
Chapter 4
Greedy Algorithm and Spanning Tree

Greed, in the end, fails even the greedy.

—Cathryn Louis

Self-reducibility is the backbone of each greedy algorithm in which self-reducibility
structure is a tree of special kind, i.e., its internal nodes lie on a path. In this chapter,
we study algorithms with such a self-reducibility structure and related combinatorial
theory supporting greedy algorithms.

4.1 Greedy Algorithms

A problem that the greedy algorithm works for computing optimal solutions often
has the self-reducibility and a simple exchange property. Let us use two examples
to explain this point.

Example 4.1.1 (Activity Selection) Consider n activities with starting times
s1, s2, . . . , sn and ending times f1, f2, . . . , fn, respectively. They may be
represented by intervals [s1, f1), [s2, f2), . . ., and [sn, fn). The problem is to
find a maximum subset of nonoverlapping activities, i.e., nonoverlapping intervals.

This problem has the following exchange property.

Lemma 4.1.2 (Exchange Property) Suppose f1 ≤ f2 ≤ · · · ≤ fn. In a maximum
solution without interval [s1, f1), we can always exchange [s1, f1) with the first
activity in the maximum solution preserving the maximality.

Proof Let [si, fi) be the first activity in the maximum solution mentioned in the
lemma. Since f1 ≤ fi , replacing [si, fi) by [s1, f1) will not cost any overlapping.

��
The following lemma states a self-reducibility.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_4

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_4&domain=pdf

 7680 61494 a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_4

76 4 Greedy Algorithm and Spanning Tree

Lemma 4.1.3 (Self-Reducibility) Suppose {I ∗
1 , I ∗

2 , . . . , I ∗
k } is an optimal solu-

tion. Then, {I ∗
2 , . . . , I ∗

k } is an optimal solution for the activity problem on input
{Ii | Ii ∩ I ∗

1 } where Ii = [si, fi).

Proof For contradiction, suppose that {I ∗
2 , . . . , I ∗

k } is not an optimal solution for the
activity problem on input {Ii | Ii∩I ∗

1 }. Then, {Ii | Ii∩I ∗
1 } contains k nonoverlapping

activities, which all are not overlapping with I ∗
1 . Putting I ∗

1 in these k activities,
we will obtain a feasible solution containing k + 1 activities, contradicting the
assumption that {I ∗

1 , I ∗
2 , . . . , I ∗

k } is an optimal solution. ��
Based on Lemmas 4.1.2 and 4.1.3, we can design a greedy algorithm in

Algorithm 11 and obtain the following result.

Algorithm 11 Greedy algorithm for activity selection
Input: A sequence of n activities [s1, f1), [s2, f2), . . ., [sn, fn).
Output: A maximum subset of nonoverlapping activities.
1: sort all activities into ordering f1 ≤ f2 ≤ . . . ≤ fn

2: S ← ∅
3: for i ← 1 to n do
4: if [si , fi) does not overlap any activity in S then
5: S ← S ∪ {[si , fi)}
6: end if
7: end for
8: return S

Theorem 4.1.4 Algorithm 11 produces an optimal solution for the activity selection
problem.

Proof Let us prove it by induction on n. For n = 1, it is trivial.
Consider n ≥ 2. Suppose {I ∗

1 , I ∗
2 , . . . , I ∗

k } is an optimal solution. By
Lemma 4.1.2, we may assume that I ∗

1 = [s1, f1). By Lemma 4.1.3, {I ∗
2 , . . . , I ∗

k } is
an optimal solution for the activity selection problem on input {Ii | Ii ∩ I ∗

1 = ∅}.
Note that after select [s1, f1), if we ignore all iterations i with [si, fi)∩[s1, f1) �=

∅, then the remaining part is the same as greedy algorithm running on input {Ii |
Ii ∩ I ∗

1 = ∅}. By induction hypothesis, it will produce an optimal solution for the
activity selection problem on input {Ii | Ii ∩ I ∗

1 = ∅}, which must contain k − 1
activities. Together with [s1, f1), they form a subset of k non-overlapping activities,
which should be optimal. ��

Next, we study another example.

Example 4.1.5 (Huffman Tree) Given n characters a1, a2, . . . , an with weights
f1, f2, . . . , fn, respectively, find a binary tree with n leaves labeled by
a1, a2, . . . , an, respectively, to minimize

d(a1) · f1 + d(a2) · f2 + · · · + d(an) · fn

4.1 Greedy Algorithms 77

where d(ai) is the depth of leaf ai , i.e., the number of edges on the path from the
root to ai .

First, we show a property of optimal solutions.

Lemma 4.1.6 In any optimal solution, every internal node has two children, i.e.,
every optimal binary tree is full.

Proof If an internal node has only one child, then this internal node can be removed
to reduce the objective function value. ��

We can also show an exchange property and a self-reducibility.

Lemma 4.1.7 (Exchange Property) If fi > fj and d(ai) > d(aj), then
exchanging ai with aj would make the objective function value decrease.

Proof Let d ′(ai) and d(aj) be the depths of ai and aj , respectively, after exchanging
ai with aj . Then d ′(ai) = d(aj) and d ′(aj) = d(ai). Therefore, the difference of
objective function values before and after exchange is

(d(ai) · fi + d(aj) · fj) − (d ′(ai) · fi + d ′(aj) · fj)

= (d(ai) · fi + d(aj) · fj) − (d(aj) · fi + d(ai) · fj)

= (d(ai) − d(aj))(fi − fj)

> 0

��

Lemma 4.1.8 (Self-Reducibility) In any optimal tree T ∗, if we assign the weight
of an internal node u with the total weight wu of its descendant leaves, then removal
of the subtree Tu at the internal node results in an optimal tree T ′

u for weights at
remainder’s leaves (Fig. 4.1).

Proof Let c(T) denote the objective function value of tree T , i.e.,

Fig. 4.1 A self-reducibility

78 4 Greedy Algorithm and Spanning Tree

c(T) =
∑

a over leaves of T

d(a) · f (a)

where d(a) is the depth of leaf a and f (a) is the weight of leaf a. Then we have

c(T ∗) = c(Tu) + c(T ′
u).

If T ′
u is not optimal for weights at leaves of T ′

u, then we have a binary tree T ′′
u for

those weights with c(T ′′
u) < c(T ′

u). Therefore, c(Tu ∪ T ′′
u) < c(T ∗), contradicting

optimality of T ∗. ��
By Lemmas 4.1.7 and 4.1.8, we can construct an optimal Huffman tree in the

following:

• Sort f1 ≤ f2 ≤ · · · ≤ fn.
• By exchange property, there must exist an optimal tree in which a1 and a2 are

sibling at bottom level.
• By self-reducibility, the problem can be reduced to construct optimal tree for

leaves weights {f1 + f2, f3, . . . , fn}.
• Go back to initial sorting step. This process continues until only two weights

exist.

In Fig. 4.2, an example is presented to explain this construction. This construction
can be implemented with min-priority queue (Algorithm 12)

The Huffman tree problem is raised from the study of Huffman codes as follows.

Problem 4.1.9 (Huffman Codes) Given n characters a1, a2, . . . , an with frequen-
cies f1, f2, . . . , fn, respectively, find prefix binary codes c1, c2, . . . , cn to minimize

|c1| · f1 + |c2| · f2 + · · · + |cn| · fn,

where |ci | is the length of code ci , i.e., the number of symbols in ci .

Actually, c1, c2, . . . , cn are called prefix binary codes if no one is a prefix of
another one. Therefore, they have a binary tree representation.

Fig. 4.2 An example for construction of Huffman tree

4.1 Greedy Algorithms 79

Algorithm 12 Greedy algorithm for Huffman tree
Input: A sequence of leaf weights {f1, f2, . . . , fn}.
Output: A binary tree.
1: Put f1, f2, . . . , fn into a min-priority queue Q

2: for i ← 1 to n − 1 do
3: allocate a new node z

4: lef t[z] ← x ← Extract-Min(Q)

5: right[z] ← y ← Extract-Min(Q)

6: f [z] ← f [x] + f [y]
7: Insert(Q, z)

8: end for
9: return Extract-Min(Q)

Fig. 4.3 Huffman codes

• Each edge is labeled with 0 or 1.
• Each code is represented by a path from the root to a leaf.
• Each leaf is labeled with a character.
• The length of a code is the length of corresponding path.

An example is as shown in Fig. 4.3. With this representation, the Huffman codes
problem can be transformed exactly to the Huffman tree problem.

In Chap. 1, we see that the Kruskal greedy algorithm can compute the minimum
spanning tree. Thus, we may have a question: Does the minimum spanning tree
problem have an exchange property and self-reducibility? The answer is yes, and
they are given in the following.

Lemma 4.1.10 (Exchange Property) For an edge e with the smallest weight in a
graph G and a minimum spanning tree T without e, there must exist an edge e′ in
T such that (T \ e′) ∪ e is still a minimum spanning tree.

Proof Suppose u and v are two endpoints of edge e. Then T contains a path p

connecting u and v. On path p, every edge e′ must have weight c(e′) = c(e).
Otherwise, (T \ e′) ∪ e will be a spanning tree with total weight smaller than c(T),
contradicting minimality of c(T).

Now, select any edge e′ in path p. Then (T \ e′) ∪ e is a minimum spanning tree.
��

80 4 Greedy Algorithm and Spanning Tree

Fig. 4.4 Lemma 4.1.11

Lemma 4.1.11 (Self-Reducibility) Suppose T is a minimum spanning tree of a
graph G and edge e in T has the smallest weight. Let G′ and T ′ be obtained from
G and T , respectively, by shrinking e into a node (Fig. 4.4). Then T ′ is a minimum
spanning tree of G′.

Proof Note that T is a minimum spanning tree of G if and only if T ′ is a minimum
spanning tree of G′. ��

With the above two lemmas, we are able to give an alternative proof for
correctness of the Kruskal algorithm. We leave it as an exercise for readers.

4.2 Matroid

There is a combinatorial structure which has a close relationship with greedy
algorithms. This is the matroid. To introduce matroid, let us first study independent
systems.

Consider a finite set S and a collection C of subsets of S. (S, C) is called an
independent system if

A ⊂ B,B ∈ C ⇒ A ∈ C,

i.e., it is hereditary. In the independent system (S, C), each subset in C is called an
independent set.

Consider a maximization problem as follows.

Problem 4.2.1 (Independent Set Maximization) Let c be a nonnegative cost
function on S. Denote c(A) = ∑

x∈A c(x) for any A ⊆ S. The problem is to
maximize c(A) subject to A ∈ C.

Also, consider the greedy algorithm in Algorithm 13.
For any F ⊆ E, a subset I of F is called a maximal independent subset if no

independent subset of E contains F as a proper subset. Define

u(F) = max{|I | | I is an independent subset of F },
v(F) = min{|I | | I is a maximal independent subset of F }.

4.2 Matroid 81

Algorithm 13 Greedy algorithm for independent set maximization
Input: An independent system (S, C) with a nonnegative cost function c on S.
Output: An independent set.
1: Sort all elements in S into ordering c(x1) ≥ c(x2) ≥ · · · ≥ c(xn)

2: A ← ∅
3: for i ← 1 to n do
4: if A ∪ {xi} ∈ C then
5: A ← A ∪ {xi}
6: end if
7: end for
8: return A

where |I | is the number of elements in I . Then we have the following theorem to
estimate the performance of Algorithm 13.

Theorem 4.2.2 Let AG be a solution obtained by Algorithm 13. Let A∗ be an
optimal solution for the independent set maximization. Then

1 ≤ c(A∗)
c(AG)

≤ max
F⊆S

u(F)

v(F)
.

Proof Note that S = {x1, x2, . . . , xn} and c(x1) ≥ c(x2) ≥ · · · ≥ c(xn). Denote
Si = {x1, . . . , xi}. Then

c(AG) = c(x1)|S1 ∩ AG| +
n∑

i=2

c(xi)(|Si ∩ AG| − |Ai−1 ∩ AG|)

=
n−1∑

i=1

|Si ∩ AG|(c(xi) − c(xi+1)) + |An ∩ AG|c(xn).

Similarly,

c(A∗) =
n−1∑

i=1

|Si ∩ A∗|(c(xi) − c(xi+1)) + |Sn ∩ A∗|c(xn).

Thus,

c(A∗)
c(AG)

≤ max
1≤i≤n

|A∗ ∩ Si |
|AG ∩ Si | .

We claim that Ai ∩ AG is a maximal independent subset of Si . In fact, for
contradiction, suppose that Si ∩AG is not a maximal independent subset of Si . Then
there exists an element xj ∈ Si \ AG such that (Si ∩ AG) ∪ {xj } is independent.

82 4 Greedy Algorithm and Spanning Tree

Thus, in the computation of Algorithm 2.1, I ∪ {ej } as a subset of (Si ∩ AG){xj }
should be independent. This implies that xj should be in AG, a contradiction.

Now, from our claim, we see that

|Si ∩ AG| ≥ v(Si).

Moreover, since Si ∩ A∗ is independent, we have

|Si ∩ A∗| ≤ u(Si).

Therefore,

c(A∗)
c(AG)

≤ max
F⊆S

u(F)

v(F)
.

��
The matroid is an independent system satisfying an additional property, called

augmentation property:

A,B ∈ C and |A| > |B|
⇒ ∃x ∈ A \ B : B ∪ {x} ∈ C.

This property is equivalent to some others.

Theorem 4.2.3 An independent system (S, C) is a matroid if and only if for any
F ⊆ S, u(F) = v(F).

Proof For forward direction, consider two maximal independent sets A and B. If
|A| > |B|, then there exists x ∈ A \ B such that B ∪ {x} ∈ C, contradicting
maximality of B.

For backward direction, consider two independent sets with |A| > |B|. Set F =
A ∪ B. Then every maximal independent set of F has size at least |A| (> |B|).
Hence, B cannot be a maximal independent set of F . Thus, there exists an element
x ∈ F \ B = A \ B such that B ∪ {x} ∈ C. ��

Theorem 4.2.4 An independent system (S, C) is a matroid if and only if for any
cost function c(·), Algorithm 13 gives a maximum solution.

Proof For necessity, we note that when (S, C) is matroid, we have u(F) = v(F)

for any F ⊆ S. Therefore, Algorithm 13 gives an optimal solution.
For sufficiency, we give a contradiction argument. To this end, suppose indepen-

dent system (S, C) is not a matroid. Then, there exists F ⊆ S such that F has two
maximal independent sets I and J with |I | < |J |. Define

4.2 Matroid 83

c(e) =
⎧
⎨

⎩

1 + ε if e ∈ I

1 if e ∈ J \ I

0 otherwise

where ε is a sufficient small positive number to satisfy c(I) < c(J). The greedy
algorithm will produce I , which is not optimal. ��

This theorem gives tight relationship between matroids and greedy algorithms,
which is built up on all nonnegative objective function. It may be worth mentioning
that the greedy algorithm reaches optimal for a certain class of objective functions
may not provide any additional information to the independent system. The
following is a counterexample.

Example 4.2.5 Consider a complete bipartite graph G = (V1, V2, E) with |V1| =
|V2|. Let I be the family of all matchings. Clearly, (E, I) is an independent system.
However, it is not a matroid. An interesting fact is that maximal matchings may have
different cardinalities for some subgraph of G although all maximal matchings for
G have the same cardinality.

Furthermore, consider the problem max{c(·) | I ∈ I}, called the maximum
assignment problem.

If c(·) is a nonnegative function such that for any u, u′ ∈ V1 and v, v′ ∈ V2,

c(u, v) ≥ max(c(u, v′), c(u′, v)) �⇒ c(u, v) + c(u′, v′) ≥ c(u, v′) + c(u′, v).

This means that replacing edges (u1, v
′) and (u′, v1) in M∗ by (u1, v1) and (u′, v′)

will not decrease the total cost of the matching. Similarly, we can put all (ui, vi) into
an optimal solution, that is, they form an optimal solution. This gives an exchange
property. Actually, we can design a greedy algorithm to solve the maximum
assignment problem. (We leave this as an exercise.)

Next, let us present some examples of the matroid.

Example 4.2.6 (Linear Vector Space) Let S be a finite set of vectors and I the
family of linearly independent subsets of S. Then (S, I) is a matroid.

Example 4.2.7 (Graph Matroid) Given a graph G = (V ,E) where V and E are
its vertex set and edge set, respectively. Let I be the family of edge sets of acyclic
subgraphs of G. Then (E, I) is a matroid.

Proof Clearly, (E, I) is an independent system. Consider a subset F of E. Suppose
that the subgraph (V , F) has m connected components. Note that in each connected
component, every maximal acyclic subgraph must be a spanning tree which has
the number of edges one less than the number of vertices. Thus, every maximal
acyclic subgraph of (V ,E) has exactly |V | − m edges. By Theorem 4.2.3, (E, I) is
a matroid. ��

84 4 Greedy Algorithm and Spanning Tree

In a matroid, all maximal independent subsets have the same cardinality. They
are also called bases. In a graph matroid obtained from a connected graph, every
base is a spanning tree.

Let B be the family of all bases of a matroid (S, C). Consider the following
problem:

Problem 4.2.8 (Base Cost Minimization) Consider a matroid (S, C) with base
family B and a nonnegative cost function on S. The problem is to minimize c(B)

subject to B ∈ B.

Algorithm 14 Greedy algorithm for base cost minimization
Input: A matroid (S, C) with a nonnegative cost function c on S.
Output: A base.
1: Sort all elements in S into ordering c(x1) ≤ c(x2) ≤ · · · ≤ c(xn)

2: A ← ∅
3: for i ← 1 to n do
4: if A ∪ {xi} ∈ C then
5: A ← A ∪ {xi}
6: end if
7: end for
8: return A

Theorem 4.2.9 An optimal solution of the base cost minimization can be computed
by Algorithm 14, a variation of Algorithm 13.

Proof Suppose that every base has the cardinality m. Let M be a positive number
such that for any e ∈ S, c(e) < M . Define c′(e) = M − c(e) for all e ∈ E. Then
c′(·) is a positive function on S, and the non-decreasing ordering with respect to c(·)
is the non-increasing ordering with respect to c′(·). Note that c′(B) = mM − c(B)

for any B ∈ B. Since Algorithm 13 produces a base with maximum value of c′,
Algorithm 14 produces a base with minimum value of function c. ��

The correctness of greedy algorithm for the minimum spanning tree can also be
obtained from this theorem.

Next, consider the following problem.

Problem 4.2.10 (Unit-Time Task Scheduling) Consider a set of n unit-time tasks,
S = {1, 2, . . . , n}. Each task i can be processed during a unit-time and has to be
completed before an integer deadline di and, if not completed, will receive a penalty
wi . The problem is to find a schedule for S on a machine within time n to minimize
total penalty.

A set of tasks is independent if there exists a schedule for these tasks without
penalty. Then we have the following.

Lemma 4.2.11 A set A of tasks is independent if and only if for any t = 1, 2, . . . , n,
Nt(A) ≤ t where Nt(A) = |{i ∈ A | di ≤ t}|.

4.2 Matroid 85

Proof It is trivial for “only if” part. For the “if” part, note that if the condition
holds, then tasks in A can be scheduled in order of nondecreasing deadlines without
penalty. ��

Example 4.2.12 Let S be a set of unit-time tasks with deadlines and penalties and C
the collection of all independent subsets of S. Then, (S, C) is a matroid. Therefore,
an optimal solution for the unit-time task scheduling problem can be computed by
a greedy algorithm (i.e., Algorithm 13).

Proof (Hereditary) Trivial.
(Augmentation) Consider two independent sets A and B with |A| < |B|. Let k

be the largest k such that Nt(A) ≥ Nt(B). (A few examples are presented in Fig. 4.5
to explain the definition of k.) Then k < n and Nt(A) < Nt(B) for k + 1 ≤ t ≤ n.
Choose x ∈ {i ∈ B \ A | di = k + 1}. Then

Nt(A ∪ {x}) = Nt(A) ≤ t for 1 ≤ t ≤ k

and

Nt(A ∪ {x}) ≤ Nt(A) + 1 ≤ Nt(B) ≤ t for k + 1 ≤ t ≤ n.

��

Example 4.2.13 Consider an independent system (S, C). For any fixed A ⊆ S,
define

CA = {B ⊆ S | A �⊆ B}.

Fig. 4.5 In proof of Example 4.2.12

86 4 Greedy Algorithm and Spanning Tree

Then, (S, CA) is a matroid.

Proof Consider any F ⊆ S. If A �⊆ F , then F has unique maximal independent
set, which is F . Hence, u(F) = v(F).

If A ⊆ F , then every maximal independent subset of F is in the form F \ {x} for
some x ∈ A. Hence, u(F) = v(F) = |F | − 1. ��

4.3 Minimum Spanning Tree

Let us revisit the minimum spanning tree problem.
Consider a graph G = (V ,E) with nonnegative edge weight c : E → R+, and

a spanning tree T . Let (u, v) be an edge in T . Removal (u, v) would break T into
two connected components. Let U and W be vertex sets of these two components,
respectively. The edges between U and V constitute a cut, denoted by (U,W). The
cut (U,W) is said to be induced by deleting (u, v). For example, in Fig. 4.6, deleting
(3, 4) induces a cut ({1, 2, 3}, {4, 5, 6, 7, 8}).
Theorem 4.3.1 (Cut Optimality) A spanning tree T ∗ is a minimum spanning tree
if and only if it satisfies the cut optimality condition as follows:

Cut Optimality Condition For every edge (u, v) in T ∗, c(u, v) ≤ c(x, y) for
every edge (x, y) contained in the cut induced by deleting (u, v).

Proof Suppose, for contradiction, that c(u, v) > c(x, y) for some edge (x, y) in
the cut induced by deleting (u, v) from T ∗. Then T ′ = (T ∗ \ (u, v)) ∪ (x, y) is a
spanning tree with cost less than c(T ∗), contradicting the minimality of T ∗.

Conversely, suppose that T ∗ satisfies the cut optimality condition. Let T ′ be a
minimum spanning tree such that among all minimum spanning trees, T ′ is the one
with the most edges in common with T ∗. Suppose, for contradiction, that T ′ �= T ∗.
Consider an edge (u, v) in T ∗ \ T ′. Let p be the path from u to v in T ′. Then
p has at least one edge (x, y) in the cut induced by deleting (u, v) from T ∗. Thus,
c(u, v) ≤ c(x, y) by the cut optimality condition. Hence, T ′′ = (T ′ \(x, y))∪(u, v)

is also a minimum spanning tree, contradicting the assumption on T ′. ��
The following algorithm is designed based on cut optimality condition.

Fig. 4.6 A cut induced by
deleting an edge from a
spanning tree

4.3 Minimum Spanning Tree 87

Prim Algorithm
input: A graph G = (V ,E) with nonnegative edge weight c :→ R+.
output: A spanning tree T .

U ← {s} for some s ∈ V ;
T ← ∅;
while U �= V do

find the minimum weight edge (u, v) from cut (U, V \ U)

and T ← T ∪ (u, v);
return T .

An example for using Prim algorithm is shown in Fig. 4.7. The construction starts
at node 1 and guarantees that the cut optimality conditions are satisfied at the end.

The min-priority queue can be used for implementing Prim algorithm to obtain
the following result.

Theorem 4.3.2 Prim algorithm can construct a minimum spanning tree in
O(m logm) time where m is the number of edges in input graph.

Proof Prim algorithm can be implemented by using min-priority queue in the
following way:

• Keep to store all edges in a cut (U,W) in the min-priority queue S.
• At each iteration, choose the minimum weight edge (u, v) in the cut (U,W) by

using operation Extract-Min(S) where u ∈ U and v ∈ W .
• For every edge (x, v) with x ∈ U , delete (c, v) from S. This needs a new

operation on min-priority queue, which runs O(m) time.
• Add v to U .
• For every edge (v, y) with y ∈ V \ U , insert (v, y) into priority queue. This also

requires O(logm) time.

In this implementation, Prim algorithm runs in O(m logm) time. ��
Prim algorithm can be considered as a local-information greedy algorithm.

Actually, its correctness can also be established by an exchange property and a self-
reducibility as follows.

Lemma 4.3.3 (Exchange Property) Consider a cut (U,W) in a graph G =
(V ,E). Suppose edge e has the smallest weight in cut (U,W). If a minimum
spanning tree T does not contain e, then there must exist an edge e′ in T such
that (T \ e′) ∪ e is still a minimum spanning tree.

Lemma 4.3.4 (Self-Reducibility) Suppose T is a minimum spanning tree of a
graph G and edge e in T has the smallest weight in the cut induced by deleting
e from T . Let G′ and T ′ be obtained from G and T , respectively, by shrinking e into
a node. Then T ′ is a minimum spanning tree of G′.

We leave proofs of them as exercises.

88 4 Greedy Algorithm and Spanning Tree

Fig. 4.7 An example with Prim algorithm

4.4 Local Ratio Method 89

4.4 Local Ratio Method

The local ratio method is also a type of algorithm with self-reducibility. Its basic
idea is as follows.

Lemma 4.4.1 Let c(x) = c1(x) + c2(x). Suppose x∗ is an optimal solution
of minx∈� c1(x) and minx∈Omega c2(x). Then x∗ is an optimal solution of
minx∈� c(x). The similar statement holds for the maximization problem.

Proof For any x ∈ �, c1(x) ≥ c1(x
∗), c2(x) ≥ c2(x

∗), and hence c(x) ≥ c(x∗).
��

Usually, the objective function c(x) is decomposed into c1(x) and c2(x) such
that optimal solutions of minx∈� c1(x) constitute a big pool so that the problem is
reduced to find an optimal solution of minx∈� c2(x) in the pool. In this section, we
present two examples to explain this idea.

First, we study the following problem.

Problem 4.4.2 (Weighted Activity Selection) Given n activities each with a time
period [si, fi) and a positive weight wi , find a nonoverlapping subset of activities to
maximize the total weight.

Suppose, without loss of generality, f1 ≤ f2 ≤ · · · ≤ fn. First, we consider a
special case that for every activity [si, fi), if si < f1, i.e., activity [si, fi) overlaps
with activity [s1, f1), then wi = w1 > 0, and if si ≥ f1, then wi = 0. In this case,
every feasible solution containing an activity overlapping with [s1, f1) is an optimal
solution. Motivated from this special case, we may decompose the problem into two
subproblems. The first one is in the special case, and the second one has weight as
follows

w′
i =

{
wi − w1 if si < f1,

wi otherwise.

In the second subproblem obtained from the decomposition, some activity may
have non-positive weight. Such an activity can be removed from our consideration
because putting it in any feasible solution would not increase the total weight. This
operation would simplify the problem by removing at least one activity. Repeat the
decomposition and simplification until no activity is left.

To explain how to obtain an optimal solution, let A′ be the set of remaining
activities after the first decomposition and simplification and Opt ′ is an optimal
solution for the weighted activity selection problem on A′. Since simplification
does not effect the objective function value of optimal solution, Opt ′ is an optimal
solution of the second subproblem in the decomposition. IfOpt ′ contains an activity
overlapping with activity [s1, f1), then Opt ′ is also an optimal solution of the
first subproblem, and hence by Lemma 4.4.1, Opt ′ is an optimal solution for the
weighted activity selection problem on original input A. If Opt ′ does not contain an
activity overlapping with [s1, f1), then Opt ′ ∪ {[s1, f1)} is an optimal solution for

90 4 Greedy Algorithm and Spanning Tree

the first subproblem and the second subproblem and hence also an optimal solution
for the original problem.

Based on the above analysis, we may construct the following algorithm.

Local Ratio Algorithm for Weighted Activity Selection
input A = {[s1, f1), [s2, f2), . . . , [sn, fn)} with f1 ≤ f2 ≤ · · · ≤ fn.
B ← ∅.
output Opt .

while A �= ∅ do begin
[sj , fj) ← argmin[si ,fi)∈Afi ;
B ← B ∪ {[sj , fj)};
for every [si, fi) ∈ A do

if si < fj then wi ← wi − wj ;
end-for
for every [si, fi) ∈ A do

if wi ≤ 0 then A ← A − {[si, fi)};
end-for

end-while;
[sk, fk) ← argmax[si ,fi)∈Bfi ;
Opt ← {[sk, fk)};
B ← B − {[sk, fk)};
while B �= ∅ do

[sh, fh) ← argmax[si ,fi)∈Bfi ;
if sk ≥ fh,

then Opt ← Opt ∪ {[sh, fh)}
and [sk, fk) ← [sh, fh);

end-if
B ← B − {[sh, fh)};

end-while;
return Opt .

Now, we run this algorithm on an example as shown in Fig. 4.8.
Next, we study the second example.
Consider a directed graph G = (V ,E). A subgraph T is called an arborescence

rooted at a vertex r if T satisfies the following two conditions:

(a) If it ignores direction on every arc, then T is a tree.
(b) For any vertex v ∈ V , T contains a directed path from r to v.

Let T be an arborescence with root r . Then for any vertex v ∈ V − {r}, there is
exactly one arc coming to v. This property is quite important.

Lemma 4.4.3 Suppose T is obtained by choosing one incoming arc at each vertex
v ∈ V − {r}. Then T is an arborescence if and only if T does not contain a directed
cycle.

4.4 Local Ratio Method 91

Fig. 4.8 An example for weighted activity selection

Proof Note that the number of arcs in T is equal to |V | − 1. Thus, condition (b)
implies the connectivity of T when ignore direction, which implies condition (a).
Therefore, if T is not an arborescence, then condition (b) does not hold, i.e., there
exists v ∈ V −{r} such that there does not exist a directed path from r to v. Now, T
contains an arc (v1, v) coming to v with v1 �= r , an arc (v2, v1) coming to v1 with
v2 �= v, and so on. Since the directed graph G is finite. The sequence (v, v1, v2, . . .)

must contain a cycle.
Conversely, if T contains a cycle, then T is not an arborescence by the definition.

This completes the proof of the lemma. ��
Now, we consider the minimum arborescence problem.

Problem 4.4.4 (Minimum Arborescence) Given a directed graph G = (V ,E)

with positive arc weight w : E → R+ and a vertex r ∈ V , compute an arborescence
with root r to minimize total arc weight.

The following special case gives a basic idea for a local ratio method.

Lemma 4.4.5 Suppose for each vertex v ∈ V − {r} all arcs coming to v have
the same weight. Then every arborescence with root r is optimal for the MIN

ARBORESCENCE problem.

Proof It follows immediately from the fact that each arborescence contains exactly
one arc coming to v for each vertex v ∈ V − {r}. ��

92 4 Greedy Algorithm and Spanning Tree

Since arcs coming to r are useless in construction of an arborescence with root r ,
we remove them at the beginning. For each v ∈ V −{r}, let wv denote the minimum
weight of an arc coming to v. By Lemma 4.4.5, we may decompose the minimum
arborescence problem into two subproblems. In the first one, every arc coming to
a vertex v has weight wv . In the second one, every arc e coming to a vertex v has
weightw(e)−wv , so that every vertex v ∈ V −{r} has a coming arc with weight 0. If
all 0-weight arcs contain an arborescence T , then T must be an optimal solution for
the second subproblem and hence also an optimal solution for the original problem.
If not, then by Lemma 4.4.3, there exists a directed cycle with weight 0. Contract
this cycle into one vertex. Repeat the decomposition and the contraction until an
arborescence with weight 0 is found. Then in backward direction, we may find a
minimum arborescence for the original weight. An example is shown in Fig. 4.9.

Fig. 4.9 An example for computing a minimum arborescence

4.4 Local Ratio Method 93

According to above analysis, we may construct the following algorithm.

Local Ratio Algorithm for Minimum Arborescence
input a directed graph G = (V ,E) with arc weight w : E → R+,

and a root r ∈ V .
output An arborescence T with root r .

C ← ∅;
repeat

for every v ∈ V \ {r} do
let ev be the one with minimum weight among arcs coming
to v and T ← T ∪ {ev};
for every edge e = (u, v) coming to v do

w(e) ← w(e) − wv;
end-for

end-for
if T contains a cycle C

then C ← C ∪ {C} and
contract cycle C into one vertex in G and T ;

end-if
until T does not contain a cycle;
for every C ∈ C do

add C into T and properly delete an arc of C.
end-for
return T .

Exercises

1. Suppose that for every cut of the graph, there is a unique light edge crossing the
cut. Show that the graph has a unique minimum spanning tree. Does the inverse
hold? If not, please give a counterexample.

2. Consider a finite set S. Let Ik be the collection of all subsets of S with size at
most k. Show that (S, Ik) is a matroid.

3. Solve the following instance of the unit-time task scheduling problem.

ai 1 2 3 4 5 6 7
di 4 2 4 3 1 4 6
wi 70 60 50 40 30 20 10

Please solve the problem again when each penalty wi is replaced by 80 − wi .
4. Suppose that the characters in an alphabet is ordered so that their frequencies

are monotonically decreasing. Prove that there exists an optimal prefix code
whose codeword length are monotonically increasing.

5. Show that if (S, I) is a matroid, then (S, I ′) is a matroid, where

94 4 Greedy Algorithm and Spanning Tree

I ′ = {A′ | S − A′ contains some maximal A ∈ I}.

That is, the maximal independent sets of (S, I ′) are just complements of the
maximal independent sets of (S, I).

6. Suppose that a set of activities are required to schedule in a large number of
lecture halls. We wish to schedule all the activities using as few lecture halls as
possible. Give an efficient greedy algorithm to determine which activity should
use which lecture hall.

7. Consider a set of n files, f1, f2, . . . , fn, of distinct sizes m1,m2, . . . , mn,
respectively. They are required to be recorded sequentially on a single tape, in
some order, and retrieve each file exactly once, in the reverse order. The retrieval
of a file involves rewinding the tape to the beginning and then scanning the files
sequentially until the desired file is reached. The cost of retrieving a file is the
sum of the sizes of the files scanned plus the size of the file retrieved. (Ignore
the cost of rewinding the tape.) The total cost of retrieving all the files is the
sum of the individual costs.

(a) Suppose that the files are stored in some order fi1 , fi2 , . . . , fin . Derive a
formula for the total cost of retrieving the files, as a function of n and the
mik ’s.

(a) Describe a greedy strategy to order the files on the tape so that the total cost
is minimized, and prove that this strategy is indeed optimal.

8. In merge sort, the merge procedure is able to merge two sorted lists of lengths
n1 and n2, respectively, into one by using n1 +n2 comparisons. Given m sorted
lists, we can select two of them and merge these two lists into one. We can then
select two lists from the m − 1 sorted lists and merge them into one. Repeating
this step, we shall eventually end up with one merged list. Describe a general
algorithm for determining an order in which m sorted lists A1, A2, . . . , Am are
to be merged so that the total number of comparisons is minimum. Prove that
your algorithm is correct.

9. Let G = (V ,E) be a connected undirected graph. The distance between two
vertices x and y, denoted by d(x, y), is the number of edges on the shortest
path between x and y. The diameter of G is the maximum of d(x, y) over all
pairs (x, y) in V × V . In the remainder of this problem, assume that G has at
least two vertices.

Consider the following algorithm on G: Initially, choose arbitrarily x0 ∈
V . Repeatedly, choose xi+1 such that d(xi+1, xi) = maxv∈V d(v, xi) until
d(xi+1, xi) = d(xi, xi−1).

Can this algorithm always terminate? When it terminates, is d(xi+1, xi)

guaranteed to equal the diameter of G? (Prove or disprove your answer.)
10. Consider a graph G = (V ,E) with positive edge weight c : E → R+. Show

that for any spanning tree T and the minimum spanning tree T ∗, there exists
a one-to-one onto mapping ρ : E(T) → E(T ∗) such that c(ρ(e)) ≤ c(e) for
every e ∈ E(T) where E(T) denotes the edge set of T .

4.4 Local Ratio Method 95

11. Consider a point set P in the Euclidean plane. Let R be a fixed positive number.
A steinerized spanning tree on P is a tree obtained from a spanning tree on P

by putting some Steiner points on its edges to break them into pieces each of
length at most R. Show that the steinerized spanning with minimum number of
Steiner points is obtained from the minimum spanning tree.

12. Consider a graph G = (V ,E) with edge weight w : E → R+. Show that the
spanning tree T which minimizes

∑
e∈E(T) ‖e‖α for any fixed 1 < α is the

minimum spanning tree, i.e., the one which minimizes
∑

e∈E(T) ‖e‖.
13. Let B be the family of all maximal independent subsets of an independent

system (E, I). Then (E, I) is a matroid if and only if for any nonnegative
function c(·), Algorithm 14 produces an optimal solution for the problem
min{c(I) | I ∈ B}.

14. Consider a complete bipartite graph G = (U, V,E) with |U | = |V |. Let c(·)
be a nonnegative function on E such that for any u, u′ ∈ V1 and v, v′ ∈ V2,

c(u, v) ≥ max(c(u, v′), c(u′, v)) �⇒ c(u, v) + c(u′, v′) ≥ c(u, v′) + c(u′, v).

(a) Design a greedy algorithm for problem max{c(·) | I ∈ I}.
(b) Design a greedy algorithm for problem min{c(·) | I ∈ I}.

15. Given n intervals [si, fi) each with weight wi ≥ 0, design an algorithm to
compute the maximum weight subset of disjoint intervals.

16. Give a counterexample to show that an independent system with all maximal
independent sets of the same size may not be a matroid.

17. Consider the following scheduling problem. There are n jobs, i = 1, 2, . . . , n,
and there is one super-computer and n identical PCs. Each job needs to be pre-
processed first on the supercomputer and then finished by one of the PCs. The
time required by job i on the supercomputer is pi for i = 1, 2, . . . , n; the time
required on a PC for job i is fi for i = 1, 2, . . . , n. Finishing several jobs
can be done in parallel since we have as many PCs as there are jobs. But the
supercomputer processes only one job at a time. The input to the problem is
the vectors p = [p1, p2, . . . , pn] and f = [f1, f2, . . . , fn]. The objective of
the problem is to minimize the completion time of last job (i.e., minimize the
maximum completion time of any job). Describe a greedy algorithm that solves
the problem in O(n log n) time. Prove that your algorithm is correct.

18. Consider an independent system (S, C). For a fixed A ∈ C, define CA = {B ⊆
S | A \ B �= ∅}. Prove that (S, CA) is a matroid.

19. Prove that every independent system is an intersection of several matroids, that
is, for every independent system (S, C), there exist matroids (S, C1), (S, C2),
. . . (S, Ck) such that C = ∩k

i=1Ci .
20. Suppose that an independent system (S, C) is the intersection of k matroids.

Prove that for any subset F ⊆ S, u(F)/v(F) ≤ k where u(F) is the cardinality
of maximum independent subset of F and v(F) is the minimum cardinality of
maximal independent subset of F .

96 4 Greedy Algorithm and Spanning Tree

21. Design a local ratio algorithm to compute a minimum spanning tree.
22. Consider a graph G = (V ,E) with edge weight w : E → Z and a minimum

spanning tree T of G. Suppose the weight of an edge e ∈ T is increased by an
amount δ > 0. Design an efficient algorithm to find a minimum spanning tree
of G after this change.

23. Consider a graph G = (V ,E) with distinct edge weights. Suppose that a
minimum spanning tree T is already computed by Prim algorithm. A new
edge (u, v) (not in E) is being added to the graph. Please write an efficient
algorithm to update the minimum spanning tree. Note that no credit is given for
just computing a minimum spanning tree for graph G′ = (V ,E ∪ {(u, v)}).

24. Consider a matroid M = (X, I). Each minimal dependent set C is called a
circuit. A cut D is a minimal set such that D intersects every base. Suppose
that a circuit C intersects a cut D. Show that |C ∩ D| ≥ 2.

Historical Notes

The greedy algorithm is an important class of computer algorithms with self-
reducibility, for solving combinatorial optimization problems. It uses the greedy
strategy in construction of an optimal solution. There are several variations of
greedy algorithms, e.g., Prim algorithm for minimum spanning tree in which greedy
principal applies not globally but a subset of edges.

Could Prim algorithm be considered as a local search method? The answer is
no. Actually, in a local search method, a solution is improved by finding a better
one within a local area. Therefore, the greedy strategy applies to search for the
best moving from a solution to another better solution. This can also be called as
incremental method, which will be introduced in the next chapter.

The minimum spanning tree has been studied since 1926 [30]. Its history can be
found a remarkable article [185]. The best known theoretical algorithm is due to
Bernard Chazelle [49, 50]. The algorithm runs almost in O(m) time. However, it is
too complicated to implement and hence may not be practical.

Matroid was first introduced by Hassler Whitney in 1935 [406] and inde-
pendently by Takeo Nakasawa [329]. It is an important combinatorial structure
to describe the independence with axioms. Especially, those axioms provide an
abstraction for common properties in linear algebra and graphs. Therefore, many
concepts and terminologies are analogous in these two areas. The relationship
between matroid and greedy algorithm is only a small portion in the theory of
matroid [334, 384, 403]. Actually, the study of a matroid contains a much larger
field, with connections to many topics [404], such as combinatorial geometry
[37, 74, 405], unimodular matrices [171], projective geometry [308], electrical
networks [316, 348], and software systems [254].

	4 Greedy Algorithm and Spanning Tree
	4.1 Greedy Algorithms
	4.2 Matroid
	4.3 Minimum Spanning Tree
	4.4 Local Ratio Method
	Exercises
	Historical Notes

