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CSF-1	 Colony-stimulating factor-1
CX	 Connexin
DAMPs	 Damage-associated molecular patterns
GABA	 Gamma-aminobutyric acid
JAK-STAT	 Janus kinase/signal transducer and activator of the transcription
lncRNA	 Long non-coding RNAs
MMPs	 Matrix metalloproteinases
NMDA	 N-methyl-d-aspartate
PRR	 Pattern-recognition receptors
RAGE	 Advanced glycation end products
TNF	 Tumor necrosis factors
TRP	 Transient receptor potential channels

�Introduction

Chronic pain is a clinical status characterized by persistent symptoms of pain e.g., 
hyperalgesia, allodynia which may persist for longer than 3–6 months. The patho-
genesis of chronic pain is not fully understood, and its treatment still represents a 
significant health problem; 19% of adult European suffer chronic pain and a third of 
children experienced it in their life [1–3]. The Global Burden of Disease Study esti-
mated pain and its related diseases as the leading cause of disability worldwide [4]. 
Understanding the underlying pathophysiology of chronic pain is crucial for all 
healthcare workers involved in pain management. Advancing in age, being female, 
living in low socioeconomic status, being illiterate, unemployed, obese, drinking 
too much alcoholic, living a sedentary life, following an unhealthy diet are associ-
ated with higher prevalence and intensity of pain according to Mills et al. in their 
epidemiological review [5].

�Normal Physiology

Normal physiology of pain signaling includes transduction (intracellular changes 
upon ligand activation), transmission (movement of pain signals), modulation 
(alteration in pain signals), and perception (unpleasant sensory and emotional expe-
rience). Any tissue damage or inflammatory reactions affecting the receptors or 
peripheral fibers will affect the normal physiology, also pain processing in the CNS 
may be dysregulated. Chronic pain is classified as nociceptor pain and neuropathic 
according to the type of the noxious agent, they may coexist, and pain sensitization 
is classified to peripheral or central according to the site of dysregulation [6].
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�Pathway of the Chronic Pain

Receptors
Nociceptors
Afferent
Small-diameter myelinated A and unmyelinated C nerve fibers.
First-order neurons
Dorsal horn of the spinal cord.
Spinothalamic tract
The major ascending pathway for pain and temperature.
Second-order neurons
Rexed layers I, II, and V.
Third-order neurons
Ventral posterolateral (VPL) nucleus of the thalamus.
Cortex
Signal projected to the primary somatosensory cortex.

Information in the dorsal root ganglion is subjected to modulation by descending 
signals from the brain stem nuclei [7].

�Nociceptors (Pain Receptors) 

Nociceptors localize at the somatic body parts (bone, muscle, joints) or visceral 
body organs. Location of receptors classifies nociceptors pain as somatic; well 
localized and intense, and visceral pain; poorly localized and diffuse. Nociceptor 
pain is the body’s reaction to a painful stimulus like a muscle sprain or tissue dam-
age [8]. Nociceptors and their related afferent nerves differ according to their func-
tion and size in myelination, electrophysiological pattern, surface markers, and gene 
expression [9].

�Neuropathic Pain

Noxious agents to the peripheral nociceptor may be caused by inflammation trauma, 
cancer, arthritis, and others. Those noxious agents promote an increase in the release 
of the pain mediators’ substances and neurotransmitters such as substance P, pros-
taglandins, and bradykinins. Depolarization starts at the level of the nociceptors and 
travels up to the second-order neurons in the spinal cord, and midbrain then to the 
higher centers and limbic system. Neuropathic pain is chronic pain associated with 
lesions or dysregulation in the pain pathways. Neuropathic pain may be in the form 
of dysesthesia, abnormal sensation, allodynia, or  pain from non-painful stimuli. 
Neuropathic pains are more severe and more difficult to treat [6, 10, 11].

3  Pathophysiology of Chronic Pain
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�Possible Mechanisms and Pathogenesis

�Peripheral Sensitization

The presence of peripheral nerve injury increases the sensitivity of the nerve to pain 
through local release of inflammatory substances, recruiting immune cells, and 
release of cytokines e.g., TNF and interleukins which potentiate the action of both 
Na and Ca channels [6, 12, 13]. Activation of receptors on the nociceptor neurons 
proceeds post-transduction modification on the regulation of ion channels, transient 
receptor potential channels (TRP), pattern-recognition receptors (PRR), toll-like 
receptors (TLRs), and receptors for advanced glycation end products (RAGE) [14].

�Central Sensitization

Continuous peripheral sensitization leads to changes at the level of CNS named 
“central sensitization”. Central sensitization is associated with reduced pain thresh-
old and modulation in pain pathways at the level of CNS. These modulations in CNS 
are possible explanations for depression and anxiety attacks associated with chronic 
pain. It also explains the high prevalence of chronic pain among patients with 
depression as depression is itself characterized by inflammatory activity [5, 15–17]. 
Central sensitization is thought to be the reason for neuropathic pain symptoms such 
as allodynia, hyperalgesia, secondary hyperalgesia, temporal summation, expansion 
of referred pain region, and defective descending inhibitory control [17–19].

�Glial Cells

CNS glial cells play an important role in the pain pathways; reactive changes are 
seen in astrocytes, microglia, and oligodendrocytes as a sequela of pathological 
conditions evoking pain [20–22]. Proinflammatory mediators derived from neurons 
themselves are responsible for microglial cell activation e.g. colony-stimulating fac-
tor 1 (CSF1) caspase-6, interleukin-1β, and extracellular proteases damage-
associated molecular patterns (DAMPs) [20, 23–26]. Those mediators activate glial 
cells by binding to pattern-recognition receptors (PRR) [20]. The role of microglial 
cells in pain can be noticed by the effect of drugs inhibiting their activation [27, 28]. 
minocycline, propentofylline, and ibudilast [29–31]. Microglia release IL-1β a cyto-
kine seen to be upregulated in chronic pain which enhances NMDA receptors and 
inhibits GABA transmission [32–35]. Drugs antagonizing its action showed good 
results in attenuating pain intensity [35–38]. Transmission of ions dramatically 
increases between glial cells through connexin-43 (CX43) gap junction. This 
increase is associated with high expression of connexin-43 (CX43) protein [39]. 
Carbenoxolone as a gap junction inhibitor showed positive results [40]. Matrix 
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metalloproteinases (MMPs) also play a role in the regulation of inflammatory cyto-
kines associated with nerve injury; using tissue inhibitors of MMP showed positive 
results in attenuating chronic pain [41, 42]. Other mediators like catecholamines 
and oligodendrocytes precursor cells are seen to be upregulated in chronic pain 
pathways [22, 43].

�Pattern Recognition Receptors (PRP)

Pattern recognition receptors (PRP) ) such as TLRs and RAGEs play their role in 
chronic pain through both peripheral and central sensitization [14]. TLRs are 
responsible for the induction of proinflammatory mediators and generating biologi-
cally active IL-1β. RAGEs are membranous proteins with cytoplasmic domain upon 
activation they increase transduction and upregulation of cytokines and proinflam-
matory material [14].

�JAK-STAT Pathway

A new therapeutic target is Janus kinase/signal transducer and activator of the tran-
scription (JAK-STAT) pathway. This pathway is very crucial in immune cell activa-
tion and cytokine production. Once cytokines bind to JAK receptors they become 
phosphorylated and translocate to the nucleus where they enhance gene transcrip-
tion. Those genes are related to numerous cytokines and proinflammatory materials 
[44, 45].

�Cysteinyl-Aspartate-Specific Proteases (CASPs) 

They are proteases responsible for initiating cell apoptosis. They are highly 
expressed in dorsal root ganglions, peripheral nerves, and the brain. In chronic pain, 
their activation leads to the neuroinflammatory response, cell apoptosis, and microg-
lial cell activation. Injection of CASPs inhibitors showed positive results in alleviat-
ing neuropathic pain [46, 47].

�Long Non-coding RNAs (lncRNA)

They are transcripts not coding for protein synthesis and found to be highly expressed 
in the spinal cord and dorsal ganglia in chronic neuropathic pain. Researchers sup-
posed they are involved in cytokine production, activation, and interaction with 
TLRs to be an important part of neuropathic chronic pain pathways [48, 49].

3  Pathophysiology of Chronic Pain
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�GABAergic Plasticity

After nerve injuries, changes occur in peripheral nerves and nociceptors leading to 
pain hypersensitivity. Decrease in GABA inhibition though to be one of the causes 
and named “neuropathy-induced decrease of GABA synaptic inhibition”. Injury 
through to causes cell apoptosis decreasing GABAergic nerves [50, 51].

�Purinergic Signaling in Microglia

Stimulation of P2X4 receptors on the surface of microglia release brain-derived 
neurotrophic factor (BDNF), this substance dysregulates ion exchanges inverting 
cell polarity and converting GABA and glycine to the polarizing agent rather than 
hyperpolarizing agents [52–54].

�Mitochondrial Role in the Pathogenesis of Chronic Pain

Recently, mitochondria were found to be involved in the pathogenesis of chronic 
pain. Increase production of reactive oxygen species (ROS) and superoxide associ-
ated with hyperalgesia even without nerve injury. Blocking of ATP-dependent 
mechanism in mitochondria gave positive results in reducing some types of neuro-
pathic pain [55–57].

�Conclusion

Despite the pathogenies of chronic pain is not yet well understood, numerous theo-
ries have been proposed and new therapeutic agents have been tried and are antici-
pated to reach an effective agent in decreasing the burden of chronic pain.
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