increases
monotonically with the scattering angle, those of the 0+2 and 4+2 states evolve in
a different way, with a slight enhancement observed for forward scattering angles.

The sensitivity of low-energy Coulomb excitation to the relative signs of
electromagnetic matrix elements is usually discussed in the context of electric
quadrupole transitions. However, an attempt has also been made to measure the
relative sign of the electric dipole and octupole matrix elements in 226Ra [33].
Although the measurement was not fully conclusive due to the limited statistics
and insufficient precision of the B(E1) values, the fit of matrix elements to the
experimental transition intensities and other spectroscopic data was shown to be
better for the negative relative phase of the E3 and E1 matrix elements (normalised
χ2 of 0.61) than for a positive one (normalised χ2 of 1.76) [33]. One should note
here that 226Ra represented a very favourable case for such study due to enhanced
B(E3) and B(E1) values and low excitation energies of the relevant states, and
that in typical low-energy Coulomb-excitation experiments the effect of E1 matrix
elements on excitation cross sections is negligible, as discussed in Sect. 2.3.1.
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2.3.2.2 Reorientation Effect
The reorientation effect [34], i.e. a change in the population of magnetic substates
of a given state If due to the interaction with the collision partner, produces a
second-order correction to its Coulomb-excitation cross section. This process leads
to the experimental sensitivity to diagonal E2 matrix elements of excited nuclear
states, which are related to their quadrupole moments Qs . It can be understood as a
particular kind of a double-step excitation, when the intermediate state and the final
state are magnetic substates of the same excited state. The second-order perturbation
theory yields the following dependence of the excitation probability of the If state
populated from the ground state on the diagonal matrix element of the former:

P (If ) ≈ α〈If ‖E2‖Igs 〉2(1+ β〈If ‖E2‖If 〉) . (2.33)

The factors α and β depend on the atomic numbers of the collision partners, the
reaction kinematics (beam energy, scattering angles) and nuclear spins involved.
For the exact formula, we refer the reader to Ref. [14]. As an example, the left panel
of Fig. 2.3 presents the dependence of the excitation cross section calculated for the
2+1 state in 76Zn, Coulomb-excited on a 196Pt target, on the laboratory scattering
angle θLAB and the 〈2+1 ||E2||2+1 〉 matrix element. A positive sign of the diagonal
matrix element, corresponding to an oblate shape, leads to an enhanced excitation
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experimental data from data [28], for three ranges of projectile scattering angles (A, B, C) marked
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the condition that χ2 < χ2

min+1. Solid horizontal lines represent the B(E2; 2+1 → 0+1 ) value with
its uncertainty determined from an independent measurement [10]
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cross section, while its negative sign (i.e. prolate shape) results in a cross-section
decrease with respect to the 〈2+1 ||E2||2+1 〉 = 0 case. As shown in Fig. 2.3, this effect
strongly depends on the scattering angle. For low θCM angles, where the excitation
process can be well described within the first-order approximation, it is negligible.
The impact of the reorientation effect on the excitation cross section increases
with the θCM scattering angle, i.e. longer collision time and shorter distance of
closest approach. Consequently, by measuring the excitation cross section as a
function of the scattering angle, one can disentangle the contribution from one-
and two-step excitation processes and determine both the transitional 〈If ||E2||Ii〉
and diagonal 〈If ||E2||If 〉 matrix elements. This is illustrated in the right panel of
Fig. 2.3, which shows the constraints on the 〈2+1 ||E2||2+1 〉 and 〈2+1 ||E2||0+1 〉 matrix
elements resulting from the 2+1 excitation cross sections measured for three distinct
ranges of scattering angle defined in the left panel of Fig. 2.3. For the angular range
A, the reorientation effect has a weak influence on the measured cross section,
and therefore the borders of the band in the 〈2+1 ||E2||2+1 〉, 〈2+1 ||E2||0+1 〉 plane
resulting from this data set are almost horizontal, i.e. provide strong constraints
on 〈2+1 ||E2||0+1 〉, but rather weak ones on 〈2+1 ||E2||2+1 〉. The slopes of bands B and
C are considerably more steep, in accordance with a marked difference visible for
these ranges between the cross sections plotted for negative and positive values of
the diagonal E2 matrix element (left panel of Fig. 2.3). The widths of the bands
corresponding to each range reflect uncertainties of the measured excitation cross
sections. The bands for ranges A, B and C have a common intersection, which
demonstrates internal consistency of the experimental data.

In the course of the data analysis for 76Zn, for each combination of the
〈2+1 ||E2||0+1 〉 and 〈2+1 ||E2||2+1 〉 matrix elements, the expected 2+1 excitation cross
sections for ranges A, B and C were calculated and compared with the experimental
results. This gives rise to a two-dimensional χ2 distribution, whose minimum
defines the 〈2+1 ||E2||0+1 〉 and 〈2+1 ||E2||2+1 〉matrix elements that optimally reproduce
the experimental data. A 1σ -uncertainty contour surrounds the region of the χ2

surface for which χ2 < χ2
min + 1 [35]. The final uncertainties are obtained by

projecting the 1σ uncertainty contour on the respective axes.
The 1σ uncertainty contour presented in the right panel of Fig. 2.3 extends over

a broad range of possible 〈2+1 ||E2||2+1 〉 values, even exceeding the values deduced
using the rotational model (2.42) from the literature value of 〈2+1 ||E2||0+1 〉, which
should normally be interpreted as the maximum values of 〈2+1 ||E2||2+1 〉. This means
that the experimental sensitivity of this particular measurement to the 〈2+1 ||E2||2+1 〉
matrix element was insufficient. This is due to the low total statistics of only about
300 counts in the 2+1 → 0+1 transition. Its increase by about a factor of 4 would
narrow down the bands in the 〈2+1 ||E2||2+1 〉, 〈2+1 ||E2||0+1 〉 plane by about one half,
leading to the precision on the 〈2+1 ||E2||2+1 〉 of about 0.3 eb, which could give the
first idea of the underlying deformation. From this estimation one can see that for
this type of analysis usually at least a thousand counts in the peak corresponding to
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the deexcitation of the state of interest are needed. Moreover, the particle detector
should cover an angular range in which the impact of the quadrupole moment
on the excitation cross section changes in a meaningful way. For example, while
this impact is maximised for large scattering angles, it remains rather constant
throughout, e.g. the 140◦ < θCM < 180◦ range. Consequently, if such data were
subdivided into a few ranges of scattering angle, the slopes of resulting bands in
the 〈If ||E2||If 〉, 〈If ||E2||Ii 〉 plane would be similar. In such case, even for a high-
statistics measurement, the precision of the E2 matrix elements determined from
the analysis would be limited.

Another possibility is to combine Coulomb-excitation data with an independently
measured 〈If ||E2||Ii 〉 matrix element, resulting from, e.g. a lifetime measure-
ment. Such information, which would be represented as a horizontal band in the
〈If ||E2||If 〉, 〈If ||E2||Ii〉 plane, would provide an additional contribution to the
χ2 function and lead to a reduction of the uncertainty of the 〈If ||E2||If 〉 matrix
element. In the case of a differential cross-section measurement, one could easily
verify the consistency between Coulomb-excitation cross sections and the measured
lifetime: the horizontal band representing the lifetime with its uncertainty should
overlap with the 1-σ contour of the χ2 surface resulting from the Coulomb-
excitation analysis, as it is the case in Fig. 2.31. However, this approach may
also be applied to measurements of the integral excitation cross section, which
without additional lifetime data provide only a correlation between the 〈If ||E2||Ii〉
and 〈If ||E2||If 〉 matrix elements. In this case there is no internal consistency
check, and the conclusions of the analysis strongly rely on the quality of the
lifetime information. This has been demonstrated by the study of 70Se performed
at REX-ISOLDE [36]. The level of statistics for the 2+1 → 0+1 decay obtained
in this experiment, namely 139(13) counts, was clearly insufficient to perform a
subdivision of the data according to the scattering angle. Hence, in order to deduce
the 〈2+1 ||E2||2+1 〉 matrix element, the integral Coulomb-excitation cross section was
combined with the known 2+1 lifetime of 1.5(3) ps [37], leading to a conclusion
that the sign of the 〈2+1 ||E2||2+1 〉 matrix element was negative, and its magnitude
exceeded the rotational estimate, calculated from the 〈2+1 ||E2||0+1 〉 value deduced
from the lifetime as discussed in Sect. 2.4. This result was at odds with multiple
model calculations predicting an oblate shape, i.e. a positive 〈2+1 ||E2||2+1 〉 value
in 70Se (see, e.g. [38] for an overview of those). However, a later measurement of
lifetimes in 70Se [38], which made use of γ -γ coincidences and thus provided a
better control of the side feeding than that of Ref. [37] relying on singles γ -ray
spectra, yielded a substantially longer 2+1 lifetime of 3.2(2) ps. The intersection
of the areas of possible 〈2+1 ||E2||2+1 〉, 〈2+1 ||E2||0+1 〉 values resulting from the
Coulomb-excitation data [36] and the revised 2+1 lifetime [38] seems to favour a
positive value of the 〈2+1 ||E2||2+1 〉 matrix element, i.e. an oblate shape of the 2+1
state.

1 While typically information from lifetime measurements is used in this type of analysis, no such
data exist for 76Zn, and consequently a B(E2; 2+1 → 0+1 ) value determined in an earlier Coulomb-
excitation measurement [10] has been plotted in Fig. 2.3 for illustration purposes.
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One should stress that if a measurement aiming at the determination of transition
probabilities, in particular of the B(E2; 2+1 → 0+1 ) value, is not performed
under conditions where the first-order approximation is valid, the influence of
the unknown quadrupole moment of the state in question needs to be taken into
account. As discussed in Sect. 2.5.2, detection of scattered projectiles or target
recoils corresponding to low scattering angles, where the reorientation effect could
be neglected, is not always feasible due to high flux of elastically scattered beam
particles. In the example of Fig. 2.3, one could attempt to extract the B(E2; 2+1 →
0+1 ) value from range-A data by imposing limits on possible 〈2+1 ||E2||2+1 〉 values
using a model assumption. In the simplest case of rotational limits, this would
lead to a higher uncertainty of the 〈2+1 ||E2||0+1 〉 value than that resulting from the
analysis involving also the data from ranges B and C. Also, in this particular case,
no improvement can be expected from narrowing down range A in order to limit it to
the angles where the influence of the 〈2+1 ||E2||2+1 〉 matrix element on the excitation
probability is negligible. While gating on the innermost part of the particle detector
(e.g. θLAB < 25◦; see the differential cross section in the left panel of Fig. 2.3)
would probably produce the intended result, i.e. a practically horizontal band in the
〈2+1 ||E2||2+1 〉, 〈2+1 ||E2||0+1 〉 plane, due to the low statistics the width of such band
would be larger than the limits on the 〈2+1 ||E2||0+1 〉 value resulting from the analysis
involving all three ranges A, B and C.

Sometimes the assumption is made that the influence of the 〈2+1 ||E2||2+1 〉 matrix
element on the 2+1 excitation cross section is negligible, and the 〈2+1 ||E2||0+1 〉 value
with its uncertainty is determined assuming a certain single value of 〈2+1 ||E2||2+1 〉,
usually 〈2+1 ||E2||2+1 〉 = 0. This would be equivalent to a projection of the 1-σ
contour of the χ2 surface on the Y axis for 〈2+1 ||E2||2+1 〉 = 0 and would result in a
significant underestimation of the 〈2+1 ||E2||0+1 〉 uncertainty due to the correlations
between the matrix elements being ignored. In the example presented in Fig. 2.3,
this underestimation would be as large as about a factor of 2.

The impact of the reorientation effect on Coulomb-excitation cross sections can
be comparable to that of multi-step excitations, and, consequently, the latter should
be carefully evaluated. Excitation of higher-lying states via the state in question,
or feeding from above involving such states, may impact the measured γ -ray
intensities, even though the feeding transitions are not directly observed; this will
be addressed in Sect. 2.3.2.3. Moreover, appearance of interference terms introduced
in Sect. 2.3.2.1 can lead to similar modifications of the differential excitation cross
section as those related to the influence of the quadrupole moment. For this reason,
two values of the spectroscopic quadrupole moment were often reported in early
low-energy Coulomb-excitation measurements: one corresponding to a positive
sign of the 〈0+1 ||E2||2+1 〉〈2+1 ||E2||2+2 〉〈2+2 ||E2||0+1 〉 interference term and the other
one for a negative sign. Including other spectroscopic data in Coulomb-excitation
data analysis, especially lifetimes, helps tremendously to disentangle competing
contributions to the cross sections, especially if this information is complemented
by high-statistics differential excitation cross-section measurements. The use of
different beam-target combinations in the same experiment is also recommended.
Finally, the graphical method presented in this section can be quite useful when
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trying to decide on the best way of subdividing the existing data according to the
scattering angle.

2.3.2.3 Effect of Unobserved States and Transitions on Excitation Cross
Sections

When calculating excitation probabilities of states forming a collective band, it
is important not to truncate the calculations to only those states that have been
observed in a Coulomb-excitation study, as it will result in erroneous calculations
for the uppermost states. For very collective bands, several states can be affected by
this, and in the data analysis this effect often leads to unreasonably large diagonal
matrix elements that need to be introduced for highest-energy members of a band in
order to reproduce the experimentally measured excitation cross sections. Therefore,
in the analysis of Coulomb-excitation data, “buffer states” are usually added on
the top of all bands. If the matrix elements coupling them to the observed states
are not known from experimental studies, which is often the case for nuclei far
from stability, model assumptions are necessary. For rotational structures relations
provided by the axial rigid-rotor approximation, introduced in Sect. 2.4, may be
used, and in other cases, estimates can be made on the basis of predictions of modern
nuclear-structure theories. While the influence of the higher-lying unobserved states
can be reasonably accounted for without knowing their exact excitation energies and
matrix elements involved, it is a good practice to investigate the effect of assumed
values on the calculated cross sections and, if it is not negligible, to include it in
systematic uncertainties of the matrix elements resulting from the data analysis.

Due to the strong dependence of the decay probability on the transition energy
(2.17) large energy differences are preferred in the decay process. Consequently,
the decay branches leading to states lying close in energy to the state in question
are hindered. Such E2 decay branches, even if they are too weak to be observed
experimentally, may strongly affect the population of states in Coulomb excitation,
since, as discussed in Sect. 2.3.1, the excitation process is enhanced for low ξ ,
i.e. small differences in excitation energy. Consequently, the knowledge of precise
branching ratios is crucial in Coulomb-excitation data analysis.

Finally, in high-precision Coulomb-excitation studies, in principle it is possible
to measure directly the effect on excitation cross sections of matrix elements
corresponding to unobserved transitions. As an example, Fig. 2.4 illustrates the
influence of the 〈2+2 ‖E2‖0+2 〉 matrix element (left panel) and the spectroscopic
quadrupole moment of the 2+2 state (right panel) on the measured γ -ray intensities
in the 42Ca+ 208Pb experiment introduced in Sect. 2.3.2.1. Clearly, even though the
2+2 → 0+2 transition is too weak to be observed and prior to the study of Ref. [29]
only an upper limit for the branching ratio has been known, the corresponding
matrix element strongly affects excitation cross sections of the observed states, and
hence it could be determined from the intensities of other transitions measured
in the Coulomb-excitation experiment. As seen from Fig. 2.4, the effects of the
〈2+2 ‖E2‖0+2 〉 and 〈2+2 ‖E2‖2+2 〉 matrix elements on the population of both the 0+2
and 2+2 states are opposite, which implies that an increase of 〈2+2 ‖E2‖0+2 〉 can
be compensated by a larger value of 〈2+2 ‖E2‖2+2 〉, leading to an equally good
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Fig. 2.4 Same as Fig. 2.2, but the dotted lines correspond to the following: (left panel)
〈2+2 ‖E2‖0+2 〉 equal to zero and (right panel) quadrupole moment of the 2+2 state equal to zero

reproduction of the 2+2 → 2+1 and 0+2 → 2+1 transition intensities. The population
of the 4+2 state, however, is sensitive only to the latter, which makes it possible to
extract both matrix elements independently. The existing correlation between them
results in relatively large uncertainties of the two matrix elements (〈2+2 ‖E2‖0+2 〉 =
26 +5

−3 efm2, 〈2+2 ‖E2‖2+2 〉 = −55 +15
−15 efm2 [29]). The value of the 〈2+2 ‖E2‖0+2 〉

matrix element corresponds only to a 0.3% branch in the decay of the 2+2 state,
and yet its effect on the population of the states in the side band of 42Ca is clearly
visible in Fig. 2.4. As mentioned in Sect. 2.3.2.1, the precision of the 4+2 lifetime,
crucial for distinguishing between the effects of the 〈2+2 ‖E2‖0+2 〉 and 〈2+2 ‖E2‖2+2 〉
matrix elements, is about 20%, lower than those of most lifetimes of low-lying states
in 42Ca. Improving it would help constrain the magnitudes of all matrix elements
governing the deexcitation of this state and in turn increase the sensitivity to the
〈2+2 ‖E2‖0+2 〉 and 〈2+2 ‖E2‖2+2 〉 matrix elements.

2.4 Quadrupole Moments and Nuclear Deformation

The spectroscopic electric quadrupole moment Qs of a state of spin I is defined as
the diagonal matrix element of the μ = 0 component of the M̂(E2, μ) quadrupole
operator, with states of maximum m value (m = I ):

eQs =
√

16π

5
〈I, m = I |M̂(E2, μ = 0)|I, m = I 〉 =

=
√

16π

5

1√
2I + 1

(I, I, 2, 0|I, I )〈I‖M̂(E2)‖I 〉 , (2.34)
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where 〈I‖M̂(E2)‖I 〉 is the reduced diagonal matrix element of the M̂(E2, μ)

operator.
In order to relate the intrinsic quadrupole moment Q0, defined in the principal-

axis frame, and the spectroscopic quadrupole moment Qs , a transformation between
these two frames must be applied. This transformation relies on model assumptions,
and, e.g. for an axially symmetric rotor, it results in the following relation between
the reduced matrix elements of the M̂(E2, μ) operator and Q0:

〈If K‖M̂(E2)‖IiK〉 =
√

2Ii + 1(Ii , K, 2, 0|If , K)

√
5

16π
eQ0 , (2.35)

where K is the projection of the nuclear spin I on the symmetry axis of the nucleus.
Combining (2.34) and (2.35) makes it possible to relate Qs to Q0:

Qs = (I, K, 2, 0|I, K)(I, I, 2, 0|I, I )Q0 = 3K2 − I (I + 1)

(I + 1)(2I + 3)
Q0 . (2.36)

For I = K, which is in particular true for the ground states, the spectroscopic
quadrupole moment vanishes for spins of 0 and 1/2, even for deformed states, i.e.
when Q0 is different from zero.

The electric quadrupole operator can be expressed as:

M̂(E2, μ) =
∫

ρ̂(r)r2Y2μ(θ, φ) d3r . (2.37)

Assuming a uniform charge density leads to the following expression for its μ = 0
component:

M̂(E2, μ = 0) = 3Z

4πR3
0

∫ ∫ R

0
r4 Y20(θ, φ) dr sin θ dθ dφ (2.38)

= 3Z

4πR3
0

∫
1

5
R5Y20(θ, φ) sin θ dθ dφ .

The radius of an axially deformed nucleus can be expressed as:

R(θ, φ) ≈ R0

(
1+ β2Y20(θ, φ)

)
, (2.39)

which leads to the commonly used relation between Q0 and β2:

Q0 = 3√
5π

ZR2
0 β2

(
1+ 2

7

√
5

π
β2 + . . .

)

≈ 3√
5π

ZR2
0 β2

(
1+ 0.36 β2

)
. (2.40)
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The axial rigid-rotor model is often used to estimate the limits of the spectro-
scopic quadrupole moments, or equivalently the diagonal E2 matrix elements, from
known B(E2) values. Equation (2.35) leads to the following relation:

〈If K‖M̂(E2)‖If K〉 = (If , K, 2, 0|If , K)

(Ii , K, 2, 0|If , K)

√
B(E2; Ii → If )(2If + 1) ,

(2.41)

which for a 2+1 state in an even-even nucleus simplifies to:

〈2+1 ‖M̂(E2)‖2+1 〉 = 5
√

B(E2;2+1 → 0+1 )× (2, 0, 2, 0|2, 0)

(0, 0, 2, 0|2, 0)
≈ 1.2× 〈2+1 ‖M̂(E2)‖0+1 〉 .

(2.42)

In (2.41) and (2.42) a prolate shape of the nucleus is assumed, i.e. a negative value of
the diagonal E2 matrix for K = 0 states. For an oblate shape, the signs of diagonal
matrix elements resulting from (2.41) and (2.42) should be inverted.

2.4.1 Quadrupole Sum Rules

As discussed above, the nuclear shape can be inferred indirectly from transition
probabilities or spectroscopic quadrupole moments relying on model assumptions.
An alternative model-independent approach, proposed by Kumar and Cline [2, 9],
takes advantage of specific properties of electromagnetic multipole operators.
Since these operators are spherical tensors, their products coupled to zero angular
momentum are rotationally invariant. The expectation values of these products
are observables, and they can be, on the one hand, related to the parameters
describing the shape of the charge distribution and, on the other hand, to reduced
electromagnetic matrix elements, defined in the laboratory system.

In the principal-axis system, the coefficients of the expansion into spherical
harmonics of the quadrupole electric operator, M̂(E2, μ), defined via (2.37), can
be represented using two variables Q and δ. Their expectation values are equivalent
to the standard β2 and γ parameters describing the quadrupole shape, but instead of
the mass distribution, they describe the charge distribution:

M̂(E2, 0) = Q cos δ ,

M̂(E2, 1) = M̂(E2,−1) = 0 , (2.43)

M̂(E2, 2) = M̂(E2,−2) = 1√
2

Q sin δ .
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The simplest two invariants read:

[
M̂(E2)× M̂(E2)

]0 = 1√
5

Q2, (2.44)

[[
M̂(E2)× M̂(E2)

]2 × M̂(E2)

]0

= −
√

2

35
Q3 cos 3δ (2.45)

where the superscript on the square bracket is the angular momentum J to which
the operators inside the bracket are coupled. Their expectation values for a state In

can be expressed through reduced E2 matrix elements as follows:

〈In|Q2|In〉 =
√

5 (−1)2In

√
2In + 1

∑

m

MnmMmn

{
2 2 0
In In Im

}
, (2.46)

〈In|Q3 cos 3δ|In〉 = −
√

35

2

(−1)2In

2In + 1

∑

ml

MnlMlmMmn

{
2 2 2
In Im Il

}
, (2.47)

where Mab ≡ 〈Ia ||E2||Ib〉 and the expression in curly brackets is a 6j coefficient.
For states with an axial prolate shape 〈cos 3δ〉 = 1; for axial oblate states 〈cos 3δ〉 =
−1; and for maximally triaxial or spherical states 〈cos 3δ〉 = 0.

A finite value of 〈Q2〉 may result from both a static deformation, βstat , as
observed, for example, for well-deformed rotational nuclei, and a dynamic defor-
mation, βdyn, resulting from vibrational or non-collective motion. These can be
distinguished based on the dispersion of 〈Q2〉:

σ(Q2) =
√〈

Q4
〉− (〈

Q2
〉)2

. (2.48)

In order to obtain the 〈Q4〉 invariant, products of four matrix elements need
to be considered, which requires a level of detail that is difficult to achieve
experimentally. Similarly, fluctuations in 〈Q3 cos 3δ〉 can be evaluated, requiring
even more extensive experimental data.

While the simplest two invariants [M̂(E2)× M̂(E2)]0 and
[
[M̂(E2)× M̂(E2)]2

×M̂(E2)
]0

can be constructed in only one way, it is no longer true for

higher-order invariants. For example, the 〈Q4〉 invariant can be obtained by

coupling two M̂(E2) operators to spin 2,
[
M̂(E2)× M̂(E2)

]2
, and then

coupling such rank-2 tensor with another one constructed in the same way:[[
M̂(E2)× M̂(E2)

]2 ×
[
M̂(E2) × M̂(E2)

]2
]0

. However, coupling of each pair

of operators to intermediate spins 0 and 4 is also possible. These three ways to
construct the 〈Q4〉 invariant will correspond to different sets of reduced E2 matrix
elements, and in principle comparing the resulting 〈Q4〉 values could be used to
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check for internal consistency of the obtained set of matrix elements. Unfortunately,
it is very rare to obtain this level of detail in experimental studies.

According to (2.46), in order to obtain information on the axial deformation of
a given state from the 〈Q2〉 invariant, one needs to know all reduced E2 matrix
elements linking it to all other states that can be reached from the state in question
via a single E2 transition. In general, if the spin of the state in question is different
than 0 or 1/2, it means that also its diagonal E2 matrix element has to be known.
For the lowest-order invariant, 〈Q2〉, all matrix elements enter the sum in squares,
and thus for its determination, knowledge of reduced transition probabilities (B(E2)

values) is sufficient. However, for higher-order invariants, relative signs of E2
matrix elements play a role. For example, the 〈Q3 cos 3δ〉 invariant is constructed
from triple products of E2 matrix elements, 〈In||E2||Il〉〈Il ||E2||Im〉〈Im||E2||In〉,
where |In〉 is the state in question and |Il〉 and |Im〉 are the intermediate states. The
influence of such triple products of transitional matrix elements on excitation cross
sections was discussed in Sect. 2.3.2.1. Moreover, if |Il〉 = |Im〉, the triple product
involves a diagonal matrix element.

In order to obtain the 〈cos 3δ〉 value from the 〈Q3 cos 3δ〉 invariant, the following
approximation is usually made:

〈Q3 cos 3δ〉 ≈ 〈Q2〉3/2〈cos 3δ〉 . (2.49)

Assuming that the charge and mass distributions are identical, one can relate the Q2

and δ parameters to the β2 and γ parameters of Bohr’s model by [39]:

〈Q2〉 = q2
0 〈β2

2 〉 (2.50)

and

〈Q3 cos 3δ〉 = q3
0 〈β3

2 cos 3γ 〉 , (2.51)

where q0 = 3
4π

ZeR2
0 and R0 = 1.2A1/3 fm. The expressions depend on the

definition of the collective variables; for example, if β and γ are the Nilsson model
ellipsoidal deformation parameters, more complex formulae given in the appendix
of Ref. [40] emerge.

While the sums in (2.46) and (2.47) formally run over all intermediate states that
can be reached from the state in question via a single E2 transition, usually only a
few key states contribute to the invariant in a meaningful way. In particular, for the
ground state of an even-even nucleus, the contributions to 〈Q2〉 are dominated by
the coupling to the 2+1 state, which typically amounts to well over 90% of the total.
Thus the following approximation can be made:

〈Q2
0+1
〉 ≈ ∣∣〈2+1 ‖E2‖0+1 〉

∣∣2
(2.52)
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leading to the well-known expression linking β2 and B(E2; 0+1 → 2+1 ):

√
〈β2

2 〉 ≈
4π

3ZR2
0

√
B(E2; 0+1 → 2+1 )/e2 . (2.53)

Similarly, the largest contributions to 〈Q3 cos 3δ〉 for the ground state come
from the 〈0+1 ||E2||2+1 〉〈2+1 ||E2||2+1 〉〈2+1 ||E2||0+1 〉 and 〈0+1 ||E2||2+1 〉〈2+1 ||E2||2+2 〉〈2+2 ||E2||0+1 〉 products [41]. The situation becomes much more complicated for
excited states, and the number of intermediate states that need to be included in
the sum rules varies from one case to another. While theoretical approaches can,
in principle, provide complete sets of electromagnetic matrix elements, this is not
always true for experiments. Systematic studies addressed this convergence issue
on the basis of beyond-mean-field [39] and shell-model calculations [42–44]. For
example, the 〈Q2〉 and 〈Q3 cos 3δ〉 values were obtained for 0+1 and 0+2 states in
100Mo from Coulomb-excitation data, pointing to a coexistence of a moderately
deformed triaxial ground state with a more deformed prolate excited structure [39].
Three intermediate 2+ states were included in the calculation of invariants. The
analysis of contributions of individual products of matrix elements to the invariants
obtained for the 0+2 state showed that the couplings to each of the three intermediate
states were almost equally important. As general Bohr Hamiltonian calculations
for 100Mo [39] reproduced well the experimental transition probabilities in this
nucleus, the same theoretical approach has been used to evaluate the influence of
possible couplings to higher-lying states on the invariants obtained for the 0+1 and
0+2 states. To this end, the expectation values of the 〈Q2〉 and 〈Q3 cos 3δ〉 invariants
were calculated either directly, by acting with the electromagnetic operator on the
wave functions of the 0+1 and 0+2 states, or from the matrix elements resulting from
the theoretical calculations, limiting the sum to three intermediate states as it has
been done in the case of experimental values. In all cases, differences of at most 3%
were observed, which shows that three intermediate states are sufficient to converge
in this case.

A similar analysis was performed for 66Zn using the shell model [42]. The
〈Q2〉 invariant obtained for the ground state from E2 matrix elements calculated
within the shell model was strongly dominated by the coupling to the 2+1 state,
and two intermediate 2+ states were sufficient to obtain 〈γ 〉 within 1◦ from the
value corresponding to the full convergence. The situation was shown to be very
different for the 0+2 state, where the convergence was very slow, and even for the
〈Q2〉 invariant six intermediate states were necessary. For the 〈Q3 cos 3δ〉 invariant,
the convergence was observed starting from eight intermediate states. Moreover,
unphysical 〈cos 3δ〉 > 1 values resulted from calculations where only one or two
2+ states were considered. Consequently, since only two matrix elements coupling
the 0+2 state to 2+ states were determined experimentally, i.e. 〈0+2 ||E2||2+1 〉 and
〈0+2 ||E2||2+2 〉, the 〈Q2〉 value deduced from those should be considered to be a lower
limit.



2 Low-Energy Coulomb Excitation and Nuclear Deformation 71

From the theory point of view, there are no limitations to the number of E2
operators entering the invariants, and thus the quadrupole sum rules are widely used
to relate E2 matrix elements resulting from theoretical calculations to the underlying
shapes and deformation softness. Recently, for example, such an analysis making
use of shell model predictions and invariants up to the sixth rank (〈Q6〉) has pointed
to considerable γ softness for nuclei in a wide range of masses [45]. The practical
limitations arise from the number and precision of experimentally available E2
matrix elements: in general, with an increasing number of E2 operators, the number
of required E2 matrix elements also increases, and the uncertainty propagation leads
to larger relative uncertainties of the resulting invariant quantities. In the following,
we briefly introduce some experimental studies that yielded particularly rich sets of
electromagnetic matrix elements, making it possible to discuss dispersions σ(Q2)

and even σ(Q3 cos 3δ).
For many years, the Coulomb-excitation study of 186,188,190,192Os and 194Pt [46]

has been unmatched in terms of richness of experimental information on nuclear
shapes obtained using the quadrupole sum rule approach. To this end, a series of
experiments with 40Ar, 58Ni, 136Xe and 208Pb beams were performed at various
experimental facilities (University of Rochester, Australian National University,
Brookhaven National Laboratory, Lawrence Berkeley National Laboratory). In each
of the nuclei under study, 〈Q2〉 and 〈Q3 cos 3δ〉 invariants were obtained for multiple
states in the ground-state band and the γ band, as well as for the K = 4 band head,
and were found to be remarkably constant with spin, consistent with a rotational
behaviour. The 〈Q2〉 values for the ground states were found to decrease with atomic
mass, which was accompanied by a gradual transition from prolate-triaxial shapes
observed for 186,188Os, via maximally triaxial shapes in 190,192Os to a more oblate
shape in 194Pt. Moreover, dispersions σ(Q2) and σ(Q3 cos 3δ) were obtained for
the ground states and point to them being rather rigid in β but with some γ softness
increasing with mass. However, important inconsistencies are visible between some
σ(Q2) and σ(Q3 cos 3δ) values obtained assuming different intermediate spins in
the construction of the 〈Q4〉 and 〈Q6 cos2 3δ〉 invariants. This is especially true
for 194Pt, which suggests that the set of matrix elements obtained for this nucleus,
although very rich, is insufficient for convergence of these invariant quantities.

Recent studies using the GRETINA array [47] in combination with the 4π

CHICO2 particle-detection setup [48] reached a similar level of detail. Quadrupole
invariants 〈Q3 cos 3δ〉 were obtained for multiple states in both ground-state and
γ bands in 72Ge [49] and 76Ge [50]. The corresponding 〈cos 3δ〉 values appear
to be rather constant with spin and correspond to almost maximum triaxiality.
The fluctuations of 〈Q2〉 obtained for states in the ground-state band and the γ

bands in 76Ge are small, pointing to a considerable rigidity in β. Moreover, for the
0+1 , 2+1 and 2+2 states in 76Ge, also the σ(Q3 cos 3δ) dispersions were extracted.
Also in this case, certain differences between the σ(Q2) and σ(Q3 cos 3δ) values
obtained using different subsets of matrix elements were observed, although they
are in general less pronounced than in Ref. [46]. Nonetheless, the values determined
for the 0+1 state seem fully consistent both in terms of magnitude and uncertainty
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and suggest its rigid triaxial deformation, supporting the conclusions from level
staggering observed in the γ band in this nucleus [51].

In the study of 42Ca [29, 30] introduced in Sect. 2.3.2.1, a non-zero value of
the 〈Q2〉 invariant obtained for the ground state could be viewed as a surprise, as
this nucleus, lying only two neutrons above the closed N = 20 shell, is widely
considered to be spherical in its ground state. However, the magnitude of the σ(Q2)

dispersion was shown to be comparable with 〈Q2〉, leading to the conclusion that the
wave function of the 0+1 state exhibits large fluctuations around the spherical shape.
This is consistent with the maximum triaxiality obtained for this state, 〈cos 3δ〉 =
0.06(10), which results from averaging over all possible quadrupole-deformed
shapes ranging from prolate to oblate. In contrast, the σ(Q2) value obtained for
the band head of the highly deformed structure in 42Ca is considerably lower than
the 〈Q2〉 value obtained for this state, which suggests a large static deformation.
Additionally, the triaxiality parameter 〈cos 3δ〉 for the 0+2 state, corresponding to
γ =13(+5

−6)◦, provided experimental evidence for its slightly non-axial character. In
this analysis, the 〈Q4〉 invariants could only be obtained assuming coupling of E2
operators to intermediate spin 0 due to the incompleteness of the obtained set of
matrix elements. Notably, a γ band is suggested to be built on the 2+3 state in
42Ca, but its 4+ member, which according to model calculations [30] would strongly
contribute to the 〈Q4〉 invariant with E2 operators coupled to intermediate spin 4,
has not been identified experimentally.

All the examples discussed above come from stable beam studies. The currently
available radioactive beam intensities make it difficult to obtain this level of
precision and detail for exotic nuclei, and hence only in a very few cases the simplest
invariants have been determined. A notable example is the low-energy Coulomb-
excitation study of 74,76Kr [52], which was performed in the early 2000s at GANIL,
Caen, and can be viewed as a highly successful proof-of-principle experiment
for determination of quadrupole moments of excited states in short-lived exotic
nuclei. From the complete set of E2 matrix elements coupling the 0+1 , 0+2 , 2+1 , 2+2
and 2+3 states in 74,76Kr, including their relative signs, the 〈Q2〉 and 〈Q3 cos 3δ〉
were obtained for the ground states and the 0+2 states. The two shape-coexisting
configurations in 74Kr strongly mix due to their proximity in energy, which is
reflected by, e.g. a large ρ2(E0; 0+2 → 0+1 ) value of 0.085(19) and significant
perturbations of the energies of low-spin members of bands built on the 0+1,2 states.
Consistently with strong mixing, the 〈Q2〉 and 〈Q3 cos 3δ〉 values obtained for the 0+1
and 0+2 states in 74Kr are rather similar, pointing to a moderate triaxial deformation.
The excitation energy of the 0+2 state in 76Kr is higher than in 74Kr, which leads to a
reduction of the mixing of the 0+1 and 0+2 states, resulting in a clearer distinction in
their shapes; the former has a moderate prolate deformation with 〈cos 3δ〉 ≈ 1, i.e.
close to axial symmetry, while the latter is much more deformed and mostly oblate
with some triaxiality. This provides a definite experimental proof of the prolate-
oblate shape coexistence scenario predicted by multiple theoretical approaches, e.g.
[53–55].
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Another recent example illustrating how quadrupole sum rules can be used
to probe shapes of exotic nuclei is the study of 96,98Sr [12, 56]. The 〈Q2〉
invariants obtained for the 0+1 and 0+2 states in 98Sr provide a firm proof of shape
coexistence in this nucleus and confirm a dramatic change in deformation between
the well-deformed ground state and the weakly deformed 0+2 state, consistent
with the behaviour of in-band E2 matrix elements and spectroscopic quadrupole
moments of the 2+1,2 states. While the experimental information on 96Sr is too
limited to perform a proper sum rule analysis, a good approximation of the
〈Q2〉 value for the ground state can be obtained from the B(E2; 2+1 → 0+1 )

value via (2.52). The similarity of thus obtained 〈Q2(0+1 )〉 value in 96Sr with
the 〈Q2(0+2 )〉 value in 98Sr strongly supports the conclusion of Refs. [12, 56]
about these two configurations interchanging in energy at N = 60. More-
over, the 〈Q3 cos 3δ〉 value for the ground state, obtained using the approx-
imation of Ref. [41], i.e. from the 〈0+1 ||E2||2+1 〉〈2+1 ||E2||2+1 〉〈2+1 ||E2||0+1 〉 and
〈0+1 ||E2||2+1 〉〈2+1 ||E2||2+2 〉〈2+2 ||E2||0+1 〉 products, corresponds to γ = 21(5)◦. The
contribution from the latter product of E2 matrix elements is at the level of only
a few percent of the total, and the obtained γ value is linked to the significant
reduction of the 〈2+1 ||E2||2+1 〉 matrix element in 98Sr with respect to the rotational
estimate (2.42). Interestingly, no such reduction of diagonal E2 matrix elements has
been observed for higher-spin members of the ground-state band in 98Sr.

2.5 Experimental Considerations

Thanks to advances in detector and accelerator technologies, goals and modalities
of Coulomb-excitation experiments evolved with time. Early studies of the 1950s–
1970s used light ion beams to populate excited states in target nuclei, and the
excitation process could usually be well described using the first- and second-order
perturbation theory. Normalisation of the measured excitation cross section to that of
the Rutherford scattering was common. These measurements provided B(E2; 2+1 →
0+1 ) values in many stable nuclei, as well as the spectroscopic quadrupole moments
of the first excited state. With availability of heavier ion beams and development
of high-resolution γ -ray detection arrays, complex multi-step excitation studies
became possible, which often relied on known lifetimes in the nuclei of interest
to normalise the measured cross sections. These experiments were performed with
a variety of particle detectors, often combining large angular coverage and high
granularity. In order to extract electromagnetic matrix elements from extensive
sets of Coulomb-excitation data, coupled-channel codes were developed, including
the CLX/DCY and GOSIA codes discussed in Sect. 2.2.3. Finally, the advent of
radioactive beam facilities opened the possibility to apply low-energy Coulomb
excitation to short-lived exotic nuclei. This led to new challenges related to intensity
and purity of available radioactive beams, as well as the need to deal with high
background of radioactive decay of beam ions, which provided constraints for the
particle detectors used in such studies. As complementary experimental data, such
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as excited-state lifetimes, were often lacking, normalisation of the measured cross
sections to the excitation of target nuclei became common.

2.5.1 Normalisation of Excitation Cross Sections

In order to extract electromagnetic matrix elements from Coulomb-excitation data,
the measured γ -ray intensities have to be converted to absolute excitation cross
sections. While this procedure is performed internally by analysis codes such
as GOSIA, it is important to understand its principle and implications. Possible
normalisation techniques are discussed below.

2.5.1.1 Normalisation to Elastic Scattering
Normalisation to the measured Rutherford scattering cross section is the most
direct option, although not widely used in typical experiments using particle-γ
coincidences, as it requires precise knowledge of the angular range covered by
the particle-detection system and its efficiency, as well as of the acquisition dead
time. Examples of such studies [22–24] were already mentioned in Sect. 2.3.1. One
should note that in these cases the uncertainties related to geometry were limited due
to the detection of the recoiling target nuclei corresponding to high centre-of-mass
scattering angles, where the Rutherford cross section changes more slowly.

A particular class of Coulomb-excitation measurements, where normalisation
to the elastic scattering is always applied, are those that determine populations
of Coulomb-excited states by means of particle spectroscopy. This technique was
extensively used in early Coulomb-excitation studies with light beams (protons,
α particles, 16O, etc.) as such experiments offered certain advantages over those
making use of γ -ray detection that at this time were usually performed with NaI(Tl)
scintillators of limited energy resolution. Namely, the determination of the cross
sections in this type of measurements does not require a knowledge of internal
conversion coefficients and branching ratios and is simply obtained by comparing
the integrals of the peaks corresponding to individual excited states to that of the
elastic-scattering peak. Moreover, contrary to measurements with standard γ -ray
detectors, in such studies beam intensities of a few hundred pnA can be used,
which can compensate the strong reduction of excitation cross sections observed for
states at high excitation energy. An example of an early Coulomb-excitation study
performed with a magnetic spectrograph can be found in Ref. [57]. Interestingly, one
of the very first low-energy Coulomb-excitation experiments involving short-lived
unstable nuclei was also performed in this mode. In this measurement [58], 8Li
(T1/2 = 0.8 s) was produced in a 9Be(7Li,8Li)8Be transfer reaction and separated
in a superconducting solenoid magnet. The resulting beam of 14.6-MeV 8Li ions
impinged on a natNi target. In the energy spectra of the scattered 8Li projectiles,
measured at several angles corresponding to the “safe” Coulomb-excitation process,
in addition to an elastic-scattering peak a peak corresponding to the first excited state
in 8Li (1+, E=0.908 MeV) was observed, and from the measured differential cross
section, a B(E2; 2+gs → 1+) value was determined [58].
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Fig. 2.5 Left panel: Spectrum of 12C ions scattered at laboratory angle θLAB = 35◦ from a 102Ru
target. The peaks are labelled with the spins and parities of the corresponding states in 102Ru. Right
panel: Low-spin part of the 102Ru level scheme presenting the states observed in the Coulomb-
excitation experiment. Level energies are given in keV

To illustrate quality of the experimental data that can be obtained using this
technique, Fig. 2.5 presents a particle spectrum from a recent measurement of
102Ru, Coulomb-excited with a 53-MeV 12C beam [59]. The 12C ions scattered
from the target were momentum analysed with a Q3D magnetic spectrograph, and
the obtained energy resolution was close to 100 keV full width at half maximum
(FWHM). The excitation probability of the 3−2 state measured for 12C ions scattered
at 35◦ degrees is at the level of 0.1%, which is sufficient to properly fit the
corresponding peak in the particle spectrum resulting from about 3.5 hours of data
collection at ≈ 5 pnA intensity. The limitation of beam current in this particular
measurement was due to ion-source problems, and under normal conditions it would
increase by at least a factor of 20, which would yield similar quality data in about
10 minutes. For comparison, twice as large population of the 4+2 state in 42Ca
corresponded to about 600 counts per day in the γ -ray transition depopulating this
state in the experiment of Refs. [29, 30].

Although largely superseded by measurements with γ -ray detectors, this tech-
nique still represents a very attractive option, especially to populate higher-lying
low-spin states. On the other hand, because of a 20-fold (or more) decrease of
energy resolution with respect to γ -ray spectroscopy, its applicability is limited to
nuclei with low density of excited states. Moreover, target purity and quality are
crucial, as elastic scattering on impurities may easily result in peaks in the particle
spectra that are more intense than those related to inelastic scattering on the nucleus
of interest. It should also be noted that in order to obtain good energy resolution
in such experiments, very thin targets need to be used. The 102Ru target used for
the measurement presented in Fig. 2.5 was approximately 40µg/cm2 thick, much
thinner than the 1–2 mg/cm2 thickness often used for γ -ray detection.
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2.5.1.2 Normalisation to Lifetimes in the Nucleus of Interest
In Coulomb-excitation experiments that involve population of multiple states, the
measured γ -ray intensities can easily be converted to absolute excitation cross
sections if one or more B(E2) values connecting the ground state with the observed
excited states are known. In even-even nuclei, an independent measurement of
the 2+1 state lifetime, τ (2+1 ), is usually used for this purpose. In this case, from
a comparison of experimental and calculated 2+1 → 0+1 transition intensities, one
can obtain the normalisation factor, accounting for the integrated beam current,
detection efficiency and solid angle covered by the particle detector. This factor
can then be applied to the remaining γ -ray intensities. In the GOSIA code, this
is achieved by fitting the normalisation constants Cm in (2.26) during the χ2

minimisation procedure, and requires no additional calculations by the user. Precise
information both on the lifetime of the state in question and its population in
the Coulomb-excitation process are required. The latter depends on the level of
statistics, precision of the efficiency calibration and branching ratio for the transition
of interest, if a state different than the first excited one is used for normalisation. If in
a GOSIA analysis multiple lifetimes of states with observed E2 decay to the ground
state are declared, they will all influence the calculation of the Cm normalisation
constants. The most important contribution to the χ2 function will involve the state
with the highest combined precision of γ -ray intensity and lifetime, i.e. typically
the 2+1 state for even-even nuclei. In such case, even though the 〈2+1 ‖E2‖0+1 〉 matrix
element formally enters the fit, it is bound to identically reproduce the lifetime value,
and therefore no independent B(E2; 2+1 → 0+1 ) value is obtained from the analysis.
Finally, one should note that in odd-mass and odd-odd nuclei the strongest observed
γ rays may correspond to mixed E2/M1 transitions. If the corresponding mixing
ratio is not precisely known, it may be better to use a less intense pure E2 transition
for normalisation purposes, as demonstrated, e.g. for 97Rb [11, 35].

2.5.1.3 Normalisation to Target Excitation
For many short-lived nuclei, especially on the neutron-rich side of the valley of
stability, lifetimes of excited states are not known, and therefore a different solution
for the normalisation of the measured Coulomb-excitation cross sections has to be
adopted. One possibility is to use the number of elastically scattered beam particles,
as described in Sect. 2.5.1.1. Alternatively, one can make use of the fact that the
observed excitation of target nuclei can usually be described with high precision
using literature values of relevant matrix elements, and the normalisation obtained
in this way can be applied to γ -ray intensities measured for beam nuclei.

The observed number of γ rays emitted from an excited state in the target nucleus
reads:

Nt = L× ρdNA

At

× btεγ (Et )εpartσt , (2.54)

where σt is the cross section for exciting the state of interest, integrated over the
angular range covered by the particle detector and the range of incident energies
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resulting from beam slowing down in the target, bt is the total γ -ray branching
ratio for a given transition, εγ (Et ) is the absolute efficiency for detecting a γ ray
of energy Et , εpart is the intrinsic detection efficiency of the particle detector, ρd is
the thickness of the target in mg/cm2, NA is Avogadro’s number, At is the mass of
the target in mg per mol and L is the beam current integrated over the measurement
time.

A similar equation can be written for the number of γ rays in a transition
observed for the projectile, assuming the same angular range for particle detection:

Np = L× ρdNA

At

× bpεγ (Ep)εpartσp . (2.55)

If a ratio of (2.55) and (2.54) is taken, the dependence on particle-detection
efficiency and integrated beam current cancels out:

Np

Nt

= bpεγ (Ep)σp

bt εγ (Et )σt

. (2.56)

One should note that if beam or target is known to have contaminants, it is
necessary to account for them when evaluating numbers of counts in the nuclei
of interest. This is discussed in detail in, e.g. [35].

A version of the GOSIA code, GOSIA2, was developed to handle the simul-
taneous analysis of both target and projectile excitation. In this approach, the χ2

functions for the target and projectile nuclei, defined by (2.26), are minimised in
turns, with the normalisation factors Cm shared as parameters across both functions.
Those for the target nucleus are obtained in the fit using literature values of relevant
matrix elements and the γ -ray intensities of the target deexcitation, as explained
in Sect. 2.5.1.2. The Cm factors obtained in this way are subsequently imposed in
the fit performed for the projectile nuclei. The solution of the analysis is given by
the global minimum of the total χ2 function defined as the sum of χ2 functions
for both reaction partners. In common situations where only two matrix elements
are used to describe the excitation of the nucleus under study, i.e. 〈2+1 ‖E2‖0+1 〉 and
〈2+1 ‖E2‖2+1 〉, a two-dimensional plot of the χ2 surface may be used to determine
their uncertainties, as described in Sect. 2.3.2.2.

2.5.2 Particle Detectors for Stable and Radioactive Beam
Experiments

Particle detectors are used in almost all low-energy Coulomb-excitation studies, as
they enable a clear selection of the scattering kinematics, which is necessary to
properly describe the excitation process leading to the observed γ -ray decay. In
radioactive beam experiments, the use of particle detection is mandatory to select
Coulomb-excitation events from the background of γ rays emitted in radioactive
decay of the beam ions and their daughters.
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2.5.2.1 Experiments with No Particle Detection
In principle, stable beam Coulomb-excitation experiments do not require particle
detectors, and experiments relying solely on γ -ray detection were relatively com-
mon in the 1970s–1990s. They are traditionally referred to as “thick-target” studies,
as in order to avoid Doppler shift of γ -ray energies, which would significantly
broaden the observed γ -ray peaks, they are performed with targets sufficiently thick
to stop the recoiling nuclei. One should note here that the lifetimes of excited states
under study should be long enough to ensure that their decay occurs when the recoil
is at rest, which usually corresponds to lifetimes of at least a few picoseconds.
The beam energy must be below “safe” energy for backscattering; otherwise the
measured excitation cross sections may be affected by nuclear interaction. In
order to extract electromagnetic matrix elements from the measured γ -ray yields,
Coulomb-excitation cross sections need to be integrated over all possible scattering
angles and velocities, which strongly limits experimental sensitivity to higher-order
effects.

Measurements without particle detectors can also be performed in a strongly
inverse kinematics (i.e. with the mass of the projectile exceeding by a factor
of 5 or more that of the target nucleus), which results in beam particles being
scattered in a narrow range of forward laboratory angles. Excellent examples of
such measurements are studies of candidates for “mixed-symmetry” states2 in the
128,130,132Xe isotopes [63, 64]. In order to enable Doppler correction sufficient to
separate numerous γ -ray transitions observed in these experiments, a target of 12C
was used. Under these conditions, the maximum laboratory scattering angle for
128Xe nuclei was ≈5.3◦. The use of a light target favoured one-step excitation,
making it the most suitable choice for the addressed physics case, i.e. search
for enhanced M1 decays from the 2+ states being a signature of their “mixed-
symmetry” character. As an example, eight 2+ states at energies ranging from
443 keV to 2718 keV have been observed in the experiment on 128Xe [63].

While experiments without particle detection represent a valid option, they are
definitely in the minority, as there are significant gains from the use of particle-γ
coincidences. However, γ -ray singles data can be taken in parallel to coinci-
dence data, providing a measurement under significantly different experimental
conditions. If one complements a “thick-target” measurement performed in normal
kinematics with a particle detector placed at backward angles, imposing particle-γ
coincidence will lead to a selection of events both in terms of scattering angle and
incident energy (even if the detector is not sensitive to energy, when the scattering
occurs deep enough in the target, the backscattered beam ions will be absorbed in the
target material before they reach the detector). Consequently, a combination of data

2 “Mixed-symmetry” states are a special category of collective states predicted in models that treat
the proton and neutron fluids separately. First predicted by Faessler [60], they were extensively
studied within the framework of the proton-neutron interacting boson model (IBM-2) [61]. The
terminology “mixed symmetry” arises from the properties of the wave functions, which contain at
least one pair of proton and neutron bosons that is antisymmetric under the exchange of the proton
and neutron labels. A detailed discussion of properties of such states can be found in Ref. [62].
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collected in both trigger modes can lead to a better final sensitivity to second-order
effects, such as quadrupole moments or relative signs of E2 matrix elements.

2.5.2.2 Requirements for Particle Detectors and Selected Examples
A variety of particle detectors are used for low-energy Coulomb-excitation studies.
Important differences are usually observed between setups intended for stable
and radioactive beam studies. As discussed in Sect. 2.3.2, multi-step excitation
probability increases with the θCM angle, which leads to enhanced sensitivity to
higher-order effects. As the total excitation cross section is given by the product of
the excitation probability and the Rutherford cross section (2.9), due to the strong
decrease of the latter with the scattering angle, measurements with weak exotic
beams tend to be performed at relatively low θCM angles; otherwise the counting
rates would be insufficient. In contrast, in stable beam studies, where typical
beam intensities are of the order of particle nanoampers (i.e. 109 pps or more),
detection of beam particles scattered in the backward hemisphere is usually a better
option, especially if properties of higher-lying excited states are to be investigated.
Moreover, particle detectors placed at forward scattering angles in typical stable
beam measurements would be exposed to a high flux of scattered particles. This
eliminates from this application detector types that are not sufficiently radiation hard
under such conditions (e.g. silicon detectors), leaving as possible options those that
are usually not energy-sensitive, such as gas-filled parallel-plate avalanche counters
(PPAC) or solar cells.

As discussed in Sect. 2.3.2, measurements of differential cross sections can be
used to disentangle various higher-order effects in Coulomb excitation. Therefore
particle detectors with a broad angular coverage are preferred, with a granularity in
θ that can be used to subdivide the collected data according to the scattering angle.
Moreover, since γ rays from Coulomb-excited states are usually emitted from nuclei
in flight, their energies need to be Doppler corrected. For this reason, segmentation
in φ is also important. Since the energy resolution of Doppler-corrected spectra
also depends on the geometry of the γ -ray detectors and energy loss in the target,
a very fine segmentation in φ is rarely needed. For example, simulations of an
annular particle detector in combination with the GALILEO array [65] showed
that an increase of segmentation from Δφ = 51◦ to Δφ = 26◦ would improve
the FWHM of Doppler-corrected 1332-keV γ rays emitted in flight by 60Ni nuclei,
scattered on a 1 mg/cm2 208Pb target, from 15 keV to 11 keV, with 9 keV being the
asymptotic limit [66]. However, segmentation in φ can also be beneficial for high-
statistics measurements, as from the analysis of particle-γ correlations sensitivity to
γ -ray multipolarity may be obtained, in particular to E2/M1 mixing ratios.

Since inelastic scattering is a two-body process, even when only one of the
reaction partners is detected, the entire scattering kinematics can be reconstructed.
For that, however, it is necessary to identify the detected nucleus, i.e. distinguish
target recoils from scattered beam particles measured at the same θLAB angle. In
normal kinematics (Abeam < Atarget ), only the latter are observed in the backward
hemisphere, and therefore the particle detectors placed at these angles do not have
to provide any additional information about the properties of the detected ion. This
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Fig. 2.6 Left panel: SPIDER setup [66] installed in the GALILEO reaction chamber, with a LaBr3
detector visible in the front (photo courtesy M. Rocchini). Right panel: “Munich chamber” [67] at
HIL, Warsaw, equipped with 101 PIN diodes (photo courtesy K. Wrzosek-Lipska)

provides an important simplification of the experimental setup and data analysis,
and one more reason why a vast majority of experiments using intense stable
beams are performed in normal kinematics, with particle detectors in the backward
hemisphere. Most commonly, segmented Si detectors are used in such studies. For
example, the recently developed modular silicon array SPIDER [66] consists of
seven trapezoidal Si detectors segmented into eight annular strips and arranged
in a conical geometry (see the left panel of Fig. 2.6). For experiments with stable
beams, SPIDER is installed in backward angles, covering θLAB angles between
124◦ and 161◦. Granularity of the particle-detection system can also be obtained
by using an array of small non-segmented detectors, such as PIN diodes or solar
cells. An example of such array is the “Munich chamber” [67] at HIL, Warsaw,
presented in the right panel of Fig. 2.6, which can accommodate up to 110 PIN
diodes, each of 0.5 cm × 0.5 cm size. Its compact size (10 cm in diameter) makes
it possible to place γ -ray detectors very close to the target, thus increasing the
detection efficiency. Another interesting system for Coulomb excitation with stable
beams was the LUNA setup [68] in JAERI, Tokai, which used 23 mm × 23 mm
plastic and YAP:Ce scintillators combined with position-sensitive photomultipliers.
The measured position resolution ranged from 0.5-mm FWHM at the centre of the
detector to 1.2 mm at its edges, which translated into an excellent energy resolution:
5-keV FWHM was obtained after Doppler correction for the 596-keV line in 74Ge,
Coulomb-excited on an 1.7-mg/cm2 natPb target [68]. A schematic plot of this setup,
which was compact enough to fit in a reaction chamber of 11-cm diameter, is shown
in Fig. 2.7. The YAP:Ce detectors placed at backward angles, covering θLAB angles
between 106◦ and 153◦, and the backward halves of the top and bottom plastic
scintillators were used for the detection of scattered beam projectiles in normal-



2 Low-Energy Coulomb Excitation and Nuclear Deformation 81

10 30 50 70 90
Mo scattering angle [deg.]

10

30

50

70

90

X
e 

sc
at

te
rin

g 
an

gl
e 

[d
eg

.]
Fig. 2.7 Left panel: Schematic drawing of the LUNA setup [68] in JAERI, Tokai. Beam direction
is marked with an arrow, and target position is indicated in the middle. The four detectors in the
front, plotted as transparent, are plastic scintillators, and the remaining two are YAP:Ce. Right
panel: Dotted line presents the correlation between scattering angles of 136Xe and 98Mo in an
inverse-kinematics Coulomb-excitation experiment of 98Mo [69] performed with the LUNA setup.
The limits of the forward plastic detectors of LUNA are marked with a dashed line, and the shaded
area denotes the part of the detector used for Coulomb-excitation analysis (see text for details)

kinematics studies. The forward part of the setup was used for inverse-kinematics
experiments, as discussed later in this chapter.

In the forward hemisphere, both scattered beam projectiles and recoiling target
nuclei can be observed. Moreover, in inverse kinematics (Abeam > Atarget ),
two kinematic solutions are possible, and thus at a certain θLAB angle one may
observe, in addition to recoiling target nuclei, two groups of scattered beam particles
differing in energy, corresponding to θCM < 90◦ and θCM > 90◦, respectively.
This is illustrated by the example of 136Xe scattered on 98Mo, presented in the
right panel of Fig. 2.7: for each θLAB angle below 46◦, one can observe scattered
beam nuclei corresponding to two different recoil scattering angles. Consequently,
particle detectors placed in the forward hemisphere need to provide information
on the energy of the ion or, alternatively, a precise timing signal that can be used
to determine the difference in time of flight between the two collision partners,
resulting in their unambiguous identification. Typical setups for radioactive beam
studies involve a segmented Si detector at forward angles. Standard choices include
annular Micron S2 (48 rings, 16 sectors) and S3 models (24 rings, 32 sectors) as
well as CD composed of four independent quadrants (24 rings, 96 sectors in total)
[70]. The latter is extensively used in measurements at ISOLDE, and in the standard
configuration 25 mm downstream from the target, it covers 16◦ < θLAB < 53◦,
which for typical normal-kinematics Coulomb-excitation experiments ensures that
the θCM ranges corresponding to scattered beam and recoil detection overlap and
together cover angles up to over 120◦ in the centre-of-mass frame. In measurements
with intense exotic beams, an extension of such systems to higher θCM angles may
be beneficial. For example, in a Coulomb-excitation study of 72Zn performed at
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ISOLDE [73, 74], it was possible to observe an effect of the two-step excitation
on the population of the 2+2 state for θCM > 140◦, while the excitation at lower
scattering angles could be well reproduced assuming only a one-step process
directly from the ground state. This resulted in experimental sensitivity to the
〈2+2 ‖E2‖2+1 〉matrix element. Combining this result with the known 2+2 → 2+1 /2+2 →
0+1 branching ratio made it possible to determine also the 〈2+2 ‖M1‖2+1 〉 matrix
element. In this experiment, the T-REX setup was used [75], i.e. the CD detector
at forward angles was complemented by another identical detector at backward
angles, as well as an array of eight rectangular ΔE−E telescopes installed between
them. Similar solutions are used in the BAMBINO setup [71] at TRIUMF and the
particle-detection part of the JANUS array [72] at the ReA3 reaccelerator facility,
NSCL, which both consist of two Micron S3 detectors located 30 mm up- and
downstream from the target position. One should note, however, that in order to
obtain meaningful information from measurements performed at high θCM angles,
intense beams need to be used in order to compensate for the reduction of the cross
sections. For example, the study of 72Zn was performed at 3 107 pps beam intensity.

CHICO2 [48] and its predecessor CHICO [76] use a different principle to
distinguish between scattered beam projectiles and recoiling target nuclei, which
is based on precise timing information rather than energy measurement. The array
consists of two hemispheres holding ten PPACs each, with active area covering
69% of 4π and an outstanding position resolution of 1.6◦ in θ and 2.5◦ in φ. A
valid Coulomb-excitation event requires the detection of both collision partners in
coincidence, and their identification is based both on kinematic considerations and
the measured time-of-flight difference between them. A drawback of this solution
is that the time resolution of CHICO PPACs (1.2 ns) implies a considerable base
for the time-of-flight measurement. In the adopted geometry, the shortest flight
path between the target and the detector is about 13 cm, which makes this device
rather bulky (36-cm chamber diameter). Contrary to silicon detectors, CHICO2
can be operated at high counting rates (>500 kHz) without radiation damage and
therefore can be used both with stable and radioactive beams. In the latter case, its
mass resolution capabilities were crucial to reject events resulting from scattering of
intense stable contaminants present in beams delivered by the CARIBU facility [77].
For example, in a study of 110Ru Coulomb-excited on 208Pb [78], events involving
a 131Xe beam contaminant were clearly identified.

More unusual solutions used for particle detection at forward angles involve,
e.g. placing absorbers in front of detectors to shield them selectively from one
of the collision partners. This has been successfully implemented in experiments
performed with the JUROGAM array [79] at JYFL, Jyväskylä, where Coulomb-
excitation cross sections for 128,130Xe scattered on a natFe target were measured
in parallel to a RDDS lifetime measurement [80, 81]. In these studies, an array of
solar cells covering θLAB angles between 6◦ and 38◦ was used, shielded with a 20-
mg/cm2 Au foil which was thick enough to stop Xe ions while letting Fe recoils
through. Coulomb-excitation experiments performed at IUAC, New Delhi, which
use a position-sensitive PPAC covering an angular range of 15◦ < θLAB < 45◦,
are based on a different concept. The positions of γ -ray detectors are selected in
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such a way that even though it is not possible to distinguish scattered projectiles
and target recoils using information from the PPAC, in the γ -ray spectra the peaks
corresponding to the two types of particles are clearly separated, see e.g. [25].
Finally, one can make use of the fact that in inverse-kinematics Coulomb excitation
scattered projectiles are forward focused, and there exists always a maximum θLAB

angle, over which only target recoils are observed. This was, for example, used in
the measurements with the LUNA system [68]. For example, in a study of 98Mo
Coulomb-excited by a 136Xe beam [69], imposing a cut of θLAB > 46◦, as marked
by the shaded area in the right panel of Fig. 2.7, ensured that only 98Mo target recoils
were detected.

2.5.3 Beam and Target Requirements

When selecting the beam-target combination for a Coulomb-excitation study,
several points need to be taken into consideration. As discussed in Sect. 2.3,
atomic number of the collision partner will strongly influence the cross sections
and the excitation pattern. In case of high-precision studies of low-spin excited
states, it may be beneficial to limit the influence of higher-lying states on the
measured excitation cross section by selecting a light collision partner. Sometimes
a series of experiments using a variety of beam-target combinations are necessary
to disentangle the role of various excitation paths. Evidently, the energies of γ -
ray transitions that are expected to be observed in the target and in the projectile
should not overlap, and if it is planned to use target excitation for normalisation, as
explained in Sect. 2.5.1.3, the relevant matrix elements, including the spectroscopic
quadrupole moment of at least the first excited state, need to be known to high
precision.

Moreover, unambiguous identification of collision partners is required, and the
mass resolution capabilities of particle detectors used in Coulomb-excitation studies
may result in important limitations. As straggling in the target leads to worsening
of the energy resolution after Doppler correction, usually targets of 1–2 mg/cm2

thickness are used, and with the exception of “thick-target” studies introduced in
Sect. 2.5.2.1, target thicknesses rarely exceed 4 mg/cm2. Moreover, integration of
the cross sections over a large range of incident energies due to the beam slowing
down in a thick target may decrease the sensitivity to higher-order effects, and
knowledge of stopping powers is mandatory to properly account for it. In typical
experiments using energies measured in silicon detectors to distinguish between
scattered beam particles and recoiling target nuclei, the use of targets few mg/cm2

thick implies a considerable difference between the masses of the collision partners,
i.e. almost a factor of 2. This strongly limits the mass of the target nucleus, if
heavy projectiles are used. For example, 120Sn was the heaviest target used for
recent Coulomb-excitation studies of 222,228Ra at HIE-ISOLDE [82] and 182−188Hg
at ISOLDE [83]. One should note that the CHICO/CHICO2 device provides a much
better mass resolution, as discussed in Sect. 2.5.2.

Finally, some limitations are intrinsically linked to the use of radioactive ion
beams. In many cases, pure beams are not achievable, and excitation of beam
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contaminants is also observed. The beam composition needs to be monitored
during the experiment and properly accounted for in the data analysis. Moreover,
limitations on the half-lives of nuclei that can be delivered as a post-accelerated
ISOL beam are due to the trapping and charge-breeding times of typically at least
100 ms that are involved in this technique. One of the most short-lived nuclei studied
with low-energy Coulomb excitation was 99Rb with a half-life of 54(4) ms. Even
with the shortest trapping and breeding times possible, it was still observed that
about 60% of 99Rb ions decayed to 99Sr and 99Y on their way from the primary
target to the Coulomb-excitation setup [11]. The same experiment can be used as
an example of a successful low-energy Coulomb-excitation study performed at a
very low beam intensity of a few thousands of particles per second. One should
note, however, that 99Rb is very collective and that some model assumptions were
necessary in the analysis, as outlined in Refs. [11,35]. In general, a rule of thumb is
that one needs at least 104 pps for integral cross-section measurements and 105 pps
for differential studies.

2.6 Summary and Outlook

Low-energy Coulomb excitation has been used for over 60 years to determine tran-
sition probabilities and spectroscopic quadrupole moments of short-lived excited
states in a wide range of nuclei. Over the years, both the theoretical description
of the process and the data analysis techniques have been refined, and currently
it is possible to perform detailed studies that firmly establish nuclear shapes
through the use of quadrupole sum rules. An exciting new era opened recently
with the availability of radioactive ion beams, which made it possible to apply
this powerful technique to nuclei far from stability. New challenges emerged,
related, among others, to a lack of precise spectroscopic information on the nuclei
under study that can provide crucial inputs and stringent constraints to analyses
of Coulomb-excitation data. For example, information on lifetimes of excited states
greatly increases sensitivity of Coulomb-excitation data to spectroscopic quadrupole
moments and relative signs of electromagnetic matrix elements. High-precision β-
decay measurements are able to bring information on very weak decay branches,
which can be important in terms of transition probabilities. In particular for heavy
nuclei, significant E0 branches for I → I transitions can appear that strongly
influence the observed decay pattern and should be a subject of complementary
conversion-electron studies. As state-of-the-art theoretical calculations are now able
to predict properties of nuclei with an unprecedented level of detail, it is crucial to
confront them with high-precision experimental data. It can be anticipated that low-
energy Coulomb excitation will play a prominent role in future nuclear-structure
studies as a part of a combined approach involving a multitude of complementary
techniques.
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43. J. Henderson, Phys. Rev. C 102, 054306 (2020)
44. T. Schmidt, K.L.G. Heyde, A. Blazhev, J. Jolie, Phys. Rev. C 94, 014302 (2017)
45. A. Poves, F. Nowacki, Y. Alhassid, Phys. Rev. C 101, 054307 (2020)
46. C.Y. Wu, D. Cline, T. Czosnyka et al., Nucl. Phys. A 607 178 (1996)
47. S. Paschalis, I.Y. Lee, A.O. Macchiavelli et al., Nucl. Instrum. Methods Phys. Res. A 709, 44

(2013)
48. C.Y. Wu, D. Cline, A. Hayes et al., Nucl. Instrum. Methods Phys. Res. A 814, 6 (2016)
49. A.D. Ayangeakaa, R.V.F. Janssens, C.Y. Wu et al., Phys. Lett. B 754, 254 (2016)
50. A.D. Ayangeakaa, R.V.F. Janssens, S. Zhu et al., Phys. Rev. Lett. 123, 102501 (2019)
51. Y. Toh, C.J. Chiara, E.A. McCutchan et al., Phys. Rev. C 87, 041304(R) (2013)
52. E. Clément, A. Görgen, W. Korten et al., Phys. Rev. C 75, 054313 (2007)
53. M. Bender, P. Bonche, P.-H. Heenen, Phys. Rev. C 74, 024312 (2006)
54. M. Girod, J.-P. Delaroche, A. Görgen, A. Obertelli, Phys. Lett. B 676, 39 (2009)
55. T.R. Rodriguez, Phys. Rev. C 90, 034306 (2014)
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3Ab Initio Approaches to Nuclear Structure

Robert Roth

Abstract

Ab initio nuclear structure theory has experienced a phase of ground-breaking
developments over the past decade. Compared to the situation in the early 2000s,
we now have a rich variety of powerful and complementary tools that connect
the underlying theory of the strong interaction to nuclear structure observables.
This enables us to describe a much larger domain of nuclei and observables with
controlled and quantified theoretical uncertainties—in the ab initio spirit. In this
lecture we provide a pedagogical introduction into the ab initio toolbox with a
focus on basis expansion approaches, particularly on configuration interaction
methods, like the no-core shell model, and decoupling approaches, like the in-
medium similarity renormalization group.

3.1 Introduction

The landscape of methods that define the state of the art in ab initio nuclear structure
theory has been completely transformed since the early 2000s. New and innovative
many-body schemes have been developed that radically expand the boundaries of
what is possible computationally. At the same time, the connection to the underlying
theory of the strong interaction has been strengthened through the use of effective
field theories for the construction of nuclear interactions.

In this lecture we provide an introduction to ab initio nuclear structure theory
with a focus on basis expansion methods. This is really meant to be a lecture and not
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a review article. We will present the material in a pedagogical manner, focusing on
systematics, clarity, and consistency. We will explore the basic theoretical concepts
and their interrelations and not so much the multitude of applications and results. We
will not attempt to cover the field of ab initio theory completely—given the wealth
of recent developments, this would fill a complete volume of this lecture series.

3.2 The Big Picture

We start by formulating the general nuclear structure problem as a quantum many-
body problem. Already the first steps in this formulation imply specific assumptions,
e.g., on the effective degrees of freedom for the theoretical description. This, in
turn, has consequences for the formulation of the relevant interactions and, thus, the
effective Hamiltonian governing the structure and dynamics of the system. Finally,
the quantum many-body problem has to be solved, which in our case amounts to the
solution of a many-particle Schrödinger equation. In this section, we go through
these steps and establish the basic language and notation. We will also give an
overview of the different classes of approaches to the many-body problem and
address the meaning of the term “ab initio.”

Constituents We consider nuclei as quantum multi-particle systems, composed of
nucleons as effective degrees of freedom. It is understood that nucleons themselves
have a complicated substructure, being bound states of quarks governed by the com-
plicated quark-gluon interactions of quantum chromodynamics (QCD). However,
we do not wish to resolve this underlying layer of microphysics.

This seemingly obvious choice (from the perspective of low-energy nuclear
structure physics) has profound consequences. From the beginning we decide to
work with an effective theory that has a limited range of validity resulting from
the choice of the effective degrees of freedom. By construction the nucleons in
our effective theory are point-like particles; they are inert and have no internal
structure. This is obviously not the full truth—nucleons are extended objects with
a typical root-mean-square radius of their charge distribution (for the proton) of
around 0.8 fm, and they have internal excitations, e.g., the � resonances at about 300
MeV of excitation energy. For the effective theory of point-nucleons, this implies (i)
a limited range of applicability and (ii) the need to account for corrections to the
relevant observables.

In a proper effective theory, these points should follow in a systematic and
transparent fashion from the formulation of the theory. The range of validity should
be clearly defined from the outset, and the theory should provide a consistent way to
construct the corrections to observables resulting from the unresolved physics. One
of the significant advances in nuclear structure theory over the past decade addresses
exactly this point—with the advent of chiral effective field theory, the step from
QCD to the world of point-nucleons has become a well-defined procedure. Nuclear
structure calculations have matured from a model to an effective theory.
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Interactions The simplifications with respect to the degrees of freedom necessarily
entail complications with respect to the interactions among them. The effective
interaction of point-nucleons also has to encapsulate the complicated quark-gluon
dynamics at the level of QCD that is not resolved in our description. The dynamics
of quarks and gluons creates the net interaction that two or more nucleons
experience, and this net effect has to be mimicked by the effective interaction among
point-nucleons in the effective theory.

This situation is not unique to nuclear structure physics. We find a similar
scenario in molecular physics when describing a system of atoms. Consider, e.g.,
a system of two or more neutral 4He atoms. A simple effective theory could assume
point-like 4He particles, not resolving the complicated internal structure of the
atoms. The effective interaction between the point-atoms has to capture all the
underlying dynamics of the atoms; this is the famous van der Waals interaction
in atomic and molecular physics. The mechanism behind these forces can be
understood intuitively. At large distances the electrically neutral atoms do not
affect each other, and there is no interaction. Only at short distances, the mutual
polarization of their electron distributions induces a net interaction. A similar
mechanism is at work when color-neutral baryons come close enough so that their
quark-gluon distributions overlap.

In atomic physics it is possible to compute the residual interaction among
the atoms from solving the Schrödinger equation for the multi-electron two-atom
problem. In principle this can also be done in QCD, specifically in lattice QCD
simulations. Research along these lines is on the way [1–3] and has shown how
difficult this problem is. For the time being, we have to resort to effective field
theories based on QCD for a description of the nuclear interaction [4]. Chiral
effective field theories (EFT) have become a foundation of modern nuclear structure
theory.

Many-Body Problem Having defined the constituents and their interactions, we
are now in the position to formulate the basic equation that governs the structure
and dynamics of the many-body system, the Schrödinger equation. At this point
we restrict ourselves to a non-relativistic description of the many-body problem—
relativistic effects might enter as specific corrections in the Hamiltonian, but we will
not attempt a fully relativistic treatment.

In most cases we are interested in stationary properties of nuclei, and we do
not need to address the explicit time evolution of the many-body problem. Thus,
the central equation we have to deal with is the stationary Schrödinger equation, in
other words, the eigenvalue problem of the Hamiltonian:

Ĥ |�n〉 = En |�n〉 , (3.1)

where Ĥ is the Hamiltonian of the A-nucleon system, En are the energy eigenvalues,
and |�n〉 are the corresponding eigenvectors. We will use the representation-
independent Dirac notation throughout this lecture. The discrete index n =
0, 1, 2, ... already implies that we are concerned with the discrete part of the
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spectrum of the Hamiltonian, i.e., the bound states of the nucleus. We will not
discuss the continuous part of the spectrum, i.e., the domain of nuclear scattering,
reactions, and resonances in this lecture.

For a more detailed look at the eigenvalue problem, we first have to define the
Hilbert space in which we are working. We consider a system of A indistinguishable
nucleons with spin and isospin degrees of freedom. A typical basis for the
description of the single-nucleon degrees of freedom in a finite nucleus consists of a
spatial part, which encodes position and momentum information, a spin part, and an
isospin part. For the spin part, we simply use the eigenstates of the single-particle
spin operators ŝ and ŝz with quantum numbers s = 1

2 and ms = ± 1
2 . Analogously

for the isospin, we use eigenstates of t̂ and t̂3 with quantum numbers t = 1
2 and

mt = ± 1
2 . For this lecture we will limit ourselves to spherical basis sets |nlml〉

in the spatial degrees of freedom, labeled by a generic radial quantum number n

and orbital angular momentum quantum numbers l and ml . We will couple orbital
angular momentum and spin to obtain total angular momentum quantum numbers j

and m. The coupled single-particle states thus read:

|p〉 = |nljmmt 〉 = |n(l 1
2 )jm〉 ⊗ | 12mt 〉 . (3.2)

We will use the collective indices p, q, ... to label single-particle basis states
throughout this lecture.

When proceeding to the many-body system, we have to take the permutation
antisymmetry of the states for a system of identical fermions into account. The
simplest way to construct a basis of the A-body antisymmetric Hilbert space HA

uses antisymmetrized product states—so-called Slater determinants. Starting from
a complete single-particle basis { |p〉}, we select A different single-particle states
|p1〉, ..., |pA〉 and construct product states for all possible permutations of the
single-particle indices. Summing over all these permutations with appropriate signs
defines an antisymmetrized product state or Slater determinant:

|p1...pA〉 = 1√
A!

∑

π

sgn(π)P̂π |p1〉 ⊗ ...⊗ |pA〉 . (3.3)

Here, P̂π is the permutation operator, which rearranges the single-particle indices
according to the permutation π , and sgn(π) indicates the signum or parity of
the permutation π . The prefactor is chosen such that the many-body states are
normalized provided that the single-particle states are normalized. Note that our
notation does not explicitly indicate the antisymmetric character of the A-body
states |p1...pA〉—antisymmetry is always implied, and we will never go back to
simple product states.

The set of all antisymmetrized product states generated from an orthonormal
single-particle basis automatically provides an orthonormal basis of the antisym-
metric A-nucleon Hilbert space HA. This is very convenient.
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Another very convenient aspect of this basis is the formalism of second quanti-
zation. We can define creation operators â

†
p and annihilation operators âp that add

or remove particles to or from a given Slater determinant |p1...pA〉, automatically
yielding a normalized antisymmetrized (A+1) or (A−1)-particle state, respectively.
We can even construct a complete A-body Slater determinant starting from the zero-
body vacuum state |0〉 through the application of a chain of creation operators:

|p1...pA〉 = â†
p1
· · · â†

pA
|0〉 . (3.4)

The complications of antisymmetry are now hidden in the anti-commutation
relations of fermionic creation and annihilation operators. Finally, creation and
annihilation operators can be used to represent any operator, e.g., the components
of the Hamiltonian, in an elegant way—we will make heavy use of this later on.

Basis Expansion, Truncation, and Convergence Why did we go through these
basic elements from many-body quantum mechanics? Well, they prompt a simple
and powerful strategy for the solution of the many-body Schrödinger equation. This
strategy can be summarized under the label basis expansion and is at the heart of all
methods discussed in this lecture.

Assume we have constructed an orthonormal basis |�ν〉 of the A-nucleon Hilbert
space HA, e.g., the antisymmetrized product states |�ν〉 = |{p1...pA}ν〉 discussed
before. We can immediately use this basis to transfer the abstract, representation-
independent eigenvalue problem (3.1) into a specific representation in the |�ν〉
basis. We can expand the eigenstates |�n〉 in this basis:

|�n〉 =
∑

ν

C(n)
ν |�ν〉 (3.5)

with expansion coefficients C
(n)
ν . Furthermore, we can multiply Eq. (3.1) from the

left with all possible basis vectors 〈�ν | and insert the above expansion of the
eigenstates to obtain a coupled system of algebraic equations:

∑

ν ′
〈�ν | Ĥ |�ν ′ 〉 C

(n)

ν ′ = En C(n)
ν ∀ν , (3.6)

which can be conveniently cast into a matrix equation:

⎛

⎜⎜⎜⎜⎝

〈�1| Ĥ |�1〉 〈�1| Ĥ |�2〉 〈�1| Ĥ |�3〉 · · ·
〈�2| Ĥ |�1〉 〈�2| Ĥ |�2〉 〈�2| Ĥ |�3〉 · · ·
〈�3| Ĥ |�1〉 〈�3| Ĥ |�2〉 〈�3| Ĥ |�3〉 · · ·

...
...

...
. . .

⎞

⎟⎟⎟⎟⎠
·

⎛

⎜⎜⎜⎜⎝

C
(n)
1

C
(n)
2

C
(n)
3
...

⎞

⎟⎟⎟⎟⎠
= En

⎛

⎜⎜⎜⎜⎝

C
(n)
1

C
(n)
2

C
(n)
3
...

⎞

⎟⎟⎟⎟⎠
.

(3.7)
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So the Schrödinger equation or the abstract eigenvalue problem of the Hamiltonian
translates naturally into a standard matrix eigenvalue problem. The input for this
are the many-body matrix elements of the Hamiltonian 〈�ν | Ĥ |�ν ′ 〉 in the basis
of choice, and the output are the energy eigenvalues En and the eigenvectors
(C

(n)
1 , C

(n)
2 , C

(n)
3 , ...)T, which contain the expansion coefficients.

Seems like a pretty straightforward numerical exercise to solve this eigenvalue
problem. The only problem is that the matrix is infinite dimensional. Already
the single-particle basis |p〉 and the single-nucleon Hilbert space H1 are infinite
dimensional, and the A-nucleon basis |p1...pA〉 and the A-nucleon Hilbert space
are even more so.

The way out of this misery are truncations. We discard many-body basis states
based on a specific truncation criterion and, in this way, reduce the infinite-
dimensional basis to a finite set of states. This finite set spans the so-called model
space MA, which is a subspace of HA. There are many ways to define physics-
motivated truncation criteria, and we will dive into this in Sect. 3.5.1. For the time
being and as a simple example, assume that the single-particle basis |p〉 is truncated
to a finite set—in case |p〉 is built from a harmonic oscillator basis, we could simply
limit the principal oscillator quantum number e = 2n+ l ≤ emax with the truncation
parameter emax and discard all single-particle states with e > emax. This renders
the A-body basis finite and defines the full configuration interaction scheme, as
discussed later.

Imposing a basis truncation implies a departure from the exact solution of
(3.1). The solution of the eigenvalue problem in the finite model space is only an
approximation to the exact Schrödinger equation. However, it is a very controlled
approximation, since the full problem and the exact solution are formally recovered
if we include more and more states into the model space and effectively remove
the truncation again, i.e., if we consider emax → ∞ and thus MA → HA.
Obviously, we cannot do this in practical calculations, but we can explore the
dependence of the solution and of all observables on the truncation. Ideally we
would observe convergence, i.e., the observables becoming independent of the
truncation for sufficiently large truncation parameters and model spaces. Whether
or not we are able to reach convergence before the matrix is getting intractably large
will be a central question for later.

Conclusions—Ab Initio So far, we have approached nuclear structure theory from
a bird’s-eye view. However, we have already encountered the key concepts and
difficulties of many nuclear structure methods: basis choice, model space truncation,
convergence, and uncertainty quantification. We have seen enough to discuss the
notorious qualifier “ab initio” that is used as a quality label for many recent nuclear
structure calculations. There is no agreed-upon definition of what qualifies a method
as ab initio, and we will not attempt to provide a rigorous definition. However, we
will mention some aspects relevant for the use of the term.

First, none of the nuclear structure methods qualifies as “ab initio” or “from first
principles” from the perspective of QCD—there are promising attempts to describe
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light nuclei in lattice QCD [1–3], but more work is needed to provide quantitative
results. The baseline for the many-body solutions are Hamiltonians rooted in QCD
but using nucleons as effective degrees of freedom. Today, chiral EFT provides the
most systematic way to establish the connection to QCD. However, the chiral EFT
construction of interactions in itself uses truncations and ad hoc assumptions, which
affect the nuclear observables. Furthermore, chiral EFT interactions come with
parameters, the low-energy constants, that have to be fitted to experimental data.
The selection of data and the experimental uncertainties of the data itself influence
the predicted nuclear observables as well.

Second, all methods for the solution of the many-body problem contain some
level of approximation. For basis expansion methods, the truncation to a finite model
space introduces such an approximation, and there might be additional truncations
and approximations involved. These truncations affect the observables and, there-
fore, necessitate a systematic convergence analysis. The many-body method has to
provide systematic control parameters that govern the transition to a formally exact
solution—for basis expansion methods, this is the transition from the model space
to the full Hilbert space. We have to use these control parameters to demonstrate
that observables are sufficiently converged, i.e., sufficiently independent of the
truncation. Doing this is not straightforward, particularly if multiple truncations and
approximations are involved—the convergence with respect to all of them has to be
addressed; otherwise the calculation is merely an uncontrolled approximation.

Third, the truncations and approximations introduced at the level of the Hamilto-
nian and in the many-body solution are the source of systematic theory uncertainties.
Even though we strive for convergence with respect to all truncations, we will hardly
ever reach complete convergence. Therefore, the remaining systematic uncertainties
in the theoretical predictions have to be quantified. This uncertainty quantification
should be done within the theoretical framework used for the calculation, e.g., by
exploring the convergence behavior with respect to truncations and by translating
this into an uncertainty estimate for each and every observable. In addition, there
might be statistical uncertainties inherited from experimental data used to calibrate
the theory, e.g., for the fit of the low-energy constants in the interaction. Some
many-body methods also produce additional statistical uncertainties through some
statistical sampling process. For a long time, nuclear theory has been (and often still
is) remarkably unconcerned about its uncertainties—a complete discussion of all
sources of uncertainties leading to qualified error bars (not just guesswork) should
be part of all ab initio calculations. If not, the label “ab initio” is not justified.

3.3 Hamiltonian

The foundation of any ab initio calculation is the Hamiltonian Ĥ . As discussed in the
previous section, it is not trivial to write down the Hamiltonian for the nuclear many-
body problem. We have to develop an effective theory framework to construct the
interactions that enter into the Hamiltonian—this theory framework will be chiral
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EFT. Before addressing this, we start with a discussion of the symmetries of the
Hamiltonian and the consequences for the many-body eigenstates.

3.3.1 Intrinsic Hamiltonian

Nuclei are self-bound systems. Unlike the electrons in an atom that are trapped in the
Coulomb field of the central nucleus, the nucleons are held together solely by their
mutual interactions. This seemingly trivial fact already has important consequences;
it implies a number of symmetries.

From the fact that all the relevant interactions are intrinsic, i.e., act only
among the nucleons of the system, we can conclude that the properties of the
nucleus, e.g., the binding or excitation energies, are invariant under basic spatial
transformations. These energies must not change if we place the nucleus at a
different position in space, rotate the nucleus as a whole, or give the nucleus a non-
vanishing total momentum. Therefore, we expect the Hamiltonian to exhibit these
symmetries as well: translational invariance, rotational invariance, and invariance
under momentum boosts, i.e., the Galilean symmetries.

For the construction of the operators for the two- and multi-nucleon interactions
(V̂NN, V̂3N, etc.), these symmetries are taken into account explicitly. In addition,
we have to pay attention to the kinetic energy operator T̂ . Naively, we might write
the kinetic energy in the A-body system as a sum of single-nucleon kinetic energy
operators:

T̂ =
A∑

i=1

1

2m
p̂2

i , (3.8)

where m is the average nucleon mass—in most ab initio calculations, the mass
difference between proton and neutron is not included. This operator is not
invariant under momentum boosts; it contains the kinetic energy associated with
the center-of-mass motion of the nucleus. We have to subtract the operator for the
center-of-mass kinetic energy T̂cm to arrive at the intrinsic kinetic energy:

T̂int = T̂ − T̂cm =
A∑

i=1

1

2m
p̂2

i −
1

2Am

( A∑

i=1

p̂i

)2

=
A∑

i<j

1

2m
(p̂i − p̂j )2 =

A∑

i=1

1

2m(A− 1)
p̂2

i +
A∑

i<j

1

2m
p̂i · p̂j .

(3.9)

The last two expressions show two practical forms of the intrinsic kinetic energy
that are being used in nuclear structure calculations—they are equivalent at the
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operator level. However, within an approximate many-body scheme, the results
obtained with the two forms might differ [5].

With this we obtain the intrinsic Hamiltonian, which obeys all the Galilean
symmetries:

Ĥ = T̂int + V̂NN + V̂3N + · · · . (3.10)

All the many-body approaches discussed in the following will use this type of
Hamiltonian. However, this does not guarantee that the solutions and observables
in a truncated many-body calculation also exhibit these symmetries. We will come
back to this point.

3.3.2 Practitioners’ View on Chiral EFT

For constructing the two- and many-nucleon interaction operators, most ab initio
approaches resort to chiral EFT. There are many excellent reviews on chiral EFT for
nuclear interactions [6–12], and we invite the reader to explore these sources.

We will look at chiral EFT from the perspective of a user, i.e., a many-body
practitioner that needs interactions as input for the solution of the many-body
problem. Even from this vantage point, there are important aspects in the fabric
of chiral EFT we need to be aware of:

• Chiral order: Chiral EFT is built on an expansion in a small parameter and the
organization of contributions in powers of this small parameter, which is called
power counting. The small parameter Q is a ratio of the typical momentum scale
in the system P and the breakdown scale of the EFT �χ and is of the order
Q = P/�χ ≈ 1/3. The expansion of the interaction is truncated at some finite
power in Q. We will call this the chiral order and consider interactions at leading
order (LO) corresponding to Q0, next-to leading order (NLO) with Q2, next-to-
next-to leading order (N2LO) with Q3, and so on.

• Many-body forces: Starting from N2LO, chiral EFT predicts contributions that
correspond to irreducible three-nucleon (3N) interactions. Starting from N3LO
irreducible four-nucleon interactions emerge. The fact that these many-body
forces emerge at higher orders in the expansion indicates that they are expected to
be successively weaker. It is a great success of chiral EFT that these terms emerge
naturally, in a systematic fashion and in a coherent theoretical framework.

• Regulator scheme and scale: Present chiral EFT interactions use a cutoff regu-
larization of divergencies, which is implemented though momentum-dependent
cutoff functions. Different types of momenta in the two- and few-nucleon
system can be used to formulate the regulator functions (relative momenta vs.
momentum transfer). We can even formulate cutoff functions in coordinate space
or hybrid schemes that use different regulators for different terms. In addition to
the regulator scheme, the cutoff scale � can be chosen in a certain range.
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• Fitting strategy: For given chiral order, regulator scheme, and scale, a number
of low-energy constants (LECs) associated with the contact terms have to be
determined, typically by a fit to experimental data. There are different strategies
to approach this parameter fit. One option is to fix all LECs that appear at
the level of two-body interactions in the two-body system, all additional LECs
that appear in three-body interactions using three-body observables, and so on.
Another option is to fix all LECs simultaneously to the selection of observables
in a range of different nuclei. We could also do something in between, fixing the
two-body LECs using two-body observables and the others using a selection of
many-body observables.

• Electroweak operators: Coupling photons and weak interaction bosons to the
constituents of a chiral EFT formulation gives access to electromagnetic and
weak interaction operators that become relevant for the computation of electro-
magnetic or weak transitions in nuclei. They can be derived consistently in chiral
EFT, which is another great advantage of this approach.

All these aspects are active fields of debate and research today. The different
options on chiral order, many-body forces, regulator scheme and scale, and strategy
for LEC determination lead to a growing collection of nuclear interactions from
chiral EFT that are available for nuclear structure calculations [13–23]. On top of
these choices, there are more fundamental questions regarding, e.g., the specific
choice of degrees of freedom or the power counting and renormalizability, that
require further research on the EFT side [24, 25].

For many-body practitioners and those who compare ab initio results, it is
important to understand that there is no “single” or “best” chiral EFT interaction.
There will always be a variety of different realizations that are conceptually equally
valid but might yield different many-body predictions. Even if all other variables are
eliminated, chiral EFT interactions will always come at different chiral orders, and
the convergence of this expansion has to be explored.

3.3.3 Uncertainty Quantification

The different choices at the chiral EFT level provide an opportunity to systemati-
cally quantify uncertainties in the theoretical description of the Hamiltonian and to
propagate these uncertainties to the many-body observables [26].

The paradigm that the theory uncertainties resulting from the modeling of the
Hamiltonian should be quantified has entered ab initio nuclear structure theory only
recently. The tools and protocols for this uncertainty quantification (UQ) are still in
their infancy. Because of the many different design choices and truncations involved
in the construction of chiral interactions, there is no complete protocol yet.

The simplest starting point for an UQ protocol is the convergence of an
observable obtained with an increasing order of the chiral expansion. For the
moment we assume that the many-body calculations are precise, i.e., we do not
consider additional uncertainties due to the many-body approach. Assuming that
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an observable X(n) at chiral order n follows the same power series expansion in
the small parameter Q as the interaction, we can try to estimate the remainder
of the truncated series based on the behavior of the finite number of terms
we have access to. One can use a simple heuristic scheme [27–29] based the
differences �X(n) = X(n) − X(n−1) in the observable in subsequent lower orders,
scaled with expansion parameter to estimate the remainder, e.g., through δX(n) =
max{Q�X(n), Q2�X(n−1), ...}. There are more elaborate schemes using Bayesian
statistics to model the distribution of the remainders [30–32], e.g., the pointwise
model presented in [33] that is being used routinely.

Applying these schemes is simple. However, in order to assess the chiral
truncation uncertainty, e.g., at order N3LO, we have to compute the observable
for all orders up to N3LO. Therefore, the computational cost for predicting the
observable with uncertainties is four times that of computing just the observable.
This is a recurring theme—a systematic uncertainty quantification (in contrast to
guesswork) increases the total computational cost significantly.

Another starting point for UQ is the propagation of the statistical uncertainties
related to the LEC determination into many-body observables. This requires the
construction of sets of interactions (at each chiral order) that sample the LECs
as to reproduce the fit observables within their experimental uncertainties. This
has been explored for N2LO interactions, e.g., in [34]. Obviously, propagating
statistical uncertainties requires an even larger number of many-body calculations
or emulations of such many-body calculations.

3.4 Preconditioning

Now that we have specified the Hamiltonian, we can start to work on the solution
of the Schrödinger equation. The general strategy for this was laid out in Sect. 3.2.
The critical element in all applications of basis expansion methods is convergence
of the observables with model space size. This eventually limits the range of
applicability of specific many-body schemes, because the computational cost grows
dramatically with model space size and eventually defines the largest feasible basis
size. If a specific observable for a given nucleus does not reach a sufficient level
of convergence within these model space limits, then an accurate prediction will
not be possible. So some obvious questions are as follows: Are there ways to
accelerate the convergence of a given basis expansion approach? Is it possible to
precondition the eigenvalue problem such that smaller model spaces are sufficient
to reach convergence? Can this be done without modifying the physics outputs of
such a calculation? Luckily, the answer to all these questions is: yes!

The most direct way to precondition the many-body problem consists in a trans-
formation of the Hamiltonian itself, and we will discuss this option in Sects. 3.4.1
and 3.4.2. Another way to accelerate the convergence in the context of a basis
expansion approach is the choice of an optimized single-particle basis, as explored
in Sect. 3.4.3. Finally, we can simplify the numerical treatment with an approximate
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inclusion of many-body forces through normal-ordering techniques discussed in
Sect. 3.4.4.

3.4.1 Unitary Transformations, Pre-diagonalization,
and Correlations

The most efficient way to precondition the many-body problem in a basis expansion
approach is a transformation of the Hamiltonian itself with the aim to accelerate the
convergence. We want to arrive at converged observables in smaller model spaces,
the smaller the better, because this will allow us to tackle heavier nuclei. However,
the transformation should not change the results of the many-body calculation—all
observables should be invariant under the transformation.

A general class of transformations that formally guarantees the invariance of
observables are unitary transformations. Assume a unitary operator Û with Û†Û =
1̂ = Û Û†. The unitary transformation of the Hamiltonian is then given by:

ˆ̃
H = Û†Ĥ Û . (3.11)

A key property of unitary transformation is that they do not change the spectrum of
the transformed Hamiltonian, i.e., all eigenvalues are invariant. This can be shown
starting from the eigenvalue equation for Ĥ and by inserting Û Û† and multiplying
with Û†:

Ĥ |�n〉 = En |�n〉 ⇔ Û†Ĥ Û Û† |�n〉 = EnÛ† |�n〉 ⇔ ˆ̃
H |�̃n〉 = En |�̃n〉 ,

(3.12)

where we have introduced the transformed eigenstates |�̃n〉 = Û† |�n〉. By solving

the eigenvalue problem of ˆ̃H , we obtain the same energy eigenvalues En with the
transformed eigenstates. Considering other observables obtained from the energy
eigenstates, e.g., through expectation values of an operator Ô , we can perform a
similar calculation inserting Û Û† twice:

On = 〈�n| Ô |�n〉 = 〈�n| Û Û†ÔÛÛ† |�n〉 = 〈�̃n| ˆ̃O |�̃n〉 (3.13)

with the transformed operator

ˆ̃
O = Û†ÔÛ . (3.14)

Thus, also expectation values and matrix elements can be computed using the
transformed eigenstates |�̃n〉 together with the consistently transformed operator
ˆ̃

O.
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In summary, many-body observables are invariant under unitary transformations.
When solving the many-body problem with the transformed Hamiltonian, we only
have to make sure that observables are evaluated with consistently transformed
operators. Two questions remain: (1) What does the unitary transformation have to
do to the Hamiltonian to accelerate model space convergence? (2) How to formulate
and implement such a transformation?

Imagine the matrix representation of the Hamiltonian in a large (infinite) many-
body basis, where all regions of the matrix are populated with non-zero matrix
elements. If we now truncate the basis to a small (finite) model space, and only solve
the eigenvalue problem of the small matrix, the eigenvalues and eigenvectors will
change as compared to the full matrix. This could be avoided if the full matrix would
have a block-diagonal structure, i.e., if the model space would form one block and
the rest of the Hilbert space would form the other block and all the matrix elements
connecting the two blocks would be zero. Solving the eigenvalue problem in the
small model space would reproduce part of the spectrum of the full matrix.

This block diagonalization or block decoupling idea with respect to the actual
model space of the many-body calculation, the so-called P -space, and the excluded
part of the Hilbert space, the so-called Q-space, is at the heart of the Okubo-
Lee-Suzuki (OLS) transformation [35, 36]. In OLS a similarity transformation is
constructed explicitly from the formal decoupling condition, i.e., the requirement
that the transformed Hamiltonian should not connect P - and Q-space. We will
not go into the formalism, but just remark that, by construction, the resulting
transformed Hamiltonian will depend on the nucleus, single-particle basis, and
model space. This results in a non-trivial convergence behavior as function of model
space size, which makes an uncertainty quantification difficult.

It would be advantageous to construct a transformation that performs a pre-
diagonalization in a more generic sense, independent of the specific nucleus and
model space, with a transformed interaction that is universal and can be employed
in any basis expansion approach. Such a method will not provide a perfect block
decoupling of a model space, but it will nonetheless accelerate the convergence and
provide a regular convergence behavior that obeys the variational principle.

A first method that implemented generic unitary transformations in this spirit is
the unitary correlation operator method (UCOM) [37–39]. Here we explicitly design
the operator for the unitary transformation, guided by the structure of the interaction
and the physics of correlations induced in the many-body states. The UCOM
concept highlights the intimate connection between decoupling and correlations.

As a reminder, correlations are a property of many-body states that distinguish
them from states of a system of non-interacting, independent particles. The eigen-
states of a system of non-interacting fermions are Slater determinants, i.e., the basis
states we typically use in our basis expansion approaches. A strongly correlated state
can only be represented by a superposition of a huge number of Slater determinants.
Looking at the structure of the Hamilton matrix, a Hamiltonian with many strong
off-diagonal matrix elements will induce more correlations, because these off-
diagonal matrix elements are generating the admixture of the corresponding basis
states to the eigenstates. A Hamiltonian with fewer off-diagonal matrix elements
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will generate less admixtures, weaker correlations, and faster convergence. An
extensive discussion of UCOM and the concept of correlations can be found in [39].

Over the past decade, a new method has essentially replaced OLS, UCOM,
and similar approaches in many applications. The reason for its success is the
simplicity and flexibility of the underling formulation. This method is the similarity
renormalization group, which will be discussed in detail in the following sections.

3.4.2 Similarity Renormalization Group

3.4.2.1 General Idea
The similarity renormalization group (SRG) transformation is the most elegant
and versatile way to implement a unitary transformation to pre-diagonalize the
Hamiltonian. It goes back to Wegner [40, 41] as well as Glazek and Wilson [42],
and was adopted in nuclear structure physics in 2007 [43] and has thrived since then
[39, 44–46].

We start by formulating a continuous unitary transformation of the initial
Hamiltonian Ĥ :

Ĥ (α) = Û†(α) Ĥ Û(α) , (3.15)

using a unitary transformation operator Û(α), which depends on a continuous
parameter α, the so-called flow parameter. The unitarily transformed Hamiltonian
Ĥ (α) now also depends on the flow parameter. For α = 0 we define an initial
condition requiring that Û(α = 0) = 1̂ so that the evolved Hamiltonian coincides
with the initial Hamiltonian Ĥ (α = 0) = Ĥ .

Formally, we can take the derivative of Eq. (3.15) with respect to the flow
parameter α, which leads to:

d

dα
Ĥ (α) =

( d

dα
Û†(α)

)
Ĥ Û(α)+ Û†(α) Ĥ

( d

dα
Û(α)

)

=
( d

dα
Û†(α)

)
Û(α) Ĥ (α)+ Ĥ (α) Û†(α)

( d

dα
Û(α)

)
, (3.16)

where we have inserted the unitarity relation Û†(α) Û(α) = 1̂ to recover the
transformed Hamiltonian Ĥ (α). We now define the so-called generator η̂(α)

through:

η̂(α) = −Û †(α)
( d

dα
Û(α)

)
. (3.17)
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From the flow parameter derivative of the unitarity relation 1̂ = Û†(α) Û(α),
we find that the generator is an anti-Hermitian operator, i.e., η̂†(α) = −η̂(α).
Combining all this leads to the final form of the SRG flow equation:

d

dα
Ĥ (α) = [η̂(α), Ĥ (α)] . (3.18)

The steps from Eq. (3.15) to this flow equation are very general and do not rely on
any specifics of the transformation. The difference between the flow equation (3.18)
and the direct transformation (3.15) lies in inputs needed to evaluate the transformed
Hamiltonian: For the direct transformation, we have to specify the unitary operator
Û(α); for the flow equation, we only need to define the generator η̂(α).

There are many different ways to define the generator η̂(α). The simplest and
most intuitive choice goes back to Wegner [40, 41] and is based on the commutator
of the transformed Hamiltonian Ĥ (α) with its “diagonal part” Ĥ d(α):

η̂W(α) = [Ĥ d(α), Ĥ (α)] = [Ĥ d(α), Ĥ od(α)] . (3.19)

Identifying the diagonal and off-diagonal parts of the Hamiltonian requires a matrix
representation of the Hamiltonian with respect to some specific basis. One can
identify the diagonal part with the strict diagonal of the Hamilton matrix, or one
can use more general band or block-diagonal structures to identify Ĥ d(α). The off-
diagonal part then follows via Ĥ od(α) = Ĥ (α)− Ĥ d(α).

Irrespective of the specific choice, the flow equation will suppress the off-
diagonal part of the Hamiltonian throughout the flow evolution. If the Hamiltonian
has reached a perfect diagonal form, then Ĥ od(α) = 0, the generator (3.19)
vanishes, and the flow evolution stops—this defines the fix point of the SRG flow
evolution.

This is the most important aspect of the SRG, it provides a simple and elegant
way to pre-diagonalize the Hamiltonian with respect to a specific basis. The choice
of the generator defines which basis this is and how exactly the pattern of diagonal
and off-diagonal pieces should look like. This makes the whole approach very
flexible and intuitive. It turns out that it is much simpler to construct a generator
that drives a specific, physics-motivated pre-diagonalization than to formulate the
corresponding unitary operator directly.

As indicated earlier, instead of thinking in terms of diagonalization, one can
also think in terms of decoupling. Any suppression of off-diagonal matrix elements
entails a decoupling of certain parts of the basis from the rest of the basis. For
a generator that drives the Hamiltonian toward a block-diagonal structure, the
individual blocks would eventually decouple, and it would suffice to solve the
eigenvalue problem for an individual block to recover a part of the exact spectrum.

3.4.2.2 Consistent Observables
When using a unitarily transformed Hamiltonian (3.15) in a subsequent many-body
calculation, we have to make sure that the operators of all other observables of
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interest are transformed consistently (cf. Sect. 3.4.1). Thus, for a generic observable
Ô, we have to evaluate the transformation:

Ô(α) = Û†(α) Ô Û(α) . (3.20)

We can use the same steps as for the Hamiltonian to convert this explicit unitary
transformation into flow equation:

d

dα
Ô(α) = [η̂(α), Ô(α)] , (3.21)

with the initial condition Ô(α = 0) = Ô . Note that the anti-Hermitian generator
η̂(α) has to be the same as in the flow equation of the Hamiltonian. Since the
generator necessarily contains the evolved Hamiltonian, we have to solve the flow
equation for Ĥ (α) as well. To handle this numerically, the two flow equations (3.18)
and (3.21) are solved simultaneously as a coupled system of differential equations of
twice the size. If there is only one other observable of interest, then this is usually no
problem; however, it is getting tedious if several operators have to be transformed.

A more elegant way is the construction of the unitary transformation Û(α) itself.
We can recast equation (3.17), by multiplying from the left with the unitary operator
Û(α) into a differential equation for Û(α):

d

dα
Û(α) = −Û(α) η̂(α) . (3.22)

This differential equation again involves the generator which depends on the
evolved Hamiltonian and, therefore, has to be solved simultaneously with the
flow equation (3.18). However, once this is done, we have a representation of the
unitary operator Û (α) which can be used to explicitly transform any other operator
(including the Hamiltonian) using (3.20).

In a numerical setting where (3.22) is integrated stepwise starting from the initial
condition Û (α = 0) = 1̂, there is also the option to compute the Hamiltonian Ĥ (α)

entering the generator from an explicit transformation (3.15) with the Û(α) obtained
in the previous integration step. In this way we only need to handle one differential
equation.

There is a third way to handle the general transformation of operators, the so-
called Magnus expansion [47, 48]. It is similar to the solution of the differential
equation for Û (α), but this time we first parametrize the unitary operator Û(α) in
terms of an anti-Hermitian Magnus operator �̂(α) through:

Û(α) = exp(−�̂(α)) (3.23)

with �̂(α = 0) = 0. One might be tempted to think that the Magnus operator is
the same as the generator η̂(α)—it is not. Since the generator η̂(α) depends on α

itself and does not commute with itself for different values of the flow parameter, the
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formal integration of (3.22) does not simply yield an exponential of the generator.
This is exactly what the Magnus expansion takes care of.

The Magnus operator can be obtained from the following differential equation:

d

dα
�̂(α) =

∞∑

k=0

Bk

k! [�̂(α), η̂(α)]k , (3.24)

where Bk are the Bernoulli numbers and [X̂, Ŷ ]k = [X̂, [X̂, ...[X̂, Ŷ ]]] are the k-
fold nested commutators, where k gives the number of X̂ factors, i.e., [X̂, Ŷ ]0 = Ŷ ,
[X̂, Ŷ ]1 = [X̂, Ŷ ], etc. We will not be able to handle the infinite series on the right-
hand side exactly, and we have to truncate this series in finite order. The good news
is that no matter how bad this truncation for �̂(α) is, it will not destroy the unitarity
of the transformation. Another technical benefit is that for typical applications, the
differential equation (3.24) is numerically easier to handle (less stiff) and thus more
efficient to solve (fewer and larger steps).

Once we have obtained �̂(α), we still have to evaluate the unitary transformation
of the observables through (3.20) and (3.23). This can be done via another
expansion, the Baker-Campbell-Hausdorff series:

Ô(α) = exp(+�̂(α)) Ô exp(−�̂(α)) =
∞∑

n=0

1

n! [�̂(α), Ô]n (3.25)

using nested commutators. Again, we will have to truncate this infinite series in
numerical applications, but typically this series converges rather quickly. Note that
this truncation might destroy the unitarity of the transformation.

It might seem that the Magnus approach only causes complications, and, indeed,
whenever a direct construction of Û(α) through (3.22) is possible, this will be the
preferred method. However, the Magnus expansion will have important applications
in an advanced version of SRG that will be discussed in Sect. 3.6.1.

3.4.2.3 Free-Space Similarity Renormalization Group
So far, we have discussed a generic version of the SRG at the operator level. The
Hamiltonian in this discussion is the Hamiltonian for the A-body system, and the
basis used to identify diagonal and off-diagonal parts is the full A-body basis, as
introduced in Sect. 3.2, or at least an A-body basis in a huge model space. Therefore,
we have gained nothing regarding to the computational complexity of the problem—
it is more challenging to solve a coupled system of differential equations for the
matrix elements in a huge model space than to solve the eigenvalue problem of
this matrix. We have to use the SRG evolution in a different setting to really gain
something. There are two such beneficial settings that we will discuss in this lecture,
the free-space SRG and the in-medium SRG.

The free-space SRG is built on two design choices: (i) the use of a generator
that yields a basis-independent transformation and implements a more generic
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decoupling idea and (ii) the evaluation of the SRG flow equations in few-body
spaces, typically A = 2 and A = 3, and a subsequent embedding of the evolved
operators into A-body space via a cluster expansion.

Let us first discuss the generator that is most widely used in the free-space SRG.
To construct a universal Hamiltonian for use in a wide array of many-body methods
for different nuclei, we adopt a more generic concept of pre-diagonalization or
decoupling—and the concept that comes to mind is the decoupling of energy or
momentum scales. We could use the diagonal of the Hamiltonian in the eigenbasis
of the total momentum or the kinetic energy operator. Or even simpler, we can use
the kinetic energy operator directly, instead of the diagonal part of the Hamiltonian.
This leads to the SRG generator that was introduced in [43, 49] and is widely used
in nuclear physics:

η̂T (α) = m2

h̄4 [T̂int, Ĥ (α)] , (3.26)

where T̂int is the intrinsic kinetic energy (3.9) and the prefactor including the nucleon
mass m is chosen such that the flow parameter α has units [length4]. For this specific
generator, it is reasonable to associate the flow parameter with a momentum scale
λ, using the relation λ = α−1/4.

Using this generator, the SRG flow equations will drive the Hamiltonian toward a
band-diagonal form in momentum representation. In other words, it decouples low-
momentum states from high-momentum states, since the matrix elements far off the
diagonal in a momentum representation are suppressed. This suppression will also
be effective in other basis representations, e.g., the harmonic oscillator basis; we
will illustrate this in Sect. 3.4.2.5.

3.4.2.4 Cluster Expansion and Cluster Truncation
Despite the simplicity of the equations, we cannot evaluate the flow equations at
the general A-body level. However, we can evaluate them in few-body systems,
typically A = 2 and A = 3, and reconstruct the evolved operator in A-body space
from this in an approximate way. The formal background of this procedure is the
cluster expansion and a cluster truncation.

We can decompose the transformed Hamiltonian Ĥ (α) for the A-body system
into irreducible k-body operators Ĥ [k]:

Ĥ (α) = Ĥ [1](α)+ Ĥ [2](α)+ Ĥ [3](α)+ · · · + Ĥ [A](α) . (3.27)

Each k-body operator of the cluster expansion can be written in its second-quantized
form with k-body matrix elements H

p1...pk
q1...qk

(α) = 〈p1...pk| Ĥ [k](α) |q1...qk〉 and a
product of k creation and k annihilation operators:

Ĥ [k](α) = 1

(k!)2

∑

p1,...,pk

∑

q1,...,qk

H
p1...pk
q1...qk

(α) â†
p1
· · · â†

pk
âqk · · · âq1 (3.28)
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To work out the individual terms of the cluster expansion, i.e., the matrix elements
H

p1...pk
q1...qk

(α) for k = 1, 2, 3, ..., we simply perform the SRG transformation of the
Hamiltonian in Hilbert spaces of increasing particle number A. For A = 1 the SRG
transformation does not do anything, since the generator does not have a one-body
contribution, so the one-body part of the transformed Hamiltonian equals the initial
one-body part. For A = 2 we get a non-trivial transformation of the Hamiltonian.
After subtraction of the previously obtained one-body part embedded into two-
body space, this yields the irreducible two-body part. For A = 3 we again get a
transformed Hamiltonian that, after subtraction of the previously determined one-
and two-body contributions, yields the irreducible three-body part [39, 45, 50].

This scheme continues up to the A-body level. Even if the initial Hamiltonian
only has up to three-body terms, because we only include up to 3N interactions,
the transformed Hamiltonian contains induced terms beyond the three-body level.
These induced multi-particle contributions formally have to be included to warrant
the unitarity of the transformation and to benefit from the exact unitary equivalence
discussed in Sect. 3.4.1. Induced multi-particle interactions are the price to pay for
the improved convergence with the transformed Hamiltonian—a clear case of the
no-free-lunch theorem.

For the SRG transformation, it is easy to see how induced multi-particle terms
emerge. Consider the SRG flow equation (3.18) with the free-space SRG generator
(3.26). Now we solve the flow equation as an initial value problem in a simplistic
Euler-type approach, i.e., we assume a small step �α in the flow parameter and use
a two-point finite difference form to approximate the derivative of the Hamiltonian.
After simple rearrangements we get for one Euler step:

Ĥ (α +�α) ≈ Ĥ (α)+�α
m2

h̄4 [[T̂int, Ĥ (α)], Ĥ (α)] . (3.29)

For simplicity we assume that the initial Hamiltonian Ĥ (α = 0) only consists of
a two-body term, and we recall that the intrinsic kinetic T̂int can also be written
as a two-body operator. We can now use a general property of commutators: The
commutator of an n-body and an m-body operator yields contributions up to (n +
m− 1)-body operators. Thus, the commutator of two two-body operators produces
up to three-body operators, and the nested commutator of three two-body operator
generates up to four-body operators. As a consequence, a single Euler step from
α = 0 to α = �α induces up to four-body terms in the Hamiltonian. And the many
small Euler steps needed to reach a finite flow parameter will induce multi-particle
terms of arbitrary particle rank.

Obviously, we cannot keep all induced multi-particle interactions in practical
calculations. First of all, it is computationally not possible to solve the SRG flow
equations for larger A—we can routinely handle the evolution in three-body space,
but already the evolution in four-body space is not fully tractable at present. Second,
even if the all induced multi-particle terms would be available, their inclusion in the
final many-body calculation would be prohibitive. Already the step from two-body
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to three-body interactions significantly increases the computational complexity,
and some approaches are still not able to include three-body interactions without
additional approximation.

Therefore, we have to truncate the cluster expansion at finite particle numbers
and by this introduce an approximation at the level of the Hamiltonian. Remember
that already the initial Hamiltonian constructed within chiral EFT is subject to
truncations with respect to chiral order and multi-particle interactions, and the
truncation of the cluster expansion can be viewed in the same context. The present
state of the art is to include the chiral interactions up to the three-body level and to
truncate the evolved Hamiltonian also at the three-body level [45, 50, 51].

In this situation it is important to quantify the uncertainties resulting from the
cluster truncation. Luckily, the SRG offers a handy tool to assess these truncation
uncertainties without explicitly calculating the next order of the expansion. We can
use the continuous flow parameter α as a diagnostic. Because the un-truncated SRG
evolution is unitary and preserves the spectrum and the observables, any dependence
of the energy eigenvalues or other observables on the flow parameter in a converged
many-body calculation using truncated operators signals the impact of discarded
multi-particle terms in the cluster expansion [45, 50, 51].

3.4.2.5 Example: SRG Evolution in Three-Body Space
As an illustration of the free-space SRG transformation, we consider the three-body
system, and corresponding illustrations for the simpler two-body system can be
found in the literature [39, 44].

In order to numerically solve the SRG flow equation for the Hamiltonian
in three-body space, we need an appropriate basis to convert the operator flow
equation (3.18) into a set of coupled differential equations for the matrix elements.
We will use a harmonic oscillator basis in the relative coordinates of the three-
particle system, the so-called Jacobi coordinates. The antisymmetrized states of
the relative harmonic oscillator basis, which will be discussed in more detail in
Sect. 3.4.3.1, can be written as |EiJ πM, T MT 〉, with a three-particle principal
quantum number E and a collective quantum number i that encapsulates the orbital
angular momentum and spin degrees of freedom [50].

The matrix elements of the initial chiral NN+3N interaction in this basis for the
quantum numbers of the triton, i.e., J π = 1/2+, T = 1/2, MT = −1/2, are
depicted in the top-left panel of Fig. 3.1. The rows and columns are spanned by the
quantum numbers (E, i), where the apparent block structure results from sections of
the basis with fixed E. The lower-left panel shows the lowest eigenvalues resulting
for the numerical solution of the eigenvalue problem of the corresponding Hamilton
matrix, truncated to E ≤ Nmax—as will be discussed later, this corresponds to a
Jacobi no-core shell model calculation for the triton ground state. We observe that
the matrix has strong off-diagonal matrix elements and that the ground-state energy
needs large model spaces with Nmax � 16 to converge. The next two columns show
the matrix elements and energies for the SRG-evolved interaction for flow parameter
α = 0.04 fm4 and 0.16 fm4, respectively. The matrices clearly show the suppression
of off-diagonal matrix elements with increasing flow parameter—note that although
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Fig. 3.1 Three-body matrix elements (top panels) and ground-state energy convergence (bottom
panels) for the triton with initial and SRG-evolved NN+3N interactions (Modified from [50])

we use the kinetic energy generator (3.26) here, the pre-diagonalization is also
evident in a harmonic oscillator basis. The corresponding plots for the ground-state
energies show a much faster convergence, and now Nmax ≈ 8 is sufficient to reach
the same level of convergence as reached at Nmax ≈ 16 for the initial interaction.
The converged energy is the same in all cases, since the SRG transformation
includes all three-body terms.

3.4.3 Single-Particle Basis

The convergence behavior of basis expansion calculations also depends on the
choice of the underlying single-particle basis. We can try to optimize this basis
with respect to global properties of the nucleus, e.g., its spatial size. Obviously, the
convergence will deteriorate if we choose basis sets spanning length scales that are
completely different from the intrinsic length scale of the nucleus. We will discuss
three types of single-particle bases for the description of finite nuclei: the harmonic
oscillator basis, the Hartree-Fock basis, and a specific variant of a natural orbital
basis.

3.4.3.1 Harmonic Oscillator Basis
The harmonic oscillator (HO) is the default basis for any type of localized many-
body system, simply because the basis functions are analytically known and there
are many special relations for the HO basis that are of critical importance for
practical calculations.
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When we talk about the HO basis, we refer to the eigenstates of a single particle
in a spherical harmonic oscillator potential characterized by an oscillator frequency
� or an oscillator length a = √h̄/(m�). The single-particle HO Hamiltonian reads:

ĥHO = 1

2m
p̂2 + m�2

2
x̂2

. (3.30)

The analytic solution of the eigenvalue problem of this Hamiltonian can be found in
any textbook on quantum mechanics. We exploit spherical symmetry and introduce
orbital angular momentum quantum numbers l and ml plus an addition radial
quantum number n, so that the eigenstates are characterized as |nlml〉. The energy
eigenvalues are given by εnl = h̄�(2n+ l+3/2) = h̄�(e+3/2) with the principal
quantum number e = 2n+l. The spectrum is equidistant with a fixed energy spacing
h̄� between adjacent single-particle levels.

There is one feature that makes the HO unique and directly results from the
fact that the HO Hamiltonian is a quadratic form in position and momentum. If
we consider two classical particles of mass m with positions x1 and x2, then we
can introduce a relative coordinate r = x1 − x2 and a center-of-mass coordinate
X = 1

2 (x1 + x2). We can extend this to the momenta of the two particles p1 and
p2 and define a relative momentum q = 1

2 (p1 − p2) and a total or center-of-mass
momentum P = p1 + p2. We can do the same with the position and momentum
operators in quantum mechanics, and, because of our choice of prefactors, the
canonical commutation relations between position and momentum operators also
hold for the relative and center-of-mass operators.

We can transfer this to the (classical or quantum) Hamiltonian of a system of
two non-interacting particles in a HO potential and write it either using the single-
particle operators or the relative and center-of-mass operators. A simple calculation
shows that:

ĥHO,1 + ĥHO,2 = 1

2m
p̂2

1 +
m�2

2
x̂2

1 +
1

2m
p̂2

2 +
m�2

2
x̂2

2

= 1

2μ
q̂2 + μ�2

2
r̂2 + 1

2M
P̂

2 + M�2

2
X̂

2 = ĥHO,rel + ĥHO,cm.

(3.31)

with the reduced mass μ = m/2 and the total mass M = 2m. In the second
line, we have identified a HO Hamiltonian ĥHO,rel in the relative quantities and a
HO Hamiltonian ĥHO,cm for the center-of-mass quantities. The first line tells us
that a tensor product of two single-particle HO states, i.e., |n1l1ml1〉 ⊗ |n2l2ml2〉,
will be an eigenstate of this two-body Hamiltonian with an energy eigenvalue
h̄�(e1 + e2 + 3). The second line tells us that a tensor product of HO eigenstates
for the relative motion |nrellrelml,rel〉 and the center-of-mass motion |ncmlcmml,cm〉
is also an eigenstate with eigenvalue h̄�(erel+ecm+3). Thus we have two different
eigenbasis sets for the same Hamiltonian, spanning the same two-particle Hilbert
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space with the same degenerate subspaces for the two-body principal quantum
number E2 = e1+e2 = erel+ecm. Therefore, there has to be a unitary transformation
connecting the states of the two bases within each of the degenerate subspaces.
This basis transformation is the celebrated Talmi or Talmi-Moshinsky-Smirnov
transformation [52–54]:

|nrelncm[lrellcm]LML〉 =
∑

n1,n2,l1,l2

〈〈n1n2, l1l2;nrelncm, lrellcm;L〉〉 |n1n2[l1l2]LML〉 ,

(3.32)

where the sum is restricted to erel+ecm = e1+e2. For convenience we have coupled
the two orbital angular momenta in each basis to total orbital angular momentum L

and ML. The transformation coefficients 〈〈n1n2, l1l2; nrelncm, lrellcm;L〉〉 are the so-
called Moshinsky coefficients or harmonic oscillator brackets [55].

Why is this important? Well, we use this transformation all the time in practical
calculations; here are a few examples:

• Computation of NN matrix elements: For the many-body calculation, we need
two-body matrix elements with respect to antisymmetrized product states, as
they appear, e.g., in the second-quantized form of a two-body operator. For
the computation of the matrix elements of the chiral NN interaction or for the
SRG evolution, a relative two-body basis is much more convenient. We can
exploit spherical symmetry and the center-of-mass part of the basis separates,
which drastically reduces the number of matrix elements. Therefore, we first
compute all the relative HO matrix elements, perform the SRG-transformation
in the relative HO basis, and in the end use the Talmi transformation to compute
the matrix elements in terms of single-particle quantum numbers for use in the
subsequent many-body calculation.

• Computation of 3N matrix elements: This is essentially the same story as for
the NN interaction, only more complicated since we have to work with three
particles. We need an extension of the relative and center-of-mass coordinates
for the three-body system, which leads to the so-called Jacobi coordinates.
This construction of the Jacobi coordinates translates into a corresponding
hierarchical nesting of relative HO quantum numbers and the corresponding
Talmi transformations. We refer the reader to [50] for a detailed discussion.

• Center-of-mass separation: We can formally extend the idea of the Jacobi
coordinates and the corresponding relative HO states and associated Talmi
transformation to the many-body level. For an A-body model space spanned
by all Slater determinants of HO single-particle states up to a maximum total
quantum number

∑
i ei ≤ EA,max, there is an alternative basis of relative and

center-of-mass HO states, connected through an A-body Talmi transformation.
The relative HO basis allows for an explicit separation of the center-of-mass
state of the A-body system from the intrinsic state. Therefore, also the Slater
determinant basis in an EA,max-truncated space allows for an exact center-of-
mass separation. We will come back to this point in Sect. 3.5.3.
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All of this is unique to the HO, and, therefore, we will always use the HO basis
at certain stages of the calculation. However, there is also a dark side, related to
the asymptotic behavior of the HO wave functions. The potential term in the HO
Hamiltonian grows quadratically with x = |x|, and, as a result, the HO coordinate
space wave functions fall off with a Gaussian e−x2/(2a2) behavior. This is unrealistic
for a self-bound system. If a localized many-particle system is bound by finite-
range attractive interaction between the particles, then we can invoke a schematic
mean-field-type picture. The average interaction of a particle with all the others
will resemble a potential well, which goes to zero in the exterior. The bound single-
particle wave functions for such a mean-field potential will fall off exponentially and
not like a Gaussian. If we use the HO basis for a many-body calculation, then we
have to correct for the unrealistic asymptotic behavior by superpositions of many
basis states in order to build up the exponential asymptotic. This will slow down
the model space convergence, particularly for weakly bound states and halo nuclei,
which show a prominent exponential tail in their density distribution.

3.4.3.2 Hartree-Fock Basis
An obvious candidate for a more suitable set of single-particle states is the Hartree-
Fock (HF) basis. The HF approximation itself is covered in many textbooks [56,57],
so we keep this discussion brief.

The HF method provides a variational approximation for the ground state of the
A-body system assuming a trial state that consists of a single Slater determinant.
The variational degrees of freedom are the single-particle states that enter into the
trial state. The HF equations that determine the single-particle basis simply result
as Euler-Lagrange equations from the minimization of the expectation value of the
many-body Hamiltonian with the Slater determinant trial state. This simple picture
holds for closed-shell nuclei, where all magnetic substates of the highest j -shell are
occupied. For the purpose of constructing a basis in open-shell nuclei, we can use a
simple constrained HF scheme with an equal-filling approximation for the partially
occupied shell.

The HF single-particle basis definitely has advantages. It is constructed from
a variational calculation for the nucleus and the Hamiltonian under consideration,
using a single Slater determinant that will automatically be a basis state in the
subsequent many-body calculation. We can view the subsequent calculation as an
expansion around this variational optimum. Global properties of the ground state
that are accessible already in the simplified mean-field picture are built into the
many-body basis.

However, it also has some problems. Strictly speaking, the variational approach
only constrains the energetically lowest single-particle states that are occupied in
the HF ground state. Higher-lying single-particle states are only determined through
technical constraints on the density matrix and orthogonality. Furthermore, the HF
potential really resembles a potential well with a finite number of bound states
with negative single-particle energies. In addition there is a continuous spectrum
of solutions at positive energies, representing unbound single-particle states. These
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unoccupied and unbound states depend on the specific way in which we solve the
HF equations. Since our Hamiltonian is specified in terms of HO matrix elements,
we will represent the HF single-particle states in an HO basis expansion with a
truncation with respect to the principal HO quantum number e requiring e ≤ emax
[58]. The underlying HO basis depends on the oscillator frequency �, and this
dependence carries over particularly to the unoccupied and unbound single-particle
states.

Another limitation of the HF basis optimization is the fact that it does not account
for correlations in the many-body state. The HF ground state is a single Slater
determinant without any correlations, and it is typically far above the exact ground-
state energy. Even for SRG-evolved Hamiltonians, HF typically recovers only half
of the binding energy. For a bare chiral Hamiltonian, the ground state might not
even be bound at the HF level. This mismatch influences the structure of the single-
particle states; they are optimized for a badly approximated ground state.

3.4.3.3 Natural Orbital Basis
There is a way to inform the single-particle basis about the correlated ground state
of the system and this way involves so-called natural orbitals. In general, natural
orbitals are single-particle states that result as eigenstates of the one-body density
matrix.

We can start from a highly correlated many-body state |�〉 and compute the
one-body density matrix with respect to a specific single-particle basis, e.g., the HO
basis, via:

ρpq = 〈�| â†
pâq |�〉 , (3.33)

where the creation and annihilation operators of the second quantization are defined
with respect to the HO single-particle basis (or any other computational reference
basis). We can now solve the matrix eigenvalue problem of the one-body density
matrix, which yields eigenvectors that define the natural orbital single-particle basis
and the eigenvalues the mean occupation numbers of the natural orbital states.

The natural orbitals inherit the angular momentum, spin, and isospin structure
of the reference basis and only differ in the radial wave functions, because a scalar
one-body density matrix exhibits a corresponding block structure. So just like in the
spherical or constrained HF case, the new single-particle basis can be expressed via
a simple basis transformation with respect to the radial quantum numbers:

|ν(l 1
2 )jm; 1

2mt 〉 =
∑

n

C
(ljmt )
nν |n(l 1

2 )jm; 1
2 mt 〉 , (3.34)

where ν indicates the natural orbital basis and n the initial HO basis, and the
expansion coefficients C

(ljmt )
nν are given by the eigenvectors of the density matrix.

The interesting question is as follows: how to construct the correlated many-
body state |�〉 that determines the density matrix? Typically, we will consider an
approximation for the ground state of the system for the construction of the natural
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orbitals, although one could also use a density matrix defined for a mixture of
states. In principle one can perform a preparatory ab initio calculation, e.g., in a
configuration interaction framework, to extract a proxy for the ground state. This
has be done [59] but is computationally very expensive.

A much simpler way to construct an approximation for the correlated ground
state is many-body perturbation theory [60]. We can start from a HF calculation and
add low-order perturbative corrections on top of the unperturbed HF ground state:

|�〉 = |�(0)〉 + |�(1)〉 + |�(2)〉 + . . . with |�(0)〉 = |HF〉 . (3.35)

The perturbative corrections |�(i)〉 (i > 0) account for the most important beyond-
HF correlations. Inserting this into the definition of the density matrix and keeping
terms up to the second order in the perturbation yields:

ρ ≈ ρ(00) + ρ(02) + ρ(20) + ρ(11) , (3.36)

where ρ(00) denotes the unperturbed HF density matrix and

ρ(02)
pq = ρ(20)

qp = 〈�(0)| â†
pâq |�(2)〉 , ρ(11)

pq = 〈�(1)| â†
pâq |�(1)〉 . (3.37)

Explicit expressions for these density matrix elements can be found in [60]. With
small computational effort, large single-particle spaces can be used to evaluate
the perturbative corrections, much larger than the model spaces of the subsequent
many-body solution. Thus, the basis can be informed about correlation effects in a
very large model space and effectively supply this information for the many-body
treatment in a smaller space.

We will use the natural orbital basis in connection with different many-body
approaches and compare the performance of the different basis sets in Sect. 3.5.3.

3.4.4 Normal Ordering of Many-Body Interactions

A less obvious preconditioning consists of a rearrangement of the Hamiltonian, the
so-called normal ordering. For some of the many-body methods discussed later,
normal ordering is a necessary step to formulate the basic working equations of the
method in an efficient way. On top of this, normal ordering can be used to define an
approximation for the inclusion of many-body interactions, which presents a major
simplification for all many-body methods.

Normal ordering is the simple process for rearranging the order of creation and
annihilation operators in the second-quantized form of the Hamiltonian (or any
other operator). Let us start with a generic Hamiltonian for the many-body system
containing up to three-body operators:

Ĥ = Ĥ [1] + Ĥ [2] + Ĥ [3] . (3.38)
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As in Sect. 3.4.2.4, Ĥ [k] represents the k-body part of the Hamiltonian. In the second
quantization, it can be written as:

Ĥ [k] = 1

(k!)2

∑

p1,...,pk

∑

q1,...,qk

H
p1...pk
q1....qk

â†
p1
· · · â†

pk
âqk · · · âq1 (3.39)

with the shorthand notation H
p1...pk
q1....qk

= 〈p1...pk| Ĥ [k] |q1...qk〉 for the matrix
elements of the k-body part. This is the standard form of an operator in the second
quantization with the creation operators to the left of the annihilation operators. For
later reference, we call this the vacuum normal-ordered form of the Hamiltonian.
Here, vacuum refers to the vacuum state |0〉, the only state in the zero-particle
Hilbert space, and from the basics of the second quantization, we remember that
âq |0〉 = 0 for all q and thus 〈0| â†

p · · · âq |0〉 = 0 and also 〈0| Ĥ [k] |0〉 = 0.
Now we start to reinterpret and reshuffle things. Assume a Slater determinant

|�〉, which represents a simplistic approximation for the ground state of a closed-
shell system, as obtained, e.g., in a HF calculation. We call this specific Slater
determinant the reference state. Acting with the annihilation operator âq on the
reference state |�〉 can lead to different results, depending on whether the single-
particle state |q〉 is occupied or unoccupied in the reference state. Using an index
convention to distinguish states i, j that are occupied in |�〉, the hole states, from
states a, b that are unoccupied in |�〉, the particle states, we find:

âi |�〉 �= 0 , âa |�〉 = 0 , â
†
i |�〉 = 0 , âa |�〉 �= 0 . (3.40)

Comparing this to the behavior of annihilation and creation operator applied to
the vacuum state |0〉, we observe that âa and â

†
i seem to behave like annihilation

operators with respect to |�〉. Turning this around, |�〉 behaves like a vacuum
state with respect to the set âa and â

†
i of annihilation operators. So let us take

Eq. (3.39) and rearrange the product of creation and annihilation operators such
that at these reinterpreted annihilation operators âa and â

†
i are to the right of the

reinterpreted creation operators â
†
a and âi . This defines normal ordering with respect

to the reference state.
Let us convert this into notation. We start from the Hamiltonian Ĥ and rewrite it

in terms of the normal-ordered Hamiltonian ĤN:

Ĥ = 〈�| Ĥ |�〉 + ĤN (3.41)

and the expectation value of Ĥ with respect to the reference state |�〉 given by:

〈�| Ĥ |�〉 =
∑

i

H i
i +

1

2

∑

ij

H
ij

ij +
1

6

∑

ijk

H
ijk

ijk . (3.42)
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The normal-ordered Hamiltonian ĤN again contains a one-body, two-body, and
three-body part:

ĤN = Ĥ
[1]
N + Ĥ

[2]
N + Ĥ

[3]
N , (3.43)

each normal-ordered with respect to the reference state. We denote the normal-
ordered k-body part as:

Ĥ
[k]
N = 1

(k!)2

∑

p1,...,pk

∑

q1,...,qk

H̃
p1...pk
q1....qk

{
â†

p1
· · · â†

pk
âqk · · · âq1

}
, (3.44)

where the curly brackets enclosing the string of creation and annihilation operators
indicate that this product is arranged in normal order with respect to the reference
state, i.e., that particle annihilation and hole creation operators are to the right of
particle creation and hole annihilation operators. Since the sums over the single-
particle indices pi and qi run over particle and hole states, the curly brackets indicate
that the proper normal order is established for each term of the sum. As a result, we
always have 〈�| {â†

p · · · âq} |�〉 = 0 and 〈�| Ĥ [k]
N |�〉 = 0, in perfect analogy to the

relations for the vacuum state |0〉 in vacuum normal order.
Obviously, we cannot simply change the order of creation and annihilation

operators; there are the fermionic anti-commutation relations that we have to obey.
Changing the order of creation and annihilation operators produces an extra term,
â

†
pâq = δpq − âq â

†
p, which has fewer creation and annihilation operators. Starting

from a k-body operator (in vacuum normal order), there will be contributions of
lower particle ranks in reference normal order, generated by the extra terms. They
show up, in the coefficient H̃

p1...pk
q1....qk

in front of the normal-ordered operators:

H̃
p
q = H

p
q +

∑

i

H
pi
qi +

1

2

∑

ij

H
pij
qij , H̃

pq
rs = H

pq
rs + 1

4

∑

i

H
pqi
rsi , H̃

pqr
stu = H

pqr
stu .

(3.45)

Working out the commutator algebra manually is a tedious job and can be
circumvented by the use of Wick’s theorem. We will not go into details here and
rather refer to the literature [61].

As mentioned already, normal ordering is instrumental for the formulation of
some many-body methods, and we will come back to this in Sect. 3.6. It can
be used to define in approximation for the multi-nucleon terms in Hamiltonian,
specifically for the contribution of the 3N interaction. Looking at the matrix
elements in (3.45), we observe that the three-body contributions H

pqr
stu of the initial

Hamiltonian (in vacuum normal order) enter also into the two-body and one-
body part of the reference normal-ordered Hamiltonian. The three-body matrix
elements in these terms are partially summed over one or two occupied levels,
so effectively selected three-body terms are demoted to lower particle rank. This
covers already an important part of the three-body effects, and we might omit the
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residual normal-ordered three-body term in good approximation. This is the so-
called normal-ordered two-body (NO2B) approximation [51, 62, 63].

The great advantage of the NO2B approximation is that the many-body method
only has to deal with up to two-body terms, which is a significant formal and
computational simplification. We can convert the NO2B Hamiltonian back to
vacuum normal order and obtain:

ĤNO2B = 1

6

∑

ijk

H
ijk
ijk +

∑

pq

(
H

p
q − 1

2

∑

ij

H
pij
qij

)
â†

pâq

+ 1

4

∑

pqrs

(
H

pq
rs +

∑

i

H
pqi
rsi

)
â†

pâ†
q âs âr , (3.46)

which can be readily used in many-body methods that do not employ normal
ordering otherwise (e.g., the no-core shell model).

So far, we have considered a reference state given by a single Slater determi-
nant, a so-called single-reference scheme. What about a reference state that is a
superposition of multiple Slater determinants? The immediate consequence is that
the simple distinction between particle and hole states breaks down. There will
be single-particle states that are occupied in some of the determinants making up
the reference state and unoccupied in others. Despite this complication, there is
a generalization of normal ordering and Wick’s theorem [64–66] for these multi-
determinantal reference states or multi-reference states for short. From a practical
point of view, the partitioning of the summations into particle and hole states is
replaced by unrestricted sums, and the information on the structure of the reference
state is introduced via density matrices. A more detailed discussion of multi-
reference normal ordering and the resulting NO2B approximation can be found in
[67].

3.5 Diagonalization Approaches

After our extensive preparations, it is now almost trivial to define a first class of
many-body methods. Taking the basis expansion idea introduced in Sect. 3.2 liter-
ally, we are left with a large-scale matrix eigenvalue problem for the Hamiltonian
represented in the A-body basis of choice. The Hamiltonian and the many-body
basis make use of the preconditioning methods discussed in the previous section,
which are hidden in the A-body matrix elements. This general class of methods
is typically identified as configuration interaction (CI) or exact diagonalization
approaches. Methods of this class still differ in the way the many-body basis is
truncated and how convergence is assessed.
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3.5.1 Many-Body Truncations

There are different physics-motivated strategies to truncate the many-body basis
and to define the many-body model space. Essentially, different truncation schemes
define different many-body methods. We discuss the main contenders, provide a
physics motivation for the truncation, and comment on uncertainty quantification.

Full Configuration Interaction Starting from a finite set of single-particle states
and building Slater determinants from all possible combinations automatically result
in a finite set of A-body basis states spanning the model space of a so-called full
configuration interaction (FCI) scheme. In the context of the HO basis, we can use
the principal quantum number e = 2n + l to define a single-particle truncation
e ≤ emax with a control parameter emax. The model space of this FCI scheme can
be characterized as:

MFCI = {all Slater determinants |p1p2...pA〉 with epi ≤ emax} . (3.47)

Obviously, in the limit emax → ∞, the FCI calculation will approach the exact
result. Therefore, it is in principle straightforward to assess the convergence
behavior via an explicit variation of emax. We can derive uncertainty estimates or
construct extrapolation schemes to deal with incomplete convergence—all of this is
facilitated by the fact that a single parameter, emax, controls the truncation.

This truncation is motivated by the assumption that energetically high-lying
single-particle states will contribute less to the basis expansion of low-lying eigen-
states. This resonates with the discussion of decoupling of low- and high-energy
states in Sect. 3.4.2. However, the FCI truncation still allows for configurations
where all particles occupy the highest available single-particle states—it is very
unlikely that such configuration will appear in the expansion of low-lying eigen-
states. Not surprisingly, FCI calculations turn out to be rather inefficient in nuclear
structure applications.

Particle-Hole-Truncated Configuration Interaction In addition to the single-
particle truncation of FCI, we use a truncation on the number of particle-hole pairs
that distinguish a basis state from a specific reference state |�〉. The reference state
represents a specific basis determinant, typically the one with the A energetically
lowest single-particle states occupied and can be obtained, e.g., from an HF
calculation. All basis states can be classified according to the number of single-
particle states that differ from the reference state |�〉, or, equivalently, the number of
particle-hole excitations needed to construct a basis determinant from the reference
state.
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We can use the creation and annihilation operators of the second quantization to
define n-particle-n-hole (npnh) excitations on top of the reference state |�〉:

1p1h : |�a
i 〉 = â†

aâi |�〉
2p2h : |�ab

ij 〉 = â†
aâ

†
bâj âi |�〉

3p3h : |�abc
ijk 〉 = â†

aâ
†
bâ†

c âkâj âi |�〉 , (3.48)

where we again use the index convention with i, j, k being hole states that are
occupied in the reference state and a, b, c particle states that are unoccupied in |�〉.
This hierarchy can be easily extended to the A-particle-A-hole level.

Including all levels of this particle-hole hierarchy will simply recover the FCI
model space, and we have only structured the basis in a physically useful manner.
However, we can introduce an additional, physics-motivated truncation by only
keeping basis states up to a specific maximum npnh level and, thus, define the npnh-
truncated model space of CI(npnh):

MCI(npnh) = {all Slater determinants |�〉, |�a
i 〉, |�ab

ij 〉, ...

up to the npnh level with ea, eb,≤ emax} . (3.49)

Note that we still need the emax truncation, since the particle-hole truncation alone
would not render the model space finite. Thus, we have to handle two parameters
that control the truncation of the model space, n and emax. This makes the study
of the convergence as well as the quantification of uncertainties more difficult,
particularly since the inclusion of the next particle-hole level typically increases
the model space dimension by orders of magnitude.

The physics motivation behind the particle-hole hierarchy results from a per-
turbative consideration. We can consider the reference state as a simple first
approximation for the ground state of our system—very much in the spirit of
HF—and, thus, as the lowest-order approximation in a perturbative expansion.
The first-order perturbative corrections to this state will only include up to 2p2h
excitations on top of |�〉 if the Hamiltonian contains up to two-body operators.
This is because the amplitudes of the perturbative correction to the states involve
matrix elements 〈�ab...

ij... | Ĥ |�〉, which vanish beyond the 2p2h level. Second-order
corrections to the many-body states will include up to 4p4h excitations, etc. Thus,
multi-particle-multi-hole states enter in increasing orders of perturbation theory, and
we expect their contribution to be increasingly suppressed.

So far, we have considered the simple situation of a closed-shell system, which
is characterized by a unique Slater determinant as a reference state. For an open-
shell system, the filling of single-particle states in energetic order results in a
partially occupied j -orbit, i.e., not all (2j + 1) magnetic substates are filled. As
a result, there are multiple possible reference Slater determinants with the same
total unperturbed energy—there is a set of degenerate reference states. This trivial
effect has huge consequences; it is at the heart of all the differences between single-
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reference (closed-shell) and much more complicated multi-reference (open-shell)
methods that will be discussed later. At the moment, we are only interested in model
space truncations in a CI framework, and there is an easy fix. Instead of counting
particle-hole excitations with respect to a specific reference state, which will depend
on which of the degenerate reference states we have picked, we count the single-
particle states that are above the last (partially) occupied orbit of the degenerate
reference states. This truncation is sometimes called Tmax truncation, where T is the
number of single-particle states above the last reference orbit. When applied in a
closed-shell situation, the Tmax truncation is equivalent to an npnh-truncation with
n = Tmax.

No-Core Shell Model The previous CI truncations are used across different fields
of quantum physics and quantum chemistry. The truncation we are discussing now,
which define the so-called no-core shell model (NCSM), is more specific to nuclear
physics [68, 69]. In its pure version, the NCSM uses an HO single-particle basis in
combination with a truncation with respect to the total HO energy of the many-body
basis states. This total HO energy is parametrized in terms of a parameter Nmax,
which counts the HO excitation quanta above the lowest-energy HO determinant,
i.e., the reference state. Formally, the number of excitation quanta N is obtained
from:

N =
A∑

i=1

ei − Eref. with Eref =
A∑

i=1

eref
i , (3.50)

where Eref is the total principal quantum number of the lowest-energy reference
configuration whose single-particle state has principal quantum numbers eref

i . Note
that degeneracy of reference determinants in the case of open-shell systems does not
pose a problem here. For the HO basis, the number of excitation quanta N can be
translated into an HO excitation energy by multiplying with h̄�. The NCSM model
space is, thus, defined as:

MNCSM = {all Slater determinants |p1p2...pA〉 with N ≤ Nmax} . (3.51)

Like the FCI scheme, the NCSM model space is based on a truncation with
respect to an unperturbed energy. However, the NCSM uses the total energy of
the many-body basis state, not the single-particle energy. Therefore, high-energy
configurations with all particles in high-lying single-particle states are excluded.

Again, we can resort to perturbation theory to motivate this energy truncation.
Looking at the corrections to the many-body state predicted in perturbation theory,
the contributions of individual states are always scaled by energy denominators,
which correspond exactly to the HO excitation energies N h̄�. Thus, with increasing
N , the contribution of configurations gets more and more suppressed by the energy
denominators. The Nmax truncation, therefore, discards configurations that are
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expected to have small contributions based on a perturbative estimate. In this sense,
the Nmax truncation is much more physics-driven than the simple emax truncation.

Nowadays, the NCSM truncation is also used with other single-particle basis sets
than the HO, for example, the natural orbitals discussed in Sect. 3.4.3.3. In this case,
the Nmax parameter loses its direct connection to the unperturbed energies and is
purely defined on the basis of a pseudo-principal quantum number e = 2n + l.
Nevertheless, it remains a useful and efficient truncation, as the gross picture of
energy scales is still valid. Since the NCSM is the main workhorse among the ab
initio CI methods in nuclear physics, we will come back to it in Sect. 3.5.3.

Valence-Space Shell Model Also the traditional valence-space shell model
(VSSM) of nuclear physics can be viewed as a specific incarnation of the general
configuration interaction idea. It is based on a partitioning of the single-particle basis
into three subsets: core states, valence states, and excluded sates. The many-body
basis is then characterized by two different truncations: (1) a simple single-particle
truncation that eliminates all the excluded single-particle states and (2) a selective
truncation that retains only many-body configurations that have all core states
filled. As a result, the basis configurations of the many-body model space all have
Ac nucleons occupying the same Ac core states, and the states only differ in the
assignments of the Av = A − Ac remaining valence nucleons to the valence
single-particle states. We can summarize the VSSM model space as follows:

MVSSM = {all Slater determinants |p1p2...pA〉 with

{p1, ..., pAc} = core and {pAc+1, ..., pA} ⊂ valence space} .

(3.52)

For shell model practitioners, this definition might sound unfamiliar. Practical
VSSM calculations do not work with an A-body Slater determinant basis, but with
an Av-body basis of the same dimension. Since the same core states are occupied
in all basis states of the model space, their contribution to all relevant many-body
matrix elements can be computed beforehand and absorbed into the remaining
valence-space part of the matrix elements. This is a purely technical step akin to the
normal ordering of operators discussed in Sect. 3.4.4. The reduction to an effective
Av-body problem does not imply additional approximations; it is an equivalent
reformulation of the problem.

Although the VSSM can be viewed as a truncation of the A-body Hilbert
space, its practical applications follow a different philosophy than the other CI-
type approaches. In all ab initio CI approaches, the truncation parameters are
varied in order to assess the convergence toward the full Hilbert space and to
extract model space uncertainties. This is not done in typical VSSM calculations
that work with a fixed valence space that is governed by computational feasibility
and not by convergence considerations. In practice, a systematic variation of core
and excluded space is often not possible, as model space dimensions become
intractable very quickly. Therefore, VSSM calculations are traditionally performed
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in a phenomenological setting, with valence-space interactions fitted to nuclear
observables, e.g., excitation energies, for nuclei in the respective valence shell.
For other observables, e.g., electromagnetic transition strengths and moments,
phenomenological corrections in the form of effective charges are introduced. In
addition to purely phenomenological interactions, effective interactions derived in a
perturbative framework or in a decoupling scheme are being used. In this way, the
connection to the underlying Hamiltonian is retained; however, a quantification of
model space uncertainties generally is still lacking.

Symmetry Reduction For all the truncations discussed so far, we can take into
account symmetries to further reduce the basis dimension. The most important
symmetries for our purpose are charge conservation and rotational invariance.

As a consequence of charge conservation, the number of protons and neutrons is
fixed, and, thus, the total isospin projection MT = Z−N is a good quantum number
of the nuclear eigenstates. In technical terms, there is a simultaneous eigenbasis
of the Hamiltonian and the operator T̂3 = ∑

i t̂3,i for the three-component of the
total isospin. The Slater determinant basis states that span the CI model spaces are
also eigenstates to T̂3, and the eigenvalue is the sum of all single-particle isospin
projections mt , cf. Eq. (3.2). Therefore, only basis states with appropriate MT

contribute to the expansion of the eigenstates, and we can discard all other basis
states from the model space. Obviously, this is a simple and effective way to reduce
the model space dimension without changing the results.

A similar argument applies to the projection M of the total angular momentum
Ĵz = ∑

i ĵz,i . Due to the rotational symmetry of the problem, the Hamiltonian does
not connect states with different M quantum numbers, and the energy spectrum
exhibits a degeneracy with respect to M . Therefore, we can choose a specific
value of M at the beginning of the calculation and only include basis states with
this specific M into the model space. Again, the Slater determinant states are
also eigenstates to Ĵz with eigenvalues given by the sum of the single-particle
projections m.

One could consider going one step further with rotational symmetry. The
Hamiltonian also commutes with the square of the total angular momentum operator

Ĵ
2
; therefore, J is also a good quantum number for the nuclear eigenstates. We could

focus on a specific value of J and limit the model space to basis states with this value
of J . The problem here is that Slater determinants are generally not eigenstates of

Ĵ
2
; therefore, a simple basis-state selection is not possible. One can, however, use

information on a specific target value for J through the choice of M . Usually one
uses M = 0 (for even A) or M = 1

2 (for odd A), because this is compatible with all
possible J values. For targeting larger values of J , one can use M = J , which will
reduce the model space dimension but exclude all eigenstates with J < M .

In order to exploit the good J quantum number, one has to use a J -coupled
basis. The construction of such a basis is much more involved than the simple Slater
determinant basis, and the computation of many-body matrix elements is far from
trivial. Therefore, J -coupled basis sets are rarely used in the CI context. Exceptions
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are J -scheme versions of the valence-space shell model and Jacobi coordinate
version of the NCSM.

A final remark: One can approach the question of symmetries from a completely
different angle. Instead of trying to incorporate the good quantum number into the
basis to reduce the model space dimension, one can break symmetries on purpose
to enrich the basis and include specific correlations and later restore the broken
symmetries explicitly in order to arrive at the nuclear eigenstate. This symmetry-
breaking and restoration strategy is particularly helpful to describe collective
correlations, also called static correlations, such as the intrinsic deformation of a
nucleus.

3.5.2 Importance Truncation

All ab initio CI approaches are eventually limited by the trade-off between
convergence and model space dimension. The model space has to be large enough
to reach acceptable convergence of the target observable, but the computational
cost for the calculation increases rapidly with model space size. With an increasing
particle number A, one quickly faces the situation that the calculation cannot be
converged with numerically tractable basis dimensions. However, there is one more
trick—the selective removal of basis states from the model space using an adaptive,
state-specific, and physics-guided truncation criterion [70, 71].

Assume we target a small number of low-lying eigenstates |�(m)〉 for m =
1, ..., M in a CI calculation for a specific model space. The full calculation would
yield eigenvectors representing the amplitudes C

(m)
ν for the expansion of the target

eigenstates in terms of the many-body basis states |�ν〉:

|�(m)〉 =
∑

ν

C(m)
ν |�ν〉 . (3.53)

Many of the amplitudes will be very small or vanishing, i.e., the corresponding basis
states do not contribute significantly to the target states. If these amplitudes were
known beforehand, we could reduce the basis dimension significantly by discarding
those basis states.

In order to estimate the amplitudes a priori, we use initial approximations of
the target states, the reference states |�(m)

ref 〉, that are typically determined from a
previous CI calculation in a smaller model space Mref:

|�(m)
ref 〉 =

∑

ν∈Mref

C
(m)
ref,ν |�ν〉 . (3.54)

These reference states carry information about the physical properties of the
target eigenstates. Guided by first-order multi-configurational perturbation theory,
we estimate the amplitudes of the individual basis states |�ν〉 /∈ Mref in the
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expansion of the target eigenstate [71]. This first-order perturbative correction for
the amplitudes defines the so-called importance measure:

κ(m)
ν = −〈�ν | Ĥ |�(m)

ref 〉
�εν

, (3.55)

where Ĥ is the full Hamiltonian and �εν is the unperturbed HO excitation energy
of the basis state |�ν〉 [70, 71].

The importance measure combines information about the properties of the target
states, carried by the reference states, about the many-body basis, and about the
Hamiltonian. It is the foundation for the definition of a state-dependent adaptive
truncation of the model space, the so-called importance truncation (IT). We define
the importance-truncated model space MIT(κmin) spanned by all states of the
reference space Mref plus all basis states |�ν〉 /∈ Mref with importance measure
|κ(m)

ν | ≥ κmin for at least one m ∈ {1, ..., M}. The importance threshold κmin
provides an additional truncation parameter, which will be varied later on to
probe the contribution of the discarded basis states. Note that the importance
measure (3.55) is based on the first-order perturbative correction to the states, not on
the perturbative correction to the energies. It is, therefore, not biased to an optimal
description of energies, but aims at an optimal description of the states and, thus, of
all observables.

Depending on the specific flavor of CI, we can use different strategies to set up
the importance-truncated model space. We can use iterative schemes, where the IT-
space is successively refined and expanded by using improved reference states from
a previous IT calculation. For the NCSM a particularly efficient scheme uses the
eigenstate of the next smaller Nmax as reference state for the construction of the IT
model space.

The importance threshold κmin acts as an additional truncation parameter of the
CI model space, and it is guaranteed that in the limit κmin → 0 we recover the
original CI model space. In practical applications, we typically perform calculations
for a sequence of importance thresholds κmin and use an extrapolation of the
observables to vanishing importance threshold to effectively account for discarded
basis states. More details on the practical aspects of IT calculations can be found in
[71, 72].

3.5.3 No-Core Shell Model

Since the NCSM is the most commonly used ab initio CI method in nuclear structure
physics [68, 69], we will discuss the main components of the calculation and
illustrate the convergence behavior in a little more detail.

Setup and Numerics As discussed before, the NCSM uses a basis build from HO
single-particle states and is truncated with respect to the maximum number of HO
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excitation quanta Nmax. This model space has the unique advantage that the center-
of-mass motion can be separated or factorized exactly from the intrinsic state of the
system. Therefore, we can use simple tricks like adding an extra HO Hamiltonian
for the center-of-mass to remove spurious center-of-mass excitations from the low-
lying excitation spectrum. This model space also offers two alternative basis sets
to work with: the Slater determinant HO basis and the relative coordinate or Jacobi
HO basis, mentioned in Sect. 3.4.3.1. The former defines the standard m-scheme
NCSM, which is more universal and applicable to heavier nuclei, and the latter the
Jacobi NCSM, which is very efficient for light nuclei with A � 6 [73]. The standard
NCSM has the advantage of numerical simplicity, e.g., for the computation of matrix
elements, but it requires large basis dimensions. The Jacobi NCSM can realize much
smaller basis dimensions for the same Nmax, because all symmetries, including
translational and rotational invariance, are exploited; however, the computation of
matrix elements is much more complicated and practically feasible only for light
nuclei.

Let us expand on the computational aspects of standard NCSM calculations in
large model spaces. Today, advanced NCSM implementations handle model spaces
with up to 1010 basis states [74, 75], i.e., they tackle the eigenvalue problem of a
1010 × 1010 matrix, which might seem impossible. Storing this full matrix with
single-precision floating-point numbers would require on the order of 108 TB of
storage. Luckily, the Hamilton matrix is very sparse, and we only need to store the
non-zero matrix elements. This is because a Hamiltonian with up to two- or three-
body interactions connects only those pairs of basis states that differ by up to two
or three single-particle states, respectively. As a result, the sparsity decreases with
increasing particle rank of the Hamiltonian, which is why the NO2B approximation
discussed in Sect. 3.4.4 can be useful in the NCSM as well.

These huge basis sizes require an efficient computation of many-body matrix
elements—a significant fraction of the total runtime goes into the computation of the
matrix elements of the Hamiltonian. The next step in the calculation is the solution
of the matrix eigenvalue problem. Since we are only interested in a tiny fraction
of the eigenstates at the lower end of the spectrum, we can use iterative Krylov
subspace methods, like the famous Lanczos or Arnoldi algorithms. Each iteration of
these algorithms requires a matrix-vector multiplication, which can be implemented
efficiently with sparse matrix storage and even with distributed memory schemes.
Only about 10 iterations are needed to converge the lowest eigenvalue, i.e., the
ground state, and for about 100 iterations, we typically get the interesting part
of the low-lying excitation spectrum. If the matrix elements are computed very
efficiently, one can even consider computing them on the fly during the evaluation
of matrix-vector products without ever storing them—this shifts characteristics of
the calculation from being very storage intensive to being very compute intensive.

As for all CI methods, the solution of the eigenvalue problem yields the energies
of the low-lying states and the eigenvectors that contain the coefficients for the basis
expansion of the eigenstates in Eq. (3.5). They can be used in a post-processing
step to evaluate all other observables that are defined in terms of expectation values



124 R. Roth

Fig. 3.2 Comparison of the convergence of NCSM calculations with three different basis sets for
the ground-state energy and point-proton rms-radius for 16O using an SRG-evolved chiral NN+3N
interaction with α = 0.08 fm4 (Modified from [60])

or matrix elements with these eigenstates. Note that ground and excited states are
always obtained on the same footing.

Convergence and Frequency Dependence The model space size is controlled
solely by the truncation parameter Nmax, and we recover the full Hilbert space in
the limit Nmax → ∞. The HO basis has an additional parameter, the oscillator
frequency h̄�, and all observables have to become independent of h̄� in the limit
of large Nmax. However, the choice of h̄� will affect the convergence behavior of
the calculation. An example for NCSM calculations with the HO basis is shown
in the left-hand panels of Fig. 3.2 for the ground-state energy and the point-proton
rms-radius of 16O. The observables are plotted as function of h̄� with different
curves representing different Nmax. For the ground-state energy, we observe the
characteristic monotonic convergence from above—the curves shift downward and
flatten out with increasing Nmax. For the rms-radii, the convergence pattern is
completely different; there is no variational principle that warrants monotonic
convergence, and we observe that, depending on h̄�, the radius converges from
above or below. For both observables there are sweet spots in h̄� which yield the
most rapid convergence. For the energy this is in the range of h̄� = 16–20 MeV
and for the rms-radius at 16 MeV, where the radius is practically independent of
Nmax. We can use these optimal values of h̄� to extract a most converged result
and possibly even improve on it via an extrapolation Nmax → ∞ with quantified
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uncertainties. This shows, however, that we have to perform NCSM calculations for
multiple values of h̄� to explore the frequency dependence of each observable.

Basis Optimization What does the convergence look like with the other single-
particle basis sets? Of course, with the HF and the natural orbital states discussed
in Sect. 3.4.3, we lose the formal properties of the HO, e.g., the exact separation of
intrinsic and center-of-mass degrees of freedom. We also do not have the equidistant
energy spectrum and the interpretation of Nmaxh̄� as unperturbed excitation energy
anymore, but we can still set up an Nmax-truncated model space based on the
quantum numbers of the single-particle states, using the pseudo-principal quantum
number e = 2n+ l to evaluate Nmax. As discussed in Sect. 3.4.3, we still use the HO
to represent the single-particle states of these optimized basis sets; therefore, there
is still an h̄� parameter involved.

The NCSM results for 16O with the HF and the natural orbital basis are
depicted in the center and right-hand columns of Fig. 3.2. The convergence of the
ground-state energy with the HF basis shows an anomalous pattern: the frequency
dependence is reduced, but the energies drop almost linearly with Nmax, and the
Nmax = 10 results are well above the corresponding HO energies. This is related to
the pathologies of the HF basis discussed in Sect. 3.4.3.2, which is not suitable for
NCSM calculations.

The situation is different with the natural orbital basis. As evident from the right-
hand panels of Fig. 3.2, energies and radii are, for all practical purposes, independent
of h̄�. The Nmax-convergence of both observables is comparable to the convergence
with the HO basis for the optimal h̄�. This is a great result! We do not need to
optimize h̄� anymore; this is done implicitly by the natural orbitals already, because
it contains global information on the nucleus, such as its size.

Oxygen Isotopic Chain Using the natural orbital basis, we can attempt large-scale
NCSM calculations that reach the limit of particle numbers the NCSM can handle.
We consider the oxygen isotopic chain from the neutron-deficient 14O to 26O beyond
the neutron dripline, and the results are summarized in Fig. 3.3. Because of the
preconditioning, using the natural orbital basis with an SRG-evolved Hamiltonian,
we are close to convergence for Nmax = 10, and simple exponential extrapolations
can be used to obtain a final energy with an uncertainty estimate. Reaching these
large Nmax parameters for A ≈ 20 systems requires the IT scheme discussed in
Sect. 3.5.2. The right-hand panel of Fig. 3.3 shows the extrapolated ground-state
energies for calculations with explicit 3N terms in the Hamiltonian in comparison
to the NO2B approximation. We observe a small overestimation of the ground-state
energy by 1–2 MeV when using the NO2B approximation, which is acceptable
given that the NCSM calculation speeds up by a factor of 10 due to the increased
sparsity of the Hamilton matrix.
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Fig. 3.3 NCSM calculations for the ground-state energies of oxygen isotopes. Left: Convergence
of the energy as function of Nmax using the natural orbital basis together with an exponential
extrapolation. Right: Extrapolated ground-state energies obtained with the full 3N interaction and
with the NO2B approximation in comparison to experiment

For going much beyond the oxygen isotopes, we have to resort to a different
many-body strategy—we will move from diagonalization to decoupling.

3.6 Decoupling Approaches

We have already established the conceptual relation between diagonalization
and decoupling during the discussion of unitary transformation and the SRG in
Sect. 3.4.2. Now we transfer this directly to the methods for the solution of the many-
body problem. The CI approaches discussed in the previous section use the concept
of diagonalization—we construct a matrix representation of the Hamiltonian and
solve the matrix eigenvalue problem, which is equivalent to a diagonalization of the
matrix. Typically we will only extract a few low-lying eigenvalues and eigenvectors,
which can be viewed as a selective diagonalization of a few rows and columns of the
matrix. This structure of the matrix could also be viewed as a specific decoupling,
i.e., a suppression of the off-diagonal matrix elements that connect the low-lying
states with the rest of the model space.
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3.6.1 In-Medium Similarity Renormalization Group

The most obvious implementation of the decoupling strategy is the SRG framework
discussed in Sect. 3.4.2. We can use the SRG flow equation to drive a continuous
decoupling of a selected state or subspace from the rest of the model space.
In contrast to the free-space SRG, we now aim at a pre-diagonalization of the
Hamiltonian in A-body space. As mentioned earlier, the direct solution of the flow
equations for the Hamiltonian in an A-body CI-type matrix representation is neither
advantageous nor feasible. Therefore, we combine the SRG flow equation with
the normal ordering of the Hamiltonian and a truncation analogous to the NO2B
approximation discussed in Sect. 3.4.4. This results in the so-called in-medium
similarity renormalization group (IM-SRG) [76–80].

Let us start with the single-reference formulation of normal ordering suitable for
closed-shell nuclei. We define a reference state |�〉 as a single Slater determinant
constructed, e.g., in a previous HF calculation or with a natural orbital basis. We
convert the relevant operators for the formulation of the SRG flow equation into
normal-ordered form with respect to this reference state and truncate after the
normal-ordered two-body terms, i.e., the Hamiltonian:

Ĥ (s) = E(s)+
∑

pq

H
p
q (s) {â†

pâq} + 1

4

∑

pqrs

H
pq
rs (s) {â†

pâ†
q âs âr} . (3.56)

and the anti-Hermitian generator

η̂(s) =
∑

pq

η
p
q (s) {â†

pâq} + 1

4

∑

pqrs

η
pq
rs (s) {â†

pâ†
q âs âr} . (3.57)

The Hamiltonian, the generator, and all their matrix elements are functions of the
IM-SRG flow parameter s (we reserve α for the free-space SRG flow parameter).
The zero-body part of the Hamiltonian, i.e., the expectation value of the Hamil-
tonian in the reference state, is denoted by E(s). These normal-ordered operators
enter in the IM-SRG flow equation, which looks just like the general SRG flow
equation (3.18):

d

ds
Ĥ (s) =

[
η̂(s), Ĥ (s)

]
. (3.58)

After working out the commutator with normal-ordered operators and truncating
again after the two-body level, we obtain a system of coupled first-order differential
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equations for the normal-ordered zero-body, one-body, and two-body matrix ele-
ments of the Hamiltonian:

d

ds
E =

∑

pq

η
p
q H

q
p (np − nq)+ 1

2

∑

pqrs

η
pq
rs Hrs

pqnpnq n̄r n̄s

d

ds
H 1

2 =
∑

p

[
η1

pH
p

2 + (1 ↔ 2)
]
+

∑
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)
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pqH
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]
, (3.59)

where we have omitted the flow parameter arguments for brevity. We have intro-
duced single-particle occupation numbers np ∈ {0, 1} and n̄p = 1 − np of the
reference state to effectively distinguish hole and particle states. Note that the
external single-particle indices that enter on the left-hand side are simply denoted
by numbers to easily distinguish them from the additional summation indices.

We have not specified the generator η̂(s) yet, but we can draw on our discussion
in Sect. 3.4.2. The simplest choice for η̂(s) is again the Wegner ansatz (3.19):

η̂W(s) = [Ĥ d(s), Ĥ (s)] = [Ĥ d(s), Ĥ od(s)] (3.60)

with a commutator of the diagonal parts Ĥ d(s) and off-diagonal parts Ĥ od(s)

of the Hamiltonian. The Wegner generator is not very efficient, and in practical
applications, other choices, mainly the imaginary-time and White generators, are
being used. We refer to the literature for more details [78–80]. For all generators we
still have to decide what we consider as diagonal and off-diagonal; this defines the
decoupling pattern.

The single-reference IM-SRG for closed-shell nuclei uses a simple and extreme
decoupling pattern. The off-diagonal part of the Hamiltonian is everything that
connects the reference state |�〉 to any other basis state. In the language of the
matrix elements H

q
p (s) and H rs

pq(s), all matrix elements that connect particle and
hole states are considered off-diagonal. Consequently the IM-SRG aims to decouple
the reference state from all particle-hole excitations. This is illustrated with an actual
IM-SRG evolution for 16O in Fig. 3.4. The top row depicts matrix representations of
the Hamiltonian in a particle-hole CI basis with increasing flow parameters marked
by triangles. The flow evolution will selectively diagonalize the matrix with respect
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Fig. 3.4 Illustration of an IM-SRG evolution for 16O. The bottom panel shows the flow parameter
dependence of the zero-body part E(s) of the Hamiltonian in comparison to the NCSM result for
the ground-state energy. The upper panels depict a part of the evolved Hamiltonian in a particle-
hole basis representation for different values of s. Each circle indicates a non-vanishing matrix
element, and its area encodes the absolute value of the matrix element

to the first row and column with the matrix element 〈�| Ĥ (s) |�〉 on the diagonal.
The lower panel shows the evolution of this matrix element, which constitutes zero-
body part of the flowing Hamiltonian E(s) = 〈�| Ĥ (s) |�〉. With increasing flow
parameter, E(s) first decreases and then stabilizes once the decoupling is achieved.
In this decoupled regime, E(s) corresponds to an eigenvalue and directly represents
the ground-state energy of the system.

Addressing other ground-state observables, e.g., the rms-radius, requires more
work. As discussed in Sect. 3.4.2.2, we have to transform the matrix elements of the
observable consistently using the same IM-SRG flow evolution. At this point the
Magnus formulation of the flow equations comes in handy (cf. Sect. 3.4.2.2) and is
used in many state-of-the-art IM-SRG implementations.

The numerical character of IM-SRG calculations is very different from the
CI or NCSM approaches discussed before. We are dealing with an initial value
problem for a system of coupled first-order differential equations (3.59) for the
matrix elements of the normal-ordered Hamiltonian. Similar to FCI, the single-
particle basis has to be truncated to arrive at a finite set of equations. Beyond
the m-scheme formulation discussed here, we can use angular momentum-coupled
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matrix elements and exploit their symmetries in order to reduce the number of
equations drastically. In this way, large single-particle basis sets become tractable
with moderate computational effort. Note that the particle number A does not
directly affect the dimension of the system of differential equations (3.59), so heavy
nuclei are accessible in principle.

A final comment regarding uncertainties: Multiple truncations are being used
in the IM-SRG framework—the truncation of the single-particle basis, the NO2B
approximation of the initial Hamiltonian, the NO2B truncation of commutator
terms leading to the flow equations, and further truncations at the level of the 3N
matrix elements entering the calculation. All these truncation potentially affect the
results, and it is difficult to quantify them explicitly within the IM-SRG method.
Therefore, comparisons with other many-body approaches, e.g., the NCSM as
shown in Fig. 3.4, are important to gauge the accuracy.

3.6.2 In-MediumNo-Core Shell Model

The single-reference IM-SRG formulation is rather limited, and we would certainly
like to address excited states and open-shell nuclei as well in an IM-SRG framework.
One option is to use the single-reference IM-SRG formulation in conjunction with
the VSSM [81, 82]. Here the IM-SRG is used to decouple the valence space from
the closed-shell core and from the excluded space. This approach has been used
successfully in a range of different applications, but it inherits the limitations of the
VSSM discussed in Sect. 3.5.1.

A more powerful option is the use of a multi-reference formulation of the
IM-SRG. It results from the combination of the SRG flow equations with multi-
reference normal ordering, mentioned in Sect. 3.4.4. Instead of being limited
to single-determinant reference states, we can now use much more elaborate
reference states, tailored for open-shell situations. The first formulation of a
multi-reference IM-SRG approach employed reference states from particle number-
projected Hartree-Fock-Bogoliubov calculations, which give access to semi-magic
isotopic chains [83,84]. However, we can go further than this and combine the multi-
reference IM-SRG with reference states from the NCSM. This will lead to a new
hybrid ab initio method, the in-medium no-core shell model (IM-NCSM) [85].

We will not go into the equations for the general multi-reference IM-SRG but
refer to the literature [80, 85]. Compared to the single-reference equations (3.59),
the information on the reference states is encoded in density matrices in addition
to the occupation numbers, which directly result from the multi-reference normal
ordering. For the IM-NCSM, we use an NCSM eigenstate for a small model space,
typically Nmax = 0 or 2 as reference state. The reference state already contains a
significant amount of correlations, and we control the complexity of the reference
state through the size of the model or reference space the state is obtained from.
Since we will be using an angular momentum-coupled formulation of the multi-
reference flow equations, we will limit ourselves to reference states with J = 0
leading to scalar density matrices.
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Fig. 3.5 Illustration of an IM-NCSM evolution for 12C. The bottom panel shows the flow
parameter dependence of the zero-body part E(s) as well as NCSM results for the ground-state
energy obtained with the evolved Hamiltonian in different model spaces. The upper panels depict
a part of the evolved Hamiltonian in an NCSM basis representation for different values of s. Each
circle indicates a non-vanishing matrix element, and its area encodes the absolute value of the
matrix element

The multi-reference IM-SRG flow evolution will decouple the reference space
from the rest of the model space. This is illustrated in Fig. 3.5 showing the flow
evolution for 12C with an N ref

max = 0 reference space. The upper panels depict a
part of Hamiltonian in the NCSM many-body basis at different flow parameters.
The upper-left corner of the matrix shows the N = 0 sector of the matrix, the rest
belongs to the N = 2 subspace. We observe that the N = N ref

max = 0 block is
decoupled from the rest of the model space throughout the flow evolution, i.e., the
off-diagonal blocks are suppressed. As a result of the IM-SRG evolution, we obtain
an approximately block-diagonal Hamiltonian, which serves as import for a second
NCSM calculation to extract observables. The Nmax-convergence of the ground-
state energies obtained in these NCSM calculations at different points in the flow
evolution is depicted by the colored symbols in Fig. 3.5. At small flow parameters,
we observe the usual slow convergence of a standard NCSM calculation, with a
HF basis in this case. However, with increasing flow parameter, the convergence
accelerates up to a point, where all calculations starting from Nmax = 0 provide
the same result. This is the regime where the decoupling of the Nmax = 0 block is
complete, and, therefore, already the diagonalization within this block provides the



132 R. Roth

converged ground-state energy. The converged ground-state energy is stable over a
range of flow parameters but starts to change at very large s signaling the impact of
induced normal-ordered multi-particle contributions that have been truncated in the
flow equations.

The combination of a NCSM calculation for the construction of the reference
state, the multi-reference IM-SRG evolution for the coupling of the residual model
space, and another NCSM calculation for the extraction of converged observables
is very powerful. The final NCSM calculation gives access to exited states and
to all relevant observables. Again, the operators for other observables, e.g., radii
or electromagnetic properties, have to be transformed consistently in the IM-SRG
evolution and can use a Magnus formulation of the multi-reference IM-SRG for this.

The quantification of many-body uncertainties is more difficult in the IM-
NCSM than in the NCSM, since multiple truncations are involved. Nevertheless,
we can construct uncertainty quantification protocols that use the dependence of
observables on the main control parameters of the calculation, i.e., N ref

max, Nmax, and
s. To validate these protocols, we can use comparisons to other ab initio methods
with known uncertainties. This is illustrated in Fig. 3.6 for the ground-state energies

Fig. 3.6 IM-NCSM calculations for the ground-state energies of oxygen isotopes in comparison
to the corresponding NCSM results (cf. Fig. 3.3). For odd isotopes the IM-NCSM calculation uses
a particle-attached or particle-removed scheme starting from even J = 0 reference states. All
calculations use an SRG-evolved chiral NN+3N interaction with α = 0.08 fm4
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Fig. 3.7 IM-NCSM and NCSM results for the excitation spectra of selected carbon and oxygen
isotopes as function of Nmax. All calculations use an SRG-evolved chiral NN+3N interaction with
α = 0.08 fm4. The bands shown for the IM-NCSM results provide an indication of the IM-SRG
flow parameter dependence (Modified from [85])

of oxygen isotopes in comparison to the NCSM results discussed before. We
observe a very good agreement between the two calculations. The small deviations
correspond to the expected effect of the NO2B truncation on the order of 2 MeV.
A similar comparison for excitation energies is presented in Fig. 3.7, where panel
shows the IM-NCSM convergence on the left-hand side and the NCSM convergence
of the right-hand side. For those states that are well converged, we again observe
good agreement; however, some states converge slowly or are sensitive to the flow
parameter of the IM-SRG evolution as indicated by the shaded bands. A prominent
example is the 0+ state in 12C, which has large many-body uncertainties in both
NCSM and IM-NCSM.
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The IM-NCSM provides access to the same range of observables as the NCSM,
for ground excited states and for open and closed-shell systems all on the same
footing. Since Nmax-convergence can be reached in very small model spaces, e.g.,
Nmax = 0 or 2, much heavier nuclei up into the calcium region can be described
with moderate computational effort.

3.7 Things Left Out

Unfortunately, we could not cover all of the recent developments in ab initio nuclear
structure theory, not even in the domain of basis expansion methods. Therefore, we
would like to provide a few references to recent review articles for filling these gaps.

In the group of decoupling methods, another prominent and important member
is coupled-cluster theory, which shares some aspects with the IM-SRG and is a
standard method in many fields of quantum many-body physics and chemistry.
We refer to [86] for an overview. Another medium-mass method used in nuclear
structure theory is based on propagator theory and known as self-consistent Green’s
function method. A recent pedagogical review can be found in [87]. A big
group apart from the diagonalization and the decoupling approaches are methods
built on many-body perturbation theory. There are many different incarnations of
perturbation theory, also in hybrid schemes combined with other ab initio methods
like the NCSM. A comprehensive overview can be found in [88]. Beyond the basis
expansion methods, there is an exciting progress on quantum Monte Carlo methods
for finite nuclei, presented, e.g., in [89]. Moreover, lattice EFT methods, merging
chiral EFT directly with lattice simulation techniques, have provided exciting results
[90]. A nice overall summary of the current state of ab initio methods is provided in
[91].

3.8 The Future of Ab Initio Nuclear Structure

Instead of a summary, we provide a brief and somewhat biased outlook into the
future of ab initio nuclear structure theory. We are at a point where the focus of
the research work in this field is shifting. Over the past decade, the focus was on
the development of ab initio frameworks that make calculations possible, i.e., that
extend the reach of ab initio methods to heavier nuclei, open-shell systems, excited
states, electromagnetic observables, etc. These developments will continue, but the
focus is shifting to methodological advances that make calculations precise and
accurate.

Discussing the precision of ab initio calculations requires the quantification of all
the theory uncertainties that accumulate on the way from the chiral EFT formulation
of the interactions to the many-body observables. Throughout the lecture we have
discussed individual sources of uncertainties and ways to quantify them within the
respective framework. All of this has to be propagated through the whole ab initio
toolchain to the eventual observable. Illustrations of how uncertainty quantified ab
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Fig. 3.8 NCSM calculations for the excitation spectra of p-shell nuclei using a family of nonlocal
chiral NN+3N interactions up to N3LO for cutoff � = 500 MeV. The excitation energies at N2LO
and N3LO are shown with uncertainty bands extracted from the order-by-order behavior of the
chiral expansion (Modified from [14])

Fig. 3.9 IM-NCSM calculations for the ground-state energies and point-proton rms-radii of even
oxygen isotopes using a family of nonlocal chiral NN+3N interactions up to N3LO for three
different cutoffs. Shown are the results at NLO, N2LO, and N3LO. The results for the higher order
are shown with uncertainty bands that include the chiral truncation uncertainty and the many-body
uncertainties (Modified from [14])

initio results will look like are shown in Figs. 3.8, 3.9, and 3.10. We apply the full
range of ab initio methods discussed in this lecture, starting from the NCSM for the
description of light nuclei and their excitation spectra in Fig. 3.8, via the description
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NLO

N2LO

N3LO

=450 MeV =500 MeV =550 MeV

Fig. 3.10 IM-SRG calculations for the ground-state energies and point-proton rms-radii of
closed-shell isotopes up to 78Ni using a family of nonlocal chiral NN+3N interactions up to N3LO
for three different cutoffs. See Fig. 3.9 for details (Modified from [14])

of beyond p-shell nuclei in the IM-NCSM in Fig. 3.9, to the study of medium-mass
closed-shell nuclei in the IM-SRG in Fig. 3.10

All calculations use a family of chiral NN+3N interactions, presented in [14],
that allow for a systematic variation of the chiral order and the cutoff and, thus,
enable a quantification of uncertainties due to the truncation of the chiral expansion.
To this end, the many-body calculations have to be repeated for each chiral order
and each cutoff, i.e., the computational cost multiplies. This is the price to pay
for assessing the uncertainties related to the input interaction, an aspect that was
not addressed quantitatively in the past generations of ab initio calculations. The
results presented in Figs. 3.8, 3.9, and 3.10 show that these uncertainties can
be sizable; in most cases the chiral truncation uncertainties are larger than the
many-body truncation uncertainties. Therefore, increasing the precision of the
calculations primarily requires a reduction of the uncertainties associated with the
input interactions. Work along these lines is under way with chiral EFT interactions
that include conceptual improvements and higher orders [92, 93].

Assessing the accuracy of ab initio calculations, i.e., the agreement with
experiment, once the precision is acceptable, i.e., once theory uncertainties are small
enough to enable meaningful comparisons, is a next step. With the precision of the
present calculations, all observables are in agreement with experiment within the
estimates uncertainties. With an improved precision, this can change, and we might
find discrepancies between theory and experiment, hinting at weak links in the chain
of ab initio tools that connect nuclear structure observables to the underlying theory
of the strong interaction.
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4Nuclear Data and Experiments for Astrophysics

Anu Kankainen and Stephane Goriely

Abstract

Nuclear astrophysics aims to understand the origin of elements and the role of
nuclear processes in astrophysical events. Nuclear reactions and reaction rates
depend strongly on nuclear properties and on the astrophysical environment.
Nuclear inputs for stellar reaction rates involve a variety of nuclear proper-
ties, theoretical models, and experimental data. Experiments providing data
for nuclear astrophysics range from stable ion beam direct measurements to
radioactive beam experiments employing inverse kinematics or indirect methods.
Many properties relevant for astrophysical calculations, such as nuclear masses
and β-decays, have also been intensively studied. This contribution shortly
introduces selected astrophysical processes, discusses the related nuclear data
needs, and gives examples of recent experimental and theoretical efforts in the
field.

4.1 Origin of Elements and Nucleosynthesis Processes

4.1.1 The Composition of the Universe

Our knowledge of the composition of the Universe in general, and of our Solar
System in particular, results almost entirely from the analysis of electromagnetic
spectra originating from the various observable sources in the Universe, i.e., the
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galaxies, the interstellar medium, and the stars of all types (including first of all, our
sun) but also from the minute portion of matter which is accessible to the human
kind, i.e., meteorites, planets (the Earth and the Moon in particular), energetic solar
particles, and the galactic as well as extra galactic cosmic rays. Information provided
by such sources on the present composition of the Universe can be found in Refs. [1–
4].

One of the fundamental developments resulting from the various observations
performed for the last decades is found in the determination of the composition of
our own Solar System at the time of its formation some 4.6 billion years ago [5–8]. It
is principally based on a special class of meteorites called carbonaceous chondrites
of type CI1, considered as the most unaffected sample of matter accessible to
man and representative of the primitive solar material. The analysis of the solar
spectrum is in good agreement with the meteorite analysis and helps in addition to
determine the abundances of some volatile elements, such as H, He, C, N, O, and Ne,
which cannot be measured in meteorites reliably. In some cases (Ar, Kr, Xe, Hg), it
remains difficult to extract accurate abundances from observational data, and some
theoretical consideration is then required. From the primitive solar composition, it
is possible to understand the differences observed today in the various constituents
of the Solar System calling for the numerous physico-chemical and geological
processes having taken place for the last 4.6 billion years. If the elementary
composition appears relatively diversified among the various constituents of the
Solar System, a very high homogeneity of the isotopic composition is found. For
this reason, the isotopic composition of the terrestrial matter is generally used
to determine the abundance of the nuclides in the Solar System. The resulting
abundance distribution is shown in Fig. 4.1.

Figure 4.1 presents some interesting features. In particular, H and He are the
most abundant species in the Solar System. In contrast, Li, Be, and B are extremely
underabundant in comparison with the neighboring elements. For nuclei heavier
than C, the abundances decrease with increasing atomic numbers A. On top of this
general decreasing trend, there are superimposed abundance peaks, with the most
prominent peak found for Fe. For A ≤ 56, secondary peaks every multiple of 4
can be seen, while above Fe a large peak is observed around 80 ≤ A ≤ 90 and
two double peaks at A = 130–138 and A = 195–208. In the A � 50 region,
the abundances are also characterized by a saw feature. Such features, as well as
the other remarkable features seen in Fig. 4.1, have been recognized since the early
analysis of these curves as bearing the signature of specific nuclear properties.

For practical reasons, but also to highlight the link between observations and
nucleosynthesis models, it is of particular relevance to divide the abundance curve
of the elements heavier than iron into three distributions associated with the stable
nuclides located at the bottom of the valley of β-stability, on the neutron-rich side of
the valley, and on the neutron-deficient side. For even values of A, many isobars can
exist; in this case, the stable most neutron-rich isobar is called r-nucleus and the most
proton-rich p-nucleus. The s-nuclei are located between these two isobars, (i.e., at
the bottom of the valley). When only one isobar exists, it is usually classified as an
sr mix nucleus. The actinides are considered as being of r type. This denomination
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Fig. 4.1 Distribution of isotopic abundances characteristic of our Solar System at the time of
formation [7]. The insert shows the decomposition of the Solar System distribution into the s-, r-,
and p-abundances for elements heavier than iron [9–11]

is strongly related to the identification of the different mechanisms responsible for
the production of the s-, r-, and p-nuclei, i.e., the so-called s-process (for slow),
r-process (for rapid), and p-process (for proton). After performing such a nuclear
decomposition (see, e.g., [9]), it is found that the double peak structure observed in
Fig. 4.1 is now divided into two components, the “heavy” peaks at A = 138 and
A = 208 attributed to the s-process and the “light” r-process peaks at A = 130
and A = 195 (see Fig. 4.1). The p-nuclei are in contrast about 100–1000 times less
abundant than their s and r isobaric counterparts.

Let us finally mention that if the bulk of the Solar System material is found to be
of a very high isotopic homogeneity, a small portion of this material (�10−4M�,
where M� is the mass of the Sun) is characterized by a variety of more or less
different isotopic compositions. These so-called isotopic anomalies are observed
either in meteoritic material which condensed in the solar nebula or in grains
probably of circumstellar origins. These grains were formed around stars of various
types and survived the protosolar nebula and their inclusion within meteorites.
While the Solar System composition illustrated in Fig. 4.1 is considered as resulting
from a perfect mix of the ashes produced by a large number of nucleosynthetic
events that took place in the Galaxy during the ∼1010 years preceding the Solar
System formation, the isotopic anomalies are believed to be caused by a relative
small number of events. The analysis of some anomalies due to the in situ
radioactive decay of short-lived nuclides (with half-lives of 105 � t1/2 � 108 yr)
can even provide severe constraints on the time elapsed between their production
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and their injection in the Solar System in formation. More information on the
isotopic anomalies can be found in the review papers [12–14].

The Solar System is the object of the Universe that provides us with the
most complete set of observational data concerning the elements and isotopes
abundances. A myriad of information exists nevertheless on the composition of
other objects which emphasizes features similar to our solar abundances, as well
as a large diversity. Diversity is found not only among objects belonging to different
classes but also among objects of the same type. In particular, the abundances
observed at the stellar surface can vary with the age of the star, its location in
the Galaxy, or its spectral type. Two major effects are found responsible for this
abundance diversity: stellar evolution and the chemical evolution of the Galaxy.

4.1.2 Nucleosynthesis Models

One of the most fundamental questions astrophysics tries to answer concerns the
present and past composition of the Universe and of its many constituents. The
theory of nucleosynthesis aims at identifying the various processes that can be
invoked to explain the origin of the nuclides observed in nature, as well as the
astrophysical sites capable of providing the conditions required for these processes
to take place. The works of [15, 16] represent milestone in this field.

Nuclear reactions represent the fundamental ingredients of all nucleosynthesis
models. Two major classes of nuclear reactions are invoked: the thermonuclear
reactions and the non-thermal transformations also known as spallation reactions.
Thermonuclear reactions took place at the level of the primordial or cosmological
(Big Bang) level as well as inside the stars all along the galactic evolution up to date.
On the other hand, spallation reactions are important in diluted and cold medium, as
the interstellar medium, through the interaction with galactic cosmic rays (GCRs),
and at the surface of stars or in their surroundings through interaction with energetic
stellar particles [17].

The primordial Big Bang nucleosynthesis (BBN) is responsible for the bulk He
content of the Universe as well as for the synthesis of some other nuclei, like D,
3He, and 7Li. All the other nuclides, as well as a fraction of the galactic 7Li, and
maybe 3He, result from thermonuclear reactions taking place inside the stars. The
only exceptions concern the 6Li, Be, and B nuclei for which spallation reactions
from the nuclear interaction of GCRs (accelerated CNO nuclei) with the interstellar
medium (mainly protons and α-particles) are invoked [17].

In stars, the thermonuclear reactions can be induced by charged particles (proton
or α-particles) or neutrons. In the former case, the reactions mainly take place on
light or medium heavy nuclei A � 60–70, since the reactions involving heavier
species are not probable enough (because of the too high Coulomb barrier) to play
a significant role in realistic stellar environments (cf. Sect. 4.2). The importance of
the charged particle-induced reactions is twofold. First, they are fundamental for
the energy production enabling the star to counterbalance its energy loss (energetic
equilibrium), and second, they locally modify the stellar content where they take
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place. The neutron-induced reactions are obviously not restricted to species lighter
than Fe, since no Coulomb barrier exists in this case. However, these reactions never
contribute to the nuclear energy production.

The origin of most of the elements lighter than those of the Fe group has been
explained, mainly thanks to the direct link between their nucleosynthesis and the
energetic evolution of stars [18–20]. However, the synthesis of nuclei heavier than
Fe is far from being well understood at the present time. The major mechanisms
called for to explain the production of the heavy nuclei are the slow neutron-capture
process (or s-process), occurring during hydrostatic stellar burning phases, the rapid
neutron-capture process (or r-process) believed to develop during the explosion of
a star as a supernova or during the coalescence of two-neutron stars (NSs) or a
NS and a black hole (BH) in a binary system, and the p-process occurring in core-
collapse supernova (CCSN) or Type Ia supernovae (SNIa). Recently, an intermediate
neutron-capture process (or i-process) has also been proposed to explain observed
abundances in low-metallicity stars. More information on these four nucleosynthesis
processes is given in Fig. 4.2 and below.

4.1.2.1 The s-Process
For the last decades, an extremely intense amount of work has been devoted to
the s-process of nucleosynthesis called to explain the origin of the stable nuclides
heavier than iron located at the bottom of the valley of nuclear stability [22–25].

20

60

80

100

0 50 100 150 200

N

Z

Fig. 4.2 Schematic representation in the (N, Z) plane of the different astrophysical sites respon-
sible for the synthesis of the stable nuclides. The nucleosynthetic contributions by BBN and by
GCR are also displayed. The open black squares correspond to stable or long-lived nuclei, and the
open yellow squares to the nuclei with experimentally known masses [21]. Nuclei with neutron or
proton separation energies tending to zero define the neutron or proton “drip lines” (solid black
lines), as predicted from a mass model. More details can be found in [4] (Modified from Ref. [4])
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Even though the observation of the radioactive Tc in stellar envelopes clearly proves
that the s-process takes place during hydrostatic burning phases of a star, it remains
difficult to explain the origin of the large neutron concentrations required to produce
s-elements. Two nuclear reactions are suggested as possible neutron sources, i.e.,
13C(α,n)16O and 22Ne(α,n)25Mg. These reactions could be responsible for a large
production of neutrons during given burning phases, namely, the core He-burning
of massive stars (heavier than 10 M�) and the shell He-burning during the thermal
asymptotic giant branch (AGB) instabilities well-known as thermal pulses (TP) of
low- and intermediate-mass stars (lower than typically 10 M�).

As reviewed in great detail by Karakas and Lattanzio [24], the s-process in AGB
stars is thought to occur in their He-burning shell surrounding an inert C-O core,
either during recurrent and short convective TP episodes or in between these pulses.
A rather large diversity of s-nuclide abundance distributions are predicted to be
produced. A fraction of the synthesized s-nuclides (along with other He-burning
products) could then be dredged up to the surface shortly after each pulse. In low-
mass AGB stars (less than 3 M�), it is generally considered that the necessary
neutrons for the development of the s-process are mainly provided by 13C(α,n)16O,
which can operate at temperatures around (1∼1.5) × 108 K. The efficiency of this
mechanism is predicted to be the highest in stars with metallicities [Fe/H] lower
than solar ([Fe/H] � 0). The astrophysical models underlying the thermal pulse
scenario are still quite uncertain, in particular in the description of the mechanisms
that could be at the origin of the neutron production. The neutron production in
these locations depends sensitively on the mechanism of proton ingestion into
underlying He-rich layers in amounts and at temperatures that allow the operation of
the 12C(p,γ )13N(β+)13C(α,n)16O, while the production of 14N by 13C(p,γ )14N is
inefficient enough to avoid the hold-up of neutrons by the 14N neutron poison. TP-
AGB models including empirical diffusive overshoot have been relatively successful
to explain such a partial mixing of protons from the H-rich envelope into the C-rich
layers during the third dredge-up [24, 25], but it remains difficult to model such
mixing mechanisms in common one-dimensional models.

Massive stars, and more specifically their He-burning cores and, to some extent,
their C-burning shells, are also predicted to be s-nuclide producers through the
operation of the 22Ne(α,n)25Mg reaction. This neutron source can indeed be active
in these locations that are hotter than the He shell of AGB stars. In addition,
22Ne burning can also be activated in the C-burning shell of massive stars. Many
calculations performed in the framework of realistic stellar models come to the
classical conclusion that this site is responsible for a substantial production of
the 70 � A � 90 s-nuclides and can in particular account for the Solar System
abundances of these species. It has also been shown that rotation can significantly
increase the efficiency of the s-process, especially at low metallicity [26–28].
Because of the rotational mixing operating between the H-shell and He-core during
the core helium burning phase, the abundant 12C and 16O isotopes in the convective
He-burning core are mixed within the H-shell, boosting the CNO cycle and forming
primary 14N that finally leads to the synthesis of extra 22Ne, hence an increased
neutron production.
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4.1.2.2 The r-Process
The r-process of stellar nucleosynthesis is called for to explain the production of
the stable (and some long-lived radioactive) neutron-rich nuclides heavier than iron
that are observed in stars of various metallicities, as well as in the Solar System.
Reviews can be found in Refs. [4, 11, 29].

Nuclear physics-based and astrophysics-free r-process models of different levels
of sophistication have been constructed over the years. They all have their merits
and their shortcomings. The ultimate goal was to identify realistic sites for the
development of the r-process. For long, the core-collapse supernova of massive
stars has been envisioned as the privileged r-process location. One- or multi-
dimensional spherical or aspherical explosion simulations in connection with the
r-process nucleosynthesis are reviewed in Refs. [4,11,29]. Progress in the modeling
of type II supernovae and γ -ray bursts has raised a lot of excitement about the
so-called neutrino-driven wind environment. However, until now a successful r-
process cannot be obtained ab initio without tuning the relevant parameters (neutron
excess, entropy, expansion timescale) in a way that is not supported by the most
sophisticated existing models [30, 31]. Although these scenarios remain promising,
especially in view of their potential to contribute to the galactic enrichment signif-
icantly, they remain affected by large uncertainties associated mainly with the still
incompletely understood mechanism responsible for the supernova explosion and
the persistent difficulties to obtain suitable r-process conditions in self-consistent
dynamical explosion and NS cooling models [30, 32, 33]. In particular, a subclass
of CCSNe, the so-called collapsars, corresponding to the fate of rapidly rotating
and highly magnetized massive stars and generally considered to be at the origin
of observed long γ -ray bursts, could be a promising r-process site [34–36]. The
production of r-nuclides in these events may be associated with jets predicted to
accompany the explosion or with the accretion disk formed around a newly born
central BH [37].

Since early 2000s, special attention has been paid to NS mergers as r-process
sites following the confirmation by hydrodynamic simulations that a non-negligible
amount of matter could be ejected from the system. Newtonian [38], conformally
flat general relativistic [39, 40], as well as fully relativistic [41, 42] hydrodynamic
simulations of NS-NS and NS-BH mergers with microphysical equations of state
have demonstrated that typically some 10−3 M� up to more than 0.1 M� can
become gravitationally unbound on roughly dynamical timescales due to shock
acceleration and tidal stripping. Also the relic object (a hot, transiently stable
hypermassive NS followed by a stable supermassive NS, or a BH-torus system),
can lose mass through outflows driven by a variety of mechanisms [40].

Simulations of growing sophistication have confirmed that the ejecta from NS
mergers are viable strong r-process sites up to the third abundance peak and
the actinides. The r-nuclide enrichment is predicted to originate both from the
dynamical (prompt) material expelled during the NS-NS or NS-BH merger phase
and from the outflows generated during the post-merger remnant evolution of the
relic BH-torus system. The resulting abundance distributions are found to reproduce
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very well the Solar System distribution, as well as various elemental distributions
observed in low-metallicity stars [29]. In addition, the ejected mass of r-process
material, combined with the predicted astrophysical event rate (around 10 My−1

in the Milky Way) can account for the majority of r-material in our Galaxy. A
further piece of evidence that NS mergers are r-nuclide producers indeed comes
from the very important 2017 gravitational wave and electromagnetic observation
of the kilonova GW170817 [43, 44].

Despite the recent success of nucleosynthesis studies for NS mergers, the details
of r-processing in these events are still affected by a variety of uncertainties, both
from the nuclear physics and astrophysics point of view. In particular, it has been
shown that weak interactions may strongly affect the composition of the dynamical
ejecta and thus the efficiency of the r-process [42, 45–47].

The r-process nucleosynthesis is also important for understanding the origin of
the radionuclides that could be used to estimate an approximate age of the Galaxy,
the so-called radio-cosmochronometers. The stellar production of heavy elements
requires a detailed knowledge not only of the astrophysical sites and physical
conditions in which the processes take place but also of the chemical evolution of
the Galaxy.

4.1.2.3 The i-Process
The s- and r-processes introduced very early in the development of the theory of
nucleosynthesis have to be considered as the end members of a whole class of
neutron-capture mechanisms. Supported by some observations that were difficult
to reconcile solely with a combination of the s- and r-processes, a process referred
to nowadays as an intermediate or i-process has been put forth, with neutron
concentrations in the approximate 1012 to 1016 neutrons/cm3 range. The mechanism
envisaged to be responsible for this production is the ingestion of protons in He-
and C-rich layers, leading to the production of 13C through 12C(p,γ )13N(β+)13C
followed by a substantial production of neutrons through 13C(α,n)16O. This is
analogous to the mechanism already considered to be active in TP-AGB stars
(Sect. 4.1.2.1), but the higher neutron concentrations are expected to result from
the very low metallicity of the considered stars and the activation of 13C(α,n)16O in
convective regions at higher temperatures (typically∼2.5× 108 K).

Various numerical simulations have been proposed to host i-process conditions.
These include the proton ingestion during core He flash in very low-metallicity low-
mass stars, during the thermal pulse phase of massive AGB (super-AGB) stars of
very low metallicity, during the post-AGB phase (“final thermal pulse”), during
rapid accretion of H-rich material on white dwarfs, or during shell He-burning
in massive very low-metallicity population II or III stars. While the contribution
of the i-process to the global galactic enrichment and more particularly to our
Solar System remains unclear, it is needed to explain the heavy element patterns
observed in peculiar stars, several carbon-enhanced metal-poor (CEMP) stars with
simultaneous presence of s-elements and Eu (so-called CEMP-r/s) stars, as well as
Sakurai’s object V4334 Sgr. More information can be found in Refs. [48–53].
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4.1.2.4 The p-Process
The p-process of stellar nucleosynthesis is aimed at explaining the production of
the stable neutron-deficient nuclides heavier than iron that are observed in the Solar
System and up to now in no other galactic location (for a review see [10]). Various
scenarios have been proposed to account for the bulk p-nuclide content of the Solar
System, as well as for deviations (“anomalies”) with respect to the bulk p-isotope
composition of some elements discovered in primitive meteorites. In contrast to the
s- and r-processes calling for neutron captures to explain the production of heavy
elements, the p-isotopes are produced by photodisintegration reactions on already
synthesized s- and r-nuclei. These photoreactions involve (γ ,n), (γ ,p), and (γ ,α)
reactions at stellar temperatures of the order of 2–3× 109 K.

The p-nuclides are mostly produced in the final explosion of a massive star
(M � 10 M�) as a CCSN or in pre-explosive oxygen-burning episodes [10]. The
p-process can develop in the O-Ne layers of the massive stars explosively heated to
peak temperatures ranging between 1.7 and 3.3× 109 K [54, 55]. The seeds for the
p-process are provided by the s-process that develops before the explosion in these
stellar mass zones. In this way, as explained above, the O-Ne layers that experience
the p-process are initially enriched in 70 � A � 90 s-nuclides.

SNIa have also been suggested as a potential site for the p-process. The p-process
nucleosynthesis possibly accompanying the deflagration or delayed detonation
regimes has been mainly studied in 1D simulations [56,57] and shown to give rather
similar overabundances as CCSN models [10, 58]. However, the predicted SNIa p-
nuclide yields suffer from large uncertainties affecting the adopted explosion models
as well as the s-seed distributions, detailed information on the composition of the
material that is pre-explosively transferred to the white dwarf being missing.

Despite the fact that p-nuclei can be produced consistently with solar ratios
over a wide range of nuclei in such scenarios, there remain deficiencies in a few
regions, most particularly in the Mo-Ru region where the p-isotopes are strongly
underproduced. This fact motivates the search for alternative or additional ways
to produce these nuclides. In particular, proton capture and photodisintegration
processes in helium star cataclysmics have been suggested as a promising nucleo-
synthesis source [59]. Such an object is made of a carbon-oxygen white dwarf
with sub-Chandrasekhar mass (M < 1.4M�) accumulating a He-rich layer at its
surface. An alternative site proposed to explain the origin of the Mo and Ru p-
nuclei is the p-rich neutrino-driven wind in CCSNe where antineutrino absorptions
in the proton-rich environment produce neutrons that are immediately captured by
neutron-deficient nuclei [60].

4.2 Nuclear Physics Aspects of Nucleosynthesis

4.2.1 Nuclear Reactions of Astrophysical Interest

In a given astrophysical location, two factors dictate the variety of nuclear reactions
that can act as energy producers and/or as nucleosynthetic agents. The abundances
of the reactants have obviously to be high enough, and the lifetimes of the reactants
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against a given nuclear transmutation have to be short enough for this reaction to
have time to operate during the evolutionary timescale of the astrophysical site
under consideration. The probability of a thermonuclear reaction in an astrophysical
plasma is strongly dependent on some specific properties of this plasma. In this
respect, two key guiding features are the distribution of the energies of the reacting
partners and the reaction cross section at a given energy. First, the reacting nuclei
are, locally at least, in a state of thermodynamic equilibrium. In such conditions, all
nuclear species obey a Maxwell-Boltzmann distribution of energies, from which it
is easily inferred that the relative energies Ecm = 1

2μv2 of the reaction partners also
obey such a distribution (where v is the relative velocity between the interacting
nuclei 1 and 2 and μ = m1m2/(m1 +m2) their reduced mass). While in laboratory
experiments, the target nuclei (T) are typically at rest and the projectiles (P) impinge
into the target nuclei at a certain laboratory energy Elab, in stellar environments
the relative energy is more relevant. Therefore, laboratory experiments should be
expressed as a function of the center-of-mass energy Ecm = [MT/(MP +MT)] ×
Elab, where MP and MT refer to the atomic masses of the projectile and the target
(at rest), respectively.

Second, the reaction cross section between charged nuclei is dominated by the
probability of penetration of the Coulomb barrier of the interacting nuclei. As a
result, the effective reaction rate is obtained by integrating the strongly energy-
dependent reaction cross sections over the whole Maxwell-Boltzmann energy range.
The resulting integrant exhibits a strong maximum, generally referred to as the
Gamow peak. It is centered on the “most effective energy” given by

E0 = 0.1220(Z2
1Z2

2μ)1/3T
2/3
9 (MeV) (4.1)

where Z1 and Z2 are the proton numbers, μ the reduced mass (in units of u), and T9
the temperature T expressed in GK (109 K).

The Gamow peak is characterized by a width approximated by

� = 4(E0kBT/3)1/2 = 0.2368(Z2
1Z2

2μ)1/6T
5/6

9 (MeV) (4.2)

where kB is the Boltzmann constant [19].
The reactions thus mostly occur in the approximate window from E0 − n� to

E0 + n� (n = 2–3), assuming the possible role of resonances is small. For this
reason, the energy range of astrophysical relevance for reactions between charged
particles is largely above the thermal energy kBT and much lower than the Coulomb
barrier. For these reasons, the sequence of hydrostatic burning episodes is character-
ized by a limited number of reactions between nuclei with increasing charges, from
H-burning to Si-burning, and the charged-particle-induced thermonuclear reactions
of relevance concern mainly the capture of protons or α-particles which offer the
lowest Coulomb barriers. A limited number of fusion reactions involving heavy
ions (12C, 16O) are also of great importance.

The considerations above lead to the most effective energy E0 in the case of
reactions between charged particles but do not apply to neutron captures in view of



4 Nuclear Data and Experiments for Astrophysics 151

the absence of Coulomb barriers. In this case it can be shown that the most effective
energy is of the order of kBT . It has also to be noted that, in contrast to reactions
involving charged reactants, the captures of neutrons do not contribute to the energy
budget of a star, but are essential players in the synthesis of nuclides heavier than
iron through the s-, i-, and r-processes (see Sects. 4.1.2.1–4.1.2.2).

In non-explosive conditions, like in the quiescent phases of stellar evolution
which take place at relatively low temperatures, most of the reactions of interest
concern stable nuclides. Even so, the experimental determination of their charged-
particle-induced cross sections faces enormous problems and represents a real
challenge [19]. This relates directly to the smallness of the cross sections due to
the fact that E0 lies well below the Coulomb barrier. As a consequence, the cross
sections can dive into the nanobarn to picobarn range.

In explosive situations, the temperatures are typically higher than in the non-
explosive cases. The corresponding increase of the effective energies E0 gives rise
to a higher probability of penetration of the Coulomb barriers and consequently
larger cross sections. The price to pay to reach this higher energy domain is huge,
however. The nuclear flows indeed depart from the bottom of the valley of nuclear
stability and involve more or less unstable nuclei, sometimes all the way very close
to the nucleon drip lines (see Fig. 4.3).

0

20

40

60

80

100

0 50 100 150 200

N

Z

Fig. 4.3 Schematic representation in the (N, Z) plane of the different nuclear data needs for
nucleosynthesis applications. The open black squares correspond to stable or long-lived nuclei,
and the open yellow squares to the nuclei with experimentally known masses [21]. Nuclei with
a neutron or proton separation energies tending to zero define the neutron or proton “drip lines”
(solid black lines), as predicted from a mass model. See text for more details and Ref. [4] (Modified
from Ref. [4])
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For β-decays as well as reaction rates, thermally populated nuclear excited states
can contribute to the effective stellar rates. The population of the ith excited state
with an excitation energy Ei at temperature T can be derived as

Pi = gi exp(−Ei/kBT )∑
i gi exp(−Ei/kBT )

, (4.3)

where gi = 2Ji + 1 is the statistical weight and Ji the spin of the state i. The
denominator is called the partition function G. Often a normalized partition function
Gnorm = G/g0 = 1/P0 is used to describe the thermal excitations. If Gnorm = 1,
only the ground state is populated (P0 = 1). The thermalization effect is especially
noticeable in the case of endothermic reactions on targets with low-lying excited
states from which the exit particle channels are greatly favored with respect to
the ground state due to restrictions imposed by spin conservation selection rules.
The 0+ isomeric state at 228 keV in 26Al is a good example in this respect. It
is much shorter-living, with t1/2 = 6.3460(8) s, than the 5+ ground state with
t1/2 = 7.17 × 105 y. The effective lifetime of 26Al decreases by many orders of
magnitude when moving from 0.2 GK to 1.0 GK due to the thermal excitations
populating the isomer [61–64]. In many astrophysical conditions, some isomers may
not be thermally populated and act as a separate species with respect to the ground
state. The role of astrophysically important isomers has been recently discussed,
e.g., in Ref. [65].

In stellar environments, target nuclei at high temperatures have typically no or
only a few bound electrons. Instead, they are surrounded by a sea of free electrons.
This ionization gives rise to various effects. It has first the obvious effect of reducing
the probability of capture of bound electrons but opens the possibility to capture free
electrons from the surrounding continuum. A less trivial consequence of ionization
relates to the possible development of the process of “bound-state β-decay,” for
which the emitted electron is captured in an atomic orbit previously vacated (in
part or in total) by ionization. In addition, the reaction rates for charged particle
reactions are different from the rates of bare nuclei due to the electron screening.
The screening is also present in the laboratory experiments where target nuclei are
surrounded by bound atomic electrons. Hence, the measured reaction rates have
to be corrected for the electron screening effect to obtain reaction rates between
bare nuclei. Finally, in stellar plasmas, a specific electron screening correction
has to be applied and can drastically affect the cross sections for bare nuclei
[66, 67]. This correction arises because of the ability of a nucleus to polarize its
stellar surroundings. As a result, the Coulomb barrier seen by the reacting nuclei is
modified in such a way that the tunneling probability, and consequently the reaction
rate, increases over its value in vacuum conditions. Different formalisms have been
developed depending on the ratio of the Coulomb energy of reacting nuclei to the
thermal energy. Weak screening applies if this ratio is well below unity, while a
strong screening is obtained when this ratio is well in excess of unity. In this case,
a very large increase of the reaction rates is predicted. The limiting situation of
strong screening is reached when solidification of the stellar plasma leads to the
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special pycnonuclear regime [66, 67]. In this case, the reactions are not governed
by temperature like in the thermonuclear regime, but instead by lattice vibrations
in dense Coulomb solids. This limiting regime can be approached e.g. at the high
densities and low temperatures prevailing in white dwarfs.

4.2.2 Data Needed for the Various Nucleosynthesis Processes

Strong, weak, and electromagnetic interaction processes play an essential role
in nuclear astrophysics. As shown in Fig. 4.3, a very large amount of nuclear
information is necessary in order to model the various nucleosynthesis processes.
These concern the decay properties of a large variety of light to heavy nuclei
between the proton and neutron drip lines, including the β-decay or electron capture
rates as well as α-decay or spontaneous fission probabilities for the heavy species.
For the nuclei lighter than iron, most of the reactions involved during the BBN or the
H- to Si-burning stages concern the capture of protons and α-particles at relatively
low energies (far below 1 MeV for neutrons and the Coulomb barrier for charged
particles). A limited number of fusion reactions involving heavy ions (12C, 16O)
are also of direct impact during C and O-burning phases. The nuclear data needed
to explain the Li-Be-B nucleosynthesis is quite different since it mainly involves
spallation reactions between CNO nuclei accelerated at high energies interacting
with the interstellar H and He. A review of the relevant reactions and the precision
at which they are needed can be found in Ref. [68].

In addition to reaction rates, some nuclear structure properties, in particular the
nuclear mass, may play a key role in nucleosynthesis applications. More specifically,
if the r-process nucleosynthesis takes place at sufficiently high temperatures T and
high neutron densities Nn, the neutron captures and their inverse photodisintegra-
tions become much faster than β− decays [69]. In this case, a (n, γ ) � (γ, n)

equilibrium may be established, and the abundances within each isotopic chain
determined by the Saha equation (see, e.g., Ref. [10]):

N(A+ 1, Z)

N(A, Z)
= Nn

(
h2

2πμkBT

)3/2
2J (A+ 1, Z)+ 1

(2J (A, Z)+ 1) (2Jn + 1)

× Gnorm(A+ 1, Z)

Gnorm(A, Z)
eQn,γ /(kBT ), (4.4)

where Qn,γ = [m(A, Z)+mn −m(A+ 1, Z)] c2 is the Q-value for a neutron
capture on nucleus (A, Z) or, in other words, the neutron separation energy Sn of
the nucleus (A + 1, Z), Qn,γ (A, Z) = Sn(A + 1, Z). Equation 4.4 highlights the
importance of nuclear masses in defining the r-process path at a given time. In NS
merger models, the r-process may take place at relatively low temperatures [39],
and, at some point, the neutron captures will freeze out, so that the (n, γ ) � (γ, n)

equilibrium is not expected to be established all along the irradiation time. In
this case, the abundances cannot be determined simply using Eq. 4.4 but become
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sensitive to the neutron capture and photoneutron reaction rates. Nuclear masses
remain, however, key in estimating the competition between neutron captures,
photoneutron emissions, and β-decays.

Fission may also play an important role during the r-process nucleosynthesis
though the exact role played by fission on r-abundance distribution strongly
depends on the hydrodynamic modeling of the initial neutron richness found in
the astrophysical plasma. In astrophysical sites characterized by a large initial
neutron richness, e.g., in NS-BH mergers, fission may play a fundamental role,
more particularly by (i) recycling the matter during the neutron irradiation (or if
not, by allowing the possible production of superheavy long-lived nuclei, if any);
(ii) shaping the r-abundance distribution in the 110 ≤ A ≤ 170 mass region at
the end of the neutron irradiation; (iii) defining the residual production of some
specific heavy stable nuclei, more specifically Pb and Bi, but also the long-lived
cosmochronometers Th and U; and (iv) heating the environment through the energy
released [40, 70–72]. In addition to spontaneous fission, neutron-induced and β-
delayed fission processes are important for the r-process. In the neutron-induced
fission, the additional energy required to overcome the fission barrier is provided by
neutrons. In the β-delayed fission mode, the β-decay may lead to an excited state
with an excitation energy Ex close to the fission barrier height Bf in the daughter
nucleus.

Although important effort has been devoted in the last decades to measure
reaction cross sections or nuclear structure properties of astrophysical interest (see
Sect. 4.3), experimental data only covers a minute fraction of the whole set of data
required for nucleosynthesis applications. Reactions of interest often concern unsta-
ble or even exotic (neutron-rich, neutron-deficient, superheavy) species for which
no experimental data exist. Given applications (in particular, the nucleosynthesis of
elements heavier than iron) involve a large number (thousands) of unstable nuclei
for which many different properties have to be determined. Finally, the energy range
for which experimental data is available is restricted to the small range reachable by
present experimental setups. To fill the gaps, only theoretical predictions can be
used, as discussed in Sect. 4.4.

4.3 Nuclear Astrophysics with Radioactive Beams

In order to model various nucleosynthesis processes (see Sect. 4.1.2), different types
of nuclear data are needed as discussed in Sect. 4.2.2. For lighter nuclei, the key
reactions concern proton and alpha captures. For quiescent hydrogen and helium
burning, the relevant temperatures are on the order of 10–100 MK, corresponding
to center-of-mass energies less than (or around) 100 keV, far below the Coulomb
barriers. As a result, the reaction cross sections for the relevant proton and alpha
captures are very low. This poses several challenges. Typically the experiments
have not yet reached the relevant energy region but provide cross sections at higher
energies, requiring extrapolations down to the relevant energies. Natural background
is a major limiting factor for the experiments. Therefore, many direct measurements
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for stellar burning are nowadays carried out in underground laboratories or other
low-background locations. A recent review [73] summarizes the status of these
experiments. Here we focus on experiments employing radioactive beams for
nuclear astrophysics. Free neutrons are radioactive with a half-life of around 10
mins, but we will not discuss experiments involving neutron beams, which are
very important, for example, for the s-process. The status of experiments utilizing
neutron beams for astrophysics has been reviewed, for example, in Refs. [73, 74].

4.3.1 Nuclear Reactions in Inverse Kinematics with Radioactive
Beams

Many reactions on radioactive nuclei are usually easier to study in inverse kine-
matics with a radioactive beam on a stable target. As an example, proton-capture
reactions can be studied with a radioactive beam on a hydrogen target instead of
using normal kinematics, i.e., a proton beam on a radioactive target. For shorter-
lived nuclei, inverse kinematics is the only option available. The same applies to
other reactions involving radioactive nuclei.

Let us consider the reaction 26Al(p, γ )27Si as an example. This reaction is
relevant for the abundance of the cosmic γ -ray emitter 26Al and the observation of
its 1809-keV γ -rays with space-based telescopes, such as INTEGRAL [75]. Due to
the relatively long half-life of 26Al, t1/2 = 7.17×105 y, a study in normal kinematics
is also feasible. The reaction was investigated using proton beams with laboratory
energies from 170 keV to 1.5 MeV in the 1980s [76]. Later, it was revisited using the
DRAGON recoil separator at TRIUMF and employing a radioactive 26Al beam with
laboratory energies of 5.226 MeV and 5.122 MeV [77]. There, 26Al was produced
with a 70-µA proton beam on a SiC target.

Radioactive beams for inverse kinematics studies can be produced via nuclear
reactions, such as fusion evaporation, fragmentation, or fission, but specific beams
can be created using long-lived isotopes extracted from radioactive waste [78]. For
example, 44Ti (T1/2 = 85 y) was extracted from the copper beam dump used for the
590-MeV protons at the Paul Scherrer Institute and later utilized in an experiment at
ISOLDE (CERN) [79]. Beam intensities up to around 2× 106 particles per second
were delivered and accelerated to 2.1 MeV/u at REX-ISOLDE before impinging
into a helium target [79]. The experiment provided an upper limit estimate for the
44Ti(α, p)47V reaction cross section within the Gamow window. The limit is at least
a factor of 2.2(13) lower than given by the Hauser-Feshbach calculation with the
NON-SMOKER reaction code. This brings the calculated 44Ti abundances closer to
the observations of the 44Ti yields in Cas A [80, 81] and SN1987A [82] supernova
explosions.

Studies of proton captures on light- or intermediate-mass nuclei usually focus
on the determination of resonance strengths ωγ because the total reaction rate is
typically dominated by a few resonances. The resonance strength for a proton-
capture reaction on a target nucleus with spin JT , leading to a resonant state with
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spin Jres, is determined as

ωγ = (2Jres + 1)

(2Jp + 1)(2JT + 1)

�p�γ

�p + �γ

, (4.5)

where Jp is the proton spin (1/2) and the �p and �γ are the proton and gamma
partial widths for the resonance, respectively. From Eq. 4.5, it is clear that at low
resonance energies, where the probability for the proton emission is still low (�p �
�γ ), the resonance strength is almost entirely determined by the proton width �p.
It can be written as �p = C2S �p,sp, where C2S is the spectroscopic factor of
the state and �p,sp the single-particle proton width obtained, e.g., via shell-model
calculations.

Estimates on relevant spectroscopic factors can be obtained using surrogate
methods. Instead of proton captures, the relevant states can be explored via
(d, n) proton-transfer reactions. Recently, many studies on this topic have been
carried out at the National Superconducting Cyclotron Laboratory. For example,
the 26Al(p, γ )27Si reaction was studied using a 30 MeV/u 26Al13+ beam on a
deuterated polyethylene, (CD2)n target. Spectroscopic factors for states close to the
proton threshold in 27Si were obtained by comparing the experimentally determined
cross sections to the theoretical predictions for the reaction 26Al(d, n)27Si [83]. The
results were in agreement with a previous (3He, d) study [84], supporting the feasi-
bility of the method. The surrogate technique using (d, n) proton-transfer reactions
has been applied to the bottleneck reaction in the nova nucleosynthesis,30P(p, γ )

[85], and for the key reaction to bypass the waiting-point nucleus 56Ni in type I
X-ray bursts, 56Ni(p, γ )57Cu [86].

In addition to (d, n) reactions, relevant information on the resonance states in
explosive hydrogen burning scenarios, such as novae and type I X-ray bursts, is
obtained via many other methods. β-delayed proton and gamma emissions provide
data on the gamma and proton widths of the resonance states. However, β-decay
selection rules limit the resonant states that are populated. For example, β-decay
of 31Cl populates excited states in 31S that further de-excite via gamma and proton
emissions. Thus, the resonant states in the reaction 30P(p, γ )31S can be studied
inversely via β-decay. The β-decay studies have, e.g., indicated a strong 3/2+
resonance at 6390 keV in 31S [87]. Information on the excitation energies, spins,
and parities of the resonance states is also obtained via high precision gamma
spectroscopy and transfer-reaction studies, e.g., employing (3He, t) reactions. These
studies are not limited by such selection rules like β-decay experiments and
therefore cover a larger set of states.

4.3.2 Properties of Exotic Nuclei with Radioactive Beams

Many astrophysical processes proceed via exotic radioactive nuclei as discussed in
Sect. 4.1.2. Progress in radioactive beam facilities and measurement techniques has
opened new possibilities to study, e.g., nuclei relevant for the r- and i-processes
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traversing through neutron-rich nuclei. For the r-process, many nuclei will remain
experimentally inaccessible and require solid nuclear models (see Sect. 4.4). Exper-
imental data are, however, essential for testing the existing nuclear models and their
applicability in different regions of the nuclear chart. The following subsections
give a brief overview on experimental techniques and recent experimental results on
nuclear properties relevant for nuclear astrophysics, in particular for the r-process.

4.3.2.1 Masses of Exotic Nuclides and Related Techniques
Nuclear masses play a key role in the modeling of astrophysical processes. The
reaction Q value, i.e., the energy required for, or released in a reaction, is determined

by nuclear masses, Q =
(∑

i mi −∑
f mf

)
c2, where mi and mf are the mass

values for the initial and final states of a reaction. The Q values have a strong effect
on reaction and decay rates and therefore have to be known rather precisely for
accurate nuclear reaction network calculations.

In practice, experiments determine atomic masses M(A, Z) = m(A, Z)+Zme−
Be(A, Z)/c2, where Be(A, Z) is the total electron binding energy for an atom
with mass number A, proton number Z, and nuclear mass m(A, Z). The effect of
electron binding energy is usually small though it may contribute, e.g., for low-
energy resonant captures involving fully stripped atoms in stellar plasma [88]. As
the proton number conserves in nuclear reactions, the electron masses cancel out in
the estimate of the Q value. Only for β+ decays, the electron masses need to be
taken into account in the Q-value calculation.

4.3.2.2 Penning-TrapMass Spectrometry
Several mass measurement methods are used to determine masses of radioactive
nuclei. Penning-trap mass spectrometry is the most precise technique at the moment.
In a Penning trap, ions are confined radially by a strong, homogeneous magnetic
field B and axially by a quadrupolar electric field. The ions have three eigenmotions,
axial motion with a frequency νz and two radial motions with the reduced cyclotron
ν+ and magnetron ν− frequencies. For an ion with charge q and mass m in an ideal
Penning trap, the two radial motions sum up to the cyclotron frequency νc:

νc = ν+ + ν− = 1

2π

q

m
B (4.6)

In reality, there are misalignments, e.g., in the magnetic field axis or imperfections
in the quadrupolar electric field. The invariance theorem [89,90] holds even for these
more realistic conditions, coupling the three eigenmotions together:

ν2
c = ν2+ + ν2− + ν2

z . (4.7)

Traditionally, Penning traps have utilized the time-of-flight ion cyclotron reso-
nance (ToF-ICR) method [91,92] to determine ion’s cyclotron resonance frequency.
In this method, the ions are excited using a quadrupolar radiofrequency pulse with
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a frequency νRF and a specific amplitude and duration. The νRF is scanned around
the expected νc. When νRF = νc, the ions are in resonance and gain most energy.
This results in the shortest time of flight when the ions are extracted from the trap
through a strong magnetic field gradient to an ion detector, typically a microchannel-
plate (MCP) detector. The magnetic field strength B is determined by performing a
similar measurement with a reference ion which has a well-known mass in literature.
The ToF-ICR method takes a rather long time as several frequency points have to be
measured around the cyclotron resonance frequency in order to fit the resonance
curve to the data. An example of a TOF-ICR spectrum is given in the bottom
panel of Fig. 4.4. The quadrupolar excitation times range from around 50 ms up
to around 1600 ms, and the total measurement cycle typically takes≈400–1200 ms.
Therefore, the Penning-trap mass spectrometry is often limited to nuclei with half-
lives longer than ≈100 ms. However, in specific cases, where the production rates
are high enough, measurements of shorter-living nuclides can also be done with the
ToF-ICR method.
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Fig. 4.4 Examples of ToF spectra measured for 162Eu+ ions using a 25-350-25ms (on-off-on)
excitation pattern (top) and 1600-ms continuous quadrupolar excitation. The shorter excitation
time (top panel) was not sufficient to resolve the low-lying isomeric state from the ground state.
In the bottom panel, the cyclotron resonance frequency for the ground state is located at the
minimum time of flight indicated with a vertical line at zero. The isomeric state is located at a lower
frequency, indicated by the other vertical line. The red curve is a fit to the theoretical lineshape.
The fit requires several measured data points (shown in black) around the cyclotron frequency
(Reprinted from Ref. [95] with permissions from the American Physical Society)
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A slightly higher precision is achieved with the so-called Ramsey method
[93, 94], where instead of a continuous quadrupole excitation, time-separated
oscillatory fields are applied. In other words, two excitation pulses, each with a
rectangular envelope, are applied with a certain time in between when the excitation
is off. An example of a Ramsey type of a resonance is given in the upper panel
of Fig. 4.4. There, 162Eu+ ions have been studied using a 25-350-25ms (on-off-on)
excitation pattern (see the top panel of Fig. 4.4). It yields a better precision compared
to a 400-ms continuous quadrupolar excitation; however, the resolving power is still
not sufficient to resolve the low-lying isomeric state from the ground state. This
is achieved with a 1600-ms quadrupolar excitation shown in the bottom panel of
Fig. 4.4. It also illustrates how the resolving power of a Penning trap is proportional
to the excitation time. The longer the excitation time, the better the resolving power.

The phase-imaging ion cyclotron resonance (PI-ICR) method [96, 97] provides
around 40 times better resolving power than the ToF-ICR method. The method
is superior in resolving low-lying isomeric states from the ground states, often
useful for accurate mass measurements. The frequencies ν± for the radial ion
motions are obtained from the phase φ± the ion accumulates after time t :ν± =
φ±+2πn

2πt
, where n is the number of full revolutions ion does during the time t . The

phase is determined using a position-sensitive MCP detector. Finally, the cyclotron
frequency is computed as a sum of the two radial frequencies (see Eq.4.6), and the
mass is derived from the frequency ratio similar to the ToF-ICR method. The benefit
of the PI-ICR method is that every ion counts, i.e., instead of scanning a broad
range of frequencies around the cyclotron frequency, every measured ion adds to
the phase spot in the 2D image of the ion motion. Figure 4.5 shows an example
of a PI-ICR measurement. The PI-ICR method is also applicable to cases with low
yields, such as superheavy nuclides [98]. In addition to the ToF-ICR and PI-ICR,
Fourier-transform ion cyclotron resonance (FT-ICR) method [99] can be applied in
Penning traps; however, it has not yet been widely used for studies of radioactive
nuclides due to its complexity. For a recent review on Penning-trap measurements,
see, e.g., Refs. [100, 101].

4.3.2.3 Multi-Reflection Time-of-Flight Mass Spectrometers
Multi-reflection time-of-flight (MR-ToF) [102] mass spectrometers offer a faster
way to determine masses of exotic nuclides than Penning traps. The method also
saves measurement time as several nuclides can be measured at once. The ions
injected into a MR-ToF are typically prepared in a radiofrequency quadrupole cooler
and buncher at a potential V . They gain a kinetic energy Ekin. = qV = mv2/2,
where v is the velocity of the ions. As a result, for the same flight path, the flight
time t is inversely proportional to the ion’s velocity, t ∝ 1/v ∝ √(m/q), and can
be determined as

t = a

√
m

q
+ b, (4.8)
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Fig. 4.5 An example of a PI-ICR measurement of 162Eu+ ions. The image of the cyclotron motion
of 162Eu+ is magnified and projected onto a position-sensitive detector located outside the Penning
trap. The two detected ion spots correspond to the ground and isomeric state of 162Eu. The blue
squares show the total number of ions in each bin, darker shading indicating more ions. The red dots
show the centers of the cyclotron motion images of the ground and isomeric states and the center
of the precision trap. The number of ions projected on the x and y axes is also shown. Positions can
be fitted even with a moderate statistics because every ion contributes to the determinations of the
spot positions from which the phases, and eventually the cyclotron frequency ratios are determined
(Reprinted from Ref. [95] with permissions from the American Physical Society)

where a and b are device-specific parameters. The achieved precision is typically
somewhat lower than in Penning-trap mass spectrometry, and the resolving power
is not sufficient to resolve low-lying isomeric states (E �100 keV). Due to the
simple and cost-effective solution for fast and precise mass measurements, MR-ToF
mass spectrometers are nowadays widely used in accelerator laboratories around
the world. MR-ToF mass spectrometers, e.g., at ISOLDE/CERN [103], at the FRS
Ion Catcher in GSI/FAIR [104, 105], and at the TITAN facility in TRIUMF [106],
have been utilized for nuclear astrophysics studies. An example of a MR-ToF
measurement is shown in Fig. 4.6.

4.3.2.4 Storage Rings
Storage rings have been used for mass measurement of exotic ions for three decades
[108]. There are two techniques utilized for mass measurements in storage rings,
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Fig. 4.6 An example of a MR-ToF measurement of 132Cd at ISOLTRAP. Time-of-flight spectrum
after 800 revolutions shows the 132Cd+ peak along with isobaric ions (132Ba+ and 132Cs+), used
for the calibration together with 133Cs+. Gaussian fits (in red) are also shown. MR-ToF method is
suitable for measurements with low statistics (Reprinted from Ref. [107])

but both methods determine the ion’s revolution frequency f in the ring:

δf

f
= − 1

γ 2
t

δ(m/q)

(m/q)
+

(
1− γ 2

γ 2
t

)
δv

v
, (4.9)

where γ = 1/
√

1− (v/c)2 is the Lorenz factor and γt is an ion-optical parameter of
the storage ring known as the transition energy. In practice, usually revolution times
are measured and plotted instead of the revolution frequency.

In the Schottky method, the ions are cooled with electrons to minimize the
velocity spread δv. This takes several seconds and limits the use of the Schottky
method for shorter-lived nuclei. In the isochronous mass spectrometry (IMS)
method, the ions of interest are injected with energies corresponding to γ = γt ,
and no additional cooling is required. The benefit in the IMS method is that a
broad variety of ions can be simultaneously measured, and the method is much
faster than, e.g., Penning-trap mass spectrometry. An example of an isochronous
mass measurement is shown in Fig. 4.7. There are three main storage ring facilities
for mass measurements at the moment: Experimental Storage Ring (ESR) [109]
at GSI/FAIR, CSRe [110] in Lanzhou and R3 [111] at BigRIPS in RIKEN.
Storage rings can also be utilized for reaction cross-sectional measurements for
nuclear astrophysics, as exemplified for the 96Ru(p, γ ) [112] and 124Xe(p, γ ) [113]
reactions at the ESR ring.

4.3.2.5 Time of Flight andMagnetic Rigidity
For the most exotic and shortest-lived nuclei, masses can be determined at fragment
separator facilities utilizing the relationship between the time of flight and magnetic
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Fig. 4.7 An example of a revolution time spectrum from a storage ring measurement on proton-
rich nuclei using isochronous mode at CSRe. The red and blue peaks represent the TZ = (N −
Z)/2 = −1 and TZ = −1/2 nuclei, respectively (Reprinted from Ref. [114] with permissions
from the American Physical Society)

rigidity Bρ:

(m/q) = t

L

Bρ

γ
, (4.10)

where t is the time of flight and L is the length of the flight path. The dependence
of m/q on the time of flight can be calibrated using a set of ions with a well-
known mass. The ToF-Bρ technique can only provide a modest precision of several
hundreds of keV, but it can be applied also to very short-lived nuclei (t1/2 < μs).
Although the lack of precision hinders detailed studies of nuclear structure, general
trends and large changes on the mass surface can be detected with the ToF-Bρ

method as demonstrated, e.g., in Refs. [115–118].

4.3.2.6 Current Status and Recent Mass Measurements for Nuclear
Astrophysics

Table 4.1 summarizes typical precisions achieved for mass-excess values � =
(M(A, Z) − A · u)c2 (where u is the atomic mass unit) using different mass mea-
surement techniques and rough half-life limitations or ranges for the experiments.
Experimental atomic mass values are evaluated regularly in the so-called atomic
mass evaluations (AME). The evaluation takes into account available experimental
mass data from various experiments. Experiments provide mass values with respect
to other nuclides, e.g., Penning-trap measurements are done with respect to a
reference nuclide, and reaction Q-values connect the reactants and products. The
AME takes into account all the connections between nuclei and does a least
squares optimization of the data, weighted by the experimental uncertainties σexp,i

as wi = 1/σ 2
exp,i [119]. The optimization yields adjusted mass values tabulated in

the AME mass tables. The AME also reveals irregular or anomalous experimental
data points deviating from the otherwise smooth mass surface. The most recent
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Table 4.1 Different mass measurement techniques, typical precisions achieved for the mass-
excess values, and half-life limitations. The precision and half-life limits depend on several factors,
such as the production rates and measurement times (statistics). The values are mainly to give an
idea of the strengths and weaknesses of the methods

Method Precisions Half-lives

ToF-ICR ∼0.5–50 keV �100 ms

PI-ICR ∼0.5–20 keV �50 ms

MR-TOF ∼20–150 keV �10 ms

Schottky MS ∼1–50 keV �1 s (cooling)

Isochronous MS ∼10–200 keV �10µs

ToF-Bρ ∼300–500 keV � below 1µs

AME is AME2020 [21]. The NUBASE evaluations on the ground and isomeric
state properties are published together with the AME, with the most recent being
NUBASE2020 [120].

Many mass measurements for nuclear astrophysics have been performed
recently. For example, masses of 22 neutron-rich rare-earth nuclei have been
studied with the JYFLTRAP Penning trap [121], 14 for the first time [95, 122].
The measurements indicated less odd-even staggering in the neutron separation
energies than predicted by the commonly used mass models for the r-process
calculations (see Sect. 4.4.1). Including the new mass values in the r-process
calculations resulted in a smoother trend in the calculated r-process abundances.

The recent precision mass measurements of neutron-rich 126−132Cd isotopes
[107, 123] using the ISOLTRAP Penning trap [107] and its MR-ToF mass spec-
trometer [103] have reduced the nuclear uncertainties around the second r-process
abundance peak. Mass measurements with the MR-ToF mass spectrometer at
TITAN [106, 124] and the JYFLTRAP Penning trap [125] have provided new mass
data for the first r-process peak region.

4.3.2.7 β-Decay Experiments for Nuclear Astrophysics
β-Decay plays an essential role in neutron-capture processes. The conversion
to heavier elements is almost solely done via β− decays, which compete with
neutron captures (and photodisintegrations for high-temperatures environment). As
a result, the β-decay half-lives serve as an important input in the nucleosynthesis
calculations.

For the r-process, dozens of β-decay half-lives have been recently determined
employing fragmentation or in-flight fission of 238U at GSI and at Radioactive
Isotope Beam Factory (RIBF) at RIKEN [126–130]. For given magnetic rigidity
Bρ = mv/q , the fragments are identified based on (i) their energy loss �E and
(ii) time of flight through the fragment separator. The energy loss is proportional to
the proton number Z2, i.e., heavier elements leave more energy. The energy loss
is typically determined using an ionization chamber or stacked silicon detector.
The time of flight is usually determined between two scintillator detectors and
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Fig. 4.8 An example of a particle identification (PID) plot. Ions are identified based on their
proton number Z and the mass-to-charge ratio. The heaviest studied isotopes are labeled and
highlighted by a red circle (Reprinted from Ref. [127] with permissions from the American
Physical Society)

is proportional to m/q . A particle identification (PID) plot (see Fig. 4.8 for an
example) typically shows the energy loss versus the time of flight but calibrated
to show the proton number Z versus A/q .

β-decay half-lives at fragment separator facilities are usually determined by
implanting the beam into a stack of silicon detectors and measuring the time
difference between the implantation and β− particles (electrons). During the
last decade, the knowledge of the half-lives of neutron-rich nuclei has increased
substantially. The measurements at GSI and RIBF have provided around 240 half-
life values: around 20 half-lives close to 78Ni [126], 94 in the rare-earth region
[130], 110 in the N = 82 region [127], and 20 new half-lives in the N = 126 region
[128, 129]. An example of a β-decay half-life measurement is shown in Fig. 4.9.

β-decays can be studied also at isotope separator on-line (ISOL) facilities, but
there the selection of the isotope happens already before the beam arrives at the
detector setup. As a result, the experiments focus on one or a few isotopes during a
beamtime. On the other hand, β-decay studies at ISOL facilities can be done with
very pure beams (see Fig. 4.10). Even isomerically pure beams can be prepared, e.g.,
by using a Penning trap or selective laser ionization.
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Fig. 4.9 Half-life measurement of 79Ni at RIBF. Time distribution of the β-decay events
correlated with the implanted 79Ni ions has been plotted. The fitting function (solid red line)
considers the activities of parent nuclei (dashed-dotted black line), β-decay daughter nuclei (fine-
dashed blue line), βn-decay daughter nuclei (dashed green line), and a constant background (solid
pink line). A half-life of 43.0+8.6

−7.5 ms was determined for 79Ni (Reprinted from Ref. [126] with
permissions from the American Physical Society)

Fig. 4.10 Half-life measurement of 135In at the ISOLDE Decay Station, where the laser-ionized
135In+ beam was accelerated to 40 keV and implanted into an aluminized Mylar tape at the center
of the detection setup. The time distribution relative to the proton pulse from the CERN Proton
Synchrotron Booster is shown as blue data points for the β-gated 347-keV γ -ray transitions, which
belong to the β-delayed neutron daughter 134Sn. The radioactive beam was extracted for period 5–
230 ms, followed by the decay. The red data points represent the background (Reprinted from
Ref. [131])

β-decays are also essential during the freeze-out phase of the r-process when
matter is decaying back to stability. Prior to the freeze-out, the abundance pattern has
an odd-even effect due to the odd-even staggering of neutron separation energies.
Even-N nuclei are more abundant than their neighboring odd-N nuclei in each
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isotopic chain. This can also be seen in Eq. 4.4, where Qn,γ is higher for a nucleus
(A, Z) with an odd neutron number N . During the freeze-out, β-delayed neutron
emissions smoothen the abundance pattern.

In β-delayed neutron emission, β-decay of a nucleus (A, Z) will lead to an
excited state above the neutron separation energy Sn(A, Z + 1) in the daughter
nucleus (A, Z + 1). Since the state is neutron-unbound, it will emit a neutron and
lead to a nucleus (A− 1, Z + 1). β-delayed neutron emission (βn) was discovered
already in 1939 [132]. Later, also β-delayed two-neutron (β2n) [133], three-neutron
(β3n) [134], and four neutron (β4n) [135] decays have been discovered, leading to
nuclei (A − 2, Z + 1), (A − 3, Z + 1), and (A − 4, Z + 1), respectively. For the
r-process calculations, the β-delayed neutron emission branching ratios are relevant
to determine the flow from one mass number to another.

β-delayed neutron branching ratio measurements are nowadays based on 3He
counters located in a neutron energy moderator medium, such as polyethylene. The
detection of neutrons is based on the reaction 3He(n, p)3H, which releases 764 keV
of energy. This is easily detectable and clearly above the noise level. Neutrons are
moderated because the cross section for the used detection reaction increases with
decreasing neutron energy. The BEta-deLayEd Neutron (BELEN) counter [136]
has been designed for the FAIR DESPEC experiment. It has already been utilized
in experiments at the ion guide isotope separator on-line (IGISOL) facility [137],
where the JYFLTRAP Penning trap was used to select the ions of interest for the
β-decay studies. For example, β-delayed two-neutron emission from 136Sb has
been studied at IGISOL [138]. More recently, a massive campaign of β-delayed
neutron emission measurements has been performed with the BRIKEN (Beta-
delayed Neutron Measurements at RIKEN) [139] setup at RIBF. The BRIKEN
collaboration has already measured neutron emission probabilities for more than
180 nuclei. In addition to β-delayed neutron emission probabilities, β-delayed
neutrons provide a way to determine β-decay half-lives. A recent compilation on
β-delayed neutron emission summarizes the current status [140].

4.3.2.8 Neutron-Capture Rates
Neutron-capture rates on radioactive short-lived nuclei are challenging to study.
However, many factors affecting the neutron-capture rate calculations can be
investigated at radioactive beam facilities. Mass measurements provide data on
neutron-capture Q values. The β-Oslo method [141, 142] yields information on
level densities and γ -ray strength functions for moderately neutron-rich nuclei.
The technique utilizes segmented total absorption γ -ray spectrometers with which
both the individual γ -rays and the γ -ray cascade, i.e., the excitation energy, can be
determined. In order to efficiently use this method, the β-decay Q value has to be
high enough but the neutron-separation energies not too low. This maximizes the
range of states that can be detected via β-delayed gamma cascades.

For specific cases, neutron-transfer (d, p) reactions provide information on
the key resonance states and spectroscopic factors. For example, single-particle
states in 133Sn isotopes have been studied using the 132Sn(d, p)133Sn reaction in
inverse kinematics [143]. The method has similarities with the (d, n) reactions in
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inverse kinematics used as a surrogate for proton captures. With more intensive
radioactive beams, more possibilities will arrive to study neutron captures; however,
the single-particle structure is most pronounced closed to doubly magic nuclei such
as 132Sn. Therefore, the method is not as useful for regions far from stability where
collectivity is more pronounced.

4.3.2.9 Experiments on Fission
Although fissioning nuclei of r-process interest have not yet been studied experi-
mentally, many experiments provide essential data to test current fission models.
The current status of fission and fission experiments has been reviewed in Ref. [144]
and fission barriers of superheavy elements in Ref. [145]. In addition to these, there
have been many measurements on fission yields for various fissioning systems using
a Penning trap (see Sect. 4.3.2.1) as an ion counter (see, e.g., Refs. [146, 147]).
The fission yield measurements are useful for testing the predictions from different
fission models. They also provide information on isomeric yield ratios in fission.

4.4 Theory for Nuclear Astrophysics

4.4.1 Nuclear Masses

Among the ground-state properties, the atomic mass is obviously the most fun-
damental quantity. The calculation of the reaction cross section also requires
the knowledge of other ground-state properties, such as the deformation, density
distribution, or the single-particle-level scheme. When not available experimentally,
these quantities need to be extracted from a mass model which aims at reproducing
measured masses as accurately as possible, i.e., typically with a root-mean-square
(rms) deviation of less than about 0.8 MeV. The importance of estimating all ground-
state properties reliably should not be underestimated. For example, the nuclear
level densities of a deformed nucleus at low energies (typically at the neutron
separation energy) are predicted to be significantly (about 30–50 times) larger than
those of a spherical one due principally to the rotational enhancement. An erroneous
determination of the deformation can therefore lead to large errors in the estimate of
radiative capture cross sections. For this reason, modern mass models not only try
to reproduce at the best experimental masses and mass differences but also charge
radii, quadrupole moments, giant resonances, fission barriers, shape isomers, infinite
nuclear matter properties, . . . [148, 149].

With a view to their astrophysical application in neutron-rich environments, a
series of nuclear-mass models have been developed based on the Hartree-Fock-
Bogoliubov (HFB) method with Skyrme and contact-pairing forces, together with
phenomenological Wigner terms and correction terms for the spurious collective
energy within the cranking approximation (see Ref. [150] and references therein);
all the model parameters have been fitted to essentially all the experimental mass
data. While the first HFB-1 mass model aimed at proving that it was possible
to reach a low rms deviation with respect to all experimental masses available at
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that time, most of the subsequent models were developed to further explore the
parameter space widely or to take into account additional constraints. These include
in particular a sensitivity study of the mass model accuracy and extrapolation to
major changes in the description of the pairing interaction, the spin-orbit coupling,
or the nuclear matter properties, such as the effective mass, the symmetry energy,
and the stability of the equation of state.

With respect to the 2457 measured masses for Z, N ≥ 8 nuclei [21], the 32
HFB mass models give an rms deviation ranging between 0.52 MeV for HFB-27
and 0.82 MeV for HFB-1. These rms deviations can be compared to those obtained
with other global mass models, such as the Gogny-HFB mass model with the D1M
interaction [151] characterized by an rms of 0.81 MeV or the 2012 version of the
finite-range droplet model [152] with 0.61 MeV. However, when dealing with exotic
nuclei far away from stability, deviations between the HFB mass predictions can
become significant, not only in the rigidity of the mass parabola but also in the
description of the shell gaps or pairing correlations [153]. The 1σ variance between
the 32 HFB mass predictions (with respect to the HFB-24 mass model) is illustrated
in Fig. 4.11 where deviations up to about 3 MeV can be found at the neutron drip
line for the heaviest species. Such uncertainties can be interpreted as the model
uncertainties (due to model defects) inherent to the given HFB model [154]. These
model uncertainties have been shown to be significantly larger than the uncertainties
associated with local variations of the model parameters in the vicinity of an HFB
minimum [153], as estimated using a variant of the Backward-Forward Monte Carlo
method [155] to propagate the uncertainties on the masses of exotic nuclei far away

Fig. 4.11 Representation in the (N, Z) plane of the 1σ uncertainty corresponding to the 32
Skyrme-HFB mass models (with respect to HFB-24) for all the 8500 nuclei included in the mass
tables from Z = 8 up to Z = 110
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from the experimentally known regions (note that in this method only parameter
sets giving rise to masses in reasonable agreement with experiments for all known
nuclei are considered).

Many effective interactions have been proposed to estimate nuclear structure
properties within the relativistic or non-relativistic mean-field approaches [156].
Except the BSk forces at the origin of the above-mentioned HFB mass models and
the D1M interaction at the origin of the Gogny-HFB mass model [151], none of
the others have been fitted to a large set of experimental masses. Consequently,
their predictions lead to rms deviations typically larger than 2–3 MeV with respect
to the bulk of known masses (e.g. masses obtained with the SLy4 force give an
rms deviation of the order of 5 MeV [157]). With such a low accuracy, these
masses should not be used for applications, such as the r-process nucleosynthesis.
Additionally, other global mass models have been developed, essentially within the
macroscopic-microscopic approach [152, 158], but this approach remains unstable
with respect to parameter variations, as shown in the framework of the droplet model
in Ref. [69]. In addition, this approach suffers from major shortcomings, such as the
incoherent link between the macroscopic part and the microscopic correction or
the instability of the shell correction [148, 149]. For this reason, more fundamental
approaches, such as the mean field, are needed for astrophysical applications.

When considering mass models obtained in relatively different frameworks, e.g.,
the Skyrme-HFB or Gogny-HFB mass models, still large deviations are found in
the mass predictions away from the experimentally known region. For example, as
shown in Fig. 4.12, deviations up to typically ±5 MeV can be observed for exotic
nuclei between HFB-31 [150] and D1M [151] mass predictions, especially around

Fig. 4.12 Representation in the (N, Z) plane of the mass differences between HFB-31 [150] and
D1M [151] models for all the 8500 nuclei from Z = 8 up to Z = 110
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the N = 126 and 184 shell closures. Neutron-capture rates can consequently deviate
by three to five orders of magnitude with such mass differences, essentially due to
different local variations in the pairing and shell description (see Sect. 4.4.3). Such
deviations by far exceed what is acceptable for nucleosynthesis applications. For
this reason, further improvements of the mass model are required. These include
development of relativistic as well as non-relativistic mean-field models but also
the inclusion within such approaches of the state-of-the-art beyond-mean-field
corrections, like the quadrupole or octupole correlations by the generator coordinate
method [159, 160] and a proper treatment of odd-A and odd-odd nuclei with time-
reversal symmetry breaking. Such models should reproduce not only nuclear masses
at best but also as many experimental observables as possible. These include charge
radii and neutron skin thicknesses, fission barriers and shape isomers, spectroscopic
data such as the 2+ energies, and moments of inertia but also infinite (neutron and
symmetric) nuclear matter properties obtained from realistic calculations as well as
specific observed or empirical properties of neutron stars, like their maximum mass
or mass-radius relations [161, 162].

4.4.2 β-Decay Rates

β-decay rates play a fundamental role in nucleosynthesis in general [4] and
more particularly for the r-process nucleosynthesis since they set the timescale
of the nuclear flow and consequently of the production of the heavy elements.
β−-decay rates have been experimentally determined for 1213 nuclei [120] (see
Sect. 4.3.2.7). For the few thousands nuclei missing in r-process nucleosynthesis
simulations, only a restricted number of global models is available. These concern
the macroscopic gross theory (GT2) [163], the FRDM+RPA [164], the Tamm-
Dancoff approximation (TDA) [165], and the relativistic mean field plus QRPA
(RMF+RRPA) [166]. Deviations between the predictions of some of these models
are illustrated in Fig. 4.13 where ratios larger than a factor of 10 are found in many
neutron-rich regions of the (N ,Z) plane, especially for heavy or superheavy nuclei.

Here also, more effort needs to be devoted to improve the prediction of β-decay
rates, to include consistently not only the contribution of the forbidden transitions
[166, 167] but also the deformation effects, the majority of nuclei being deformed
[168, 169]. In particular, the first-forbidden transitions have been studied with the
finite Fermi system theory [167] and the relativistic QRPA approach [166] but both
only for spherical nuclei. Recent studies within the fully self-consistent proton-
neutron QRPA model using the finite-range Gogny interaction have now also taken
axially symmetric deformations into account [169], but forbidden transition remains
to be included and the theory to be applied to systems with an odd number of
nucleons. The inclusion of the phonon-phonon coupling has also been shown to
give rise to a redistribution of the Gamow-Teller strength and impact the β-decay
half-lives of neutron-rich nuclei significantly [170]. Further progress along all these
lines will hopefully help improve the predictions. Finally, note that on the basis
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Fig. 4.13 Representation in the (N, Z) plane of the β−-decay rate ratios (in log scale) obtained by
three global models. Upper panel: Ratio between the HFB-21 + GT2 [163] and the FRDM+RPA
rates [164]. Lower panel: Ratio between the HFB-21 + GT2 [163] and the RMF+RRPA rates
[166]. The open squares correspond to the valley of β-stability. The double solid lines depict the
neutron and proton magic numbers

of the β-decay strength, the β-delayed processes, including neutron emission and
fission for the heaviest species, also need to be derived [70, 140].

4.4.3 Nuclear Reactions

Most of the low-energy cross-section calculations for nucleosynthesis applications
are based on the statistical model of Hauser-Feshbach. Such a model makes the
fundamental assumption that the capture process takes place with the intermediary
formation of a compound nucleus in thermodynamic equilibrium. The energy of the
incident particle is then shared more or less uniformly by all the nucleons before
releasing the energy by particle emission or γ -de-excitation. The formation of a
compound nucleus is usually justified by assuming that the level density in the
compound nucleus at the projectile incident energy is large enough to ensure an
average statistical continuum superposition of available resonances. The statistical
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Fig. 4.14 Illustration of some uncertainties affecting the prediction of the radiative neutron-
capture rates for the Yb isotopes (Z = 70), between the valley of β-stability and the HFB-21
neutron drip line; these include the sensitivity to (i) the mass model when using the HFB-21
[183] or D1M [151] models (upper left), (ii) the nuclear level densities when using the HFB
plus combinatorial [176] or the back-shifted Fermi gas (BSFG) [177] models (upper right),
(iii) the optical potential adopting a Wood-Saxon (WS) potential [173] or two variants of the
microscopic JLMB potentials [174, 175] (lower left), and (iv) the γ -ray strength function derived
from either the D1M+QRPA [171] or the generalized Lorentzian (GLO) [184] models (lower
right). The Maxwellian-averaged rates are estimated within the Hauser-Feshbach statistical model
at T = 109 K

model has proven its ability to predict cross sections accurately for medium-
and heavy-mass nuclei. However, this model suffers from uncertainties stemming
essentially from the predicted nuclear ingredients describing the nuclear structure
properties of the ground and excited states and the strong and electromagnetic
interaction properties.

The impact of different input models adopted in the calculation of the reaction
rates of astrophysical interest is illustrated in Fig. 4.14. Clear mass models have
the strongest impact with deviation reaching four orders of magnitude for the most
exotic neutron-rich nuclei. Nuclear level densities are seen to affect rates within
typically a factor of 10 with a strong odd-even effect according to the way pairing
interaction is treated. The γ -ray strength function may impact the prediction of
the rate up to a factor of 100, in particular depending the way the low-energy tail
of the giant E1 resonance is described, but also the low-energy M1 component
is included, both for the scissors mode and for the so-called upbend [171, 172].
Finally, the optical potential is known to have a negligible impact in the standard
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case (e.g. comparing the Woods-Saxon [173] and the microscopic so-called JLMB
potential [174] in Fig. 4.14), although a reduction of the imaginary potential may
have a drastic impact in reducing the absorption of neutrons by neutron-rich nuclei,
as shown when considering the JLMB∗ potential [175]. More details on our capacity
to predict reliably all these ingredients can be found in Refs. [4, 171, 175–178].
A review on the nuclear ingredients of relevance for the description of fission for
nucleosynthesis applications and its fundamental role in r-process calculations can
be found in Ref. [70].

When the number of available states in the compound nucleus is relatively small,
the capture reaction is known to be possibly dominated by direct electromagnetic
transitions to a bound final state rather than through a compound nucleus interme-
diary. It is now well accepted that this direct capture contribution is important and
often dominant at the very low energies of astrophysical interest for light or exotic
nuclei systems for which few or even no resonant states are available. The direct
contribution to the neutron-capture rate can be two to three orders of magnitude
larger than the one obtained within the Hauser-Feshbach approach traditionally used
in nucleosynthesis applications [178–181]. Significant uncertainties still affect the
direct capture predictions. These are related to the determination of the nuclear
structure ingredients of relevance, i.e., the nuclear mass, spectroscopic factor,
neutron-nucleus interaction potential, and excited level scheme. An important effort
will have to be devoted to further improve the prediction of such nuclear inputs
within reliable microscopic models, with a special emphasis on the determination
of the low-energy excitation spectrum, in particular the spin and parity assignments.
The transition from the compound nucleus to the direct capture mechanism, when
only a few resonant states are available, also needs to be tackled in a more detailed
way, for example, within the Breit-Wigner approach or the so-called high-fidelity-
resonance technique [182].

4.5 Summary and Outlook

One of the major issues in modern astrophysics concerns the analysis of the present
composition of the Universe and its various constituting objects. Nucleosynthesis
models aim to explain the origin of the different nuclei observed in nature by
identifying the possible processes able to synthesize them. Though the origin of
most of the nuclides lighter than iron is now quite well understood, the synthesis
of the heavy elements (i.e., heavier than iron) remains obscure in many respects,
from the astrophysics as well as nuclear physics point of views. As far as nuclear
physics is concerned, strong, weak, and electromagnetic interaction processes play
an essential role in nucleosynthesis processes.

Radioactive beam facilities have provided new ways to explore key reactions for
the nucleosynthesis of lighter elements. Many reactions have become available for
studies in inverse kinematics using radioactive beams at astrophysically relevant
energies. Surrogate reactions or β-delayed gamma and particle spectroscopy have
provided information on the properties of key resonance states. On the other hand,
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low-background facilities located underground have opened new possibilities to
study reactions relevant for quiescent hydrogen and helium burning at or near
astrophysically relevant energies.

For the synthesis of heavier elements, experiments at radioactive beam facilities
have extended our knowledge of exotic nuclei and their properties, which serve
as relevant inputs, for example, for the r-process calculations. Mass measurement
techniques, such as Penning traps, MR-ToF mass spectrometers, and storage rings,
have recently provided mass values for dozens of new neutron-rich nuclei. β-
decay studies have yielded information on β-decay half-lives for several dozens
of neutron-rich nuclei. Results on β-delayed neutron branchings obtained with
the BRIKEN detector setup are coming and provide a major step forward in
the knowledge of neutron-rich nuclei. Neutron-capture rates have been probed
for specific nuclei using the β-Oslo method to determine the level densities and
γ -ray strength functions. Several experiments have studied nuclear fission and
fission yields, providing data to test various fission models. With anticipated new
radioactive beam facilities, such as FRIB and FAIR, even more exotic nuclei will
become available for experiments.

Although important effort has been devoted in the last decades to measure
reaction cross sections, experimental data only covers a minute fraction of the
whole set of data required for nuclear astrophysics applications. To fill the gaps,
theoretical predictions are needed. Many astrophysics applications involve a large
number of unstable nuclei and therefore require the use of global approaches. The
extrapolation to exotic nuclei or energy ranges far away from experimentally known
regions constrains the use of nuclear models to the most reliable ones, even if
empirical approaches sometime present a better ability to reproduce experimental
data. A subtle compromise between the reliability, accuracy, and applicability of
the different theories available has to be found according to the specific application
considered.

A continued effort to improve our predictions of the reaction and β-decay rates,
including their statistical and systematic uncertainties, for nuclei far away from
stability is obviously required. The reliability of our predictions today is still far
from being at the level of the requirements in nuclear astrophysics applications.
Priority should be given to a better description of the ground-state, fission, and
β-decay properties but also nuclear level densities, optical potential, and γ -ray
strength functions. A huge amount of work is still needed to make full advantage
of the development of state-of-the-art microscopic models in building global
universal models that include as much as possible the microscopic character of
quantum physics. This effort to improve the microscopic nuclear predictions is
concomitant with new development aiming at improving the description of the
reaction mechanisms, including the equilibrium, pre-equilibrium, and direct capture
processes. This theoretical work requires simultaneously new measurements of
structure properties far away from stability but also reaction cross sections on
stable targets and any experiments that can provide new insight on the numerous
ingredients of the reaction models and their extrapolation far away from stability.
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Abstract

High-resolution γ -ray spectroscopy is one of the most powerful and sensitive
tools to investigate nuclear structure. Significant progress in this field has
been achieved through the use of arrays of Compton-suppressed high-purity
germanium detectors; however, it is apparent that such devices are not suited
to the expected experimental conditions at the planned and under construction
radioactive ion beam facilities. Devices with higher efficiency and sensitivity
have been developed during the past two decades relying on the possibility to
determine the position and the energy deposition of the individual interaction
points of a photon within a germanium crystal and on the capability to reconstruct
the photon scattering sequence through powerful data analysis algorithms. In
these notes a brief introduction to the principles of γ -ray tracking arrays will be
given. After a historical overview of the main spectrometers that contributed to
the present understanding of the nuclear structure, the principles of advanced γ -
ray tracking will be described. A basic technical description of arrays based on
this technique will be reported together with some selected results.
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5.1 Introduction

Since germanium detectors became available in the 1960s, they constituted the
most used and important tool for γ -ray spectroscopy. In particular, the modern
High-Purity Germanium crystals (HPGe) provide an excellent (1–3 keV) energy
resolution in the typical energy range for nuclear spectroscopic studies that ranges
between approximately 10 keV and 10 MeV. The continuous development of high-
resolution γ -ray detector systems has been of vital importance to nuclear structure
physics. It has steadily expanded the limits of what can be observed, allowing for
the discovery of new phenomena and leading to deeper insights into the nature of
the nucleus. Indeed, large arrays of HPGe detectors became in the 1990s the state-
of-the-art instruments for γ -ray spectroscopy, having not only a large photo-peak
efficiency, but also allowing high selectivity of the reaction channels of interest,
through the analysis of multiple γ coincidences. The key concept behind these
arrays is to obtain the required selectivity (and efficiency) through the combination
of several detectors, each of them with good response function (in other words,
with energy resolution and ratio of peak over total, P/T ratio, both as good as
possible). It should be strongly remarked that since, in in-beam γ -ray spectroscopy,
the photons are emitted by recoiling nuclei, the FWHM of the peak is dominated
in most cases by the Doppler broadening due to the finite size of the detector,
rather than the intrinsic detector resolution. This means that each element of the
array should cover a solid angle as small as possible to keep this broadening within
“reasonable” limits. Concerning the P/T ratio, the background generated by partially
absorbed photons can be the dominant part of the spectrum for the available size of
the HPGe crystals. Such background can be efficiently reduced by surrounding the
Ge detectors with the so-called Compton suppression shields, namely, veto detectors
that detect photons escaping from the germanium crystal. A major breakthrough in
the field of γ -spectroscopy was achieved in the 1990s with the construction of arrays
of Compton-shielded large-volume HPGe detectors GASP [1, 2], EUROGAM [3],
EUROBALL [4], and GAMMASPHERE [5]. In principle, an array of germanium
detectors should have as large as possible photopeak efficiency, in order to limit
the time needed to acquire the required statistics to a minimum. Large photopeak
efficiency is best obtained by combining several detectors, each of them subtending
a small solid angle. In this way, not only the Doppler broadening effects is
kept under control but also the probability of multiple hits, i.e., two or more
photons entering the same crystal at the same time are minimized. Multiple-hit
phenomena can be significant when several photons are emitted simultaneously.
The characteristics to be considered to assess the quality of an array of HPGe
detectors for high-resolution and high-efficiency in-beam γ -ray spectroscopy can
thus be summarized as follows:

• effective energy resolution;
• full-energy (photopeak) efficiency;
• peak-to-total ratio;
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• granularity;
• amount of dead materials;
• time resolution;
• counting-rate capabilities.

With the “conventional” Compton suppression techniques, it was not feasible to
reach simultaneously total photopeak efficiencies around 50% and P/T ratios around
50%. These two parameters are considered essential features to pursue the physics
program at radioactive ion beam facilities [6]. An alternative approach, followed
since the 1990s [7], involves the construction of a Ge ball around the target position,
with the development of techniques (pulse shape analysis and γ -ray tracking) to
“look inside” the germanium crystals and to follow the individual photon scattering.

In these notes the concept of advanced γ -ray tracking will be introduced,
together with the main subjects connected to this technique. Before going into the
details of this detection technique, the composite detector technology, such as clover
and cluster, will be briefly discussed. This technology is indeed in use in many
facilities and provides still nowadays many advantages.

5.1.1 Clovers and Add-Back Procedure

Following the above discussion, it is clear that in developing an array of HPGe
detectors, a careful balance must be found between two contrasting needs. On one
hand the detectors should be placed at large distances from the target position in
order to subtend small solid angles with each element. As it will be explained
in detail in Sect. 5.3, the effective energy resolution strongly depends on the
uncertainty on the direction of the γ -ray as a consequence of the Doppler shift
of the γ -rays emitted by nuclei recoiling after a nuclear reaction. Thus to obtain a
reasonable resolution, it is important that each detector subtend a small angle. On
the other hand, in order to maximize the detection efficiency with a given number of
detectors, each of them should be placed as close as possible to the target position.
The problem can be partially overcome by using composite detectors such as the
clover [8] and cluster [9] detectors developed within the EUROBALL collaboration.
In these detectors, more crystals (respectively, 4 and 7) share the same cryostat and
the same Compton-suppression shield. Efficiency and peak-to-total can be recovered
by summing up (adding back) the energy deposited in neighboring detectors.

Clover-based arrays are used in γ -ray spectroscopy in international facilities [10–
12]. The working principle of Compton-suppressed clover detectors is schematized
in Fig. 5.1. When γ -rays are detected in coincidence by different crystals in a clover,
their energies are “added-back” in order to recover the full energy of the original γ

ray. This is exemplified in Fig. 5.2 where the spectra corresponding to the energy
measured by individual crystals is compared to the spectra corresponding to the
energy resulted from the add-back of all the crystals in a clover detector. Because
of the electrical coupling within the cryostat of the clover detector, the channels
suffer a relevant cross talk that implies that the energy obtained by summing the
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Fig. 5.1 Two clover detectors with the anti-Compton shield. The γ -ray labeled (a) scatters in one
germanium crystal, and it is absorbed by the anti-Compton shield resulting in a rejected event. The
γ -ray labeled (b) scatters in one germanium crystal, and it is absorbed by a neighboring germanium
resulting in a full-energy count in the add-back spectrum

Fig. 5.2 Spectrum obtained with the 27Al(n,γ )28Al reaction with the clover array FIPPS at ILL.
In green, spectrum obtained using each single crystal separately; in blue, spectrum obtained using
the add-back procedure within each clover detector; in red, add-back spectrum obtained using the
add-back procedure and applying a cross talk correction. Taken from [13]
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Fig. 5.3 Add-back factor as a function of the energy for the FIPPS clover array at the Institut
Laue-Langevin (ILL). See text for more details. Taken from [14]

ones detected by two or more crystals has a deficit that needs to be corrected. The
importance of the cross talk is highlighted by the comparison between the add-back
spectrum with and without cross talk correction reported in Fig. 5.3.

In Fig. 5.3 the add-back factor as a function of the energy is reported for the
FIPPS spectrometer at the Institut Laue-Langevin (ILL), as an example of the
importance of add-back for the performance of a clover array. The add-back factor
is determined from the ratio of the area of the peak after add-back and the one in
the spectrum obtained as sum of all detectors (without add-back). The data in the
picture are obtained from (n,γ ) reactions on Al and Mn targets. The result of a
linear fit is reported. The change of slope at ≈1 MeV is due to the occurrence of
pair production. While the gain in full-energy peak efficiency is evident, especially
at high energy, the capabilities of such devices are limited by the following factors:

• Uncertainty in the direction of the γ -ray due to the finite size of the detec-
tor: the direction of the γ used for Doppler correction and angular correla-
tions/distributions is assumed to correspond to the one of the crystal with the
largest energy deposit. There is no information about where the interaction took
place within a crystal. The dimension of a detector and its distance to the target
are thus defining how precisely the direction of the γ ray is known;

• In case the γ scatters from one crystal to a neighboring one, given that the
sequence in the Compton scattering is only guessed, systematic errors are done
in the extraction of observables that require such information (first, second
interaction point);
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• At high count rate, summing effects can occur (two distinct γ rays are acciden-
tally added-back).

• Eventual nonlinearities in the energy calibrations or cross talk effects (not
properly corrected) may affect the resolution in the energy spectrum after add-
back. In Fig. 5.2 a comparison of the energy resolution under different conditions
is shown. In particular, the effect of cross talk correction is evident.

5.2 Advanced γ -Ray Tracking

5.2.1 General Aspects: The Tracking Concept

The state-of-the-art γ -ray detector arrays aim at overcoming the main limitations
of traditional arrays, namely, the “finite” detector size/position resolution and
efficiency. γ -Ray tracking arrays, exploiting the position sensitivity obtainable from
segmentation of the outer contact of the detector, can achieve a major step forward
both in Doppler correction capabilities and in efficiency. The idea is thus to build
4π detector arrays composed entirely of HPGe, as shown in Fig. 5.4, that will be
used not simply in a calorimetric mode but instead will allow to reconstruct the
path of each γ -ray inside the detector volume. As it will be shown in the following,
such a device is highly demanding and challenging in terms of performance and
technology. Nowadays two projects exist, one in Europe named AGATA [15], one
in the USA, named GRETA [16].

The idea at the basis of the advanced γ -ray tracking is to reconstruct the
individual γ -ray energies and directions, based on the deposited energy and position

Fig. 5.4 Artistic view of the γ -ray tracking arrays GRETA (120 crystals, left) and the AGATA
(180 crystals, right). The colors correspond to different germanium crystal shape tapered in
irregular hexagon to guarantee an optimal solid angle coverage
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Fig. 5.5 Schematic
representation of a photon
that undergoes two
interactions

of all the interaction points of an event seen by the detector(s). For each event, the
number of photons, their energies, the incident, and scattering directions should
be measured, and the events corresponding to incomplete energy release should be
discarded. In principle, this could be done by knowing the interaction positions with
sufficient precision and the details of the interaction mechanisms. In the energy
range between 100 keV and 10 MeV, γ rays interact with Ge mainly via Compton
scattering [17]. In the limit of a free electron at rest, this process is analytically
described by (5.1):

Eγ i = Eγ i−1
Eγ i−1

mec2 (1− cos θi)
(5.1)

where Eγ i is the energy of the γ -ray after the i-th scattering.
Above 1.022 MeV, the γ energy is sufficient for creating an e+e− pair, with the

positron later annihilating and emitting two 511 keV photons in opposite directions.
To clarify the basic concepts behind the technique of γ -ray tracking, let us consider a
photon that undergoes two interactions before being absorbed, as shown in Fig. 5.5.
Assuming the electrons in the material unbound and at rest, the energy is related
to the scattering angle by (5.1). If the source position is known, one can evaluate
the Compton formula for each permutation of the interaction points and build a χ2

function (figure of merit) of the kind:

χ2 ≈
N−1∑

n=1

wn

(
Eγ ′ − EPos

γ ′

Eγ

)2

n

(5.2)

Recalling that the initial photon energy Eγ is the sum of the individual deposited
energies, and assuming a given sequence for the photon scattering, the photon
energy after the ith scattering is easily computed as:

Eγ ′ = Eγ −
i∑

n=1

en (5.3)
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Eγ i can also be computed starting from (5.1). In practice, a figure of merit should
be evaluated for all the possible permutations of the interaction points. The event
is accepted only if the merit of the best permutation is lower than an empirically
defined limit. The discarded events are the “software equivalent” of a Compton
suppression. The analysis of all partitions of the measured points for (real) cases
of more than one γ per event is normally not feasible (1023 partitions for 30 points).
The interactions of single photons must be thus grouped by means of clustering
techniques [18]. The points generated by a single γ are expected to be localized in
a small portion of the total detector volume, compatible with the finite absorption
length for the photons and with the forward peaking of the Compton scattering. The
interactions belonging to the same track can be clustered on the basis of the angular
separation (seen from the source) and their mutual linear distance.

The tracking algorithms can be distinguished in two classes: forward- and back-
tracking [19, and references therein]. Using the backtracking method, the interaction
points within a given deposited energy interval are considered as last interactions of
fully absorbed γ rays. The scattering is then tracked backwards, back to the known
position of the source.

The forward tracking method, instead, starts from the identification of a set of
clusters, each identified by its energy, sum of the energy depositions in the cluster.
The three interaction mechanisms of γ rays in germanium are then tested, and “good
clusters” are selected via a χ2 test. The fundamental effects limiting the performance
of the tracking algorithms can be summarized as follows:

• difference between the position of the photon interaction and the one of the
energy deposition (electrons drift)

• electrons energy loss via bremsstrahlung
• Rayleigh scattering of low-energy γ rays toward the end of a track (change of

direction without change of energy)
• (5.1) is just an approximation; electrons in media are not free nor at rest; the

formula should be corrected in order to take the momentum of the electron into
account.

All the abovementioned effects are “masked” by the error in the determination
of the interaction points. Indeed important uncertainties are introduced by the
determination of the interaction points, position resolution, energy threshold, and
the presence of dead materials.

The concept of γ -ray tracking can be summarized as represented in Fig. 5.6.
In order to track the γ -ray scattering path, it is necessary to use the detectors in

position-sensitive mode. This is described in the next section.

5.2.2 Pulse Shape Analysis

The shape of the signal in a true coaxial detector depends on the distance of the
interaction to the central contact [17]. Given the cylindrical symmetry of the system,



5 State-of-the-Art Gamma-Ray Spectrometers for In-BeamMeasurements 189

Fig. 5.6 Main steps for the tracking of γ -rays detected by HPGe segmented detectors. The picture
summarizes all the different steps detailed in the text

no other information on the position can be extracted, unless this symmetry is
broken, for example, by electrically segmenting one of the electrodes. When one
of the electrodes is electrically segmented, the motion of the charges within one
segment induces signals also in the neighboring electrodes (Fig. 5.7). Contrary to
the segment where the interaction takes place (i.e., where there is a net charge
release), the total collected charge in the neighboring electrodes is zero. For this
reason, the signals induced in the neighboring electrodes are known as transient
signals. The shapes and amplitudes of net and transient shapes depend also on the
angular position of the interaction point, as exemplified in Fig. 5.7. The amplitude
of the induced transient signals provides a convenient way to locate the interaction
with sub-segment precision, but this is not enough to achieve the required position
resolution. In order to reach a better precision, the full shapes of the observed signals
should be compared to a set of reference signals, each of them corresponding to
interactions taking place in well-defined locations in the crystal. In principle, the
basis of reference signals for a given segmented detector should be constructed
experimentally, measuring in a semi-automatic way the signals corresponding to
specific locations within the crystal, with the possibility to move such locations
in any point of the detector. This can be done using collimated γ -ray sources
and coincidence detectors to construct what is known as scanning tables [20, 21].
However, obtaining scanned bases for all the detectors of an array is extremely
time-consuming and in practice not feasible, and as a consequence techniques to
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Fig. 5.7 Segment signal shapes following a γ -interaction in one segment at 46 mm depth in an
AGATA segmented HPGe. The net charge signal identifies the segment where the interaction took
place, while the amplitude of the transient signals suggests its position inside the segment

calculate these reference signals have been developed, with parameters adjusted by
comparison with measured pulse shapes in “key-locations” in the crystal [22].

In principle, the knowledge of the electric field (or potential) in the full
segmented detector would be required for such calculations. This is quite a
complicated problem, that is why, in practice, the Shockley-Ramo theorem is used
as a simplification [23, and references therein]. The weighting field is calculated for
each sensing electrode by solving numerically the Laplace equation with the sensing
electrode put at fixed potential while grounding all the others. The Ramo theorem
guarantees a direct relation between the charge released in a given position inside the
crystal and the weighting potential at that position. For an AGATA detector, which
has a 6x6 outer segmentation, the calculation requires the solution of 1 Poisson and
37 Laplace (1 anode and 36 cathodes) equations. The calculated basis is usually
considered on a space grid of 1 mm and a time step of 1 ns. Once the reference
signal basis is available, the interaction points of the detected γ radiation into the
germanium detector are obtained by comparison with the recorded waveforms (an
example of detector signal is reported in Fig. 5.7), and this is called pulse shape
analysis (PSA). The quality of this procedure strongly determines the performance
of the tracking algorithm and depends mainly on two factors, additional to the
quality of the signal basis:

• proper handling of the signals to correct for second-order effects due to electronic
couplings among the channels

• performance of the algorithm used to make the comparison.
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Assuming a “perfectly performing” PSA algorithm, still the experimental wave-
forms are not at all “ideal,” and signal distortions could result in a displacement of
the reconstructed interaction point from the actual one. Apart from the electronic
noise that has to be minimized by means of proper grounding of the electronics,
some other effects can be observed and taken into account/corrected in the data
preparation to the PSA.

In any electrically segmented detector, the cross talk phenomenon is present. It
produces a shift in the reconstructed energies that is proportional to the segment
fold of the event, namely, to the number of segments firing simultaneously. The
origin and calculations for the correction of this effect are extensively described in
[23, 24]. The cross talk affects the detector energy resolution since the gain varies
depending on the pattern of firing segments. The amplitude of a signal from one
segment has therefore to be corrected according to a linear combination of the
signal amplitudes of the other segments. Experimentally, two kinds of cross talk
have been observed: a cross talk which is proportional to the net-charge signal and
one which is proportional to its time derivative. Measurements of both kinds of
cross talk are reported in [23]. The PSA algorithm compares the measured signals
with a reference basis of simulated single interaction signals. This algorithm has to
effectively identify the interaction points in the crystal and efficiently process the
experimental data in order to obtain the positions and energy depositions from the
experimental waveforms in a short time interval. The quality of the PSA algorithm
can be tested by comparing the basis signals with experimental data taken in
well-defined positions or, in a less direct but practically faster way, by running in-
beam experiments with fast moving nuclei and by checking the Doppler correction
capabilities.

An algorithm commonly used is the adaptive grid search (AGS) [25]. Basically
this algorithm compares the measured signals (net and transient signals of the
segments) and calculated ones over a fine grid of points in the crystal. It is suited for
searching one or two interaction points per segment. It has been demonstrated that
searching one interaction point in a segment is equivalent to consider the energetic
barycenter if multiple hits occur, which implies that the signals vary approximately
linearly in small distances. The signal comparison is done evaluating the residue
R defined as the sum of the squared difference between measured and calculated
signals. The algorithm evaluates R over all the points belonging to the real segment,
i.e., working as a full grid search. The smallest R identifies the three-dimensional
coordinates of the interaction point searched. When two points are searched, the
signal in the comparison is a linear combination of signals for two possible points
in the real segment, while their amplitudes represent the energy division between
the two deposits. This part of data analysis is the bottleneck of the data processing,
taking typically up to 95% of the computing resources. To improve the processing
time, the PSA algorithm used in AGATA implement the AGS. This is a simple two-
step analysis which starts with an evaluation of the residue R on a coarse grid of
points and then proceeds with a search on the fine grid in the surroundings of the
coarse-grid minimum to refine the position of the interaction point. With a spacing
of 2 mm, the full fine grid search implies the evaluation of ≈1000 points in a
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typical AGATA detector segment, resulting in an analysis rate of ≈100 events/s in
a standard modern CPU. With a coarse grid spacing of 6 mm, the AGS improves
the analysis speed by about one order of magnitude, without significant loss of
precision. Due to its relative simplicity and its speed of execution, this algorithm
is adopted in the standard PSA procedures of the AGATA collaboration and has
been used in [26] to obtain a position resolution of 4 mm for γ rays of 1.4 MeV.

5.2.2.1 Radiation Damage by Fast Neutrons
One of the “by-products” of the PSA consists on the correction of the effects
produced by the damage of the crystal structure caused by the interaction of fast
neutrons in the germanium medium [17]. It is well-known that germanium detectors
are sensitive to radiation damage induced by fast neutrons (with energy E > 1
keV), which generate charged lattice defects that act as trapping sites for the charge
carriers [27]. This problem leads to a worsening of the energy resolution, especially
in the form of a tail on the left side of the γ peak in the energy spectrum, as
a result of a reduction of the charge collection efficiency (see Fig. 1 in [27] as
an example). The main reason for choosing n-type crystals for the detectors used
for in-beam γ -ray spectroscopy is that they appear to be less sensitive to neutron
damage than p-type ones. This is due to the fact that the defects produced by fast
neutrons in the germanium lattice are negatively charged and therefore do not trap
the e-carriers which, due to the coaxial configuration of the detectors, dominate the
signal formation in the positively biased central electrode, from which the signal
is read out. In the case of γ -ray tracking arrays, also the signals induced in the
segments of the outer electrode (cathode) are used. They are dominated by the
collection of holes, and thus they are affected by charge trapping effects. Starting
with undamaged detectors, for which the energy resolution is better in the segments
than in the core, a few weeks of operation under beam at medium-high counting rate
are sufficient to degrade the energy resolution of the segments to values that would
normally require annealing of the crystals. Fortunately, the operation in position-
sensitive mode of the germanium crystals offers an interesting way to contrast the
trapping effects [27]. In fact, for a given level of neutron damage, the fraction of
charge carriers lost in the collection process depends mainly on their travel path, the
details of which can be easily obtained from the position of the interaction given by
the PSA. The principle is represented in Fig. 5.8 taken from [28]. Ideally, the shape
of the pulses is also affected by charge trapping, but for the usual levels of damage,
this is not influencing appreciably the pulse shape analysis.

5.2.3 Digital Signal Processing

The choice of Germanium detectors for γ radiation is motivated in first place by
their excellent energy resolution conjugated to high detection efficiency. Only super-
conducting and bolometer devices can provide better resolution than germanium,
but their use for γ radiation is limited by their low efficiency and low count rate
capabilities to few specific cases where large production of the decaying isotope
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Fig. 5.8 Neutron-damage effects in a HPGe detector operated in position-sensitive mode: depth-
energy correlation of the reconstructed interaction points for one of the segmented detectors used in
the Legnaro AGATA Demonstrator campaign, before (left) and after (right) 3 months of beam-time
operation. Taken from [28]

is available for slow, long-lasting measurements [29]. At present, germanium is
the choice for spectroscopy thanks to its resolution that is the most important
characteristic of the detectors. The analogue preamplified signal provided by a
germanium detector requires a devoted treatment able to preserve the performance
in term of intrinsic resolution.

Starting from the late 1980s, the progress in the FADC (flash analog to digital
converter) technology made possible signal digitization with the needed dynamic
range, frequency, and linearity. While a signal bandwidth sufficient to preserve
the positional information from pulse shape was estimated to be of the order of
25 MHz [30], in order to obtain an optimal time resolution, a 100 MHz sampling
frequency is needed. 100 MHz-FADC with 12 effective bits and sufficient linearity
are commercially available nowadays.

Optimal noise filtering is essential to obtain the desired energy resolution. In
general, noise filtering requires a change of shape of the detector signal. To ensure
full charge collection (in the 100 ns to 500 ns time range), real implementations of
preamplifiers transform the current pulse due to charge collection in a voltage signal
with a considerably longer exponential shape, with a decay constant of 50 µs. This
long decay constant implies that for rates of γ detection in the order of tens of kHz,
the waveform for which we need to measure the amplitude in general will seat on the
tail of a previous pulse as reported in Fig. 5.9. Each pulse will be superimposed on
the residual tail of the former one. The signals need to be elaborated to remove the
dependence of the amplitude on the tail, and a possible solution that is commonly
used in digital shaping is a waveform formation on a trapezoidal shape. With this
processing, the pulses obtain a shape with a much shorter total length but in a
way that preserve the proportionality of the amplitude of the signal to the energy
deposited in the detector.



194 F. Recchia and C. Michelagnoli

Fig. 5.9 The steps involved in the synthesis of the trapezoidal filter in the time domain as reported
in (5.4). Risetime (r) and flattop (f ) are defined as depicted in the bottom part of the figure
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The first reported implementation of a trapezoidal filter dates back to 1968 by
V. Radeka [31]. The problem of optimum signal processing for pulse amplitude
spectrometry highlighted the importance of a well-defined weighting function
for given noise and rate conditions. The signal and noise can be defined in a
conventional way considering a detector signal, for purposes of noise analysis, as
an impulse of current. The finite width of the signal is taken later into account. In a
simplified scheme, two basic equivalent generators of white noise can be considered
in the system. One is a current generator in parallel with the input, representing
thermal noise of resistors and dielectrics and the leakage current shot noise. White
noise can be represented as a random sequence of impulses, and therefore this
noise is for signal processing of the same nature as the signal. The other is the
equivalent noise voltage generator in series with the input, representing the overall
amplifier noise. This series voltage generator can be converted into a parallel current
generator producing equal noise voltage on the input capacitance. The noise-corner
time constant is a measure of relative importance of the two noise generators.

Large efficiency germanium arrays are obtained by using large germanium
detectors in order to minimize passive material. For example, the crystals of
detectors composing the AGATA array have a volume of 370 cm3. That implies
long collection time as well as large detector capacities. In order to obtain a good
resolution, it is important to have a constant weighting during charge collection.
This implies the use of filters with a weighting function very long with respect to
the collection time, i.e., by a long filter time constant [32].

The optimum weighting function for the noise encountered in present detector-
FET amplifier systems, and under the constraint of finite measurement time per
event, is a cusp [32].

As reported by Jordanov and collaborators [33] with the advent of fast, high-
resolution, and high linearity digitizers in the 1990s, the realization of digital filters
became practical. To this purpose the trapezoidal filter was implemented to convert
a digitized exponential pulse v(n) into a symmetrical trapezoidal pulse s(n):

w(n) = v(n)− v(n− r − f )

z(n) = z(n− 1)+w(n)

c(n) = w(n)+M · z(n− 1)

s(n) = s(n− 1)+ c(n)− c(n− r)

(5.4)

where r is the length of the risetime and f is the length of the flattop of the trapezoid
in digitizer clock cycle units; see Fig. 5.9. The parameter M depends only on the
decay time constant τ of the exponential pulse, and it is given in clock cycle units:

M = 1− exp

(
−1

τ

)
. (5.5)
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Fig. 5.10 Resolutions obtained for different peaking time of the shaper applied to the central
contact (core) and to a segment (seg) of an AGATA detector, in the low energy limit

This effect of this kind of shaping is represented in Fig. 5.9 where examples of
input and output signals are depicted. It is remarkable for the implementation in
real-time processing electronics that the operations reported in (5.4) are all simple
sums or subtractions, with the only exception of the multiplication by the constant
M , (5.5). These kind of operations are cheap in terms of computing resources and
can be implemented in FPGA.

The trapezoidal filter that optimizes the resolution has to be tuned as a function
of the noise spectrum. The largest the capacitance of the detection element, the
larger will be the integration of the low-frequency noise. As a consequence, in
segmented germanium detectors, the compromise to be adopted to obtain the best
possible resolution, in the low-count rate conditions, will be different for the filter
used on the signals of the segments (low capacity) with respect to the one used for
the central contact. In Fig. 5.10 the resolution of a segment and the resolution of the
central contact of an AGATA detector are compared as a function of the peaking
time (risetime + flat-top of the trapezoid).

The response function to a trapezoidal filter and the weight that is given to signal
and noise can be analyzed in the frequency domain. While filtering in time domain
implies performing a convolution of experimental noise with impulse response of
the shaper, filtering in the frequency domain can be represented by the multiplication
of the Fourier transform of experimental noise with the Fourier transform of the
impulse response of the shaper.

In Fig. 5.11 a noise spectrum is reported as measured from an AGATA detector.
The effect of trapezoidal filtering is visible in the same figure. The filtered spectrum
was obtained multiplying the noise spectrum by the Fourier transform of the impulse
response function of the trapezoidal filter.

Further filtering of the noise is obtainable using a time variant baseline restorer
that consists in a long timescale running average over the input signal. This is needed
to get rid of excess low-frequency noise, and it is demonstrated to be beneficial in
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Fig. 5.11 Example of trapezoidal filtering on the noise of an AGATA detector, represented in the
frequency domain. The fast Fourier transform of the input noise is depicted in blue. The output
noise after the trapezoidal filtering is depicted in black
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Fig. 5.12 Effect of baseline restorer filter in the frequency domain. For a running average baseline
restorer of 10 µs length, the frequencies below 10 kHz result suppressed

actual systems. In the low count rate limit, the effect of the noise suppression by the
baseline restorer filter is represented in Fig. 5.12 in the frequency domain.

It should be remarked that real implementations of the amplification network
commonly result in a non-ideal shaping of the signal. Stray inductive and capacity
couplings often result in distortions of the preamplifier response function (e.g., over-
shoots) that differs from a simple exponential function. Non-exponential response
function impacts the outcome of the trapezoidal filtering and calls for compensating
filters like anti-overshoot in the output of the preamplifier or more complex filtering
based on multi-pole deconvolution.

5.2.4 Count Rate Capabilities

The performance of a γ -ray spectrometer based on digital electronics has a strong
dependence on the count rate. Each individual detector of a tracking array covers a
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larger solid angle than previous generation of Compton-suppressed array. Moreover,
until the 4π array will not be completed, it is convenient to use the array in a closer
configuration with respect to the nominal position (at 23 cm distance from the target
in the case of AGATA). This allows to achieve high efficiencies at the cost of a larger
count rate in each detection element, concentrating all the germanium detectors in
the small fraction of solid angle around the target. In order to get the very best
energy resolutions, large-volume germanium detectors are operated at low counting
rates and relatively large shaping times. Therefore, we have to carefully consider the
efficiency and energy-resolution losses that can arise at counting rates of 50 kHz or
higher.

In order to study this effect, a measurement of the efficiency has been performed
using a simplified version of the “two-sources-method” [17]. Six different mea-
surement configurations of the two sources, 60Co and 137Cs, have been used. The
60Co source was kept in the same position for all the runs in order to measure the
resolution and the efficiency, while the 137Cs source was moved to vary the total
counting rate of the crystal between 13 kHz (corresponding to the 60Co source
alone) and 200 kHz. For every position of the sources (i.e., count rate), a scan of
the possible values of the shaping time and baseline restorer width was performed.
Resolution was measured for different values of the trapezoidal-filter risetime in
the range between 1.25 and 10 µs and of the baseline-restorer width in the range
between 0.64 and 20.48 µs. The flat top of the trapezoid was kept at 1 µs for all
measurements.

Resolution strongly depends on the count rate as can be seen in Fig. 5.13 where
the resolution is reported as a function of the shaping time and the baseline restorer
length. Using this graphs, it is possible to optimize the response of the detectors for
the actual count rate of each experiment.
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Fig. 5.13 Resolution at energy 1332.5 keV versus count rate for several trapezoidal-filter
risetimes from 1.25 to 10 µs. The baseline restorer lengths was optimized for each case, resulting
in 20 µs for all rates but the largest one, where the best resolution is found for a baseline restorer
of 10 µs
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5.3 Doppler Correction Capabilities

It is of foremost interest to have the best possible Doppler corrections capabilities.
For this reason in-beam experiment performance of a γ -ray tracking array like
AGATA depends critically on the precision achieved in locating the individual
photon interaction points.

An experiment using the first prototype of AGATA triple cluster was performed,
in order to compare the performance of different pulse shape analysis algorithms
under realistic experimental conditions.

The basic idea is that, when the γ rays are emitted in-flight by a recoiling nucleus,
the width of peaks in the Doppler-corrected spectra will depend on three factors,
namely, the intrinsic detector energy resolution, the error on the velocity vector of
the emitting nucleus, and the uncertainty on the photon direction. The last factor
depends on the position resolution of the PSA algorithm used. If the other causes
of Doppler broadening are known, the position resolution of the detector can be
inferred from the observed energy resolution. This is not an easy task because all
the direct and indirect sources of Doppler broadening have to be tracked down and,
when not negligible, accurately quantified.

The broadening of the peaks has been predicted using a Monte Carlo simulation,
but, as a first approximation, it can also be calculated using the propagation of errors
and some schematic assumptions. The importance of this approach is to make the
results intuitive. The Doppler-shift formula is the following:

Ecm
γ = Eγ

1− β cos θ√
1− β2

(5.6)

where Ecm
γ is the intrinsic energy of the γ -ray, Eγ is the energy of the photon in the

laboratory (in other words the energy seen by the detector), β is the velocity of the
emitting nucleus, and θ is the angle between the direction of the recoiling nucleus
and the direction of the photon in the laboratory.

Each of the parameters entering the formula contributes to the final uncertainty.
For instance, the θ angle is determined experimentally from the position of the first
interaction of the photon and the target position. Thus, an error in the position is
translated into an error in the direction of the γ -ray, giving an imperfect Doppler
correction. Quantitatively, the contribution of each parameter to the final position
resolution is evaluated through the propagation of errors on Ecm

γ , giving:

(
�Ecm

γ

)2 =
(

∂Ecm
γ

∂θ

)2

(�θ)2 +

+
(
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γ

∂β

)2

(�β)2 +

+
(

∂Ecm
γ

∂Eγ

)2

(�Eγ )2. (5.7)
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In this calculation, the different broadening sources are considered as statistically
independent contributions, neglecting for simplicity any correlation between them.
In (5.7), �β and �θ are, respectively, the uncertainty on the velocity module and on
the direction of the nucleus emitting the radiation. Even if the recoil velocity vector
can be measured on an event-by-event basis, �β and �θ will be generally non-zero.

The term �Eγ in (5.7) describes the contribution of the intrinsic energy
resolution of the detector.

The partial derivatives are:

∂Ecm
γ

∂θ
= Eγ

β sin θ√
1− β2

∂Ecm
γ

∂β
= Eγ

β − cos θ
(
1− β2

)3/2

∂Ecm
γ

∂Eγ

= 1− β cos θ√
1− β2

(5.8)

The angular error is propagated to the error in the determination of the intrinsic
energy of the γ ray by the coefficient given in the first raw of (5.8). As an
example, the contributions of the three sources of Doppler broadening are sketched
in Fig. 5.14, for the case of photons of 1 MeV emitted from a nucleus in motion with
β = 0.2% and detected with an uncertainty �θ = 1◦ on its direction.

Besides the finite resolution on the position of the interaction, in an indirect
measurement, the other relevant sources of error in the determination of the intrinsic
energy of the photon are the energy resolution of the detector and the uncertainty on
the velocity vector of the emitting recoil. To simplify the experimental setup, it is
possible to measure indirectly the velocity vector of the emitting nucleus through a
kinematic calculation based on the measurement of the velocity vector of the other
reaction products. As a consequence, some other contributions have to be considered
to explain the experimental broadening, namely:

• angular and energy dispersion of beam due to the accelerator and the transport;
• straggling of the beam and reaction products inside the target.

The position resolution provided by the PSA algorithm can be deduced from the
quality of the Doppler correction, provided a proper reaction is selected to maximize
the Doppler broadening originating from the position resolution and to minimize
the other sources. A reaction that was used to investigate this was the 48Ti(d, p) in
inverse kinematics [26].

The results of this procedure are shown in Fig. 5.15, together with the spectra
obtained by Doppler correcting at detector or segment level. The improvement in
quality of the spectra is apparent. For the 1382 keV peak of 49Ti, FWHM=4.8 keV
is obtained following the PSA algorithm, which should be compared to 14 keV and
35 keV at segment and detector level, respectively.
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Fig. 5.14 The contributions of the different Doppler broadening sources as a function of the
azimuthal angle of the detector with respect to the direction of the recoil emitting the radiation.
A photon energy of 1 MeV is assumed, with a typical energy resolution for a germanium detector,
producing the “Intrinsic” contribution (in red); a source velocity of β = 20.0% with an error of
0.5%, giving the “Recoil” contribution (in blue); an uncertainty �θ = 1◦ in the source direction,
obtaining the “Opening” contribution (in green)

The resulting position resolution is extracted quantitatively by comparing the
experimental peak width to the simulated value using the curves shown in Fig. 5.15.
In this case the simulated data from the three individual crystals were summed up,
obtaining the curve plotted in Fig. 5.16. The observed FWHM of 4.8 keV of the peak
at 1382 keV corresponds to a position resolution of 3.8 mm at this energy.

The improvement in Doppler correction capabilities have been exploited, for
example, in beam-induced fission experiments at GANIL, using the VAMOS mag-
netic spectrometer for fission fragment identification and velocity reconstruction.
In Fig. 5.17 the comparison of the Doppler corrected spectrum for 98Zr obtained
with a standard HPGe array (EXOGAM) and AGATA is shown. Already from
such preliminary analysis of the commissioning data, a gain in energy resolution
is evident.
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Fig. 5.15 Doppler-corrected spectra for the full cluster, deducing the direction of the photon,
respectively, from the center of the detector, center of the segment, and the PSA information.
Taken from [34]
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Fig. 5.16 Width of the simulated 1382 keV peak as a function of the position smearing for the
full triple cluster. Individual crystal energy resolution have been considered. The horizontal arrow
indicates the experimental width. Taken from [34]

5.4 Lifetime Measurements with Doppler Techniques

The lifetime of a nuclear state is the observable that is measured in γ -ray spec-
troscopy experiments in order to derive the reduced transition probabilities, crucial
for the comparison with nuclear theoretical models. The Doppler-shift techniques
are powerful tools for lifetimes in the 10−14–1010 s interval. When the nuclear
level of interest is populated in a heavy-ion reaction, the radioactive decay will
happen from the moving reaction product. The finite time it takes to travel a given
distance can be considered as a “unit of measurement” of the decay lifetime of
the populated level. When the radiation with energy Eγ (center of mass energy) is
emitted by a nucleus moving with a velocity β = v/c, the γ -ray energy observed
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Fig. 5.17 Doppler correction capabilities in the AGATA+VAMOS campaign at GANIL. The
Doppler-corrected spectra corresponding to 98Zr (selected in VAMOS) obtained with AGATA
(upper panel) and EXOGAM (lower panel) revel the improvement due to the AGATA position
resolution

at an angle θ between the recoil and the γ -ray emission directions follows the
Doppler relation. Depending on the order of magnitude of the lifetime and on the
kind of nuclear reaction involved, different variants of the technique have been
developed. All methods take great advantage of the use of HPGe detectors, whose
excellent energy resolution allows for the observation of fine details in the γ energy
spectrum. In particular, a big improvement in the accuracy of the determination of
the lifetimes by means of these techniques was achieved with the use of arrays of
HPGe detectors, placed symmetrically all around the target position. The possibility
of a simultaneous measurement at many angles is important for discovering the
presence of contaminants as well as for increasing the accuracy since the lifetime is
obtained in a number of independent evaluations. When the lifetime of the level of
interest is comparable to the slowing down time of the emitting nucleus in a given
material, the Doppler-shift attenuation method (DSAM) is used. This technique
is widely adopted for the measurement of sub-ps lifetimes, corresponding to the
typical slowing down times of heavy ions in solid mediums, which are ≈ 10−13–
10−12 s for kinetic energies below or about 10 MeV per nucleon. Thanks to the
angular resolution of a tracking array as AGATA, this technique can be pushed
to shorter lifetimes. In case of lifetimes of few fs, the shape of the peak in the
γ spectrum is mainly determined by the kinematics, since most of the nuclear
states decay as soon as they are populated. The first experiment performed with the
AGATA array to measure ≈ fs lifetimes aimed to the determination of the lifetime
of an excited state in 15O, of interest for nuclear astrophysics. The details of the
experiment are reported in [35]. In Fig. 5.18 the effect on the observed peak position
of different lifetimes is shown in the “AGATA-like” case and in a standard coaxial
detector. As evident from the picture, the extremely good angular resolution allows
for distinguishing among the different lifetimes. Such angular sensitivity for γ rays
de-exciting short-lived levels is depicted in Fig. 5.19, where the observation angle is
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Fig. 5.18 Examples of sensitivity to fs lifetimes. 6.79 MeV γ -rays emitted by 15O nuclei
produced in the simplify direct process reported in the figure, with the produced 15O recoiling at a
fixed direction with respect to the beam axis (35 deg). The sensitivity to ≈ fs lifetimes obtained in
the spectra of AGATA (left) is lost when using a traditional HPGe detector, as one from the GASP
array (right). Taken from [35]

sorted as a function of the detected energy. The broadening of the γ -ray peaks due to
short lifetimes is evident as compared to the γ rays emitted at rest. Such line shapes
can be analyzed by means of Geant4 simulations in order to extract the lifetime.
In order to establish the very lower limit of sensitivity of the measurement, Geant4
simulations of the whole production, slowing down, gamma emission, and detection
process can be used. For the specific experiment considered here as an example, one
obtains the χ2 curves reported in Fig. 5.20. Those curves are useful to establish the
minimum value of lifetime that one can reach with a given setup. In the considered
case, one sees the appearance of a minimum in the χ2 curve for lifetimes of about
0.7 fs.

5.5 Linear PolarizationMeasurements

The “almost continuous” angular distribution achievable with tracking arrays can
be exploited to gain a new degree of sensitivity in γ polarization measurements,
necessary for the determination of the magnetic or electric character of γ transitions
and, thus, of the parity of nuclear states. Clover detectors (see Sect. 5.1) are usually
used for such measurements [36], by evaluating the asymmetry AS of the Compton
scattering of γ rays corresponding to a given transition inside the clover detector.
This asymmetry is typically evaluated with respect to the reaction plane, and it is
given by:

AS = N‖ −N⊥
N‖ +N⊥

(5.9)

where N‖ and N⊥ are the number of Compton scattered γ rays detected, respec-
tively, parallel and perpendicular to the reaction plane.

Using the tracking capabilities of arrays as AGATA, the azimuthal Compton
scattering angle φ can be evaluated with a 1 degree precision, as shown in
Fig. 5.18. The linear polarization can be thus determined, instead of using (5.9),
by considering that the average Compton scattering cross section depends on φ via
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Fig. 5.19 Angular position of the first interaction point, with respect to the beam direction, sorted
as a function of the energy of the reconstructed γ ray. The narrow straight lines correspond to
the emission at rest from the AmBe(Fe) source, while the broad “tilted” lines are gammas emitted
while the excited nucleus is moving in the stopper. In the projection on the energy axis (lower
panel), the broad and composite structure are assigned to 15O and 15N, produced in the reaction.
Taken from [35]

the relation [37]:

N(φ) = a + b cos(2φ) (5.10)

The analyzing power on the AGATA triple clusters for γ linear polarization has
been determined in [37] using (5.10). The measured N(φ), normalized to a isotropic
distribution obtained with 137Cs calibration source, is reported in Fig. 5.21 for the
2+ → 0+ transitions in 106,108Pd populated in Coulomb excitation experiments.
The impact of position resolution and other systematic effects is discussed in [37].
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Fig. 5.20 Sensitivity of the simulated line shape to changes of the lifetime in the fs region, for the
experiment considered in the text. A minimum in the χ2 curve starts being evident for lifetimes
around 0.7fs. Taken from [35]

Fig. 5.21 Asymmetry distribution for the 2+ → 0+ transitions in 106,108Pd populated in Coulomb
excitation experiments. The γ polarization is obtained by fitting the experimental data sorted with
a binning of 1 degree, to (5.10). Taken from [37]

5.6 Conclusions

In this lecture notes, the limits of previous generation Compton-suppressed γ -
detector arrays have been discussed, motivating the development and the con-
struction of the state-of-the-art γ -tracking arrays. The basics of the techniques in
use for the operation of such detectors have been presented. The tracking arrays
present improved detection sensitivity, thanks to enhanced efficiency and Doppler
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correction capabilities, extremely important for nuclear structure studies using low-
intensity radioactive beams. Moreover, the position sensitivity of the tracking array
can be exploited, not only with the aim of Doppler correction but also for gaining a
new degree of sensitivity in lifetime measurements and polarization studies. In order
to highlight those new capabilities, a limited selection of results has been discussed.
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6Nuclear Structure Studies with Active Targets

Riccardo Raabe

Abstract

The use of gaseous detectors in nuclear structure studies presents several
challenges and interesting opportunities. In the last twenty years, the challenges
have been addressed with the development of various active targets, designed to
perform measurements with very weak radioactive ion beams. In this paper we
review the characteristics of these instruments and how they can be used to great
effect in a wide range of physics cases.

6.1 Introduction

Gaseous detectors are largely used in experimental physics. They exploit the
ionisation created by charged particles when they traverse any matter; in gases, the
charged particles leave behind long “tracks” of electron and ion pairs. The ionisation
electrons can be collected by an electric field and transported to a region where
they are amplified, typically by a wire at high potential, creating an electric signal.
Different configurations of the electric field and amplification region allow to use
the signals either for counting the number of particles traversing the gas volume,
for timing purposes, or, in more complex cases, to record the full three-dimensional
information about the trajectory of the particle.

The latter is the case of a time projection chamber (TPC) [1], where electrons
drift to a segmented detection plane which provides a two-dimensional projection
of the trajectory. The third dimension is reconstructed from the difference in time
between the arrival of the electrons on the plane.
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In high-energy nuclear and particle physics, very large TPCs containing gas
at low pressure are often placed around the vertex of complex reactions, where
hundreds of particles are created at the same time. Gaseous detectors are “slow”:
while particles fly out in a time scale of nanoseconds, it takes several tens of
microseconds for the ionisation electrons to drift to the detection plane and form
an image of the trajectories. The reactions of interest, however, are rare for this
kind of physics, and TPCs can be used without mixing tracks from different events.
The particles produced are mostly light (sub-nuclear) and very fast; the energy
that they deposit in the gas and thus the number of electrons created is small
(but sufficient) and does not depend much on the kind of particle [2]: we speak
about minimum ionising particles. To identify the particles, large magnetic fields are
usually employed to bend the trajectories according to the mass-to-charge ratio of
the particles (the geometry is such that the magnetic fields do not affect the drift of
the electrons).

In low-energy nuclear physics (also referred to as nuclear structure physics),
things can be very different, and several challenges arise for the use of TPCs.

The charged particles emitted in the reactions can be light ions (p, d, t, 3He, α

particles) or heavy ions throughout the whole chart of nuclei. Since the energy loss
per unit length is roughly proportional to the mass, the charge square and inversely
proportional to the energy of the particle [2], we may expect signals that differ
by more than three orders of magnitude: it is very difficult to realise a detection
system with such a large dynamic range. Then, the total event rate can be high,
and the events of interest need to be selected by employing an appropriate trigger.
Sometimes the radiated particles do not exit the TPC, and a prompt event selection
must be based on the pattern of the detected trajectories in the TPC. Finally, we
would like to use TPCs as active targets, by studying the reactions that take place
on the nuclei of the detection gas. The choice of the gas, and often its pressure,
is thus dictated by the physics case that we want to study. For example, to study
resonant reactions with α particles, we will fill our active target with (mostly) He
gas which, however, is not ideal for the collection of the signals from the ionisation
electrons.

On top of those issues, we intend to use these instruments with radioactive ion
beams, by performing reaction studies in inverse kinematics: a heavy projectile
impinging on a light target nucleus. In general, this brings in additional compli-
cations, such as kinematical compression and a worsening in energy resolution due
to the energy loss of the beam in the target (see, e.g. a discussion of these effects
in [3]). As we will see, however, active targets can overcome some of those issues;
also, they are very versatile instruments and have specific advantages that make
them very attractive tools for nuclear structure studies.

In Sect. 6.2 of this chapter, we illustrate the working principles of active targets
and have a brief overview of existing instruments. In Sect. 6.3 we discuss how they
can be used in a number of different physics cases.
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6.2 Working Principles

As mentioned, an active target is a time projection chamber, where the gas is both the
detector and the target. The working concept is illustrated in Fig. 6.1. The electric
field can be oriented perpendicular to the beam with the segmented plane on one of
the sides, as in the figure, or parallel to it, with the segmented plane perpendicular
to the beam and placed either on the beam entrance side or on the opposite side. The
electrons are amplified using different technologies and cause a signal on each pad
of the segmented plane, either by induction or by direct collection. Using the TPC
scheme, the two-dimensional projection of the track is complemented by the timing
information to reconstruct the third dimension.

From the detection of the tracks, the reaction vertex can be directly reconstructed.
This is one of the main advantages of active targets: since the energy loss of the beam
in the gas is known, the energy available at the reaction vertex can be calculated with
much better accuracy than in the case of a solid target foil, where usually the energy
at the mid-point is assumed. This allows for the use of a much larger amount of
target material, which compensates for the weak intensity of radioactive ion beams,
without degradation in energy resolution when reconstructing the kinematics of the
reaction process.

The energy deposited by the particles in the gas can be estimated from the charges
collected on the pad plane. If the particles are stopped in the gas volume, a more
accurate value of their total energy can be obtained from the range, the length of the
track. If the charged particles leave the volume, they can be intercepted by auxiliary
detectors. In either case, information on the specific energy loss per unit length

electric
field

incoming
beam

range

gas volume

segmented
plane

amplification
zone

Fig. 6.1 Working principle of an active target. The incoming beam enters the gas volume, where a
reaction may take place. The ionisation electrons, produced by all the charged particles traversing
the gas, drift in an electric field towards an amplification zone. The signals are read out on a
segmented plane



212 R. Raabe

can be used to identify the particle, especially when combined with the kinematic
reconstruction.

The geometric efficiency of an active target covers potentially the full solid
angle. In practice, however, limitations arise when particle tracks are too short to be
reliably identified or when the energy deposited per unit length exceeds the detection
limits.

The choice of the detection gas is dictated by the physics case of interest. The
pressure is usually a compromise between the need of a large amount of target
material and the need of tracks with a reasonable length for the events of interest;
this has to be combined with the best working conditions for the electron ionisation,
drift, and amplification. For the latter, one can use gas mixtures to achieve better
results, taking into account that nuclei of different species can lead to unwanted
background processes. In practice, pressures between about 50 mbar and 1 bar are
usually employed.

The main limitation in the use of these detectors is related to the long time needed
for the electrons to drift to the detection plane, of the order of (tens of) microseconds.
This constrains the rate of events of interest that can be recorded and often requires
a “smart” trigger to select them among many other background events. For these
characteristics, active targets are well-suited to study rare events or events induced
by very low-intensity radioactive ion beams. In this sense, in many cases they are
complementary to measurements using thin solid targets.

We will now discuss some aspects in more detail. For a complete overview
of the technical details and performances, we refer to the work of Y. Ayyad and
collaborators in [4].

6.2.1 Amplification Technology

Until recently, in most gaseous detectors the amplification of the electron signal was
achieved by using wires at a high positive potential. When arriving in the vicinity of
the wire (a few micrometres), electrons would accelerate and ionise other atoms in a
fast avalanche; see Fig. 6.2. A signal would then be induced on a pad plane, mainly
due to the slow drift of the ions towards a cathode. Even with a limited number
of wires, a spatial resolution better than the size of a single pad could be obtained
thanks to the spread of the induction signal.

Fig. 6.2 Electron
amplification obtained with
wires. The signal on the pads
is generated by induction

pad plane

electrons

wires

induction
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Fig. 6.3 Left: electron microscope picture of a GEM device. Right: sketch of the working
principle of GEMs. Figures reproduced from [7] under a Creative Commons Attribution 4.0
International License

In the last 20 years, the amplification technology, driven by its large use in high-
energy physics, has evolved towards micro-pattern gaseous detectors (MPGDs) [5].
These are planar structures that use various geometries to generate a strong electric
field. The amplification gap is typically in the order of ∼100 µm, compared to
the mm size of the wire-based structures. In the existing active targets, mainly gas
electron multipliers and micro-mesh gaseous structures are used.

Gas electron multipliers (GEMs) [6] consist of a ∼50 µm Kapton foil covered
with copper on both sides and perforated by bi-conical channels. Figure 6.3 shows
an electron microscope picture of the device and its working principle. A potential
difference of a few hundred volts is applied between the two surfaces; the electrons
are driven by the electric field lines through the holes, where the field is sufficiently
strong to cause electron multiplication. GEMs are decoupled from the readout
structure and thus very versatile: several GEMs can be combined to achieve a
stronger multiplication. In active targets, a segmented anode collects the electrons
to generate the signals (see Fig. 6.3).

An example of a micro-mesh gaseous structures (Micromegas) device [8] is
shown in Fig. 6.4. A thin metallic micromesh separates the drift space from the
amplification gap, which is about 100 µm. The electron multiplication is obtained
with a strong electric field across the gap. Different technologies can be used to
obtain a uniform gap.

With these devices, gains of a factor 103 and up to 105 can be reached with
excellent intrinsic resolution [9, 10]. Both GEMs and Micromegas have potentially
a high rate capability; in addition, their characteristics allows to build detection
devices that can sustain sparks somewhat better than a wire system. The latter is
an important condition, because often, in active targets, the settings of the gas and
its pressure are at the limits of the working range, to accommodate the requirements
of the physics case.

http://creativecommons.org/licenses/by/4.0/
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Fig. 6.4 Arrangement of a Micromegas electron amplification device

6.2.2 Configurations and Auxiliary Detectors

As we have mentioned, the energy loss in gas of charged particles (ions) emitted in
nuclear reactions may differ considerably. Even for one specific particle, the inverse
kinematics of reactions with radioactive ion beams dictates that their energy depends
very strongly upon the emission angle. This reflects in very different lengths of the
tracks of the emitted particles, which cannot all be stopped in the active volume.

Two strategies have been used to improve on this aspect. A magnetic field can be
used to bend the trajectories of the charged particles. This way the energy and the
identification of the particles can be obtained from the curvature of their trajectories,
even for tracks which are not completely stopped in the active gas volume. Usually,
the magnetic field is oriented parallel to the electric drift field, to avoid deviating
the trajectories of the ionisation electrons from the electric field lines. The magnetic
field may be generated by a dipole and oriented perpendicularly to the beam axis:
it is the configuration of a spectrometer, and we find an example with the SπRIT
TPC/active target [11]. A solenoid, on the other hand, can give a magnetic field
oriented parallel to the beam axis. The active target is then built with a cylindrical
symmetry, and the ionisation electrons are collected on a pad plane perpendicular to
the beam. This is the case of AT-TPC [12] and SpecMAT [13] active targets. This
configuration has specific advantages for some physics cases, when the detection of
the beam tracks is not crucial, as we will see in Sect. 6.3.

Alternatively, auxiliary charged particle detectors (e.g. silicon detectors) can be
placed around the active volume to intercept the escaped particles. This solution
can be applied if the active volume is not too large; depending on the physics case
of interest, however, one can choose to cover only part of the total solid angle.
The measurement of the energy loss in the gas, combined with the residual energy
deposited in the auxiliary detectors, provides an effective way of identifying the
particle using the ΔE-E method. This configuration is used, for example, in ACTAR
TPC [14] and its demonstrator [15].

Detection of the γ -rays emitted in a reaction or decay can also provide valuable
information. Active targets are optimised for use with low-intensity radioactive ion
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beams, so it is essential to have an efficient system to detect the γ radiation. High-
Z scintillation detectors developed in the last 15–20 years, such as LaBr3(Ce) and
CeBr3 [16], combine that intrinsic efficiency with a good resolution. The modular
PARIS array [17] of LaBr3(Ce)-Na(Tl) phoswich detectors has been considered for
use in combination with ACTAR TPC; the SpecMAT active target is designed with
an array of CeBr3 detectors placed around the active volume. For the latter, the use
in strong magnetic fields was successfully tested [18].

6.2.3 Electronics and Trigger

The design of active targets for nuclear structure studies was initially limited by
the maximum number of electronic channels available. The Maya detector [19],
developed at GANIL, already represented a significant progress, with more than a
thousand pads read out by the Gassiplex chips [20], which had been developed for
high-energy physics. With its wire amplification technology, however, Maya only
allowed the readout of two particle tracks per event. For the new generation of active
targets, that in Europe started with the ACTAR TPC project, the development of a
new, dedicated electronic readout system was immediately identified as a central
goal. The system, named General Electronics for TPCs (GET) [21], was realised by
a collaboration between the laboratories of CEA Saclay, CENBG Bordeaux, GANIL
Caen, and the Michigan State University.

The design (Fig. 6.5) is modular and strongly integrated. A front-end card (AsAd)
can process signals from 256 channels through 4 AGET chips and a 4-channel

Fig. 6.5 Scheme of the GET electronics; see text for the details. Figure reproduced from [21] with
permission from Elsevier
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analog-to-digital converter (ADC). Each AGET features, for each of its 64 channels,
a charge-sensitive pre-amplifier, a shaper, a discriminator, and a 512-cell circular
switch capacitor array that stores the charge information collected from the pad.
The frequency of the readout can be adjusted between 1 MHz and 100 MHz, so
that the circular array corresponds to a time interval between ≈5 µs and ≈500 µs.
When a trigger is generated, the information of the 512 cells is passed over to the
12-bit ADC, processed and sent to a Concentration Board (CoBo), that can receive
data from 4 AsAd cards (1024 channels). Up to 10 CoBo boards can be placed
in a micro-TCA chassis, controlled by a Multiplicity Trigger and Time (MuTanT)
module, and up to 3 chassis can be combined for a total number of 30,720 channels.
All channels are aligned through a time stamp distributed by the MuTanT module.
Event by event one can thus record the “history” of all the pads of the active target
in the time interval, preceding the trigger, set by the choice of the readout frequency.

The goal was to have a system capable of a throughput of 1000 events per
second. It is easy to calculate that this would correspond to a data rate of ≈200
Gb per second, if all the cells of all the channels were to be read out. Obviously,
the system offers the possibility of suppressing all the data below a threshold
(zero-suppression), thus avoiding reading out all the pads without a signal. The
implementation of a smart trigger system is also crucial. In GET, a trigger can be
generated from an external signal (e.g. a beam detector or an auxiliary detector);
from the active target itself, if the number of pads with a signal exceeds a selected
threshold; and from a high-level user-defined hit pattern of the pads.

GET is now used in many active targets and TPCs worldwide. Its modular design
allows customisation and updates of the different stages. Beside the readout of the
pads from a TPC, the system can be adapted for the readout of different sorts
of detectors. This is, for example, the case of the auxiliary CeBr3 scintillators in
SpecMAT [18] or the Si-CsI(Tl) telescopes in FARCOS [22]. Adaptation boards
and/or custom preamplifiers were developed for those applications with excellent
results. An extensive list of devices using GET is given in Table 1 of [21], and the
same work reports of a successful use with HPGe γ -ray detectors.

6.2.4 Track Finding and Reconstruction

The possibility of recording the three-dimensional tracks of the particles involved in
a reaction is a great advantage of active targets. To extract the relevant information,
however, a complex analysis of the data is necessary. Particle tracks have first to
be identified and then properly fitted to extract vertex position, emission angles,
lengths, and energy deposition profiles. This clearly requires the development of
automated procedures. The job is complicated by the fact that the tracks are often
not “ideal”, due to the intrinsic issues related to gaseous detectors (uniformity
of response, dynamic range), combined with the electro-mechanic challenges of
collecting signals from an extremely dense pad plane, and the inevitable presence
of background/noise signals. Again, we benefit from many methods that have been
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developed in high-energy physics. An extensive discussion is found in [4]; here we
give a short overview.
Track finding algorithms that have been used with active targets include:

• The random sample consensus method (RANSAC) [23] finds a model depen-
dence in data with outliers, by sampling a data set a given number of times and
excluding the outliers. In a track reconstruction, one chooses parameters such as
the expected track shape (e.g. linear), the width of the track (as determined by
the spread of ionisation electrons), and the number of sampling attempts. The
method is fast and robust especially for the identification of points belonging to
a rectilinear track.

• The Hough transform [24] was developed to analyse photographs of tracks in
bubble chambers, and it is still widely used to find shapes in any type of image.
The principle is to describe the looked-for shape in parametric form and then
map the image in the parameter space by applying the transformation to each
data point. Usually, for straight lines, the Hesse normal form is used for the
transformation [25]. In the parameter space, the best value of the parameters
can be selected by constructing histograms for the calculated value of each point.
The transformation can be adapted to better suit specific cases according to the
detector geometry and track shapes, including curved ones. Examples are given
in [26, 27].

• The Riemann tracking [28] is more adapted for the reconstruction of helical
trajectories. A circular arc is mapped on the Riemann sphere, therefore trans-
forming the nonlinear problem of circle fitting into a direct and fast linear fitting
of a plane. This method is in principle well-suited for active target like AT-TPC
and SpecMAT, which are meant to be used inside a solenoid; the large energy
loss of ions in the gas, however, means that the curvature radius is not constant,
complicating the problem significantly.

• Machine learning methods using neural networks could become the best option
to identify complicated patterns as the spiral tracks of ions in magnetic fields.
The first encouraging attempts in this directions have been made in the analysis
of events in the AT-TPC [29, 30].

The fitting of the identified tracks aims at the determination of the track parameters
or at their improvement, if some values were available after the initial identification
step. The characteristics of the active target (geometry, presence of a magnetic
field, gas pressure) are crucial in guiding the choice of the parameter space to be
investigated.

Methods for the fit of rectilinear tracks are presented in [31] for the active target
Maya [19]. The hyperbolic secant squared (SECHS) method was developed to
account for the hexagonal shape of the pads in Maya. The centroid of the charge
collected along each row of pads (as selected in the track-finding step) is determined,
and the track is fitted from the position of the centroids. A minimum of three pads
per row is required. The method gives slightly different results for the three different
directions of the rows of pads, and usually the orientation giving the largest number
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of maxima (i.e. the “most perpendicular” to the track) is chosen. For tracks for
which the charge deposited is small, the orthogonal distance regression method is
used instead. The method finds the line that minimises the sum of the distances from
the centres of the pads belonging to the track, weighted by the charge of the pad.
The last step of the fit, for tracks that stop in the gas volume, is to fit their length,
to determine the energy of the particle. If possible, the energy loss along the track
is fitted using a known parameterisation, for example, from the energy-loss tables
of SRIM [32]. The end of the track is then identified as the point where the energy
loss drops to a given fraction of the maximum (Bragg peak). If the track is too short
and a fit is not possible, the stopping point is calculated from the slope of the charge
profile of the last part of the track.

The complex tracks of ions in a magnetic field have their standard example with
the AT-TPC and have been so far mostly analysed using Monte Carlo procedures
[12]. A large number of candidate tracks are generated in a simulation that account
for all the effects of the detector, including the response of the electronics, by
randomising six parameters: the three coordinates of the reaction vertex, the two
angles of the track, and the energy of the particle. The parameters of the simulated
track that best reproduce the hit pattern, the energy loss profile, and the vertex
position of a real track are then assigned to the real track. The energy of the particle,
in this case, is derived from the (decreasing) curvature of the track. The procedure is
quite expensive computationally; a preliminary good knowledge of the parameters
is therefore necessary. This may be especially crucial for the energy-loss functions,
which are known with sizeable uncertainties of the order of 10% or higher, in
particular at low energies.

By employing the technologies and methods listed in the sections above, active
targets could ideally achieve excellent resolution in energy and angle. If the settings
of the instrument are tuned to optimise a specific kind of events, values of the order
of a degree for the angle and few tens of keV for the energy seem to be within reach
[4]. The actual values, however, may vary significantly depending on the geometry
of the detector, type of particles, length of the tracks, specific energy deposition, and
of course the reaction process to be studied. In Sect. 6.3 we will consider various
physics cases and present the result of actual measurement, which will give us a
better idea of the performance of active targets.

6.2.5 Active Targets for Nuclear Structure Studies

We present a short list of detectors, which we will also encounter in Sect. 6.3 when
discussing some physics cases. For a more exhaustive list, we refer to the work of
S. Beceiro-Novo et al. in [33].

The IKAR detector at GSI Darmstadt [34] can be considered the first instrument
where detection gas and reaction target were the same. IKAR was designed to detect
light particles scattered in low-momentum transfer collisions. The large vessel was
filled with hydrogen at a pressure of 10 bar and divided into six ionisation chambers
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Fig. 6.6 Scheme of the Maya detector. The beam enters from the left, along the x axis. See text
for the details. Figure reproduced from [19] with permission from Elsevier

by a succession of anode and cathode plates, on which the ionisation charges created
by the scattered protons were collected.

The Maya active target [19] had a configuration with the electric drift field
perpendicular to the beam direction and a volume of 28×26×20 cm3; see Fig. 6.6.
The amplification was achieved with wire technology, and the charges were
collected on a plane of 32×32 hexagonal pads. When a trigger was issued by the
wires, the signals were kept in the memory of the Gassiplex multiplexed chips
[20] until they were sent to the data acquisition. In the forward direction, an array
of Si and CsI detectors allowed to identify and collect the energy of charged
particles scattered outside the active volume. This general-purpose detector was
used in several successful measurements of transfer reactions, inelastic scattering,
and resonant reactions (see Sect. 6.3). The limitations of Maya concerned mostly
the dynamic range of the Gassiplex, the low event rate, and detection of maximum
two scattered tracks due to the wire geometry. It was to overcome these problems
that the GET electronics described above (Sect. 6.2.3) was designed and adopted by
various active targets.

ACTAR TPC [14] is similar to Maya in concept, with an active volume of
295×295×255 mm3 and a Micromegas detection plane divided in 16,384 2×2 mm2

pads. The complex pad plane required a dedicated development, for which two
electro-mechanic solutions were explored [14, 35]. The uniformity of the drift field
(perpendicular to the beam direction, as in Maya) is realised with a double-wire
cage, allowing high-energetic charged particles to escape the active volume and be
detected in solid-state detectors placed around the field cage. Figure 6.7 shows the
detector scheme, with the cathode on the bottom of the chamber and the segmented
plane on the top. An array of Si detectors is shown in the forward direction, but
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Fig. 6.7 Top, CAD drawing of the ACTAR TPC detector. Bottom, picture of the detector chamber;
the front-end part of the GET electronics is on the top of the chamber. Figure on top reproduced
from [14] with permission from Elsevier

room is available to place other detectors on the four sides of the active volume. The
first measurements with ACTAR TPC have confirmed the projected performances
[14, 36, 37]. A smaller-scale “demonstrator” version of ACTAR TPC [15] was
realised prior to the full-size detector, with an active volume of 64×128×170 mm3.
Besides working as a test bench for various solutions used in ACTAR TPC, the
demonstrator can be conveniently used when the aim is to visualise the vertex of
the reaction, while particles can be stopped in solid-state detectors surrounding the
active volume with a good spatial efficiency.
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Other detectors using the same arrangement, with the drift field perpendicular to
the beam direction, are CAT-S and CAT-M [38], the active targets of the Center for
Nuclear Study of the University of Tokyo. These instruments utilise Thick-GEMs
[39, 40] to reduce the amplification gain along the beam track, thus effectively
increasing the dynamic range. The CATS are intended to be used for inelastic
scattering measurements (Sect. 6.3.4); like in ACTAR TPC, the drift volume is
delimited by a field cage and can be surrounded by solid-state detectors.

We also mention, in this category, the MAIKo active target [41] of the Research
Center for Nuclear Physics (RCNP) of Osaka University. MAIKo is meant to be
used with He gas to study cluster structures in light exotic nuclei, in measurements
where the low energy of multiple particles must be measured with a very good
resolution. The amplification technology employs micro-pixel chambers [42]: anode
pixels, 400 µm apart, are surrounded by cathode strips to provide an average spatial
resolution of about 300 µm with a total 256+256 electronic channels.

Differently from the above, the following active targets have the drift field
collinear with the beam direction. The AT-TPC of the National Superconducting
Cyclotron Laboratory at Michigan State University [12] (Fig. 6.8) is actually often
placed slightly tilted with respect to the beam, to spread the charges created by
the beam on multiple pads and to separate piling-up beam tracks. The cylindrical
chamber is 1 m long and has a radius of 29.2 cm; it is intended to be placed in
a strong, uniform magnetic field (B " 2 T), collinear with the beam axis. The
magnetic field bends the trajectory of charged particles emitted in reactions, helping
in their identification and energy measurement (see Sect. 6.2.2). The anode uses
Micromegas for the amplification; it is organised in two concentric detection areas,
an inner one divided in 6144 small triangular pads (with 0.5 cm height) and an outer

Fig. 6.8 Schematic view (cutaway) of the AT-TPC. The main components are indicated. Figure
reproduced from [12] with permission from Elsevier
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one with 4096 larger pads (with 1 cm height). As mentioned in Sect. 6.2.4, dedicated
tools were developed for the analysis of the tracks that are generated in the AT-TPC.
Reference [43] describes some physics cases that will exploit the advantages of
the detector. For the AT-TPC as well, a half-size prototype version (pAT-TPC) was
developed [44] and used in a few measurements without the external magnetic field.

SpecMAT (Spectroscopy of exotic nuclei in a Magnetic Active Target) [13],
developed at the KU Leuven, also has a cylindrical active volume (Fig. 6.9), with
the anode (pad plane) placed downstream with respect to the beam direction.
The current version of the pad plane is a Micromegas detector divided into 2916
triangular pads (with 4.6 mm height). The size of SpecMAT is smaller than the AT-
TPC: the field cage is 323.5 mm long, with a diameter of 220 mm. The volume
is surrounded by an array of 45 48×48×48 mm3 CeBr3 scintillators for γ -ray
detection, with a measured resolution of 4.4% at 661.7 keV and a geometric
efficiency around 25% with respect to the centre of the field cage. A hole at the
centre of the pad plane allows evacuation of the radioactive beam, which is essential
to reduce the background in the γ -ray array. The whole system is designed to be
placed in the ISOLDE Solenoidal Spectrometer [45], in a uniform magnetic field
up to 3 T, again exploiting the cyclotron motion of the charged particles to measure
their energy. The main physics goal for SpecMAT is the measurement of direct
reactions [46].

6.3 Physics Cases

Active targets can be built for a specific purpose, optimised for the measurement of
a particular type of reaction process. Or, they can be constructed as more generic
instruments that can be adapted to various cases of interest by changing parameters
such as the target gas, its pressure, possibly modifying the geometry or adding
auxiliary detectors. In the sections that follow we will see examples of both, in
a selected list of experiments performed so far. For a systematic discussion of
applications of active targets to nuclear structure physics, we refer to the work of
D. Bazin et al. in [47].

6.3.1 Decay Through Charged Particle Emission

Exotic decays like two-proton radioactivity or β-delayed charged particle emission
are sensitive probes to study nuclear structure at the limits of nuclear stability. Their
probability, or that of the reverse capture process, may also be relevant for nuclear
astrophysics processes.

In such studies, very rare parent nuclei (down to a few per day) are implanted in
a detector as a radioactive ion beam, along with much more abundant contaminants,
where they undergo decay. In the most challenging cases, the half-life may be of the
order of milliseconds or shorter. Another concern is the low energy of the emitted
charged particles. Dedicated fast electronics has been developed to overcome these
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Fig. 6.9 The SpecMAT active target. Top, a cutaway view; bottom, the assembled detector. Three
rings of CeBr3 scintillation detectors surround the active volume. Figures reproduced from [46]
with permission from KU Leuven, Faculty of Science

issues when implanting the nuclei in solid-state detectors: as the particles cannot
escape, the method provides accurate measurements of the half-life of the decay,
the total emitted energy, and the branching ratio. If multiple particles are emitted,
however, one would like to access information about the energy sharing and relative
emission angle to study the correlations. This is possible if the implantation is made
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in a gas volume. In this case the detector is used as a TPC, not as an active target;
however, we mention it here to illustrate the versatility of these devices.

The first challenging studies of this kind were performed at GANIL (France) with
the CENBG TPC [48], which allowed the first direct observation of the two protons
emitted in the decay of 45Fe (t1/2 = 2.45 ms) [49] and 54Zn (t1/2 = 1.59 ms) [50].
With ACTAR TPC, the aim was to access much faster decays; this was achieved in
the study of the proton-emission decay from the 10+ isomeric state in 54Ni to two
states in 53Co [37], which takes place with a very short half-life t1/2 = 155 ns.

The measurement took place at GANIL, where the ions of interest were identified
among all those implanted in the ACTAR TPC by using the energy loss vs. time
of flight method in the LISE3 spectrometer. When the implantation of one parent
nucleus took place, the system was triggered to record tracks for the following
10 µs. About 0.4% of those nuclei were in the 10+ isomeric state, and about half of
these decayed via proton emission. The pressure of the gas (an Ar-CF4 mixture) was
set to have tracks of a few centimetres for the two groups of emitted protons, which
allowed to measure their energy (1.2 MeV and 2.5 MeV) with about 10% precision.

An event of interest is shown in Fig. 6.10. The left panel shows the charge
collected on the pad plane: the proton track is clearly separated from that of the
implanted ion. The track are both visible despite the very different energy loss,
because ACTAR TPC allows increasing the dynamic range by setting a different
amplification on different zones of the pad plane: a polarisation of the pads reduces
the amplification voltage across the Micromegas gap. The right panel shows a three-
dimensional view of the event: the start of the proton track appears separated from
the end of the ion track, because of the time difference between the two moments,
which reflects in a different arrival time of the ionisation electrons on the pad plane.
From the distance between the two points and the drift velocity of the electrons
(fitted from the data), the decay time of each event can be calculated, and the half-
life can be fitted. In this case, the about 3000 identified events led to a precision of
about 4 ns [37].

Fig. 6.10 Left, charges collected on the pad plane of ACTAR TPC after implantation of a 54mNi
decaying via proton emission; Right, three-dimensional view of the same event. Figure reproduced
from [37] under a Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/
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Other TPCs were built specifically for the study of low-energy charged particles
emitted in decays. Astrobox [51] is a cylindrical gas detector, with a pad plane
with only five elements equipped with a Micromegas electron amplifier. It allowed
measuring β-delayed protons from the decay of 23Al down to an energy of about
100 keV, with an excellent resolution of 15 keV. The optical TPC (OTPC) of the
University of Warsaw [52] uses a different technology: the UV rays generated
by the electrons in the amplification stage are transformed into visible light by a
wavelength shifter, forming an image which is recorded on a CCD camera. The
third dimension of the tracks is provided by the drift time profile of the electrons,
measured in a photomultiplier placed next to the CCD camera. The relatively simple
system was very successful in measuring exotic decays like two- and three-proton
emission [53].

6.3.2 Fusion and Reaction Cross Sections

The study of the reaction processes involving exotic nuclei has been a topic of
interest since the production of the first in-flight fragmented radioactive ion beams
in the mid-1980s. It was the measurement of unexpectedly large interaction cross
sections with beams of 6He and 11Li [54] that led to the discovery of their halo
structures [55]. The effect of halos, cluster structures, and the weak binding of exotic
nuclei on the reaction mechanism has been the subject of an intense theoretical
and experimental effort [56, 57]. The problem is particularly interesting at energies
around and below the Coulomb barrier, where the interplay of various reaction
channels can lead to a modification of the tunnelling probability and thus the fusion
cross section.

Experimentally, the beam particle is a light (exotic) nucleus, impinging on a
heavier target: the reaction takes place in direct kinematics. Still, the measurements
are extremely challenging, since they have to be repeated at different energies, with
weak beam intensities and cross sections that drop exponentially at energies below
the Coulomb barrier. The different reaction channels (fusion, breakup, transfer) are
identified through their signatures; this requires the detection of most of the outgoing
radiation, energies, and angular distributions.

Active targets offer several advantages for this kind of measurements. With an
appropriate choice of the gas pressure, the beam particles can lose a significant
energy as they progress through the active volume: each position along the beam
trajectory corresponds then to a well-defined centre-of-mass energy. By selecting
appropriate values for the energy of the incoming beam, the energy region around
the Coulomb barrier can be covered in a single measurement. The energy loss
profiles along the tracks (dE/dx) can be crucial for the identification of charged
particles and reaction processes. For example, in a complete fusion event, one
expects the beam track to show a large, sudden increase of the dE/dx near the
end, with little or no deviation in the direction (small deviations could be due to the
recoil from evaporated particles). Transfer and breakup events could be separated
from fusion by the kinematics of the detected charged particles.
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An example is the 10Be + 40Ar measurement [58] performed with the prototype
AT-TPC at the TwinSol facility of the University of Notre Dame [59]. The pressure
was set to stop the beam particles right before the detection plane (perpendicular
to the beam in the pAT-TPC), and the trigger selected only events for which the
tracks were shorter than that, indicating that the beam had interact with the nuclei
of the gas. Figure 6.11 shows, in the top panel, the dE/dx of a 10Be + 40Ar fusion
event with, possibly, evaporation of neutrons but no charged particles. The peak
near the end of the track reveals the much higher charge of the compound nucleus.
In [58] other tracks are presented, where different processes are identified. In the
bottom panel in Fig. 6.11, the fusion cross section is shown, as derived from the
number of identified events as function of the position in the target translated into
centre-of-mass energy. The events below 14 MeV are mostly due to the fusion of
10Be on the carbon nuclei in the P10 gas mixture (90% Ar and 10% methane); the
energy loss resolution was not sufficient to separate them from the fusion of 40Ar.
The calculations with the PACE4 evaporation code [60] reproduce very well the
behaviour, though an overall scaling was necessary because of issues encountered
in the normalisation of the experimental data. Remarkably, the method allowed to
measure the fusion cross section with a beam intensity as low as 100 particles per
second.

Despite its potential, this use of active targets has not been explored much to
date. One limitation is represented by the choice of the target nuclei, which have
to be components of a gas; and, if the gas is not pure, like in the example above,
separation of background events can be problematic.

6.3.3 Resonant Reactions

Resonant reactions are a powerful tool for the study of unbound states. The state
is formed for a short time from the combination of the nucleons in the projectile
and the target (thus only states above the threshold for breakup into projectile plus
target are explored). It then decays, either through the same channel in a resonant
elastic scattering or possibly through different channels. The reaction probability
and the decay pattern carry the information about the structure of the state. For
example, cluster structures [61] can be investigated with reactions involving α

particles; resonant proton scattering, on the other hand, can be used to explore proton
single-particle widths or to access states in very proton-rich nuclei. Extension to
neutron-rich nuclei is possible by using isospin symmetry, through the population
of isobaric analog states (IAS) [62, 63]. Additionally, many resonances in light
and medium-mass nuclei are important for the cross section of reactions which are
relevant for nucleosynthesis processes and energy generation in stars [64].

Experimentally, the particles emitted in the process are measured at the backward
centre-of-mass angles, where the resonant process dominates, while the direct ones
are suppressed. When radioactive nuclei are involved, the measurement is performed
in inverse kinematics, and those angles correspond to the forward direction in the
reference frame of the laboratory. Similar to the physics case discussed in Sect. 6.3.2
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Fig. 6.11 Top, energy loss profile for a 10Be + 40Ar fusion event measured in the prototype AT-
TPC. Notice the sudden increase near the end of the track. Bottom, data (points) and calculations
(dashed lines) of the total fusion cross section and fusion followed by charged particle emission
(CP) or not (NCP), for 10Be on the nuclei of the P10 detection gas. The cross sections are scaled
for clarity as indicated in the figure. Figure reproduced from [58] with permission from Elsevier
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Fig. 6.12 Illustration of the arrangement for the study of resonant reactions in an active target.
The incoming beam loses energy as it traverses the target gas: each position corresponds to a
well-defined centre-of-mass energy of the compound nucleus. At the right energy the resonance
is excited, and it decays by, for example, emitting a charged particle which can be detected in
auxiliary detectors positioned in the forward direction

above, in active targets, the energy region of interest is explored via the energy loss
of the beam as it progresses through the gas volume. The situation is illustrated in
Fig. 6.12. If the gas pressure is set to stop the beam before the end of the active
volume, then the energy range in the compound nucleus down to the breakup
threshold is explored. Alternatively, one can choose the initial beam energy and
pressure in order to explore in detail a particular energy region in the compound
nucleus.

The technique of studying resonances in a thick target in inverse kinematics
(TTIK) has been in fact developed with the first radioactive ion beams, both for
solid [65] and gas targets [66,67]. With a passive target, when the beam-like particle
is stopped in the target, the only information available is that of the emitted light
particle; the kinematics of the reaction can be reconstructed either under some
assumptions (two-body process, no excitation of the beam-like residue) or with
additional information such as the time-of-flight of the particle with respect to the
incoming beam [67]. With an active target, redundant information is available that
helps constraining the exact process: the centre-of-mass energy of the reaction (from
the vertex position), the energy of the beam-like residue (from its range), and a
handle on the particle identification through the energy loss profiles. Because of the
different energy loss, the charged particle emitted in the decay has a longer range
than the beam-like particle and is captured in solid-state detectors in the forward
hemisphere; see Fig. 6.12.
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A number of measurements have been performed with active targets. Resonant
scattering on α particles was measured in the pAT-TPC, using 6He [68] and 10Be
[69] beams to look for α particle chains in 10Be and 14C, respectively. Proton
scattering was used to populate resonances in 9C [70] and in the unbound 10N
[71] nuclei using the TexAT active target [72]. In a measurement of the 12C+p
resonant elastic scattering at ISOLDE/CERN with the Maya detector, a resolution
of ≈50 keV (FWHM) in the excitation energy of 13N was obtained [73].

Even better results were obtained in the 18O+p commissioning measurement
of ACTAR TPC [14], shown in Fig. 6.13. The top panels show the energy of the
scattered light particle, detected in forward-placed silicon detectors, plotted against
the range of the beam-like particle. They show how inelastic scattering can be

Fig. 6.13 Measurement of the 18O+p resonant scattering in ACTAR TPC. Top, energy of the
scattered light particle plotted against the range of the beam-like particle for protons (left) and α

particles (right). The plots allow to disentangle elastic and inelastic scattering. Bottom, excitation
function of 19F from the (p,p) (left) and (p,α) (right) data at θc.m. = (160±50)◦. Figure reproduced
from [14] with permission of Elsevier
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separated: for example, if the residual 18O nucleus is left in the E∗ = 1.98 MeV
excited state, its range is shorter than in the case of elastic scattering. The bottom
panels show the excitation function of 19F from the (p,p) and (p,α) channels. The
red curve is the result of an R-matrix calculation [74] where the known parameters
of the resonance states were fixed and the only free parameter was the resolution of
the detector. Resolutions of 38 keV for (p,p) and 54 keV for (p,α) were obtained.
Clearly, active targets will be in the future the instrument of choice to perform this
kind of studies with radioactive ion beams.

6.3.4 Inelastic Scattering to Excite Giant Resonances

A very specific class of reactions, for which active targets have opened new
possibilities, is that of low-momentum transfer scattering in inverse kinematics. In
those processes a light target nucleus is scattered at low energies and laboratory
angles close to 90 degrees: the energy loss in a solid target would strongly limit the
measurement to some high threshold. Likewise, the momentum change of the beam-
like particle would be too small to be measured, for example, in a spectrometer at
forward angles. Currently, only gaseous targets allow these measurements, either as
active targets or inside a storage ring.

The IKAR active target [34] was the first to exploit this feature, to measure proton
elastic scattering from a number of light exotic He, Li, and Be nuclei and derive their
matter density distribution [34, 75–78].

Next, this feature was applied to the study of giant resonances, excited through
inelastic scattering.

Giant resonances (GRs) are collective, high-frequency excitations of nuclei [79]
which exhaust the main part of the corresponding strength, indicating that a large
number of nucleons participate in the process. They can be characterised by changes
in spin and/or isospin quantum numbers and by their multipolarity. The well-known
giant dipole resonance was observed for the first time in 238U in 1947 [80]; it is an
isovector excitation, where neutrons and protons oscillate with opposite phases. The
isoscalar modes, in which all nuclear matter oscillates together in a compression
motion, were first observed only 30 years later [81, 82].

GRs are very important for modern nuclear physics, because their correct
prediction is a robust test for mean-field approaches based on energy density
functionals. These models [83] have a very broad applicability, to describe finite
nuclei throughout the whole chart, but also to predict the properties of infinite
nuclear matter through the parameters of its equation of state (EoS). The latter,
in turn, is a fundamental ingredient in the description of celestial bodies in
extreme conditions, such as core-collapse supernovae, neutron stars, and neutron-
star mergers [84].

One important parameter of the EoS is the incompressibility of nuclear matter
K∞, which can be extrapolated from the isoscalar compression modes of nuclei
[85] (monopole ISGMR, dipole ISGDR, and quadrupole ISGQR). Uncertainties on
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K∞ can be reduced by measuring the energy of the ISGMR for different values of
isospin [86], i.e. across a chain of isotopes or isobars. To extend these chains, it is
necessary to measure the ISGMR in unstable isotopes.

Experimentally, the isoscalar modes are excited with inelastic scattering on
deuterons or α particles. The cross section is largest at small centre-of-mass angles,
and it is necessary to have a very good angular resolution at small angles to
disentangles the contribution of the different multipoles and identify the mode of
the GR. In direct kinematics, spectrometers are used to measure the momentum of
the scattered deuterons or α particles on the stable targets. In inverse kinematics,
the situation is very challenging, because the recoil light particles have a very low
energy in the angular range of interest. The situation is illustrated in Fig. 6.14: if
a solid target (a foil) is used, the light particles are stopped in the target material,
preventing detection below a certain threshold, which increases rapidly with the
emission angle. With a gas target the threshold is dictated by the length of the
tracks, which for a given energy can be increased by reducing the pressure. Close to
the beam direction, however, it becomes difficult to separate the (very short) tracks
from the beam track. Still, a large region of low centre-of-mass angles becomes
accessible, which is essential for the multipole analysis of the resonances.

These measurements are also possible in storage rings: this was demonstrated at
the ESR ring in GSI (Darmstadt), where a He gas-jet target was used to measure the

Fig. 6.14 Kinematic plot (energy vs. laboratory angles) for α particles emitted in the inelastic
scattering from an incident 56Ni beam at 50 MeV/nucleon. The black (elastic) and blue curves
are for scattering at different excitation energies in 56Ni. Also indicated are the corresponding
centre-of-mass angles of the scattering. The red and orange dashed lines indicate the thresholds for
detection of the α particles using, respectively, a solid foil and an active target. The yellow area
indicates the gain by using an active target
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Fig. 6.15 Arrangement of the Maya active target for inelastic scattering measurements. The
pressure is chosen to stop the light particles in the gas, for the energy and angular range of
interest. The tracks need to be long enough to identify the reaction vertex and evaluate their length
with sufficient precision. Figure reprinted from [92] with permission from the American Physical
Society

ISGMR in 58Ni in inverse kinematics [87]. The inelastically scattered α particles
were detected in solid-state telescopes, of which the first stage, double-sided silicon
detectors, were designed to function as active barriers to preserve the high vacuum
of the storage ring [88].

The first measurement with an active target was performed at GANIL with a
radioactive 56Ni beam at 50 MeV/nucleon, using Maya filled with a deuterium gas at
a pressure of 1050 mbar [89]; see the arrangement in Fig. 6.15. Both the ISGMR and
the ISGQR could be identified, and their energy was measured. Maya was tuned to
detect the charges deposited by the α particles, which means that the much stronger
signal caused by the 56Ni beam had to be limited. This was achieved by placing
two plates just above and below the beam to collect the ionisation charges. In the
following measurements, an electrostatic masks was developed for the same purpose
[90]: by setting its potential, it was possible to tune the amount of charges drifting
to the amplification plane. The mask was used in successive measurements: again of
56Ni, but on α particles [91], in which the ISGMR was remeasured and the ISGDR
was identified for the first time, and of 68Ni on both deuterons and α particles [92,
93]. In the latter, next to the observation of the ISGMR and ISGQR, indications
were found of the dipole strength and of a low-energy (“soft”) part of the monopole
strength. Some of the results of this measurement are shown in Fig. 6.16.

The measurement on 68Ni has been recently repeated with the ACTAR TPC
active target; at the same time, 58Ni has been measured to benchmark the perfor-
mances of ACTAR TPC. The data are still being analysed, but preliminary results
indicate an improvement in the resolution of a factor 2 to 3 thanks to the finer
spatial resolution of the pad plane. With ACTAR TPC, the use of a mask was not
necessary: through the GET electronics, an offset voltage was put on the central
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Fig. 6.16 Top panel: excitation energy in 68Ni from (α,α′) scattering, for (a) all angles and (b) at
5.5◦. The lines are Lorentzian fits for the different multipoles and background as indicated. Bottom
panel: angular distributions for the events in the peaks at (a) 12.9 MeV and (b) 21.1 MeV, fitted
with the result of DWBA calculations using microscopic RPA predictions with isoscalar L = 0
multipolarity. Figure reprinted from [93] with permission from the American Physical Society
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pads, along the beam track, effectively reducing the amplification voltage gap across
the Micromegas and thus attenuating the signal from the beam particles.

Similar measurements have been performed with the active targets (CAT) of the
Center for Nuclear Study in Tokyo. CAT-S [38] was used for the inelastic scattering
of 132Sn on deuterons at RIKEN [94], while the larger CAT-M was employed at
HIMAC (Chiba, Japan) for the measurement of 136Xe on protons and 132Xe on
deuterons [95]. With such high-Z beams, the problem of avoiding signals from the
beam track is made even more difficult by the production of highly energetic δ

electrons. Those electrons travel for few centimetres through the gas, effectively
blinding a large region around the beam path. Recently, the issue was dealt with by
creating a magnetic field along the beam path to confine the electrons. The first tests
at HIMAC seem to indicate that such a solution is very effective.

6.3.5 Transfer Reactions

Transfer reactions are particularly useful as a spectroscopic tool due to their
selectivity, to populate states with pronounced single-particle or cluster characters.
The application of such reactions to exotic nuclei is a major tool to explore the
evolution of the shell structure with isospin. The measurements provide the energy
of the states, indication of their spin and parity, and, through comparison of the cross
section with a model, spectroscopic factors for given configurations. Measurements
on unstable nuclei are performed in inverse kinematics, usually on a thin foil
containing protons or deuterons, surrounded by charged particles and, in some
cases, γ -ray detectors. This arrangement present two well-known problems. The
kinematical compression reduces the energy difference between the detected light
particles by a factor 2 to 4, with respect to the difference in excitation energies of the
beam-like particle [3]; hence, the resolution of the populated states is worsened by
the same factor. Secondly, the energy loss of the heavy beam particle traversing
the target means that the energy at the vertex position is not well determined:
the same process could produce light particles at slightly different energies, again
worsening the resolution. Because of the weak intensity of the radioactive beams, a
compromise with the target thickness has to be made. The resolution in excitation
energy, resulting from these effects, is often of a few hundreds of keV (see, e.g.
[96]). A γ -ray array can help significantly [97], but it also has limitations in
efficiency.

The kinematical compression problem can be solved by placing the target in
a solenoid and measuring the distance travelled by the light charged particles on
the beam axis instead of their angles. This configuration is adopted by the HELIOS
spectrometer in Argonne [98] and recently by the ISOLDE Solenoidal Spectrometer
(ISS) in CERN [45].

Active targets can solve the second problem, because the energy at the reaction
point can be directly derived from the position of the vertex in the gas, through the
known energy loss of the beam. This way, a much larger thickness can be used than
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with a solid foil without a loss in resolution. As an example, if a solid CD2 target is
used, its thickness must be typically less than ≈500 µg/cm2 to achieve a sufficient
resolution in the particle spectra; this corresponds to 125 µg/cm2 deuterium. A 25-
cm-long active target filled with deuterium gas at 1 bar pressure, on the other hand,
contains 4 mg/cm2, 30 times more than the foil; and a resolution on the vertex
position of ≈1 mm corresponds to a very thin slice of 16 µg/cm2. With these
properties, active targets should allow performing transfer-reaction measurements
with beam intensities of at least one order of magnitude less than target foils. The
actual resolution in excitation energy will ultimately depend on the precision in the
determination of the energy of the light particles, either through their range or the
energy deposited in auxiliary detectors.

To date there are no examples yet of transfer reactions performed with active
targets, with the exception of the 12C(8He,7H)13N proton transfer at GANIL [99]
and the 11Li(p,t)9Li two-neutron transfer at TRIUMF [100], both with Maya; in
the latter a resolution in Q-value of about 400 keV was reached. For a typical
(d,p) reaction, simulations such as ACTARSim [101] for ACTAR TPC indicate that
100 keV resolution in Q-value should be achievable [102]. The complementary
detection of γ -rays, such as foreseen in SpecMAT (see Sect. 6.2.5), will help
improving on this value [46].

Transfer and inelastic reactions were also used in the Maya active target to
populate excited states in fissile nuclei, with the purpose of studying the fission
process [103]. A weak 238U beam was accelerated at an energy of 6.5 MeV/nucleon
at GANIL and sent into Maya filled with isobutane (C4H10) at 50 mbar. The logic of
the detection is shown in Fig. 6.17: the detection of the scattered light particle (from
elastic, inelastic, and transfer reactions) in the forward wall allowed to separate
the reaction channels and calculate the excitation energy in the beam-like particle
that decayed by fission, with the fragments detected in the active volume. The
technique allows to measure the fission barrier distribution in the populated nuclei,
the distribution of fragments, and the cross sections as a function of beam energy
and is of extreme interest for use with heavy radioactive ion beams. The results of
such measurements can be used to test models predicting fission probabilities, for
example, in nuclei at the end of the r-process nucleosynthesis [105].

6.4 Conclusion

Active targets are instruments designed to detect primarily rare events, with
high efficiency and good resolution properties. They are versatile, and specific
applications have led to a rich variety of technological solutions and clever detection
techniques. For example, the limitations in dynamic range have been dealt with, on
one side, by using various methods to reduce or eliminate the ionisation signal from
the beam particles and, on the other side, by employing either magnetic fields or
auxiliary solid-state detectors to increase the energy and types of particles detected
in the reaction. Smart trigger techniques can select the events of interest among a
large background, induced by beam contaminants and/or other processes.
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Fig. 6.17 Scheme of the detection of a reaction-induced fission event in Maya. The forward wall
of detectors was upgraded with respect to the original one, and a new version of the mask to
collect the charges created by the beam particles was used [104]. Figure reprinted from [103] with
permission from Elsevier

In some cases new domains have become accessible, such as the study of
correlations between particles emitted in very fast decays or low-momentum
transfer reactions to populate compression modes in unstable nuclei. In others, like
resonant reactions, active targets can provide additional experimental information
to disentangle competing processes.

Still, further developments are needed. Among the areas of concern, there is
the improvement of the performances of gas detectors when using pure gases of
interest for nuclear structure studies, such as H2, D2, 4He, and 3He. The general
behaviour of active targets with very heavy and high-energy beam particles needs
to be better investigated, to verify the limits due to saturation of the signals on the
pad plane and control the space-charge effects that can instantly modify the electric
drift field and produce distorted tracks. The analysis of complex event patterns will
also need improvements, to reduce the time that is necessary at present to extract
all the information from the raw data and eventually build reliable online analysis
algorithms. A coordination between the work of the different research groups on
this topic is already present, but it can certainly be reinforced.

With the development of new radioactive beam facilities (FRIB, FAIR, SPI-
RAL2, SPES) and the upgrade of existing ones (ISOLDE), active targets are going
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to play an important role: their characteristics make them particularly well-suited
for use with the weakest radioactive ion beams, thus pushing the boundaries of our
knowledge of nuclear structure.
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7Gamma Ray Emission Imaging in theMedical
and Nuclear Safeguards Fields

Peter Dendooven and Tatiana A. Bubba

Abstract

Gamma rays emitted from within an object can reveal information about that
object in a non-destructive way, i.e. without physically opening the object and
looking inside. This makes gamma ray emission imaging very useful in widely
varying applications. In these notes, we highlight its application to the medical
field, where we discuss molecular imaging in nuclear medicine and in vivo dose
delivery verification in particle beam radiotherapy, and nuclear safeguards field,
where imaging of spent nuclear fuel assemblies is part of monitoring the non-
proliferation of nuclear weapons. The purpose and basic principles of gamma ray
emission imaging are discussed as the foundation to look in more detail into the
essential instrument design considerations and the iterative image reconstruction
procedures. These notes are not intended to be a comprehensive review; their
purpose is to introduce gamma ray emission imaging to those that are new to this
technique. The examples of implementation that are presented were thus chosen
in order to introduce the reader to a fairly wide range of applications and practical
implementations.
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7.1 Introduction

Being able to look inside an object without physically opening it is very appealing
in many situations. For instance, being able to diagnose a patient without surgical
intervention has clear advantages, in terms of patient risk and comfort and poten-
tially also cost. Some objects, such as the spent nuclear fuel assemblies discussed in
these notes, are so radioactive that getting close to open them and have a look inside
is a major and costly undertaking, requiring hot cells and remote handling. The
penetrating nature of high-energy photons allows them to escape from objects and
be measured by a suitable camera outside the object. Imaging these gamma rays,
i.e. determining their place of origin inside the object, reveals information about
the object. In some applications, the gamma rays need to be “introduced” into the
object for the purpose of imaging; in other applications the gamma rays result from
the processes which the object undergoes. Looking at the applications discussed in
these notes, imaging in nuclear medicine belongs to the former category, whereas
in vivo dose delivery verification in particle beam radiotherapy and the imaging of
spent nuclear fuel assemblies belongs to the latter category.

We discuss the imaging of gamma rays, being defined as photons emitted during
a transition between nuclear energy levels and positron annihilation photons. For
the sake of brevity, we adopt a common definition with “gamma ray” referring to
high-energy photons no matter what their origin.

These notes are meant as an introduction to the technique of gamma ray emission
imaging and its use in the medical and nuclear safeguards fields. They are not
intended to be a comprehensive review. References have largely been chosen based
on their relevance to this purpose. These notes contain three major sections. First,
the fields considered and the purpose of gamma ray imaging in them are explained.
Next, the basic principles of gamma ray emission imaging are discussed as the
foundation to look in more detail into the essential instrument design considerations
and the iterative image reconstruction procedure. Finally, examples of the practical
implementation in each field are discussed in some detail.

When embarking on the development of gamma ray emission imaging for a
certain application, remember that in the end, it is not about the camera, nor about
the image; it is about what the image can do for you.

7.2 Applications of Gamma Ray Emission Imaging

We introduce the fields of application of gamma ray emission imaging being con-
sidered here: nuclear medicine, particle beam radiotherapy and nuclear safeguards.
Then, we explain the purpose of gamma ray emission imaging in these fields.
Gamma ray imaging is very much at the origin and the basis of the field of
nuclear medicine. In particle beam radiotherapy, gamma ray emission imaging is
not a widely established technique, with various practical implementations under
investigation and development. In nuclear safeguards, gamma ray emission imaging
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was recently introduced and greatly improves the sensitivity of detecting the
undeclared diversion of spent nuclear fuel material.

7.2.1 Nuclear Medicine

7.2.1.1 The Dual Use of Radioactive Isotopes
Nuclear medicine is the field that makes use of radioactive isotopes, more specif-
ically of the radiation emitted in radioactive decay, for two purposes: therapy and
diagnostics. The therapeutic use is based on the ionizing power of the radiation,
most often with the purpose of killing tumour cells, and is thus a branch of
radiotherapy. Radioactive isotopes are introduced into the patient in the form of
a tracer (see Sect. 7.2.1.2) or sealed radioactive sources, resulting in an internal
irradiation, so-called brachytherapy. Radioactive isotopes are used for diagnostic
purposes by imaging the radiation emitted in their radioactive decay. Some isotopes
have dual and simultaneous use (both therapy and diagnostics), or a therapeutic
and diagnostic isotope can be used simultaneously, resulting in what is called a
theranostics procedure.

7.2.1.2 The Tracer Principle
Nuclear medicine (with the exception of brachytherapy using sealed radioactive
sources) is based on the tracer principle, discovered by George de Hevesy in the
early 1900s, a discovery awarded with the 1943 Nobel Prize in Chemistry [1].
The tracer principle states that the chemical behaviour of a molecule containing a
radioactive isotope of a certain chemical element is identical to that of the molecule
containing a stable isotope of that same element. This reflects the fact that chemical
behaviour, and thus also biological, physiological and medical behaviour, depends
on the chemical element to which the isotope belongs, not on the specific isotope. In
other words, chemistry is essentially determined by the atomic electrons, not by the
atomic nucleus. A molecule containing a radioactive isotope is said to be labelled
with that isotope.

The detection of radiation emitted in the radioactive decay allows to track
the transport and distribution of the labelled molecule, hence the name “tracer”.
The tracer principle is used in nuclear medicine to study the behaviour in the
human body of a molecule with a biologically/physiologically relevant function
by labelling this molecule with a radioactive isotope and imaging its distribution
via the radiation emitted in radioactive decay. Such a labelled molecule is called
a radiopharmaceutical or radiotracer. The imaging procedure thus starts with the
production of a radioactive isotope and the synthesis of a radiotracer. The radiotracer
is injected into the patient, after which the radiotracer predominantly travels to
locations where a certain biological/physiological function is active. Imaging the
radiation emitted thus enables to image a certain function; imaging based on the
tracer principle is therefore called functional or molecular imaging. Molecular
imaging is mostly used to diagnose diseases, but also used in fundamental research
into the functioning of the human body.
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7.2.2 Particle Beam Radiotherapy

7.2.2.1 The Rationale of Particle Beam Radiotherapy
Radiotherapy, the therapeutic use of ionizing radiation, started within a year of the
discovery of X-rays by Wilhelm Röntgen in 1895 [2]. During the First World War,
Marie Sklodowska-Curie used ionizing radiation to sterilize wounds. Until shortly
after the second world war, radiotherapy was performed using X-rays (photon
energies up to the order of 100 keV), with some attempts to use neutrons. Around
that time, MeV photons became available by the development of linear electron
accelerators (generating high-energy bremsstrahlung photons) and 60Co irradiation
sources.

In 1946, Robert Wilson published a seminal paper pointing out the advantage of
radiotherapy using energetic proton beams instead of photons [3]. The difference
stems from the fundamentally different way in which photons and protons interact
with matter. Photons interact essentially via all-or-nothing processes; if a photon
interacts with matter, it disappears. We thus consider that Compton scattered
photons (having a lower energy than the original photon) no longer belong to
the beam of photons. Protons mainly interact with electrons in matter via the
electromagnetic interaction. The average energy loss in the interaction with one
electron is very small; hence a proton gradually loses energy until it comes to a
standstill. When travelling in matter, a photon beam does not stop, but gradually
weakens (i.e. its intensity decreases), whereas a proton beam stops at a certain
point. The location at which the proton beam stops can be controlled by selecting
the proton energy. An additional benefit of protons is that their stopping power (the
energy loss per distance travelled in matter) increases as their energy decreases. This
leads to a peak in radiation dose (energy deposited per kg of matter) at the end of
the proton range (the distance at which the proton stops), the Bragg peak. Figure 7.1
illustrates the importance of the fundamentally different behaviour of photons and
protons for external beam radiotherapy. Photons exhibit a skin-sparing effect (the
dose is lower at the entrance in the human body), reaching a maximum dose at a
shallow depth after which the dose decreases gradually. The proton dose is fairly
constant over a sizeable fraction of its range and increases sharply before the proton
stops, resulting in the Bragg peak. The region in the body to be treated, most often
a tumour, is typically larger than the width of the Bragg peak. A uniform dose over
a large volume can be achieved by a spread-out Bragg peak: adding a set of proton
beams of different energy, and with well-chosen intensities, results in a flat dose
distribution over an extended region, with a sharp fall off at the distal edge (here,
distal means furthest in the direction of the beam). This however leads to a smaller
ratio of the dose in the target area to the dose before the target area. The advantage
of protons compared to photons is clear: because a proton beam deposits less dose
before the target area and no dose beyond it, a proton irradiation enables to deposit
the same dose in, e.g. a tumour with less dose deposited in healthy tissue and organs.
This is the main rationale of proton beam radiotherapy: the reduction of side effects
of the treatment and a better quality of life for the patient.
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Fig. 7.1 Illustration of the dose (energy deposited per kg) versus depth in the human body of
high-energy photons and protons. Modified from [4] with permission from J.A. Langendijk

The same arguments made above obviously apply to heavier ion beams. Carbon
ions have been widely used for a long time, helium ions are experiencing a revival,
and oxygen beams are being considered. The Bragg peak for heavier ions is sharper,
resulting in a larger dose ratio between the Bragg peak and the entrance region.
Carbon and heavier ions undergo a fair amount of fragmentation while being
stopped, resulting in some dose beyond the Bragg peak, where the fragmentation
products stop.

7.2.2.2 The Need of In Vivo Range Verification
Section 7.2.2.1 explains why there is a global, overall, reduction in dose to healthy
tissue when using particles instead of photons, leading to a benefit for the patient.
However, concerning dose to healthy tissue in particle therapy, we also need to
consider the edges of the high-dose region, this region being most often the tumour
to be killed. The Bragg peak enables a very precise deposition of a high dose in a
particular region and thus a very accurate irradiation. However, if the dose is not
delivered according to plan, the consequences can be serious: a maximum dose in
healthy tissue, causing severe damage and side effects, and/or part of a tumour not
being irradiated, resulting in the patient not being adequately treated. Such scenarios
are avoided by very careful, i.e. conservative, treatment planning, ensuring that
potential deviations between an actually deposited dose distribution and the planned
dose distribution do not lead to an unacceptable treatment outcome. Presently, robust
treatment planning is used to ensure a safe dose delivery [5, 6]. The main causes of
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uncertainty in the dose delivery to be considered during treatment planning are the
following:

• Particle range calculation: for the purpose of treatment planning, a computed
tomography (CT) image1 of the patient is taken and translated, voxel-by-voxel,
into the relative stopping power (RSP), the stopping power of the tissue relative
to that of water (water is the reference material in radiotherapy). Because the
interaction of X-rays and particles is fundamentally different, this translation
cannot be perfect; there is an uncertainty in the RSP values and thus in the particle
range calculated from the RSP. A typical prescription for the range uncertainty is
1 mm + 3% of the range. This, e.g. results in a fairly large range uncertainty of 4
mm for a beam with a range of 100 mm.

• Patient setup: presently, positioning of a patient with respect to the proton beam
has an error that is at most about 3 mm.

• Changes in patient anatomy: treatment planning is typically done one to a few
weeks before the treatment starts. During this time, as well as during the 5 to 8
weeks of daily irradiations, the patient anatomy will change. This will change
the location of the Bragg peak inside the patient. More and more, image-guided
radiotherapy is being introduced in order to see such changes in the patient and,
if needed, modify the treatment plan accordingly.

In order to detect deviations in dose deposition between what is actually delivered
and what is planned, the dose distribution that is actually delivered to an individual
patient during each single irradiation has to be determined: this means that there is
a need for in vivo dose delivery verification. In practice, if the distal edge of the
dose distribution (see Fig. 7.1) is verified to be in the correct place, one has good
confidence that the full dose distribution is delivered according to plan. Also, some
methods for in vivo dose delivery verification have the best precision at the distal
edge. Because of these two reasons, in practice, in vivo dose delivery verification
actually means in vivo range verification, the term we use in these notes.

7.2.2.3 In Vivo Range Verification by Gamma Emission Imaging
As the particles stop in the patient, the particles themselves cannot be measured
for in vivo range verification; one is forced to use secondary radiation which is
generated by the particles in the patient. Various types of secondary radiation can be
used:

• Prompt gamma rays: emitted within less than about 1 ns in nuclear interactions
between the beam particles and the atomic nuclei in tissue.

1 In CT imaging, an X-ray source and an X-ray detector rotate around the patient, and a 3D X-
ray image of the patient is obtained by measuring X-ray attenuation by different tissues inside the
body.
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• Positron annihilation photons: positron emitting radioactive nuclides are pro-
duced in nuclear interactions between the beam particles and the atomic nuclei
in tissue. The positron emitted during radioactive decay stops in the patient and
then annihilates with an electron, with two back-to-back 511 keV photons being
emitted. The signal is thus on average delayed by the radioactive lifetime.

• Light charged particles, mostly protons: these are emitted by carbon and heavier
ion beams and can have sufficient energy to leave the patient.

• Acoustic waves: the high dose delivered in the Bragg peak during a short beam
pulse causes a spike in temperature, resulting in an acoustic wave which can
be picked up by an acoustic transducer. This resembles traditional ultrasound
imaging.

For more details on in vivo range verification, we refer to the review papers
of Knopf and Lomax [7] and Parodi and Polf [8]. Examples of emission imaging
gamma rays for in vivo range verification are discussed in Sect. 7.4.2. We finish this
section by illustrating in Fig. 7.2 the relation between the creation of gamma rays
and dose deposition.

7.2.3 Nuclear Safeguards

The Treaty on the Non-Proliferation of Nuclear Weapons (NPT) entered into force
on 5 March 1970 [11]. The aims of the NPT are the prevention of the spread of
nuclear weapons and weapons technology, furthering the goal of disarmament and
the promotion of the peaceful uses of nuclear energy. On 11 May 1995, the NTP
was extended indefinitely. There are 191 State parties to the treaty, including five
nuclear-weapon States, defined as those that manufactured and exploded a nuclear
weapon before 1 January 1967. These nuclear weapon States are committed not
to assist, encourage or induce in any way a non-nuclear weapon State party to
acquire nuclear weapons. The non-nuclear weapon States that are party to the NTP
committed themselves not to acquire nuclear weapons.

The International Atomic Energy Agency (IAEA) is not a party to the NTP.
However, the NTP establishes a safeguards system under the responsibility of the
IAEA, entrusting it with key verification responsibilities. “(Nuclear) Safeguards”
refers to the system that has been put in place to ensure that non-nuclear weapon
State parties to the NTP honour their international legal obligations. The objective
of IAEA Safeguards is thus “to deter the spread of nuclear weapons by the early
detection of the misuse of nuclear material or technology. This provides credible
assurances that States are honouring their legal obligations that nuclear material
is being used only for peaceful purposes” [12]. Safeguards uses a set of technical
measures to verify, independently from the NTP parties, nuclear materials and
activities [13]. Safeguards activities of the IAEA are enabled via a mandatory
comprehensive safeguards agreement between the IAEA and each non-nuclear
weapon State party to the NTP. At the end of 2020, 10 out of 186 non-nuclear
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Fig. 7.2 Top: Gamma ray distributions vs. depth when stopping 80, 150 and 220 MeV proton
beams in water. Reprinted from [9] with permission from John Wiley and Sons. The distributions
were measured by moving a gamma ray detector behind a linear array of slit collimators located
perpendicularly to the proton beam. The distribution of gamma rays resulting from neutron capture
are indicated. The proton dose distributions are shown for comparison. A good correlation between
the Bragg peak and the edge of the prompt gamma distribution is seen. The contrast of the edge
of the prompt gamma distribution substantially decreases with increasing proton energy. Bottom:
measured depth profile of positron emission activity from target fragmentation (solid line) for
110 MeV protons stopping in a PMMA target. Reprinted from [10]. The dotted line shows the
corresponding calculated dose distributions

weapon State parties had yet to bring into force such a comprehensive safeguards
agreement.

In-field inspections at nuclear facilities or locations outside facilities are an
important activity to ensure that the nuclear material which the State declared to the
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IAEA, and thus being under safeguards control, remains part of peaceful activities or
is otherwise adequately accounted for. This nuclear material accountancy compares
information on the nuclear material available at the facility with what was declared
and, essentially, confirms that the material is present at the facility.

An especially interesting nuclide for safeguards is 239Pu, due to its potential use
as fissile material in nuclear weapons. 239Pu is produced via the capture of a neutron
by 238U, leading to the formation of 239U, which is followed by beta decay to 239Np
that beta decays to 239Pu. Nuclear fuel used in nuclear power plants contains a
large amount of 238U. Spent nuclear fuel (SNF), i.e. fuel removed from the nuclear
reactor when it is no longer efficient in contributing to the power production,
therefore contains a fair amount of 239Pu. In order to rule out the diversion of
SNF from legitimate declared uses, for example, the extraction of 239Pu, safeguards
inspections put special emphasis on verifying that all SNF is accounted for.

For use in a nuclear reactor, nuclear fuel is arranged in so-called fuel assemblies,
containing, depending on reactor type, from about 50 to 300 fuel rods. Each rod, 2–
4 m long, is made up of fuel pellets (typically 1 cm diameter and 1 cm long) inside a
zirconium alloy cladding tube. As an example, Fig. 7.3 shows a model ATRIUM 10
fuel assembly. After their useful time in the nuclear reactor, fuel assemblies are not
disassembled. The complete spent fuel assemblies (SFAs) are typically stored in
water pools until the fuel is reprocessed or moved to some form of final disposal.
Across the world, geological repositories are planned and constructed for the final
disposal of SFAs. Finland is scheduled to be the first country to start with the final
disposal of SNF, 400 m underground at the Onkalo facility in Eurajoki, Finland [14].
The time between removal from the reactor and disposal in a geological repository
is several decades. During this time, safeguards inspections need to be able to verify
the declaration of completeness of the SFAs stored under water.

IAEA Safeguards distinguishes between a gross defect, i.e. a complete fuel
assembly missing, and partial defects, i.e. part of a fuel assembly missing. It
only seems logical to measure radiation emitted by the SFAs, so-called passive
measurements, for verification purposes. The traditional instruments passively
measuring radiation in order to detect partial defects are the Improved and the
Digital Cerenkov Viewing Devices (ICVD, DCVD) and the Fork detector (FDET).
The former are optimized to detect the ultraviolet Cerenkov radiation in the water
surrounding spent fuel which is emitted by high-energy recoil electrons created in
the interaction of gamma rays emitted in the radioactive decay of fission fragments
inside the fuel. The latter contains detectors measuring the total gamma and neutron
intensities emitted by the SNF assembly. The CVD devices are looking at the top
of a SFA in its storage position from outside the storage pool; the FDET is installed
inside the storage pool with SFAs moved very close to the FDET for measurement.
Both the CVD and FDET devices perform crude, global measurements, basically
confirming that the object under study is highly radioactive. They typically can only
detect half or more of the SNF missing from an assembly.

With the goal of more precise partial defect verification, the IAEA, in collab-
oration with some of its Member States, has developed since the 1980s Passive
Gamma ray Emission Tomography (PGET) for imaging SFAs [15–18]. This effort
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Fig. 7.3 Close-up picture of
a model ATRIUM 10 nuclear
fuel assembly. For clarity,
some fuel rods are removed.
Three partial fuel rods as well
as the 3x3 water channel can
be seen. PGET images from
an ATRIUM 10 fuel assembly
are shown in Fig. 7.16.
Reprinted from www.
framatome.com with
permission from Framatome

has culminated at the end of 2017 in the approval by the IAEA to use the PGET
device for inspections of SFAs [19, 20].

7.3 Principles of Gamma Ray Emission Imaging

The most essential requirement for gamma ray emission imaging is to know the
direction in which the gamma rays travel. We discuss different gamma camera
principles to obtain this information and deduce the demands this places on the
camera detectors. In a tomographic imaging procedure, 1D or 2D gamma ray
emission projections are measured at different angles around the object. In the
image reconstruction process, 1D projections vs. angle are transformed into a 2D
image, while 2D projections vs. angle are transformed into a 3D image. We limit
the discussion to iterative image reconstruction methods as these are by far most
common in the gamma ray emission imaging applications discussed in these notes.
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As it will become evident in this section, there are two different types of gamma
ray emission as far as imaging methods are concerned: gamma rays emitted in a
transition between nuclear energy levels and positron annihilation photons. The
main difference between these two types is that gamma rays from nuclear transitions
are emitted “alone”, whereas positron annihilation photons are emitted in pairs
travelling in opposite directions.

In order to be useful for imaging, the energy of a gamma ray photon needs to be
sufficiently high such that the probability of exiting the object being imaged is large
enough. On the detector side, design and performance depends on the gamma ray
energy. In nuclear medicine, the gamma ray energy can, to some extent, be chosen
because different isotopes emit different energy gamma rays. There are however a
number of other factors that determine the suitability of a certain isotope, e.g. half-
life, ease of production, chemical properties enabling the synthesis of radiotracers
and cost. In the other applications discussed in these notes, there is no or a very
limited choice of isotope and thus gamma ray energy. Positron annihilation photons,
obviously, always have an energy of 511 keV.

7.3.1 Basic Principles

Gamma ray emission imaging looks at gamma rays emitted from within an object
to provide an image of the location of emission of the gamma rays inside the object.
The general idea is illustrated in Fig. 7.4. The imaging device is most often called a
“camera” or “scanner”.

The most essential requirement to obtain imaging information is to know the
direction of propagation of the gamma rays. The gamma rays used in emission
imaging are emitted isotropically, and thus the camera has to provide information
on the gamma ray direction. There are two approaches to this: (1) the camera uses
a collimator to select a certain direction or directions; (2) the camera measures
directional information for each gamma ray detected. In the former approach, often
referred to as “physical collimation”, various collimator types are used depending on
the application and the specific imaging situation. In contrast, the latter approach is
often referred to as “electronic collimation”: knowledge on the gamma ray direction

Fig. 7.4 Illustration of the general idea of gamma emission imaging. Gamma rays emitted from
within an object are detected by an imaging device outside of the object, providing information on
the spatial distribution of the emission of the gamma rays inside the object
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is gained from measuring certain details of the interaction of individual gamma
rays in the camera. The most common examples of electronic collimation, Compton
imaging and positron emission imaging, are discussed in these notes.

Knowing only the direction of a gamma ray does not provide information on the
location of the source of the gamma ray along its direction. If a 3D object is imaged
using gamma rays travelling, from each point of the object, in only one direction
(which is not necessarily the same direction for each point), a 2D projection (often
referred to as a radiograph) will result. Obtaining a 3D image requires that from each
point in the object gamma rays under multiple directions are seen by the camera. The
practical implementation of this principle is to have the camera look at the object
from different directions, ideally distributed over 360 degrees: such a procedure
is called tomography. Tomographic imaging using a collimated gamma camera is
usually referred to as single-photon emission computed tomography (SPECT). The
tomographic versions of Compton imaging and positron emission imaging are called
Compton scatter tomography (CST) and positron emission tomography (PET).

7.3.2 Essential Design Considerations for Gamma Ray Imaging
Instruments

7.3.2.1 Gamma Cameras Based on Physical Collimation
The principle of a gamma camera using physical collimation is illustrated in Fig. 7.5
for a parallel-hole and a pinhole collimator. A parallel-hole collimator is what it

Fig. 7.5 The principle of a gamma camera using physical collimation; on the left a parallel-hole
collimator, on the right a pinhole collimator. A gamma ray detector is placed behind the collimator
to detect the gamma rays passing through the collimator. The object and its image in the gamma
ray detector are indicated by the black arrows. The red arrows represent gamma rays blocked
by the collimator, while the green arrows represent gamma rays passing through the collimator
and detected by the detector. The geometry of the systems results in a mirrored and magnified
image with the pinhole collimator and a non-mirrored and real-size image with the parallel-hole
collimator. Figure adapted from [21]
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says: a tight array of long and narrow holes with the purpose of allowing only
gamma rays travelling along the length of the holes to pass through the collimator
and hit the gamma ray detector behind it. A pinhole collimator is basically a gamma
ray version of the well-known camera obscura used with visible light. Figure 7.5
shows that the gamma ray detector needs to determine at which location a gamma
ray enters it in order to create an image; a position-sensitive gamma ray detector
is thus needed. In most applications, the gamma camera is position-sensitive across
two dimensions, making a 2D image of a 3D object. Position sensitivity in three
dimensions, so also in the detector depth dimension, is in practice usually not needed
because the thickness of the detector needed to provide a good detection efficiency
is much smaller than the distance of the detector to the gamma ray origin inside the
object.

7.3.2.2 Compton Cameras
Compton scattering is the process in which a photon scatters off an electron, creating
a scattered photon of lower energy and a scattered electron; see Fig. 7.6. It is
one of the main interaction mechanisms of gamma rays with matter and thus of
the detection of gamma rays. Compton imaging makes use of the kinematics of
Compton scattering: the relationships between incoming gamma ray energy and the
energy and angles of the scattered gamma ray and electron. Generally speaking, the
energy of the scattered electron is deposited very close to the point of interaction,
while the scattered gamma ray interacts at another location in the detector(s) of the
camera or leaves the camera without interaction. In the simplest implementation
of a Compton camera, the location of two interactions and the energy deposited at
those interaction points is measured; see Fig. 7.7. Obtaining the correct Compton
cone, and thus valid imaging information, requires knowledge of two out of the
three energies involved (Eγ , E′γ , Ee). Thus, if the incoming gamma ray photon
energy is not a priori known, the absorber detector must measure the full energy
of the scattered gamma ray photon. This presents a difficulty as it is not possible to
know for sure whether this is the case. A more complicated Compton camera design
in which three interactions are measured does not require the energy of incoming
or scattered photon to be known: the Compton cone can be reproduced from the

Fig. 7.6 In Compton scattering, an incoming gamma ray photon with energy Eγ scatters off an
electron, resulting in a scattered gamma ray photon and electron with energies E′γ and Ee and
scattering angles θ and φ. The relationship between incoming and scattered gamma ray energies
and gamma scattering angle, which follows from conservation of energy and momentum, is shown
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Fig. 7.7 Illustration of a Compton camera measuring two interaction points. Shown is a situation
in which a scatter detector measures the location and scattered electron energy of the first, Compton
scattering, interaction and an absorber detector measures the interaction location and the full energy
of the scattered photon. The line connecting the two interaction locations defines the axis of the
Compton cone, which is the surface from which the gamma ray was emitted. The opening angle
of the Compton cone, i.e. the scattering angle of the first interaction, can be calculated using the
equation shown. If the absorber detector does not measure the full energy of the scattered photon,
the incoming photon energy needs to be known to determine the Compton cone. This is not required
in a three-interaction Compton event

energy of two scattered electrons and the location of the three interactions (see, e.g.
[22]). If the track of the scattered electron(s) is measured, the origin of the gamma
ray emission can be limited to an angular section of the Compton cone, a so-called
Compton arc (see Fig. 7.8).

General conclusions from the various Compton camera implementations dis-
cussed above are that a Compton camera needs position-sensitive detectors and that
good energy resolution is needed to obtain good imaging information. A general
issue with Compton cameras is that the time resolution of the detectors is usually too
poor to unambiguously determine the time sequence of interactions. The resulting
ambiguity leads to wrong imaging information for part of the detected events and
thus degraded image quality. In most practical situations however, an “educated
guess” enables to establish the correct time sequence in a majority of detected events
(see, e.g. the gamma ray tracking algorithm in [24]).

7.3.2.3 Positron Emission Imaging
When a positron emitting radioactive nucleus decays inside an object, the emitted
positron will readily annihilate with an electron in the object. Annihilation is most
probable after the positron has stopped (i.e. thermalized), typically within less than
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Fig. 7.8 Illustration of the
electron tracking Compton
camera. Reprinted from [23].
The track of the scattered
electron is measured by a set
of scatter detectors. The
electron track information
narrows the origin of the
gamma rays to a Compton
arc. Note that in the absence
of depth information, the
Compton arc represents an
angular section of the
Compton cone surface

a few mm from the place of radioactive decay. Due to conservation of energy and
momentum, two 511 keV annihilation photons are emitted in opposite directions
(with a small spread of 0.5 degree full-width-at-half-maximum (FWHM) due to
thermal motion of the annihilating electron and positron). Two 511 keV photons
detected in coincidence (i.e. within a very short time) will have originated from the
same positron annihilation. The annihilation photons were thus emitted somewhere
on the line connecting the locations of detection, the so-called line-of-response
(LoR); see Fig. 7.9. The LoR thus provides the direction in which the photons
travel and imaging is possible without physical collimation. The more accurately
the LoR can be established, the higher the quality of the imaging information it
contains. Detectors with good spatial resolution are thus required. An accurate
measurement of the time difference between the coincident detection of positron
annihilation photons enables to narrow down along the LoR where annihilation
took place, providing depth information at the level of a single LoR. This so-called
time-of-flight PET (TOF-PET) principle is illustrated in Fig.7.10. Its introduction
and continuous development have substantially improved PET image quality and
diagnostic performance; see, e.g. [25].

Note that imaging using positron annihilation photons is obviously also possible
without using coincident detection, thus treating the annihilation photons as single
photons. For the purpose of these notes, however, we refer to the coincident
detection of annihilation photons when talking about positron emission imag-
ing/tomography.

7.3.2.4 Object and Detector Scatter
Gamma rays emitted from within an object may interact inside the object on their
way to the camera. Complete absorption of a gamma ray obviously prevents it from
being detected, and thus the number of counts detected in the imaging procedure
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Annihilation event

Detector Detector

Object containing
positron-emitting

radionuclide
Accepted by coincidence detection

Rejected by coincidence detection

Fig. 7.9 The coincident detection of two back-to-back 511 keV annihilation photons defines
a line-of-response that determines the direction in which the photons travel. This directional
information provides the imaging information in positron emission imaging. Reprinted from [21]

Fig. 7.10 The principle of time-of-flight positron emission tomography (TOF-PET). Assume that
a positron annihilates at the location of the yellow “explosion” and that the 511 keV annihilation
photons, emitted back-to-back, are detected by opposite detectors (dark blue) in a PET detector
ring (light blue). Without TOF information (left figure), the contribution to the image is distributed
uniformly along the LoR connecting the two detectors. With TOF information (right figure), the
contribution to the image can be restricted to part of the LoR. The better the time resolution of the
detectors, the narrower this part is and the larger the gain in image quality

will be reduced. This is relevant, because in many applications, the image quality
is significantly determined by counting statistics and/or the number of emitted
gamma rays is limited due to other considerations, e.g. radiation dose to a patient.
In case a gamma ray Compton scatters in the object and the scattered gamma ray
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Fig. 7.11 Dominant photon interaction mechanism as function of photon energy and atomic
number of the material with which a photon interacts. The boxes encompass the regions relevant
for the objects imaged and gamma energies used in the applications considered in these notes.
Related to nuclear safeguards, only the passive tomography of spent nuclear fuel is considered.
One can conclude that Compton scattering is by far the most common interaction mechanism in
the objects. Modified from [21]

leaves the object, detection of this scattered gamma ray will give wrong imaging
information: the direction determined is that of the scattered gamma ray, not that of
the emitted gamma ray. The solution to avoid that scattered gamma rays contribute
to an image is good energy resolution in the detector: scattered gamma rays have
a lower energy than the emitted gamma ray and can thus be rejected based on
their detected energy. A better energy resolution in the detector will lead to better
rejection. Figure 7.11 illustrates that Compton scattering is the most common
photon interaction mechanism for the objects and gamma ray energies in the fields
discussed in these notes.

7.3.2.5 General Demands to Gamma Camera Detectors
In this section, we summarize the general demands to gamma camera detectors as
they follow from the principles and designs discussed in the previous sections.

• Detector spatial resolution
In most imaging applications, image spatial resolution is a key performance
characteristic. Image spatial resolution is to a large extent derived from the spatial
resolution with which the gamma rays are detected in the camera.
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When a gamma ray interacts inside a detector by means of the photoelectric
effect, almost all of its energy is transferred to an electron, which will deposit its
energy fairly locally. The small energy needed to overcome the electron binding
energy is re-emitted as X-rays and Auger electrons and also locally absorbed.
In case the gamma ray interacts via Compton interaction or pair production,
a scattered gamma ray or two positron annihilation photons result. These
secondary photons will interact, if at all, some distance from the interaction point.
In order to correctly determine the direction of an incoming gamma ray, the first
point of interaction in the detector needs to be determined. This is problematic
in case the gamma ray deposits its energy in two or more locations relatively far
apart. This problem can be (partially) solved as follows:
– Use a detector material with high atomic number such that the photoelectric

effect dominates the interaction probability. The higher the gamma ray energy,
the higher the atomic number needs to be for the photoelectric effect to
dominate; see Fig. 7.12. The NaI detectors most commonly used for imaging
gamma rays with energies between about 80 and 300 keV in nuclear medicine
provide a majority of photoelectric interactions. For positron annihilation
tomography, lutetium-based scintillation detectors are mostly used, providing
a sizeable fraction of photoelectric interactions. Spent fuel tomography uses
CdZnTe (CZT) detectors, making Compton interactions by far the most likely.
For gamma ray energies above about 1 MeV, the photoelectric effect is not
dominant even for uranium, the material with the highest atomic number
found in nature. Obviously, a scatter detector of a Compton camera needs

Fig. 7.12 Dominant photon interaction mechanism as function of photon energy and atomic
number of the material with which a photon interacts. The chemical elements, and their atomic
numbers, present in relevant semiconductor and scintillation detectors are given. The boxes
encompass the regions relevant for the gamma ray energies used in the applications considered
in these notes and the gamma ray detector materials used. Related to nuclear safeguards, only the
passive tomography of spent nuclear fuel is considered. Modified from [21]
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to be made from a material for which Compton scattering is dominant at the
relevant gamma ray energy.

– Use a detector that is finely pixelated (physically or electronically) in three
dimensions such that individual energy depositions originating from the
same primary gamma ray can be disentangled. Most detectors are not fast
enough to determine the order of interaction points from their order in time.
However, based on the known probabilities and kinematics of the interaction
mechanisms, an educated guess can be made, such that in a majority of cases,
the correct point of first interaction is determined.

The usefulness of (a combination of) the solutions above depends on the
properties of each imaging application.

• Detector energy resolution
A good detector energy resolution allows to reject gamma rays scattered in the
object and improves the imaging information obtained with Compton cameras.
The best energy resolution is obtained with semiconductor detectors.

• Detector efficiency
Because in many cases image quality is determined by the counting statistics, a
high detector efficiency is needed. In nuclear medicine, the activity of the gamma
ray source, i.e. the activity injected in the patient, is limited by the radiation dose
to the patient. In imaging for the verification of particle beam radiotherapy, the
number of gamma rays emitted is relatively low. It is determined by the radiation
dose prescribed by the radiation oncologist and, thus, cannot be increased for the
sake of imaging. The activity of spent fuel rods is determined by their properties,
their reactor history and cooling time after removal from the reactor, but is
generally very high.

• Fast detector signals
In many cases, it is important to use detectors that provide fast signals. This
minimizes detection dead time in case of high count rates, which are, e.g.
typical in nuclear imaging with very short-lived isotopes such as 82Rb (half-
life 76 s). There is in principle no one-to-one relationship between fast signals
and good timing resolution, but in practice this is most often the case. Good
timing is essential for TOF-PET, with the image quality improving linearly with
better timing resolution. Detectors with very good timing might even enable to
unambiguously determine the interaction sequence in Compton cameras.

A general comment on gamma ray detector technology is relevant at this
point. There are two major principles used in gamma ray detection: scintillation
and ionization. In a scintillation detector, energy deposited by a gamma ray is
transformed into optical scintillation photons which are turned into an electrical
signal by a photosensor attached to the scintillation material. In an ionization
detector, energy deposited by a gamma ray is transformed into electrical charges
(electrons and ions in a gas detector, electron-hole pairs in a semiconductor
detector). Scintillation photons are emitted isotropically, and it is hard to control
the path they follow inside the scintillator towards the photosensor. In an ionization
detector, the charges follow the field lines of the electric field applied across the
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detector towards the anode/cathode, during which they induce an electric signal.
As such, an ionization detector enables better control and more flexibility and can
provide a better position resolution than a scintillation detector. In situations where
very good position resolution is needed, ionization detectors (often semiconductor
detectors) are chosen. A drawback, however, is the typically lower maximum
count rate because electrical charges move much slower than optical photons. The
relatively slow signals also result in a poorer timing resolution compared to fast
scintillation detectors. Semiconductor detectors on the other hand have far superior
energy resolution.

Selecting the optimum detector technology and design for an imaging application
can be a complicated problem in which various pros and cons need to be considered.

7.3.3 Iterative Image Reconstruction

In the previous sections, we discussed the principles of different gamma ray
emission imaging systems. These systems measure projection data which provide
indirect information about the source (or object) of the detected radiation. Such
information can be used for recovering an image of the unknown object by means
of, for example, reconstruction algorithms.

In general, reconstruction approaches can be either analytical or iterative. With
an analytical approach, the solution is formulated in a closed-form, single equation.
Instead, with iterative reconstruction algorithms, the final result is cast as the
solution of a system of equations or the solution of an optimization problem, which
is then solved with an iterative algorithm; see Fig. 7.13. Here, we focus on the latter
case, namely, formulating the solution of the imaging problem as iterative solution
of an appropriate optimization problem.

Being able to formulate the optimization problem requires, first and foremost,
a (sufficiently accurate) mathematical model of the imaging process. This is, in
general, called the forward problem, as opposed to the fact that the reconstruction
of the unknown objects requires the inversion of such an operator. That is, in the
imaging community, the reconstruction task is regarded as the solution of an inverse
problem. The modelling of the forward problem includes also the data acquisition
process, which amounts to determining how the detection system handles data
sampling and data noise. Going into the details of the forward model would require
a section of its own. Here, we report the main ideas and refer the reader to the
literature (see, for instance, [26, chapter 3]) for all the details.

In emission tomography, sufficient modelling for the forward operator is pro-
vided by the well-known Radon transform [27]:

y(s, θ) = (R(f ))(s, θ) =
∫

R

f (sθ + tθ⊥) dt, (7.1)

where (s, t) are coordinates of a point in the object; θ⊥ is perpendicular to θ =
(cos(φ), sin(φ)), with φ the rotation angle; and f represents the density of the
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Fig. 7.13 Analytical vs. iterative approaches in image reconstruction. With analytical methods,
the reconstruction is computed using a mathematical inverse of the forward transform (closed-
form, single equation). In iterative reconstructions, the solution is computed numerically by
iterating on a feedback loop: having defined a model or objective function for the problem, by
starting from an initial guess for the solution, the current estimate is updated until it converges to
an image that well explains the measured data. Notice that once a model or objective function is
chosen, there can be different iterative algorithms that lead to the same solution

incoming photons. The underlying geometric setup is sketched in Fig. 7.14. In (7.1),
f is the parameter (the object) we want to reconstruct: in the forward problem, we
are given f , and we compute the measurements y, i.e. the projection data. In the
inverse problem (i.e. the reconstruction task we are interested in), data and unknown
are exchanged: that is, given the measurements y and the forward operator R, we
seek to determine (an approximation of) f .

In (7.1), phenomena like gamma ray scatter and attenuation are neglected. In
emission tomography problems, however, it is important to compensate at least for
the attenuation. This is easily achieved by using as forward operator the attenuated
Radon transform:

yμ(s, θ) = (Rμ(f ))(s, θ) =
∫

R

e
∫ +∞
t μ(sθ+t ′θ⊥) dt ′ f (sθ + tθ⊥) dt (7.2)

where μ is the linear attenuation coefficient and all the other parameters are defined
as in (7.1). In the following, we will assume yμ and Rμ are given and the goal
will be to recover f (and possibly μ). A direct or analytical inversion formula for
the attenuated Radon transform exists and relies on the well-known Fourier slice
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Fig. 7.14 Geometric setup
of the Radon transform
defined in Eq. (7.1). The
rotation angle φ determines
the direction
θ = (cos(φ), sin(φ)). The
grey blob represents the
object f we wish to recover
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theorem. This is at the basis of, for instance, the filtered back-projection (FBP), a
well-known algorithm for the inversion of 2D data, whose adaptation for 3D data is
still largely employed in commercial CT machines [28].

With real-life measurements, the analytical inversion of the (attenuated) Radon
transform (and, therefore, FBP-like algorithms) is often unreliable due to the ill-
posedness of the Radon transform. A problem is defined to be well-posed when its
solution is unique; it exists for any data function in a suitable space and depends
continuously on the data with respect to the metric of the data space. The last
condition (namely, the continuous dependence on the data) is the one usually
violated by tomographic problems. In practice, it means that even if for certain
data y the solution exists, a small perturbation on the data can result in data ỹ

for which a solution does no longer exist. When it comes to real-life tomography,
small perturbations in terms of noise are inherently present in the detection system.
Indeed, the number of detected photons is subject to fluctuations due to the
emission-transmission process, quantum conversion process and intrinsic properties
(or defects) of the detection system. Being corrupted by noise, the tomographic
measurements no longer satisfy the mathematical requirements for the inversion of
the Radon transform (see, for instance, [29]), and alternative solutions need to be
sought to provide reliable reconstructions.

To this end, the next step is to derive a discrete counterpart to the forward
model (7.2). Since a detector counts the incoming photons by means of the imaging
system, the measurement data are inherently discrete. Let’s use i = 1, . . . , km to
index the components yi of the vector y ∈ R

km denoting the acquired data. Here,
km is the product between the number of projection angles k and the number of
detector elements m. To discretize the unknown object, we use voxels:2 the discrete

2 Pixels and voxels are a traditional choice as basis functions to represent 2D and 3D objects,
respectively. Given that, after discretization, the object f is reorganized by column-wise stacking it
into a column vector, i.e. f ∈ R

n, with a slight abuse of terminology, in these notes we use the term
“voxel” without distinguishing between 2D and 3D objects.
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object f ∈ R
n has components fj , with j = 1, . . . , n and n total number of voxels,

ordered lexicographically. Whenever μ is known—this is the case of PET, SPECT
and CST as discussed in these notes—the forward model can be discretized by a
linear operator represented by a matrix R ∈ R

km×n. In this case, each element Ri,j

of the matrix R is a “weight” of how much the ray connecting the source to the ith
detector cell gets attenuated while travelling in the unknown j th voxel fj . In the
simplest case, R can contain only zeros and ones, namely, Ri,j is either 1 (when
the ray connecting the source to the ith detector cell intersects the voxel fj ) or 0
(there is no intersection). More details on how to build R can be found, for instance,
in [30, chapter 4] for PET and SPECT and [31, section 2.3] for CST. In both cases,
the discrete linear model of the forward problem is given by:

y = Rf. (7.3)

For PGET, the attenuation cannot be always assumed to be known. Therefore, the
model is nonlinear and cannot be represented by a matrix. Nonetheless, the discrete
model can still be written as:

y = Rμ(f) (7.4)

where Rμ is a discrete nonlinear operator depending on the (also unknown)
attenuation vector μ ∈ R

n. More details on how to build Rμ can be found in [32,
section 2.2]. In any case, since R, or Rμ in the nonlinear case, is assumed to be
given, the solution of the inverse problem is reduced to compute f, or (f, μ) in the
nonlinear case, given y. Given the physical quantities they represent, all components
of R, or Rμ, y, f and μ are nonnegative.

Naturally, one might wonder whether having discretized the model improves
our chances of getting an accurate reconstruction by directly “inverting” the
discrete operators in (7.3)–(7.4). Unfortunately, the ill-posedness of the continuous
model (7.2) translates into ill-conditioning of the discrete counterpart. Therefore,
directly inverting R or Rμ leads to very poor reconstructions. The reason for this
is that the data y appearing in (7.3)–(7.4) are, in practice, not exact data but can
only be a perturbation of the ideal data. The perturbation is due to several kinds of
errors, the most important being noise. The principal source of noise is the so-called
photon noise: this refers to the inherent natural variation of the incident photon flux
(i.e. number of detected photons). Its effect appears when the number of photons
captured by the detector elements in a given time interval is not very large. Under
certain conditions (see, e.g. [26]), yi is the realization of an integer valued Poisson
random variable Yi with a probability distribution given by:

PP
Yi

(yi) = e−zi
z

yi

i

yi !
where yi is the number of photons detected by the ith detector element with average
value zi . This is usually the error model assumed for PET, SPECT and CST, where
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the number of emitted photons is usually small. For PGET, since the number of
emitted photons yi and their averages zi are in general large, the error model can be
approximated by additive Gaussian noise:

e−zi
z

yi

i

yi ! ≈
1√

2πzi

e
(yi−zi )

2

2zi = PG
Yi

(yi).

While this is commonly regarded as a reasonable assumption, the implications
are quite relevant. Indeed, additive Gaussian noise is independent of the signal;
therefore it spreads uniformly across the voxels. Instead, Poisson noise is signal
dependent: this means that the noise variance is not uniform over the image domain,
but it is voxel dependent.

Even more, having the information about the statistical properties of the data
at disposal, it would be natural to look for statistical approaches to solve the
inverse problem. Indeed, the assumption we make on the noise statistics for the
data can also be understood as a priori information we can use to compensate
for the loss of information due to the perturbed data. More generally, a way to
“cure” ill-posedness is to regularize the problem, that is, combining the (statistics
behind the) forward model by some prior information which might be available
on the solution. This is the rationale behind maximum likelihood (ML) estimation
and maximum a posteriori (MAP) estimation,3 which will lead us to iterative
optimization approaches to face our reconstruction tasks.

Let’s start by introducing a function that in statistics is generally used to measure
the goodness of fit of a model to sampled data for given values of the unknown
parameters. This is the so-called likelihood function, defined as the joint probability
distribution of the sample, but viewed and used as a function of the parameters only:

Ly(z) =
m∏

i=1

PYi (yi). (7.5)

where m is the number of detector elements and PYi (yi) depends on the noise
assumptions (e.g. Poisson or Gaussian noise). Clearly, this is only a function of
z since the data y are given. Provided the likelihood function has a maximum point,
the ML estimate of z is defined to be any nonnegative object z∗ that maximizes the
likelihood function:

z∗ = argmax
z∈Rn

Ly(z).

3 The reader interested in deepening this topic can refer to [33]. A presentation of ML and
MAP estimation tailored to iterative image reconstruction (including tomographic imaging) which
follows the same structure used in these notes can be found in [26, 34].
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This problem can be transformed into a minimization problem by considering the
negative logarithm of the likelihood function:

z∗ = argmax
z∈Rn

�0(z; y) with �0(z; y) = −c1 log(Ly(z))+ c2 (7.6)

where c1, c2 ∈ R are constants to simplify the expression of the functional4

�0(z; y). Clearly, depending on the probability distribution in (7.5), we have
different expressions for �0(z; y). Let us consider the two error models we discussed
above for the particular case of the linear model (7.3). This means that z = Rf with R
given while the source object f is unknown. Therefore, �0 is now a function �0(f; y)

of f.

• Poisson noise. In this case, we have:

PY (y; f) =
m∏

i=1

PP
Yi

(yi) =
m∏

i=1

e−(Rf)i (Rf)yi

i

yi ! .

After suitable approximation and choice of the constants c1 and c2, we reach:

�0(f; y) =
m∑

i=1

{
yi ln

(
yi

(Rf)i

)
+ (Rf)i − yi

}
(7.7)

and therefore the ML approach coincides with the so-called Kullback-Leibler
(KL) divergence. It is well-known that KL is convex,5 strictly convex if and only
if the equation Rf = 0 has the single trivial solution f = 0. The properties of the
continuous version of the KL divergence and its minimization are investigated in
a series of papers (see [35–37]). In particular, in [35] an example is given where
the functional does not have a minimum in the classical sense, hence proving the
ill-posedness of this minimization problem.

4 In calculus of variations (a research field in mathematical analysis), the term functional refers to
a mapping from a space X into the real (or complex) numbers for the purpose of establishing a
calculus-like structure on X. For example, when the space X is a space of functions, a functional
can be thought as a “function of a function”. Throughout these notes, the term functional is used
with this meaning.
5 We recall that a function g is called convex if the line segment between any two points on the
graph of the function lies above the graph between the two points, that is, g(tξ1 + (1 − t)ξ2) ≤
tg(ξ1)+ (1 − t)g(ξ2) for all 0 ≤ t ≤ 1. The function g is called strictly convex if the inequality is
strict. In optimization theory, (strict) convexity is a highly desirable property for functions in order
to ensure convergence of optimization algorithms.
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• Gaussian noise. In this case, assuming expected value 0 and variance σ 2, we
have:

PY (y; f) =
m∏

i=1

PG
Yi

(yi) =
(

1√
2πσ 2

)m

e−
1

2σ2 ‖y−Rf‖2
2

where ‖·‖2 denotes the usual 2-norm (or Euclidean norm). After a suitable choice
of the constants c1 and c2, we obtain:

�0(f; y) = 1

2
‖Rf− y‖2

2 (7.8)

and therefore the ML approach coincides with the well-known least squares
(LS) approach [38]. The LS functional (7.8) is well-known to be convex, strictly
convex if and only if the equation Rf = 0 has only the solution f = 0. Moreover,
the LS problem has always a solution. However, also in this case the ill-posedness
of the continuous version of this minimization problem can be proven [39]. In
particular, the ill-posedness of this problem is the starting point of the Tikhonov
regularization theory [40], which we will briefly discuss below.

As we stressed already, in the case of an image reconstruction task, ML problems
are generally ill-posed (or ill-conditioned). Therefore, in line of principle, one is not
interested in computing the minimum points f∗ of the functionals �0 corresponding
to the different noise models—usually referred to as data mismatch functional—
because they do not provide sensible estimates of the unknown object. However,
numerical experience shows that constraining the solution to the nonnegative
orthant (i.e. requiring that the components of the solution are all nonnegative)
and/or terminating the iterations of an iterative algorithm by early stopping already
provides sufficient regularization to the problem resulting in an acceptable solution.

We conclude these mathematical preliminaries by presenting some other com-
mon ways of regularizing the problem which will be useful for the nonlinear case
of PGET. The role of regularization is to introduce additional information on the
solution—a so-called prior—by adding constraints in the variational formulation
provided by ML. Since we are already considering a statistical approach, it is worth
to formulate also this prior information in a statistical framework: this is usually
referred to as the Bayesian paradigm [41].

Within the Bayesian approach, also the unknown object f is assumed to be the
realization of a random variable F . The additional information on f is provided in
the form of the so-called Gibbs prior:

PF (f) = 1

Z
e−α�1(f) (7.9)

where Z is a normalization constant, α is a positive parameter, and �1(f) is a
nonnegative functional. Now, if the probability distribution PY (y; f) is viewed as a
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conditional probability of Y for a given value of F , namely, PY (y; f) = PY (y|F =
f) = PY (y|f), then Bayes’ formula yields:

PF (f|y) = PY (y|f)PF (f)
PY (y)

. (7.10)

We now substitute in (7.10) the detected value of y, therefore obtaining the a
posteriori probability density of F :

PF (f|y) = LY (f)
PF (f)
PY (y)

. (7.11)

Then, a maximum a posteriori (MAP) estimate of the unknown object is defined as
any object f∗ that maximizes the a posteriori probability density, namely:

f∗ = argmax
f∈Rn

PF (f|y). (7.12)

If we now take the negative logarithm as we did with ML estimation, and we neglect
the terms depending only on y, rearranging constants, we reach:

f∗ = argmin
f∈Rn

�(f) with �(f; y) = �0(f; y)+ α�1(f) (7.13)

where we assumed a Gibbs prior for PF (f). The functional �(f; y) is called
regularization functional, and α > 0 is the so-called regularization parameter.
Notice that it is not obvious that a minimum point f∗ of �(·; y) is a sensible estimate
of the unknown object: this depends on the choice of �1 and the value of the
regularization parameter α, which balances the trade-off between the data mismatch
and the regularization term. Studying the existence and uniqueness properties of
regularized functionals is an active research field in inverse problems.

One of the prime examples of regularization functionals, for which existence and
uniqueness of the solution have been widely investigated, is given by the family of
Tikhonov regularizers. In its most classic form, Tikhonov regularization is given by
the square of the 2-norm of f:

�1(f) = 1

2
‖f‖2

2 =
1

2

∑

j

f 2
j .

This type of regularization promotes a solution whose 2-norm is small. In a similar
fashion, one can consider the square of the 2-norm of some higher-order derivative
of the solution: this leads to generalized Tikhonov regularization. For example, the
Generalized Tikhonov regularization of order 2 is given by the square of the 2-norm



272 P. Dendooven and T. A. Bubba

of the discrete Laplacian � of f:

�1(f) = 1

2
‖�f‖2

2 =
1

2

∑

j

(�f)2
j . (7.14)

This type of regularization enforces the 2-norm of the Laplacian of the solution
to be small, that is, the solution’s derivatives cannot be too large. This amounts to
penalizing rapid changes in the solution, therefore promoting “smoothness” of the
solution. An example of how this regularizer can be relevant for tomographic recon-
structions is presented below for the PGET case. Tikhonov regularizers are widely
employed in diverse imaging applications because the 2-norm is differentiable (or
smooth): like convexity, this is another highly desirable property that makes the
study of (the existence of) minimizers much easier. There exists a whole class of
nonsmooth regularizers where the 2-norm is replaced by the 1-norm:6 we leave it
out of these notes as it is not relevant in the following.

Finally, the nonnegativity constraint can be easily taken into account in the
Bayesian framework if in place of (7.9) we consider:

PF (f) = χ+(f)
Z

e−α�1(f) (7.15)

where χ+(f) is the characteristic function of the nonnegative orthant,7 which is 1
on the orthant and 0 elsewhere. By taking the negative logarithm as we did above,
(7.13) reads as:

f∗ = argmin
f∈Rn

�(f) with �(f; y) = �0(f; y)+ α�1(f)+ ι+(f) (7.16)

where ι+(f) is the indicator function of the nonnegative orthant, i.e. the function
which is 0 on the orthant and ∞ outside. In Fig. 7.15 we show examples of recon-
structions from tomographic data with two different regularizers to demonstrate how
different priors predispose the reconstruction towards different solutions.

We have now laid the foundation to present some iterative methods proposed for
solving the minimization problems derived from the ML and Bayesian approaches
for the specific cases of PET, SPECT, CST and PGET. First, we introduce the
well-known expectation maximization method, and its acceleration ordered subset
expectation maximization, which is extensively used in commercial PET and
SPECT scanners [42]. This method is also the state-of-the-art for CST. Then, we

6 The 1-norm of a vector f ∈ R
n is given by the sum of the absolute value of its components,

namely, ‖f‖1 = ∑
j |fj |. Such regularizers are used in imaging problems where we expect the

solution (or its higher order derivatives) to have many components equal to zero, i.e. it is sparse.
For this reason, 1-norm regularization is usually said to “enforce sparsity”.
7 In 2D, an orthant is a quadrant; in 3D, an orthant is an octant. The nonnegative orthant is the
generalization of the first quadrant to n-dimensions with n ≥ 2.
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Ground truth Tikhonov regularizer Tikhonov regularizer &
nonnegativity constraint

Fig. 7.15 An example of reconstructions from CT data (ground truth on the left) to showcase the
role of regularization in reconstruction. We consider two different regularizers: classic Tikhonov
regularization (middle) and classic Tikhonov regularization with additional nonnegativity con-
straint (right). For this object—a toy example with three rectangular regions of intensity 1 (white)
on a uniform background of intensity 0 (black)—it is clear that nonnegativity constraints are
essential to deliver a more sensible estimate of the (true) solution

present a MAP approach using generalized Tikhonov regularization of order 2 and
another ad hoc hand-crafted 2-norm prior, coupled with a Levenberg-Marquardt
trust regionmethod for the PGET case. Additional considerations regarding iterative
reconstruction methods in commercial devices are discussed in Sect. 7.4.

PET/SPECT and CST: Expectation Maximization Algorithm
The expectation maximization (EM) algorithm was first introduced by Shepp and
Vardi for the case of emission tomography in [43]. Their derivation of the algorithm,
starting from the ML estimate of KL, is not easy. Therefore we give here an
alternative presentation, which provides an heuristic explanation of EM based on
the Karush-Kuhn-Tucker (KKT) conditions and the fixed point method.8 KKT are
necessary and sufficient conditions for a point f∗ to be a minimum of �0(f; y):

f∗ ∇�0(f∗; y) = 0 with f∗ ≥ 0, ∇�0(f∗; y) ≥ 0. (7.17)

It is easy to verify that when �0(f; y) is the KL divergence (7.7), its gradient is given
by:

∇�0(f∗; y) = RT1− RT y
Rf

where the quotient of vectors (here and in the following) is meant component-wise
and 1 is the vector with all the components equal to 1. Now, starting from an initial

8 The interested reader who is not familiar with these topics can refer, for example, to [44].
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guess f(0), the EM algorithm computes an approximation of f∗ by successive updates
given by:

f(k+1) = f(k)

v
RT y

Rf(k)
(7.18)

where v = RT1. It is immediate to see that we can write the KKT condition (7.17)
as the following fixed point equation:

f∗ = f∗

v
RT y

Rf∗
.

In addition, (7.18) can be seen as a step of the scaled gradient descent method [45],
with step size 1, the descent direction given by the negative gradient multiplied by
a diagonal and positive scaling factor given by the current iteration:

f(k+1) = f(k) − f(k)

v
∇�0(f(k); y).

Several convergence proofs of the algorithm to a ML solution are available (see,
for instance, [37, 46, 47]). In addition, if the initial guess f(0) is strictly positive,
then it is easy to prove by induction that all the iterates are strictly positive, since
Rf(0) is also strictly positive. Therefore, with EM the nonnegativity constraint
is automatically satisfied whenever f(0) is strictly positive. Finally notice that an
“implicit” regularization effect can be obtained by early stopping of the iterations.
This is because of the empirical property of semi-convergence, that is, the iterations
first approach a sensible solution and then diverge. There is no formal proof of this,
but it is usually observed in practice. This is a useful property because it provides,
at the very least, a first approximation of the object, which in some cases can turn
out to be quite accurate.

One of the main drawbacks of EM is that convergence is very slow. This means
that even using early stopping, it can require a large number of iterations before
reaching a sensible solution. Faster convergence can be gained with the ordered
subset expectation maximization (OSEM) algorithm, first proposed by Hudson and
Larkin in [48]. The idea consists of partitioning the data into ordered subsets and
applying the EM iteration to each subset. An iteration of OSEM amounts to a cycle
over the selected subsets. In details, we have that the set I is subdivided into (in
general, non-overlapping) subsets I(!) such that

⋃L
!=1 I

(!) = I. Correspondingly,
y(!) denotes the data vector with components yi such that i ∈ I(!) and R(!) is
the block of the matrix R consisting of the rows with i ∈ I(!). Similarly, v(!) is the
vector whose components are given by v(!)

j = ∑
i∈I(!) Rij . A detailed description of

OSEM can be found in Algorithm 1. A proof of convergence for OSEM exists only
in the so-called consistent case, namely, when the matrices R(!) are balanced, i.e.
v(!)

j is independent of ! (see [48]). In the non-consistent case, a proof of convergence
is still not available. The computational cost per iteration of EM and OSEM is
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Algorithm 1: OSEM algorithm

Input: Initialize f(0) > 0 and choose a subdivision of I = ⋃L
!=1 I

(!).
while k ≤ Kmax and until convergence do

Set f(k,0) = f(k).
for ! = 1, . . . , L do

f(k,!) = f(k,!−1)

v(!) (R(!))T y(!)

R(!)f(k,!−1)

end
Set f(k+1) = f(k,L).

end

approximately the same, but a wise choice of the subsets (and of their order in the
internal cycle) can result in a considerable gain in terms of convergence speed. This
is a key point when it comes to commercial devices (see Sect. 7.4.1.3).

While we presented OSEM because of its widespread adoption as a standard
method for iterative reconstruction in PET, SPECT and CST, many other iterative
methods exist, and a nice review is given, for instance, in [42]. More recent
approaches for PET within regularization theory and using sparsity-enforcing
regularizers are available, for example, in [49, 50].

PGET: Simultaneous Reconstruction of Emission and Attenuation with
Levenberg-Marquardt Algorithm
The iterative approach we present for PGET was very recently introduced in [32].
The baseline idea of the method is the simultaneous estimation of emission and
attenuation, to overcome the limitation of analytical methods like FBP which require
either that the attenuation map is known (from elsewhere) or that there is a post-
processing step to correct for the attenuation. Since spent fuel is highly absorbing,
attenuation cannot be measured in any practical way and therefore is not available
when using the PGET device. Since both the (object’s) emission f and attenuation
μ are unknown, the model (7.2) yields a nonlinear problem.

The reconstruction problem is formulated as a constrained minimization problem
with a LS data mismatch term (i.e. it implicitly assumes a Gaussian distribution for
the noise) and several regularization terms Pl :

(f∗, μ∗) = argmin
(f,μ)∈R2n+

{∥∥Rμ(f)− y
∥∥2

2 −
∑

l

αlPl(f, μ)

}

subject to A
[

f
μ

]
≤ u.

(7.19)

The constrained formulation (7.19) requires not only the nonnegativity of the
unknowns f and μ, but it also forces a linear upper bound u on both. In particular,
the bounds allow the three materials relevant for the application: water (no gamma
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ray emission, low attenuation), spent fuel rod (high gamma ray emission, high
attenuation) and fresh fuel rod (no gamma ray emission, high attenuation), but
they exclude the physically unlikely case of a material with high emission and
low attenuation. In [32], two different choices for the regularization terms are
presented. The first one is the generalized Tikhonov regularization of order 2 (7.14),
in the following referred to as smoothness prior, applied separately to emission and
attenuation:

αf
∥∥�f

∥∥2
2 + αμ

∥∥�μ
∥∥2

2.

In practice, the discrete Laplacian operator � is a 2D convolution with the kernel:

ker� =
⎡

⎣
0 1 0
1 −4 1
0 1 0

⎤

⎦ .

The other penalty term is designed specifically for the PGET application. It assumes
that the positions and the diameters of the possible fuel rods are known, although
it requires no information about whether these rods are actually present or not. In
practice, the algorithm is predisposed towards reconstructions that consist of rods
of predefined sizes in certain predefined places, but it has no preference about the
emission and attenuation values of the rods beyond uniformity within a single rod.
The geometry of the fuel assembly can be inferred, for example, from an initial FBP
reconstruction which allows to identify the fuel assembly type. For this reason it is
referred to as geometry aware prior. Similarly to the Tikhonov prior, the geometry
aware prior is applied separately to attenuation and emission:

αf
∥∥Pf f

∥∥2
2 + αμ

∥∥Pμ μ
∥∥2

2.

For the details of how to construct the matrices Pf and Pμ, we refer the reader
to [32]. Both regularization terms are such that the minimization functional (7.19)
can be naturally written as a nonlinear LS problem:

‖r(f, μ)‖2
2 =

∥∥∥∥∥∥

Rμ(f)− y√
αf Mff√

αμ Mμμ

∥∥∥∥∥∥

2

2

(7.20)

where the matrices Mf and Mμ depend on the choice of the penalty. To solve (7.20)
we can use a classic algorithm for the solution of nonlinear LS problems: the
Levenberg-Marquardt (LM) algorithm [51]. Denote by x the concatenation of the
emission and attenuation vectors, i.e. x = [fT, μT]T, and r(x) = r(f, μ) for the
residual. At each iteration, LM minimizes, with regard to the next step xstep, a linear
LS term that results from linearizing the residual r(x) at the current iterate x(k) and
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from adding a regularization term:

∥∥∥∥
[
Jr(x(k))√

β(k)1

]
xstep +

[
r(x(k))

0

]∥∥∥∥
2

2

, (7.21)

Here Jr(x(k)) is the Jacobian matrix of the residual r(x), 1 is the identity matrix, and
β(k) is the LM parameter modified at each step. Since the original formulation (7.19)
includes also the box constraints on x, the LM iteration (7.21) is modified by using
linear constraints that keep the next iterate x(k+1) = x(k) + xstep feasible:

Axstep ≤ u− Ax(k). (7.22)

This minimization is done using the scaled gradient projection (SGP) method [45].
Therefore the SGP iterative step is “nested” into the outer LM iteration: this is
because a direct (analytical) solution of (7.21) would be computationally unfeasible
due to the large-scale nature of the problem. In Fig. 7.16 can be seen an example of
reconstructions, with the two different regularization terms, from PGET data of an
ATRIUM 10 fuel assembly (see Fig. 7.3), measured at the Olkiluoto nuclear power
plant (Finland) in 2019 (see Fig. 7.22).

Some variations of LM can be used as a regularization method by themselves,
but for this specific application of PGET, the regularizations terms and the bounds

Ground truth FBP Smoothness prior Geometry aware prior
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Fig. 7.16 The ground truth and the reconstruction images for the ATRIUM 10 fuel assembly (see
also Fig. 7.3), with a 3 × 3 water channel in the centre and two missing rods (in red). In the top
row there are the gamma ray emission images and in the bottom row the attenuation images. In the
columns from left to right: the ground truth, the FBP reconstruction, the iterative reconstruction
using the smoothness prior and the same using the geometry aware prior. The FBP reconstruction
clearly provides a poorer reconstruction compared to the method proposed in [32], suffering from
the fact that there is no attenuation correction
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play a crucial role to deliver sensible solutions. Finally, we observe that the strategy
introduced in [32] was the first one to propose a nonlinear regularized approach for
PGET. Recently, other iterative approaches have been proposed. In [52], the authors
couple a linear forward model with a sparsity-enforcing regularization term. In [53]
(and their previous papers) the authors explore Bayesian iterative approaches, such
as MLEM and OSEM.

7.4 Implementation of Gamma Ray Emission Imaging

We present some examples of state-of-the art imaging devices as implemented in the
various fields of application considered. These examples illustrate how the purpose
and requirements discussed in Sects. 7.2 and 7.3 are implemented in practice. We
also discuss some additional considerations on iterative reconstruction methods
when employed in commercial devices.

7.4.1 Nuclear Medicine

7.4.1.1 Gamma Camera and SPECT
In nuclear medicine, “gamma camera” refers to the device used for imaging single
gamma rays (called “single” to distinguish them from the pairs of 511 keV positron
annihilation photons). Figure 7.5, left, illustrates the basic design of the parallel-
hole gamma camera. As this is by far the most often used gamma camera, we limit
the discussion to this type. The parallel-hole collimator ensures that only gamma
rays travelling in one direction, along the length of the holes, can be detected by the
gamma ray detector that is located right behind the collimator.

The sensitivity and spatial resolution of the gamma camera as a whole are
determined more by the collimator than by the detector: the collimator is the weak
link in the gamma camera performance. Careful design of the collimator is thus
needed. Sensitivity and spatial resolution are the main performance characteristics
of a collimator. Sensitivity, also called efficiency, is the fraction of gamma rays
arriving at the collimator that pass through one of the holes. The spatial resolution
is the uncertainty in determining at which location in the camera a gamma
ray passed through a collimator hole. There is a trade-off between collimator
sensitivity and spatial resolution: long, narrow holes have poor sensitivity and good
spatial resolution, whereas short, wide holes have good sensitivity but poor spatial
resolution (see Fig. 7.17, left). As collimators are meant to block gamma rays not
travelling in a particular direction, they are best made out of a material with a high
probability to absorb gamma rays: most often collimators are made out of lead.
When going from the lowest to the highest energy used in single-photon imaging
(from about 80 to 350 keV), the gamma ray interaction probability in lead decreases
by about a factor of 10. Therefore, collimators for higher energy gamma rays need
to have thicker septa and/or be thicker (so they have longer holes), reducing the
collimator sensitivity (see Fig. 7.17, right).
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Fig. 7.17 Parallel-hole design. The walls of a collimator are called septa. (a) Trade-off between
spatial resolution and sensitivity. The arrows illustrate the angular range of gamma rays being able
to pass through the collimator holes. The collimator sensitivity scales with the fraction of hole area
to total area. (b) Collimators optimized for low and high-energy gamma rays, with the same hole
diameter

Table 7.1 Typical parallel-hole collimator parameters. The values shown are for the Siemens
Symbia TruePoint SPECT/CT scanner, but are very similar to those of other manufacturers. An
all-purpose collimator has an intermediate sensitivity and resolution

Low energy Low energy Low energy

Collimator type high sensitivity all purpose high resolution High energy

Hole length (mm) 24.05 24.05 24.05 59.7

Hole diameter (mm) 2.54 1.45 1.11 4

Septal thickness (mm) 0.36 0.20 0.16 2

Sensitivity 4.6× 10−4 1.5 × 10−4 0.92 × 10−4 0.67 × 10−4

Spatial resolution (mm) 14.6 8.3 6.4 13.2

The trade-off between collimator efficiency and spatial resolution, and the energy
dependence of the gamma ray interaction probability, mean that there is no one-
size-fits all parallel-hole collimator. For optimum performance in a wide range of
single-photon imaging procedures, a gamma camera has several interchangeable
collimators. Table 7.1 gives typical parameters for various collimators.

Gamma rays that pass through the collimator should be detected with high
efficiency and with a reasonably good energy resolution (in order to identify
and reject gamma photons that Compton-scattered in the patient). Since the first
development of the gamma camera, NaI has been the scintillator material of
choice: it is inexpensive, and its properties in terms of gamma ray detection
efficiency, scintillation light yield and energy resolution are in general adequate.
Better scintillation materials on each of these properties are available, but do not
essentially improve the gamma camera image quality (partly because the collimator
is the weak link) and have thus not been implemented in commercial cameras.
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Cameras based on semi-conductor detectors, notably CZT, have been developed
[54–56]. They exhibit better spatial and energy resolution than NaI-based cameras.
A major purpose of these systems is dual-energy imaging: simultaneous imaging
of two different radiotracers. The excellent energy resolution of CZT, and thus
energy selection of the data, is needed for dual-energy imaging of the interesting
combination of 99mTc and 123I tracers as their gamma ray energies (140 and 159
keV) are close together; see, e.g. [57] for an example study.

Gamma cameras are typically available with two different NaI scintillation
crystal thicknesses: 9.5 mm and 15–20 mm. The thinner version is perfectly fine
when imaging with a radiotracer containing 99mTc, the most used radioisotope: the
140 keV gamma rays emitted have a half-thickness in NaI of just under 3 mm (the
half-thickness is the thickness at which half of the gamma rays have interacted). The
thicker version is needed for good detection efficiency when imaging with gamma
rays of about 300 keV or higher (the half-thickness at 300 keV is 12 mm).

A gamma camera contains a continuous slab of NaI scintillator of typically
60 × 40 cm2. Position sensitivity is obtained by so-called Anger logic, named
after Hal Anger who introduced the principle in the first gamma camera developed
[58]. In Anger logic, a relatively large detector surface area is covered by multiple
relatively small photosensors (photomultiplier tubes, PMTs, in the case of NaI-
based gamma cameras). In such an arrangement, the scintillation light that is created
when a gamma ray interacts with the scintillator is distributed over and detected
by a number of photosensors. Analysing the spatial distribution of the photosensor
signals allows to pinpoint the location of the interaction. In a typical gamma camera
such as the SymbiaTM TruePoint SPECT/CT, a 59.1 × 44.5 cm2 NaI crystal is
covered by a hexagonal array of 59 PMTs (with a diameter of either 7.6 or 5.1 cm).
For the 9.5-mm-thick NaI crystal, the spatial resolution of the NaI detector on its
own (the so-called intrinsic gamma camera resolution) is 3.8 mm FWHM. It is
interesting to note, and perhaps surprising to realize, that the spatial resolution
is much better than the size of the individual photosensors. Achieving the same
resolution with an array of individual detectors would require detectors with a
diameter of a few mm; but a few 10,000 detectors would then be needed to cover
the surface area of the NaI slab. The large simplification and cost savings by using
Anger logic are thus obvious. Gamma cameras based on CZT detectors do not
use Anger logic. Being semiconductor detectors, the signal is generated by the
collection of electron-hole pairs created following the interaction of a gamma ray.
Pixellation of a large area detector is easily obtained by creating a 2D array of small
area anodes. The General Electric NM/CT 670 CZT and NM/CT 870 CZT scanners,
e.g. use 4 × 4 cm CZT crystals with a 16× 16 array of anodes, effectively creating
an array of 2.5 × 2.5 mm2 detector pixels.

As explained in Sect. 7.3.1, 3D images can be obtained by taking 2D projections
(radiographs) from all angles around the patient, the so-called tomographic proce-
dure. The gamma camera has to be sufficiently large to cover the full cross-sectional
size of a patient, hence the typical size of 60× 40 cm2. A full ring scanner made out
of gamma cameras and with an inner diameter of 80 cm (typical for patient scanners)
can contain not more than about five cameras and thus measures simultaneously at
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only a small number of angles. Sufficient angular sampling for tomographic imaging
thus requires the addition of rotational motion. In practice, SPECT scanners most
often contain two gamma cameras that are rotated around the patient.

7.4.1.2 Positron Emission Tomography Scanner
The back-to-back emission of 511 keV positron annihilation photons that are
detected in coincidence defines the direction of emission to be the LoR, the line
connecting the detector locations where the photons are detected. Positron emission
imaging by means of the coincident detection of annihilation photons therefore
does not need a collimator to select a certain direction. As a result, a much higher
sensitivity than with a gamma camera is obtained. Modern PET scanners have a
sensitivity of about 1.5% for a line source of uniform radioactivity placed along the
central axis of the scanner, roughly a hundred times higher than a gamma camera.
Part of this higher sensitivity stems from the fact that positron emission imaging is
almost always performed in tomographic mode with a full-ring scanner which has
a substantially larger solid angle than a typical SPECT scanner with two gamma
cameras. Such a geometry, without the need of rotation, is made possible due to the
absence of a collimator.

Since about 1980, the performance of PET scanners has improved tremendously.
Several detector technology innovations have made this possible. The introduction
of bismuth germanate (BGO, Bi4Ge3O12) scintillation crystals around 1980 enabled
the much more efficient detection of 511 keV photons than the NaI detectors used
up to then (the half-thickness of 511 keV photons in BGO is 7.3 mm, while it is
20.4 mm in NaI). A major breakthrough happened when BGO crystals were used
in so-called block detectors [59]. A block detector contains a fairly large array of
small scintillation crystals which is read out by just four PMTs. The block detector
is designed such that scintillation light from any crystal is shared over the four
PMTs. Comparing the relative sizes of the PMT signals (i.e. Anger logic) enables
to determine in which crystal of the array the 511 keV interaction took place. As a
typical example, Fig. 7.18, left, shows a block detector from the Siemens Biograph
mCT Flow PET/CT scanner. It consists of a 13 × 13 array of 4 × 4 × 20 mm3

LSO scintillation crystals read out by a 2 × 2 array of cylindrical PMTs. A full
performance evaluation of this scanner is given by [60]. Figure 7.18, right, shows
a 2D histogram of the interaction positions, determined via Anger logic, when the
block detector is uniformly illuminated by 511 keV photons, a so-called flood map.
It demonstrates how Anger logic can identify all 169 scintillation crystals. The fact
that the flood map pattern is not regular but shows a severe pincushion distortion is
not relevant; identifying the correct crystal in which an interaction took place is the
relevant purpose, with the crystal positions known from the detector/scanner design.

A few prototype time-of-flight (TOF) capable PET scanners were constructed
in the 1980s using CsF [61] or BaF2 [62, 63] scintillation crystals. These were
however abandoned in favour of the much more efficient BGO-based scanners.
Note that the timing properties of both NaI and BGO are not sufficient to provide
useful TOF information. The advent of the lutetium-based scintillation crystals,
lutetium oxyorthosilicate (LSO, Lu2SiO5) and lutetium-yttrium oxyorthosilicate
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Fig. 7.18 Left: Comparison of PMT and SiPM-based PET detector modules. Left: block detector
from the Siemens Biograph mCT Flow PET/CT scanner. Middle: detector module of the Siemens
Biograph Vision PET/CT scanner. Right: flood-map of a Siemens Biograph mCT block detector.
Left/middle picture reprinted from www.siemens-healthineers.com with permission from Siemens
Healthineers

(LYSO, Lu1.8Y0.2SiO5), which have a good efficiency (half-thickness of 7.9 mm)
and excellent timing properties, as well as a better energy resolution than BGO,
revived the TOF-PET scanner (see [64] for an update on the latest advances in
TOF-PET). The first commercially available TOF-PET scanner was the Philips TOF
PET/CT GEMINI-TF scanner in 2006, with a coincidence resolving time (CRT) of
600 ps FWHM. CRT is the parameter used to quantify the TOF performance; it
is the FWHM of the distribution of the time differences between 511 keV photons
detected in coincidence. For a Gaussian time difference distribution, the CRT is 3.33
times larger than the single detector standard deviation time resolution, the timing
resolution measure usually used when discussing detector development. The most
recent major innovation is the use of Geiger-mode avalanche photodiodes (G-APD,
most commonly referred to as silicon photomultipliers, SiPM), which improved the
timing performance considerably (see [65, 66] for some reviews of SiPMs and their
timing properties). Nowadays, the best CRT of a commercial PET scanner is 210 ps
[67], allowing to narrow down the location of positron annihilation along the LoR to
a region of just over 3 cm FWHM, resulting in a huge reduction in noise compared
to non-TOF PET. As a typical example, Fig. 7.18, middle, shows a SiPM-based
TOF-PET detector module of the Siemens Biograph Vision PET/CT scanner. This
module contains a 4 × 2 arrangement of mini blocks. A mini block consists of a
5 × 5 array of 3.2 × 3.2 × 20 mm3 LSO crystals coupled to a 4 × 4 SiPM array
fully covering the crystals. A full performance evaluation of the Biograph Vision
scanner is given by [67]. As the typical size of a SiPM is very similar to the size of
individual scintillation crystals, the use of SiPMs allows to use one-to-one coupling
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of crystal to photosensor, removing the need for Anger logic, as in the Philips Vereos
PET/CT system. The Vereos system uses so-called digital SiPMs and has a CRT of
310 ps [68].

Since about 2015, all major PET scanner manufacturers offer SiPM-based
systems, which will, within the foreseeable future, replace the PMT-based systems.
The newest innovation is the total-body PET scanner [69], which has a much larger
axial length than the typical 20–25 cm so far. The first commercially available
system, the μEXPLORER PET/CT system from United Imaging, has an axial length
of 194 cm; a detailed performance evaluation is given in [70]. The main advantages
of such systems stem from the very large sensitivity combined with the simultaneous
coverage of the whole human body.

7.4.1.3 Additional Consideration on Iterative Reconstruction
in Commercial PET and SPECT

The most widely used image reconstruction method in state-of-the-art SPECT and
PET systems is the ordered subset expectation maximization (OSEM) algorithm
(see Sect. 7.3.3). As we stressed already, the number of iterations and subsets used
in OSEM are of key importance when deploying the algorithm, and, in practice,
it varies between manufacturers and also depends on the specifics of the imaging
task at hand. This is because, with increasing number of iterations, image noise
(understood as pixel-to-pixel variations of a statistical nature) tends to grow in
OSEM. This is a serious issue in nuclear medicine imaging because the number
of counts is limited by the acceptable radiation dose delivered to the patient
by the radiotracer. Often image quality is largely determined by the number of
counts collected during the imaging procedure. Limiting noise requires to limit the
number of iterations, which results in sub-optimal images. To counter this under-
convergence to control image noise, and thus allow a larger number of iterations,
noise reduction techniques are often applied. One example is implemented in the
Q.Clear method developed by GE Healthcare [71], which uses a Bayesian penalized
likelihood reconstruction algorithm [72, 73]. An evaluation of the Q.Clear method
is presented by [74], even though details of the implementation are not publicly
available (as is usually the case for commercial devices). Another key ingredient
when it comes to practical implementation of image reconstruction algorithms in
commercial devices is the correction of the so-called point spread function (PSF),
i.e. the image of a point source. PSF varies throughout the field-of-view (FoV) of a
scanner for different reasons. In SPECT, this is, to a large extent, due to the poorer
spatial resolution further away from the collimator. In a full-ring PET scanner, the
PSF becomes more and more asymmetric as one moves away from the centre of
the FoV. Within the reconstruction algorithm, all manufacturers implement a sort
of PSF correction, taking the variation of the 3D PSF throughout the FoV into
account. As input information, the 3D PSF is modelled in a calibration procedure.
In the case of PET, up to millions of accurately measured PSFs are incorporated
in the reconstruction algorithms. As a result, the image spatial resolution is largely
constant throughout the FoV and the overall image quality improves. An example
of how PSF modelling is implemented is given by [75].
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7.4.2 Particle Beam Radiotherapy

We are here selecting examples of imaging systems in the context of proton beam
radiotherapy. Similar systems are in principle also applicable to ion beam therapy,
although aspects such as the production of prompt gamma rays and positron emitting
nuclides in the patient and radiation background issues will be different. For a
review of prompt-gamma monitoring in particle beam radiotherapy and a quite
complete overview of the instruments being developed for it, we refer to [76].

Modern proton beam therapy uses the pencil scanning technique: a narrow proton
beam is scanned across the tumour using two dipole magnets moving the beam
in two orthogonal directions perpendicular to the beam direction (the x- and y-
directions), and the proton beam energy is varied to scan in the direction of the
beam (the z-direction). Most often, spot dose delivery is used whereby the beam is
static when delivering dose (the typical duration of one spot is a few milliseconds)
and is switched off while changing the position and/or energy. At any time during a
patient irradiation, the x-y position of the proton beam is known (it is monitored
by detectors in the proton beam) and does not need to be determined by the
gamma emission imaging system that is performing dose delivery verification. This
simplifies the imaging system when imaging prompt gamma rays: the x-y position
of the origin of each detected prompt gamma ray is known, and the imaging system
only needs to determine the z-position. The imaging task is thus simplified to
making a 1D image. The dose delivery verification system that is closest to be used
in clinical routine, a knife-edge slit collimator camera, is designed to deliver such a
1D image.

Figure 7.19 illustrates the knife-edge slit camera. Prompt gamma rays produced
along the proton beam path, and emitted isotropically, are projected by a slit
collimator onto a linear array of LYSO scintillation crystals. The LYSO crystals
are 4 mm wide in the direction of the proton beam, 31.5 mm thick and 100 mm
high, with 2 rows of 20 crystals each mounted on top of each other, resulting
in an 80-mm-wide and 200-mm-high detector array. The LYSO crystals are read
out by SiPM photosensors. The slit camera, being a 1D pinhole camera (a camera
obscura), enables magnification of the prompt gamma production profile, with the
magnification factor (the image size to object size ratio) given by the ratio of the
distance of the collimator slit to the detector and the distance of the proton beam to
the collimator slit. A magnification close to 1 has so far been used in imaging during
patient irradiations. Details on the design and data analysis are given in [78, 79].
As the camera measures a 1D profile, no image reconstruction as discussed in
Sects. 7.3.3 and 7.4.1.3 is needed. The edge of the measured profiles, corresponding
to the proton range, is determined. Measurements during the delivery of proton
therapy for a brain cancer patient (Fig. 7.20) show that, when aggregating data
from multiple beam spots, a beam range shift precision of 2 mm can be achieved
[77]. The need for aggregation over multiple beam spots to achieve a clinically
relevant precision is quite general in proton therapy verification because the number
of secondary photons that is created is relatively small. It can obviously not be
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Fig. 7.19 Schematic setup and layout of the knife-edge slit collimator prompt gamma camera.
Relevant dimensions are given. Protons (blue lines) travelling in the patient create isotropically
emitted gamma rays. Some of these (green lines) pass through the knife-edge slit collimator and
hit a linear array of LYSO scintillation crystals. The distribution of gamma rays detected along
the LYSO array is an image of the production of prompt gamma rays along the proton beam path.
Upper right pictures: (a) the table-mounted U-shaped urethane beam range shifter, (b) the trolley
for camera positioning, (c) the knife-edge slit collimator. Reprinted from [77]

increased by a higher proton beam intensity as this is dictated by the prescribed
radiation dose.

Several projects developing a Compton camera for imaging prompt gamma rays
in particle beam radiotherapy have been and are being pursued around the world. A
variety of detector technology is being used; see [76] for an overview. Most of these
use one or more relatively thin scatter detectors and one relatively thick absorber
detector, as illustrated in Figs. 7.7 and 7.8.

Instead of discussing in detail a particular Compton camera, we point out two
detector technologies that have been driving the development of Compton cameras
for in vivo range verification: monolithic scintillation detectors and 3D position-
sensitive semiconductor detectors. We focus on how these detectors obtain their
position sensitivity.

A monolithic scintillation detector is a scintillation crystal with a fairly large
surface area that is read out by an array of photosensors, in modern systems most
often SiPMs ([80] discusses the use of SiPMs in Compton cameras). Relatively thin
monolithic scintillation detectors provide 2D position sensitivity and are used as
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Fig. 7.20 Results from imaging with the knife-edge slit camera during the proton therapy
treatment of a brain cancer patient. Horizontally, four different proton beam energy layers are
shown. The rows show the results from the irradiations on two different days. The X-ray image of
the irradiated region is overlaid with the following information: the yellow line depicts the volume
that was planned to receive a high dose; the red and green lines show the planned and measured
Bragg peak depths. Reprinted from [77]

scatter detectors. The position information is derived from the signal distribution of
the photosensor array, similar to Anger logic in a gamma camera (see Sect. 7.4.1.1).
For instance, the MACACO camera uses 5-mm and 10-mm-thick LaBr3 crystals
read out by 8 × 8 SiPM arrays [81]. For good detection sensitivity of the high-
energy gamma rays emitted in particle beam radiotherapy, a fairly thick absorber
detector is needed. For thick detectors, measuring the 2D interaction position is not
sufficiently accurate to reconstruct the path of the scattered gamma ray and thus
leads to poor imaging information. Better performance is obtained by having 3D
position sensitivity, thus adding the so-called depth-of-interaction information. A
good example is the 30-mm-thick LaBr3 absorber in the electron tracking Compton
camera described by [23]. Obtaining the 3D position information in such detectors
requires an elaborate calibration procedure. Most recently, neural networks are used
to determine the position of individual events [82].

Over the past decade, large semiconductor detectors (larger than about 1 cm
in all three dimensions) with 3D position resolution on the mm scale have been
under development. The position and energy resolution that can be obtained with
such detectors are very appealing for Compton imaging. 2D position resolution in
large semiconductor detectors is obtained by segmentation of the signal readout
electrodes, either by having orthogonal strips on both the anode and cathode side
(see, e.g. [24]) or a 2D readout grid on the anode and a planar cathode (see,
e.g. [83]). Depth information is obtained by the relative timing of the anode
and cathode signals. A major strength of such detectors is their capability to
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Fig. 7.21 A prototype Compton camera based on large CZT semiconductor detectors. (a) The
four detection stages labelled 1–4 and the sychronization-coincidence timing module (SCT), with
black squares showing the positioning of the CZT crystals in the stages. (b) The experimental
setup for measurements at the Maryland Proton Treatment Center. The camera sits on the treatment
couch next to a HDPE phantom. (c) Schematic (not to scale) of the experimental setup showing the
proton beam (black arrow) incident on the phantom from the negative z-direction. Reprinted from
[84] with permission from IOP Publishing

recognize multiple simultaneous interactions, such as Compton scattering and the
subsequent photoelectric absorption of the scattered photon. This makes them very
interesting for Compton imaging as the same detector functions as both scatter
and absorber detector. However, the detector is too slow to determine the time
order of multiple interactions. An “educated guess” is possible making use of
the well-known Compton scattering kinematics and interaction probability and/or
the known extent of the object being imaged, but some ambiguity will remain.
Several commercial cameras are available (from, e.g. PHDS Co. and H3D Inc.),
using germanium or CZT detectors, but these are optimized for gamma ray energies
below about 2 MeV. During particle therapy, gamma rays up to about 6 MeV need
to be imaged. Dedicated systems are thus being developed for particle therapy
verification. The development of a Compton camera based on large CZT crystals
is described by [84–86]. The system consists of four separate detector stages, each
containing a 2 × 2 array of CZT crystals (2 × 1 × 2 cm3 and 2 × 1.5 × 2 cm3

crystals are used); see Fig. 7.21. Images are produced using the stochastic origin
ensemble (SOE) iterative reconstruction algorithm [22]. The SOE method does not
reconstruct an image using the full Compton cone,9 but selects a single, so-called
representative, point on the cone (assuring that this point lies within the object being
imaged). In consecutive iterations, new points are chosen in an attempt to improve
the reconstruction by exchanging the current representative points with points where
the probability of a gamma originating is higher. The iterative process is stopped
when a steady-state situation, in which the image no longer changes from iteration
to iteration, is reached.

Positron emission imaging for in vivo range verification has an advantage in that
it can basically use the technology that is continuously being developed for PET

9 Recall that each event in a Compton camera determines a cone-of-response (the Compton cone;
see Sect. 7.3.2.2), not a line-of-response.



288 P. Dendooven and T. A. Bubba

in the nuclear medicine context (see Sect. 7.4.1.2). A full ring PET scanner can be
used to image the positron emitters after irradiation, once the patient has been moved
from the treatment position to the PET scanner. A standard full ring scanner cannot
be used to measure during an irradiation, a so-called in situ measurement, because it
is physically in the way of the proton beam. A solution to this geometrical issue has
been investigated: the so-called OpenPET system using a slanted full-ring scanner
[87]. Most common for an in situ PET system is however a dual-panel configuration.
Some of these systems are essentially a section of a commercial full-ring scanner
(see, e.g. [88, 89]), while others are dedicated systems, but using technology very
similar to nuclear medicine PET scanners (see, e.g. [90–94]). As the PET signal is
delayed on a time scale of the same order as the duration of an irradiation, and an
irradiation typically consist of several fields (irradiation from different directions)
with overlapping dose delivery, 3D imaging is needed for good quality verification.
Recently, the usefulness of positron emission imaging using the very short-lived
nuclide 12N (half-life = 11 ms) is under investigation [89,95]. It potentially provides
a “prompt” PET signal for which instantaneous correlation with the beam delivery
is possible and thus 1D imaging, as in the case of prompt gamma rays, suffices.

7.4.3 Nuclear Safeguards

A nuclear fuel assembly is an array of fuel rods several meters long; see an example
in Fig. 7.3. Many different designs have been and are being used. The fuel rod
diameter is approximately 1 cm, and a fuel assembly has a diameter of typically
15–25 cm. Fuel rods are assembled from fuel pellets (about 1 cm high) encased in a
zirconium alloy tube. After use in a nuclear reactor, the radioactive decay of fission
products in the spent fuel results in a tremendous gamma ray activity. For example,
pressurized water reactor (PWR) spent fuel assemblies (SFAs) have a 137Cs activity
of the order of 1015 Bq [96]. However, most of the fission products are relatively
short-lived, and after a few years of cooling time (time since removal from the
nuclear reactor), only a handful of nuclides useful for gamma ray emission imaging
remains; see Table 7.2.

The main purpose of gamma ray imaging in a nuclear safeguards context is the
detection of missing fuel rods. Obtaining a 2D cross-sectional image is sufficient
for this task, and thus the camera should measure 1D projections in a tomographic

Table 7.2 Decay properties of the most relevant nuclides in gamma ray emission imaging of
spent nuclear fuel, for fuel with a cooling time of a few years

Nuclide Half-life (y) Main gamma ray energies and branching ratios
134Cs 2.1 569 keV (15%), 605 keV (98%),796 keV (86%)
154Eu 8.6 723 keV (20%), 1004 keV (18%), 1274 keV (35%)
137Cs 30.1 662 keV (85%)
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Fig. 7.22 A spent fuel
assembly being lowered into
the PGET device. The device
sits 15 metres underwater at
the bottom of the spent fuel
pool at the Olkiluoto nuclear
power plant in Finland.
(Reprinted with permission
from TVO)

imaging procedure (see Sect. 7.3.1). Information on the third dimension can of
course be obtained by measuring 2D images at multiple places along the length
of a fuel assembly.

We describe here the so-called PGET device developed under the auspices of
the IAEA and in use by inspectors of the nuclear regulatory agencies since 2018.
Figure 7.22 shows the PGET device in operation at the bottom of a spent nuclear
fuel pool. Figure 7.23 illustrates the design and realization of the PGET device. The
PGET device contains two detector heads, on opposite sides of a central channel into
which a SFA is lowered for imaging. The detector heads are rotated over 360 degrees
for tomographic imaging. Each detector head contains a 10-cm-thick slit collimator
made out of tungsten with a small CZT detector behind each collimator slit. The
slits are 1.5 mm wide and have a 4 mm pitch. The two detector heads are shifted
by 2 mm with respect to each other, resulting, after interleaving the data from the
two heads, in 1D projections with 2 mm bin size. Typically, measurements are
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Head1

Head2

fuel rod assembly

collimator

Housing

linear array of
CZT detectors

Fig. 7.23 Left: conceptual design of the PGET device. A cross-sectional view is shown. Modified
from [15]. Right: picture of the inner parts of the PGET device, with the water-tight cover removed

Fig. 7.24 Gamma ray emission (left) and attenuation (right) reconstructions for a SVEA-64 fuel
assembly, obtained as discussed in Sect. 7.3.3. The outer rods show intra-rod emission variation.
Reprinted from [98]

taken during continuous rotations and usually sorted into 360 one-degree steps. The
typical measurement time is 5 minutes. During data acquisition, the detector count
rates in user-defined preset energy intervals are recorded. The most relevant energy
bin mostly used so far is 600–700 keV, containing the 137Cs gamma rays.

Results from the PGET device are described in [20, 97, 98]. We limit ourselves
here to a specific result showing the imaging power of the device. Figure 7.24
shows the results of imaging a SVEA-64 SFA [98]. The images are reconstructed
using the method described in Sect. 7.3.3. This assembly has a relatively large rod
diameter of 10.44 mm. The observed intra-rod variation in gamma ray emission
can be understood from the fact that at the high temperatures inside a nuclear
reactor, fission products diffuse from the hotter central region of the rod to the
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colder periphery. Especially isotopes of Cs, being a volatile metal, diffuse easily.
Intra-rod Cs and Eu isotopic distributions were also seen and studied by [99]. This
explanation is supported by the attenuation reconstruction, which does not show
intra-rod differences. The intra-rod emission variations are best seen for the outer
rods because the image quality for these rods is best. In this context, it is relevant
to note that the regularization terms used (see Sect. 7.3.3) prefer solutions where the
intra-rod activity and attenuation coefficient are uniform. This means that some of
the intra-rod differences are smoothed out during image reconstruction.

7.5 Conclusions

The design of hardware and software for a gamma ray emission imaging application
is a multifaceted task. The main considerations are:

• the requirements of the application
– What does the image need to tell?
– What accuracy and precision is needed?
– What is the measurement environment?
– What is the required/allowed duration of the imaging procedure?

• the properties of the object to be imaged
– size and structure
– material composition
– gamma ray absorption and scattering

• the properties of the gamma ray source
– spatial intensity distribution
– gamma ray energies

To arrive at a practical instrument, cost will be an essential factor to consider as well.
All these requirements are intertwined (e.g. absorption/scattering depends on both
gamma ray energy and object size/structure), with often a trade-off to be made (e.g.
between collimator spatial resolution and sensitivity or between performance and
cost). The requirements of the application should be leading in taking decisions.
These notes will have achieved their purpose if the reader is able to use the
information presented as a starting point to make informed decisions on the design
and use of gamma ray emission imaging systems. When doing so, remember that it
is not about the detectors, not even about the images, but about what the images can
do for your application.
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