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Abstract. It is crucial to ensure the security and privacy of communica-
tions in Internet of Things (IoT) scenarios that process an increasingly
large amount of sensitive data. In this context, we propose a crypto-
graphic enforcement mechanism of access control policies to guarantee
the confidentiality and integrity of messages exchanged with the MQTT
protocol in presence of external attackers, malicious insiders and “honest-
but-curious” service providers. A preliminary performance evaluation
with a prototype implementation in an open-source tool shows the over-
head is acceptable in relevant use case scenarios and provides a higher
level of security with respect to other approaches.
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1 Introduction

The capillary diffusion of Internet of Things (IoT) devices holds the potential
to improve the well-being of society in several scenarios, like eHealth and smart
cities. The undeniable benefits offered by IoT-based scenarios should be coupled
with their security, though. Indeed, the environments in which these scenar-
ios are deployed are traditionally assumed to be hostile due to the presence of
external attackers. Moreover, being often unattended and equipped with limited
computational resources, IoT devices are intrinsically vulnerable and exposed
to high levels of risk. Hence, suitable security mechanisms should be adopted
to ensure the protection of sensitive data (e.g., personal or confidential infor-
mation) throughout their life cycle, i.e., when in-transit, in-use and at-rest. In
particular, we note that IoT-based scenarios are especially focused on the trans-
mission of data, which is one of the fundamental layers of their architecture [20].
In this context, communication security and data encryption are the two top
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concerns for IoT scenarios, as clearly shown by the 2021 Eclipse IoT survey.1

However, since the traditional client-server network paradigm does not properly
fit the needs and peculiarities of IoT (e.g., limited computational and commu-
nication capabilities, unreliable channels, latency requirements), these scenarios
usually employ more lightweight and efficient publish-subscribe protocols such as
Message Queue Telemetry Transport (MQTT) [18].

Furthermore, we note that the complexity and dynamicity of IoT-based sce-
narios (considering also the latest trends in security such as Zero Trust) make it
almost impossible to assume full trust on any agent involved. Instead, the agents
operating in these scenarios are usually assumed to be untrusted or partially-
trusted, where “partially-trusted” (or “honest-but-curious”) denotes an agent
which faithfully performs the assigned tasks but, at the same time, tries to access
sensitive data, usually for profit [7,12]. In other words, besides being threatened
by a plethora of external attackers, sensitive data in IoT-based scenarios must
be secured from malicious insiders (e.g., disgruntled employees, harmful tenants)
and honest-but-curious service providers as well (e.g., Cloud, Edge).

When no fully-trusted central entity is present, a decentralized approach has
to be adopted to protect sensitive data. In this regard, the use of cryptography is
fundamental to mitigate and prevent possible attacks on the confidentiality and
integrity of data. Indeed, these two security properties are of the utmost impor-
tance, especially in scenarios involving personal information (e.g., users’ health
data) or providing vital services in which integrity is crucial (e.g., smoke sensors).
A popular cryptographic-based solution to protect communications by guaran-
teeing confidentiality and integrity is Transport Layer Security (TLS). However,
the adoption of TLS may be difficult in presence of constrained IoT devices
that cannot support cumbersome handshakes and computationally expensive
key derivation algorithms [13,18]. Moreover, TLS offers hop-to-hop protection
(i.e., information is only encrypted when travelling through the network), thus
it cannot protect sensitive data against partially-trusted agents.

In this paper, we address these issues by proposing a solution for the end-to-
end protection of IoT communications through the cryptographic enforcement
of Access Control (AC) policies. In detail, our contributions are as follows:

– we design a Cryptographic Access Control (CAC) scheme enforcing AC poli-
cies in IoT scenarios to prevent external attackers, malicious insiders and
partially-trusted agents from breaching the confidentiality and the integrity
of sensitive data;

– we implement the proposed CAC scheme in a modular and portable tool,
which we make open-source and freely available;2

– we conduct a preliminary experimental evaluation to analyze the performance
of our tool and investigate the (possible) overhead with respect to both the
approach proposed in [9] and a traditional TLS-based solution.

As a final remark, we acknowledge that the use of cryptography alone to
enforce AC policies makes the evaluation of permissions depending on dynamic
1 https://outreach.eclipse.foundation/iot-edge-developer-2021.
2 https://github.com/stfbk/CryptoAC.

https://outreach.eclipse.foundation/iot-edge-developer-2021
https://github.com/stfbk/CryptoAC
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and contextual (e.g., time-based) conditions difficult, if possible at all. The lim-
ited expressiveness of CAC can however be mitigated through the combination
with more traditional (e.g., centralized) AC enforcement mechanisms, at the
cost of addressing possible collusions between users and the (agents managing
the) enforcement mechanisms. In other words, rather than supplanting existing
approaches to AC like [9], CAC can complement and synergize with them to
provide an even more complete and thorough protection of sensitive data.

The paper is structured as follows. In Sect. 2 we compare our approach with
related work, while in Sect. 3 we introduce the background. In Sect. 4 we give an
overview of our approach, while providing a more detailed description in Sect. 5.
We briefly describe the implementation of our CAC scheme and present the
performance evaluation in Sect. 6.3 We conclude the paper with final remarks
and future work in Sect. 7.

2 Related Work

During the analysis of the large number of papers devoted to secure data in IoT,
we have collected the key properties discussed and present them in Table 1. For
lack of space, we only provide a discussion of the most closely related works.

In [9], the authors propose to plug in into MQTT-based IoT scenarios a
logically centralized entity for enforcing Attribute-Based Access Control (ABAC)
policies. While a traditional AC mechanism allows for context awareness and
(horizontal) scalability, the proposal requires full trust on the central agent and
does not employ cryptography to guarantee integrity and confidentiality.

As constrained IoT devices can hardly support TLS, in [18] the authors pro-
pose an alternative security mechanism: each MQTT client is equipped with a
smart card containing the public key of the broker which is used to agree upon a
session key (unique for each client). The smart card relieves resource consump-
tion, while symmetric cryptography ensures confidentiality (but not end-to-end

Table 1. Comparison with Related Work

[9] [18] [8] [19] [15] [11] Our work

Channel encryption ✗ ✓ ✓ ✓ ✓ ✓ ✓

End-to-end encryption ✗ ✗ ✗ ✓ ✗ ✓ ✓

Integrity guarantee ✗ ✓ ✗ ✓ ✓ ✓ ✓

AC policy enforcement ✓ ✗ ✗ ✗ ✗ ✗ ✓

Scalable w.r.t. #subscribers ✓ ✗ ✗ ✗ ✓ ✗ ✓

Context Awareness ✓ ✗ ✗ ✗ ✗ ✗ ✓∗

Suit constrained IoT devices ✓ ✓ ✓ ✗ ✓ ✓ ✓
∗as mentioned in Sect. 1 and discussed at the end of Sect. 5.2, we can easily complement

our CAC scheme with traditional AC enforcement mechanisms for context awareness

3 An extended version of this work with more details on the CAC scheme is at https://
st.fbk.eu/complementary/assets/DBSEC2022/DBSEC2022 Extended.pdf.

https://st.fbk.eu/complementary/assets/DBSEC2022/DBSEC2022_Extended.pdf
https://st.fbk.eu/complementary/assets/DBSEC2022/DBSEC2022_Extended.pdf
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encryption). However, the broker has to encrypt messages for each client sepa-
rately, yielding a non-negligible overhead, and AC policies are not discussed.

In [8], the authors design a secure communication scheme for MQTT based on
the Augmented Password-Only Authentication and Key Exchange (AugPAKE)
protocol.4 Each client establishes a symmetric key with the broker, while topics
are associated with authorization tokens. As in [18], the per-client re-encryption
makes the solution hardly scalable, and the broker can read MQTT messages.
Finally, the authors do not discuss mechanisms to provide data integrity.

Even when the client-broker link is encrypted (e.g., via TLS), processing
data in clear at the broker constitutes a privacy and security risk. As such, in
[19] the authors propose the use of Trusted Execution Environments (TEEs)
at the broker: whenever a client publishes a message to a topic, the message is
encrypted with a symmetric key previously shared with the TEE and then sent
to the broker over TLS. While achieving end-to-end encryption and integrity,
this approach suffers from an overhead that can be up to 8× in some scenarios.

In [15], the authors propose a framework for protecting MQTT-based IoT sce-
narios with 3 increasing security levels: the first provides data integrity, authen-
ticity and accountability, the second adds confidentiality while the third offers
long-term security. While having different security levels allows adapting the
solution to the requirements of different IoT scenarios (e.g., latency, scalabil-
ity), the proposed solution neither preserves the confidentiality of data from the
MQTT broker nor considers the enforcement of AC policies.

In [11], the authors discuss the protection of data in an eHealth scenario
where several wearable devices (e.g., smartwatches, pacemakers) communicate
with a single predetermined entity (i.e. the doctor assigned to the patient)
through symmetric cryptography. Similarly to our approach, this solution pro-
vides end-to-end encryption and integrity, and it is suitable for constrained IoT
devices. However, it supports many-to-1 communication scenarios only.

In conclusion, the main difference between the work presented in this paper
and the above works is that the latter do not provide end-to-end encryption while
enforcing AC policies and supporting many-to-many communications. This is a
novel contribution of our approach as shown in Table 1.

3 Background

We describe some concepts of AC and Role-Based Access Control (RBAC). We
also overview the MQTT protocol and the Mosquitto MQTT broker.

3.1 Access Control

Samarati and De Capitani di Vimercati [17] defined AC as “the process of medi-
ating every request to resources maintained by a system and determining whether
the request should be granted or denied”. A resource usually consists of data such

4 https://datatracker.ietf.org/doc/draft-irtf-cfrg-augpake/.

https://datatracker.ietf.org/doc/draft-irtf-cfrg-augpake/
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as messages or files. In the following, we assume an AC policy P to be compiled
into a RBAC model rather than an a ABAC model (as in [9]), since support for
the enforcement of RBAC policies is readily available in several MQTT broker
implementations, thus simplifying the experimental validation of our approach.
In this work, the state of P can be described as a tuple (U,R,F,UR,PA),
where U is the set of users, R is the set of roles, F is the set of resources,
UR ⊆ U×R is the set of user-role assignments and PA ⊆ R×PR is the set of
role-permission assignments, being PR ⊆ F×OP a derivative set of F combined
with a fixed set of operations OP (both PR and OP are not included in the
state of the AC policy as they remain constant over time). A user u can use a
permission 〈f, op〉 if ∃r ∈ R : (u, r) ∈ UR ∧ (r, 〈f, op〉) ∈ PA. Role hierarchies
can always be compiled away by adding suitable pairs to UR.

3.2 MQTT

MQTT is a lightweight publish-subscribe messaging protocol,5 widely employed
in scenarios involving (computationally constrained) IoT devices. MQTT expects
a message to be published to a topic, which can be seen as a temporary communi-
cation channel, grouping messages logically related to each other (e.g., concern-
ing a specific location, event or action). An IoT device (in this context called
“MQTT client”) can subscribe to a topic, thus expressing the will to receive
messages published to that topic. Whenever a client wants to publish a mes-
sage to a topic, it sends the message (and the name of the topic) to a server
called “MQTT broker”, which can be seen as the central node of a star network
topology. When the broker receives the message and the name of the topic, it
broadcasts the message to all MQTT clients that previously subscribed to that
topic. Each topic can have one “retained” message, i.e., a message stored by the
broker and sent to each client that subscribes to the topic.

Among MQTT broker implementations, it is common to find extensions sup-
porting security mechanisms such as TLS and centralized enforcement of AC
policies based on, e.g., roles and access control lists. For instance, Mosquitto6 is
an open-source (EPL/EDL licensed) message broker maintained by Eclipse that
implements the MQTT protocol (versions 5.0, 3.1.1 and 3.1). Mosquitto provides
a variety of functionalities including the DYNamic SECurity (DYNSEC) plugin,
which enforces dynamic RBAC policies via a centralized enforcement point.

4 Overview

First, we discuss a smart building scenario (as in [9]) focusing on an IoT service
commonly considered in the literature, i.e., Smart Lock (Sect. 4.1). Then, we
give an overview of our CAC-based approach for the end-to-end protection of
sensitive data exchanged by IoT devices through the MQTT protocol (Sect. 4.2)

5 https://www.iso.org/standard/69466.html.
6 https://mosquitto.org/.

https://www.iso.org/standard/69466.html
https://mosquitto.org/
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Fig. 1. Instance of an UNLOCK Request to a Smart Lock

in the context of the Smart Lock service previously described. Below, we keep
the discussion at a high level to allow the reader to get a general understanding
of the approach before delving into (complex) details in Sect. 5.

4.1 Smart Lock Service

Organizations operating in large buildings (e.g., government structures, hospi-
tals, research centres) have to manage access to several locals, some of which
might contain confidential documents, delicate equipment or health hazards. In
this context, smart locks may be used to regulate and restrict access to rooms,
laboratories and closets more efficiently than traditional locks [1–3] by enforcing
RBAC policies that are administered mandatorily (this means that delegations
are not relevant in this scenario). A smart lock can be seen as a cyber-physical
device made of a smart cylinder and a microcontroller with limited computa-
tional, storage and communication capabilities.

A smart lock usually requires the use of a token to be unlocked, which is dis-
tributed to (authorized) users according to their qualifications. Generalizing, we
can say that users are assigned to one or more roles by the system administrator,
where the roles reflect the internal hierarchy of an organization (e.g., employee,
canteen staff, human resources). For instance, in a research centre, the AC pol-
icy may assign to members of the cleaning service the permission to access all
rooms in a building except for laboratories, while members of a research unit
may have the permission to access their laboratory only. After having chosen
a role to assume, a user can interact with the smart lock through a dedicated
MQTT topic. For instance, a smart lock “LOCK ID” located on the first floor
of a building may be subscribed to the topic “building/firstfloor/$LOCK ID”.
In this way, a user (who belongs to an authorized role) can publish to that topic
UNLOCK and LOCK requests by presenting the related token.

4.2 Securing the Smart Lock Service

CAC involves the use of cryptography to enforce AC policies while guaranteeing
the confidentiality and the integrity of sensitive data. In the Smart Lock service
described in Sect. 4.1, the AC policy corresponds to the assignments between
users and roles (e.g., cleaning service, research unit) and roles to permissions
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(e.g., which locals of a building the members of a role can un/lock), while the
data to protect correspond to the tokens of the smart locks. Cryptography is
then employed to implement role memberships, distribute the tokens according
to the AC policy and secure them when transmitted among IoT devices.

More specifically, each user (i.e., MQTT client) and each role, where roles
are defined by the administrator according to the internal hierarchy of the orga-
nization, is provided with a pair of asymmetric cryptographic keys. Instead,
each smart lock is provided with a dedicated symmetric key and assigned to an
MQTT topic (i.e., one key and topic for smart lock). The token of each smart
lock is encrypted with the related symmetric key, which is in turn (separately)
encrypted with the public keys of all roles that are authorized to interact with
that smart lock. Similarly, the private keys of all roles to which a user belongs
are (separately) encrypted with the user’s public key. All encrypted information
(i.e., tokens, symmetric keys and roles’ private keys) are made available through a
public repository. In addition, this information is digitally signed by the admin-
istrator of the policy to guarantee its integrity, and the digital signatures are
stored together with the information.

Whenever a user wants to send an UNLOCK request to a smart lock, she first
chooses one role which is authorized to open the lock. As shown in Fig. 1, she
uses her private key to decrypt the private key of the role, which is in turn used
to decrypt the symmetric key. Then, the user can decrypt the token of the smart
lock with the symmetric key. Finally, the user exploits the knowledge of the
token to interact with the smart lock (e.g., by engaging in a challenge-response
protocol), using the same symmetric key to secure MQTT messages published
to the topic of the smart lock. Neither the (partially trusted service provider
hosting the) MQTT broker (e.g., the Cloud or Edge) nor possible Manin-the-
Middle (MitM) attackers nor malicious insiders can access the (encrypted) token,
while digital signatures make tampering attempts obvious.

Unfortunately, the symmetric keys cannot be hard-coded into the smart locks
or the users’ MQTT clients, and must instead be dynamically distributed. Intu-
itively, a new key has to be created whenever a new smart lock is added to
the building. Besides, whenever a permission is revoked, the involved symmetric
key (as well as the token) must be renewed. Otherwise, revoked users could use
cached keys to still be able to decrypt MQTT messages or collude with the ser-
vice provider hosting the MQTT broker. The use of TEEs can potentially relieve
this issue (e.g., see the Cloud-based CAC schemes proposed in [14] and [10]).
However, constrained IoT devices are not likely to be equipped with a TEE. To
renew a symmetric key, the administrator has to distribute new public or pri-
vate information (e.g., the new symmetric key) to all users, along with version
numbers to differentiate between old and new information. The new information
and the version numbers are stored in the public repository as well. Asymmetric
cryptography such as Identity-Based Encryption (IBE), Public Key Infrastruc-
ture (PKI)-based and Attribute-Based Encryption (ABE) is usually employed
to regulate access to the new information (i.e., ensure only authorized users can
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decrypt the new symmetric key) and provide accountability (i.e., ensure that the
new symmetric key was indeed created by the administrator).

5 Cryptographic Access Control for MQTT

We present the design of a role-based CAC scheme for the end-to-end encryption
of sensitive data exchanged through MQTT in IoT-based scenarios. We choose
MQTT since it is one of the most employed publish-subscribe protocols in IoT
[16]. However, our scheme can adapt to other publish-subscribe protocols as
well (e.g., AMQP7). The design of our CAC scheme is inspired to the work in
[12] with several technical variations and two notable differences, namely the
context of use (i.e., Cloud in [12] vs. IoT in this work) and the protection of
data (i.e., at-rest in [12] vs. in-transit in this work). Below, we first discuss how
to map RBAC elements to MQTT concepts (Sect. 5.1). Then, we present our
CAC scheme (Sect. 5.2). Finally, we provide some considerations on the security
of the scheme (Sect. 5.3). The symbols used in this Section are in Table 2.

5.1 Role-Based Access Control to MQTT

We map MQTT clients and MQTT topics to the set of users U and resources
F of the RBAC policy, respectively. The set of roles R is instead defined by
the administrator, as described in Sect. 4.1, thus roles are not mapped to any
MQTT concept. The set of operations OP is composed by publish (Pub) and
subscribe (Sub). Each user u and role r is provided with a pair of asymmetric
keys (kenc,kdec) for en/decryption. Besides this key pair, the administrator A

is provided with an additional pair of asymmetric keys (kver
A ,ksig

A ) for verifica-
tion/creation of digital signatures. Each topic f is assigned to a symmetric key
ksym
f , used to encrypt each message m in f , resulting in EncSksym

f
(m).

To assign a user u to a role r, r’s decryption key kdec
r is encrypted with u’s

encryption public key kenc
u , resulting in EncPkenc

u

(
kdec
r

)
. To give permission to

a role r over a topic f (e.g., to allow the users assigned to the role r to lock and
unlock the smart lock corresponding to the topic f), f ’s symmetric key ksym

f is

encrypted with r’s encryption public key kenc
r , resulting in EncPkenc

r

(
ksym
f

)
.

To handle revocations, we associate version numbers to (the keys of) roles
and topics. The administrator only can create a new topic f by generating a
new symmetric key ksym

(f,vf )
and publishing a retained message to f containing

the version number vf , which is initially equal to 1. Whenever the key ksym
(f,vf )

needs to be updated (due to, e.g., user’s revocation), the administrator generates
a new symmetric key ksym

(f,vf+1) and replaces the retained message with a new
one, containing the (updated) version number vf +1, i.e., the old version number
plus 1. In this way, users are notified of the key renewal and can update their key
accordingly. To delete a topic, the administrator removes the retained message,
notifying all users to unsubscribe from the topic.
7 https://www.amqp.org/.

https://www.amqp.org/
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5.2 Full Construction

As illustrated in Sect. 3.2, the Mosquitto MQTT broker can enforce dynamic
RBAC policies through the DYNSEC plugin as a centralized entity. Therefore,
to provide an additional security layer besides cryptography, we synchronize

Table 2. Symbols

Symbol Description

e A generic entity (either a user, a role or a topic)

u A generic user

A The administrator user

r A generic role

f A generic topic

ve A generic version number for the entity e

op Either {Sub}, {Pub} or {Sub,Pub}
N Null (i.e., empty) value

m A generic plaintext

c A generic ciphertext

– Wildcard

GenPub Generation of key pair for en/decryption

GenSig Generation of key pair for signatures

GenSym Generation of symmetric key

kenc
(e,ve) Public encryption key of (e, ve)

kdec
(e,ve) Private decryption key of (e, ve)

kver
(e,ve) Public verification key of (e, ve)

ksig
(e,ve) Private signing key of (e, ve)

ksym
(f,vf ) Symmetric key of topic (f, vf )

EncP
kenc
(e,ve)

(−) Encryption with public key kenc
(e,ve) of –

DecP

kdec(e,ve)
(−) Decryption with private key kdec(e, ve) of –

EncS
k
sym
(f,vf )

(m) Symmetric encryption with key ksym
(f,vf ) of m

DecS
k
sym
(f,vf )

(c) Symmetric decryption with key ksym
(f,vf ) of c

〈Ut,Rt,Ft,URt,PAt〉 The state of the traditional AC policy

Ut Set of users; a member is a single value u

Rt Set of roles; a member is a single value r

Ft Set of topics; a member is a single value f

URt Set of user-role pairs; a member is a tuple (u, r)

PAt Set of role-permissions; a member is a tuple (r, 〈f, op〉)
〈Uc,Rc,Fc,URc,PAc〉 The state of the CAC policy

Uc Set of users; a member is a tuple (u,kenc
u ,kver

u )

Rc Set of roles; a member is a tuple (r,kenc
(r,vr), vr)

Fc Set of topics; a member is a tuple (f, vf )

URc Set of user-role pairs; a member is a tuple

(u, r,EncP
kenc
u

(
kdec
(r,vr)

)
, vr)

PAc Set of role-permission pairs; a member is a tuple

(r, f,EncPkenc
(r,vr)

(
ksym
(f,vf )

)
, vr, vA, op)
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the DYNSEC AC policy with the CAC policy. In this way, every modification
performed in one policy is mirrored in the other. For instance, adding a user in
the CAC policy implies adding a user in the DYNSEC policy as well, although
the two actions are implemented differently. We highlight that the same kind of
synchronization can also be implemented with other traditional AC enforcement
mechanisms to enable the evaluation of permissions depending on contextual
(e.g., time-based) conditions (e.g., such as the approach presented in [9]).

The state of the traditional AC policy enforced through the DYNSEC plu-
gin can be described as a tuple 〈Ut,Rt,Ft,URt,PAt〉 (where the subscript t
stands for “traditional”), while the state of the CAC policy can be described
as a tuple 〈Uc,Rc,Fc,URc,PAc〉 (where the subscript c stands for “crypto-
graphic”). Essentially, the CAC policy extends the traditional AC policy with
additional metadata (e.g., digital signatures, public keys, version numbers). We
report in Fig. 2 (Appendix A) the pseudocode of each action available in the
CAC scheme which acts on both the state of the traditional AC policy and that
of the cryptographic AC policy by updating the components of the tuples. An
action α in Fig. 2 belongs to one of two categories:

– administrative - includes all actions performed by the administrator for the
management of the AC and the CAC policies. First, the administrator ini-
tializes the system (initA()). Then, she can add and delete users (addU(u),
delU(u) ), roles (addR(r), delR(r)) and topics (addP (f), delP (f)). Finally,
she can assign and revoke users from roles (assignU(u, r), revokeU(u, r))
as well as assign and revoke permissions from roles (assignP (r, 〈f, op〉),
revokeP (r, 〈f, op〉));

– operative - includes all actions performed by the MQTT clients. After the
administrator created the corresponding user in the AC policy, an MQTT
client can generate her asymmetric keys (initu()). Afterwards, she can sub-
scribe to a topic f (subu(f, c)) and also publish messages (pubu(f,m)), accord-
ing to the policy defined by the administrator. Messages received from a topic
are en/decrypted as described in Sect. 5.1.

All metadata are digitally signed by the administrator with her signature
creation key ksig

A and verified with her verification key kver
A . The integrity of

MQTT messages is protected by using (symmetric) authenticated encryption,
which is (usually) implemented through Message Authentication Codes (MACs)
[6]; for the sake of simplicity, in Fig. 2 we omit these details and also other trivial
checks like the uniqueness of identifiers.

5.3 Security Considerations

Our CAC scheme allows administrators to enforce RBAC policies both tradi-
tionally and cryptographically. This capability restricts access to MQTT topics
to authorized users only. Besides, it provides end-to-end protection for guar-
anteeing confidentiality and integrity of MQTT messages from both external
attackers and the (partially-trusted agent managing the) MQTT broker. We
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assume that cryptographic primitives are perfect, i.e., the confidentiality and
integrity of encrypted MQTT messages cannot be violated except by (computa-
tionally infeasible) brute force attacks. Then, the traditional AC policy enforced
by DYNSEC allows only authorized users to publish and subscribe to topics.
We note that, without the corresponding symmetric key, an unauthorized user
could not produce a valid MQTT message anyway.

In our CAC scheme, accountability—the ability to map MQTT messages to
the corresponding publishers—is currently not ensured cryptographically, since
messages are (hashed and) signed with symmetric keys known by all authorized
users, as presented in Sect. 5.2. However, since users have to authenticate toward
the MQTT broker, the broker itself can provide accountability by mapping each
MQTT message to the MQTT client (thus, the user) that published it. Nonethe-
less, a scenario based on a Zero Trust model may call for a stronger guarantee of
accountability. In this case, users can easily be provided with an additional pair
of asymmetric keys and required to sign MQTT messages to guarantee account-
ability through cryptography, at the cost of incurring additional overhead. The
modification to the CAC scheme for implementing this requirement would be
straightforward and can be seen as an instance of the AC model introduced
in [4,5] that considers the features of the client used by a subject to access a
certain resource. Despite a subject (e.g., a general practitioner) can be entitled
to read a sensitive resource (e.g., the healthcare information of a patient), it
can be denied such a right because of the low level of protection offered by the
client (e.g., personal smartphone) or it can be granted when an adequate client
is used (e.g., desktop operated by the hospital). Finally, we note that protection
against replay attacks has to be provided by smart-lock supported mechanisms
(e.g., timestamps, challenge-response protocol) and it is out of the scope of this
paper.

As illustrated in Table 2, the CAC policy contains public (e.g., public keys)
or encrypted (e.g., encrypted private keys) information only. Indeed, as shown
in Sect. 5.2, the symmetric keys of topics are encrypted with the public keys of
authorized roles, while the private keys of roles are encrypted with the autho-
rized users’ public keys. Therefore, by construction, only authorized users can
decrypt roles’ private keys and, consequently, access symmetric keys to en/de-
crypt MQTT messages. In other words, even though the CAC policy is pub-
lic, only authorized users can obtain secret keys (i.e., the roles’ private keys
and the topics’ symmetric keys). Adding permissions to the CAC policy is a
straightforward operation, as it consists in encrypting private information (i.e.,
secret keys) with the public key of the newly authorized users (or roles). On
the other hand, the revocation of permissions requires careful management of
cryptographic material. We consider the worst-case scenario in which a user u
previously cached all secret keys she could access, both of roles and topics. Hence,
when revoking permissions from u (or from one of the roles that u is assigned to),
we need to renew the affected secret keys. In detail, when revoking a permission
〈f, op〉 from a role r (i.e., when invoking the function revokeP (r, 〈f, op〉)) in our
CAC scheme, we distinguish two cases:
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– if r already had permission op′ so that op′ ⊆ op, we generate a new key
ksym
(f,vf+1) ← GenSym for f , which we distribute to all other authorized roles.

In this way, users belonging to r do not have access to the new key;
– if r already had permission op′ so that op′ ∩ op 
= ∅, we simply update PAt

and PAc by removing the permissions in op from op′.

Similarly, when revoking a user u from a role r (i.e., when invoking the function
revokeU(u, r)), we generate new keys (kenc

(r,vr+1),k
dec
(r,vr+1)) ← GenPub for r and

distribute them to all other authorized users. In this way, u does not have access
to r’s new private key. Finally, we renew the symmetric keys of all topics that r
had permission over with a procedure similar to the revokeP function.

6 Implementation and Experimental Evaluation

The pseudocode presented in Appendix A has been paired with an MQTT
client and deployed as standalone, open-source software named “CryptoAC”.8

Altogether, the CAC scheme involves three entities: CryptoAC/MQTT client,
the MQTT broker and the public repository. Below, we provide details on the
implementation (or configuration) of each of these entities and their interactions
(Sects. 6.1, 6.2, 6.3). Finally, we present our preliminary performance evaluation
of CryptoAC (Sect. 6.4).

6.1 CryptoAC

CryptoAC has been developed in Kotlin multiplatform9 due to the intrinsic
portability and the possibility of a native deployment avoiding the computa-
tional overhead of a Java Virtual Machine (JVM). This is especially true since
Kotlin mainly targets Linux environments,10 which are the most deployed in
IoT.11

As the cryptographic provider, we choose Sodium,12 a modern cryptographic
library whose security has been thoroughly audited.13 To invoke Sodium’s APIs
easily, we use an open-source Kotlin multiplatform wrapper.14 Sodium uses the
Elliptic Curves Diffie-Hellman (ECDH) algorithm (X25519) to generate public-
private keys and the Edwards-curve Digital Signature Algorithm (EdDSA) for
digital signatures (Ed25519). Like many cyphers in TLS 1.3, Sodium supports
(AEAD), which is a more robust and secure variant of authenticated encryption
(recall the discussion in Sect. 5.2) allowing to bind the ciphertext to the context
where it is supposed to be used (to, e.g., avoid replay attacks). We observe

8 The code is freely available at https://github.com/stfbk/CryptoAC.
9 https://kotlinlang.org/docs/multiplatform.html.

10 https://www.jetbrains.com/lp/devecosystem-2019/.
11 https://outreach.eclipse.foundation/iot-edge-developer-2021.
12 https://libsodium.gitbook.io/doc/.
13 https://www.privateinternetaccess.com/blog/libsodium-audit-results/.
14 https://github.com/ionspin/kotlin-multiplatform-libsodium.

https://github.com/stfbk/CryptoAC
https://kotlinlang.org/docs/multiplatform.html
https://www.jetbrains.com/lp/devecosystem-2019/
https://outreach.eclipse.foundation/iot-edge-developer-2021
https://libsodium.gitbook.io/doc/
https://www.privateinternetaccess.com/blog/libsodium-audit-results/
https://github.com/ionspin/kotlin-multiplatform-libsodium
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that the usage of AEAD is in line with the requirements contained in the call
for Lightweight Cryptography to protect small electronics (thus including IoT
devices) issued by NIST.15

In this regard, Sodium proposes the use of the XSalsa20 symmetric
stream cypher (i.e., Salsa20 with 192-bit nonce extension) together with
the Poly1305 universal hash function as the best option, instead of using
256-bit AES in Galois/Counter Mode (GCM) with, e.g., the SHA-384 hash
function. The latter is typically used in TLS 1.3 deployments labelled as
TLS AES 256 GCM SHA384, and it will be used in our experiments as discussed
at the end of Sect. 6.4 below. One of the reasons for this choice is that, although
hardware acceleration for AES is often available in modern processors, its per-
formance on platforms that lack such hardware is considerably lower. Another
issue is that many software-only AES implementations are vulnerable to cache-
collision timing attacks. Instead, XSalsa20 is faster than (non-accelerated) AES
and it achieves homogeneous performance independently of the underlying hard-
ware, enhancing portability.

Finally, we use Eclipse Paho16 as MQTT client. It is worth noting that Cryp-
toAC caches symmetric keys of topics at the client-side to avoid having to obtain
them (as described in Sect. 5.1) every time a message is received or needs to
be published. In this way, we increase the efficiency of the implementation by
eliminating superfluous cryptographic computations. When symmetric keys are
renewed (e.g., after a revocation), the cache is invalidated. All secret keys are
securely stored in a Java Keystore.

CryptoAC can also run as an administrative tool by acting as a web server
allowing the administrator to manage the (traditional and cryptographic) AC
policy. All the inputs to the interface are validated with OWASP-approved
regular expressions17 to avoid web-based attacks (e.g., injection, Cross-Site
Scripting).

6.2 MQTT Broker

We choose Mosquitto18 as MQTT broker. As introduced in Sect. 5.2, we enable
the DYNSEC plugin for traditional AC enforcement on top of CAC. This addi-
tional security layer guarantees redundancy and allows restricting the permis-
sions of the users (i.e., to specify whether a user can subscribe, publish or per-
form both actions on a topic). Of course, a user could potentially collude with the
(service provider hosting the) MQTT broker to bypass the DYNSEC AC policy
enforcement and gain publish and/or subscribe privileges. However, we highlight
that this kind of collusions may happen regardless of whether the DYNSEC plu-
gin is enabled, and that the colluding user should have the symmetric key of

15 https://www.nist.gov/news-events/news/2018/04/nist-issues-first-call-lightweight-
cryptography-protect-small-electronics.

16 https://www.eclipse.org/paho/.
17 https://owasp.org/www-community/OWASP Validation Regex Repository.
18 https://mosquitto.org/.

https://www.nist.gov/news-events/news/2018/04/nist-issues-first-call-lightweight-cryptography-protect-small-electronics
https://www.nist.gov/news-events/news/2018/04/nist-issues-first-call-lightweight-cryptography-protect-small-electronics
https://www.eclipse.org/paho/
https://owasp.org/www-community/OWASP_Validation_Regex_Repository
https://mosquitto.org/
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the topic anyway to en/decrypt messages on that topic (i.e., the CAC policy
should already give publish or subscribe permissions to the colluding user on
that topic). Intuitively, the same may happen if secret or symmetric keys are
stolen or leaked from an IoT device. However, the physical and cyber security of
IoT devices themselves (e.g., concerning physical attackers or firmware vulnera-
bilities) is out of the scope of this paper. Finally, access to the MQTT broker is
protected by individual passwords.

6.3 Public Repository

We use Redis19 to store metadata related to the CAC scheme. Redis is primar-
ily an in-memory storage, a characteristic that allows for low response time to
queries. The metadata of each user (i.e., the public keys) are stored under a
unique Redis key, while a list collects all users’ Redis keys. We follow the same
approach for the metadata of roles, topics, user-role assignments and role-topic
permissions. Finally, access to the Redis datastore is protected by individual
passwords.

6.4 Performance Evaluation

The authors in [9] deploy a reference monitor as a proxy between the MQTT
clients and the MQTT broker. For this reason, they evaluate the scalability
when varying the number of publishers and subscribers, i.e., when increasing the
computational load on the reference monitor. Differently, CryptoAC is deployed
as (part of) an MQTT client; therefore, we distribute the computation at the
edge nodes and achieve scalability by design.20 Consequently, our preliminary
evaluation aims at assessing the computational overhead on a single IoT device,
where the cryptographic operations of CAC could strongly affect performance.
In detail, we consider the following experimental configurations:

– C1: in this configuration, our baseline, the communication channel between
the MQTT client and the MQTT broker is protected by neither TLS nor
CAC, and the broker enforces AC policies through the DYNSEC plugin;

– C2: in this configuration, the communication channel between the MQTT
client and the MQTT broker is protected with unilateral TLS 1.3 (i.e., MQTT
clients verifies the broker’s certificate but they are not required to provide a
certificate in turn) and the MQTT broker enforces AC policies through the
DYNSEC plugin. This configuration corresponds to the traditional solution
for the protection of data in-transit, even though the confidentiality of data is
not preserved from the partially-trusted service provider hosting the broker.
For fairness, we remark that in this configuration we do not measure the
overhead due to the TLS handshake and session key derivation algorithms

19 https://redis.io/.
20 Increasing the number of clients would only assess the scalability of the MQTT

broker since the encryption/decryption are performed client-side.

https://redis.io/
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between MQTT clients and the MQTT broker, as it has already been found
by other works that TLS as a whole is hardly usable by constrained IoT
devices [13,18]. Therefore, we just measure the transmission time after having
fully established a TLS session;

– C3: in this configuration, we use the CAC scheme presented in Sect. 5 to
provide end-to-end encryption while the MQTT broker enforces AC policies
through the DYNSEC plugin.

Experimental Settings. We are interested in measuring the overhead of cryp-
tographic techniques for data protection (i.e., TLS in C2 and CAC in C3)
with respect to the baseline C1. Therefore, we reuse the same infrastructure
and experimental settings across the three configurations to avoid possible
measurement discrepancies. For instance, using another MQTT client (e.g.,
Mosquitto sub21 and Mosquitto pub22) instead of Eclipse Paho could create
biases in the measurements, as its implementation may be more (or less) per-
formant than Paho. For this reason, we employ CryptoAC to implement all
three configurations. In detail (and only during the performance evaluation), we
remove all cryptographic computations from CryptoAC to implement C1. Simi-
larly, we disable the CAC scheme but enable TLS in CryptoAC to implement C2.
Finally, we use the original implementation of CryptoAC to implement C3. By
doing so, we ensure that the underlying infrastructure remains the same across
the different configurations and we are guaranteed to precisely measure the over-
head of TLS (C2) and our CAC scheme (C3) with respect to the baseline (C1).
Finally, we highlight that we compile CryptoAC to Java bytecode for ease of use,
and leave the native deployment (which may be more suitable for IoT devices)
for future work, as it is mainly an implementation effort.

We use Mosquitto 2.0.11 as the MQTT broker, running on an endpoint with
Intel Xeon E3-1240 V2 (4 cores with Hyper-Threading @ 3.40 GHz) as CPU
and 16 GB of RAM. A Raspberry Pi 3 Model B+ (Cortex-A53 ARMv8 64-bit
SoC @ 1.4 GHz with 1 GB of RAM) hosts two instances of CryptoAC (i.e.,
two MQTT clients): one that publishes to a topic a message with, as payload,
a timestamp T1 acquired just before (possibly encrypting and) publishing the
message, and a second one that subscribes to that topic and acquires another
timestamp T2 after receiving and (possibly decrypting) the message from the
broker. The network connections between the MQTT clients and the MQTT
broker are configured as described in the Smart Lock service in Fig. 1.

Results and Discussion. As in [9], we measure the transmission time as the
difference between T2 and T1, with the two MQTT clients (a publisher and
a subscriber) sharing the same host, avoiding therefore a possible time drift
(i.e., avoiding the use of two hosts that lose clock synchronization over time).
We repeat the measurements for C1, C2 and C3 with 1,000 individual MQTT
messages: the average of C1 is 11.1 ms, C2 is 11.8 ms and C3 is 13.5 ms;23

21 https://mosquitto.org/man/mosquitto sub-1.html.
22 https://mosquitto.org/man/mosquitto pub-1.html.
23 https://st.fbk.eu/complementary/assets/DBSEC2022/experimental results.xlsx.

https://mosquitto.org/man/mosquitto_sub-1.html
https://mosquitto.org/man/mosquitto_pub-1.html
https://st.fbk.eu/complementary/assets/DBSEC2022/experimental_results.xlsx
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As expected, the baseline C1 has the lowest average transmission time due to
avoiding cryptographic operations. Once removed the burden of the TLS hand-
shake and key derivation procedure, C2 incurs negligible overhead. We believe
that this is mainly due to the performance of the host running Mosquitto, and
the fact that the TLS session was using the TLS AES 256 GCM SHA384 cypher,
for which the processor of the host supports hardware acceleration.24 The use of
CAC in C3 yields an average overhead with respect to C1 and C2 of 2.4 ms and
1.7 ms, respectively. We believe that this is an acceptable overhead in a Smart
Lock service, especially when considering the greater security guarantees offered
by CAC. We also believe we can reduce this overhead by optimizing the code
of CryptoAC and fine-tuning the parameters of the cryptographic algorithms
employed. We leave the validation of these ideas as future work.

Finally, we investigate two variants of C3, i.e., one which disables DYNSEC
to measure its overhead on the broker (configuration C3B) and one that removes
the caching mechanism for symmetric keys to consider the worst-case scenario
in which CryptoAC obtains a symmetric key for a topic for the first time, as
described in Sect. 5.1 (configuration C3C). The results show that in C3B there
is a negligible improvement of 0.1 ms on average, an indicator that DYNSEC
does not have a significant impact on the performance of Mosquitto. The average
transmission time on C3C is 20.9 ms on average, 7.4 ms more than C3, which
denotes that a worst-case scenario is still acceptable for the Smart Lock service.

7 Conclusion and Future Directions

In this paper, we proposed a CAC scheme for IoT scenarios based on MQTT to
secure sensitive data against external attackers, malicious insiders and partially
trusted agents while providing end-to-end encryption and enforcing role-based
AC policies. We implemented the scheme in an open-source tool and conducted a
preliminary performance evaluation. In our experiments, the use of CAC intro-
duces an overhead of 1.7 ms with respect to a scenario employing TLS (but
without considering the handshake and key derivation algorithms), and 2.4 ms
when the channel is not secured. These results are in line with the requirements
of the smart lock use case and the additional security guarantees offered by CAC.

We plan to extend our work in several directions including the use of ABE to
allow more expressive and fine-grained ABAC policies and of TEEs to guarantee
confidentiality and integrity in IoT scenarios, as in [19], and provide different
levels of security, as in [15]. We also intend to adapt the technique for optimizing
deployments of cryptographic enforcement mechanisms in the cloud of [7] to IoT
scenarios.

Acknowledgements. This work has been partially supported by “Futuro &
Conoscenza Srl”, jointly created by the FBK and the Italian National Mint and Print-
ing House (IPZS), Italy.

24 https://ark.intel.com/content/www/us/en/ark/products/65730/intel-xeon-
processor-e31240-v2-8m-cache-3-40-ghz.html.
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A Pseudocode of the Cryptographic Access Control
Scheme

Fig. 2. Role-based Cryptographic Access Control for IoT Using MQTT
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Fig. 2. (continued)
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