
Chapter 2
Divide-and-Conquer

Defeat Them in Detail: The Divide and Conquer Strategy. Look
at the parts and determine how to control the individual parts,
create dissension and leverage it.

—Robert Greene

The divide-and-conquer is an important technique for design of algorithms. In this
chapter, we will employ several examples to introduce this technique, including
the rectilinear minimum spanning tree, the Fibonacci search method, and the
sorting problem. Sorting is not a combinatorial optimization problem. However,
it appears in algorithms very often as a procedure, especially in algorithms for
solving combinatorial optimization problems. Therefore, we would like to make
more discussion in this chapter.

2.1 Algorithms with Self-Reducibility

There exist a large number of algorithms in which the problem is reduced to several
subproblems, each of which is the same problem on a smaller-size input. Such a
problem is said to have the self-reducibility, and the algorithm is said to be with
self-reducibility.

For example, consider sorting problem again. Suppose input contains n numbers.
We may divide these n numbers into two subproblems. One subproblem is the
sorting problem on �n/2� numbers, and the other subproblem is the sorting problem
on �n/2� numbers. After completely sorting each subproblem, combine two sorted
sequences into one. This idea will result in a sorting algorithm, called the merge
sort. The pseudocode of this algorithm is shown in Algorithm 1.

The main body calls a procedure. This procedure contains two self-calls, which
means that the merge sort is a recursive algorithm, that is, the divide will continue
until each subproblem has input of single number. Then this procedure employs
another procedure (Merge) to combine solutions of subproblems with smaller

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_2&domain=pdf

 7680 61494 a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_2

14 2 Divide-and-Conquer

Algorithm 1 Merge sort
Input: n numbers a1, a2, . . . , an in array A[1 . . . n].
Output: n numbers ai1 ≤ ai2 ≤ · · · ≤ ain in array A.
1: Sort(A, 1, n)

2: return A[1 . . . n]
Procedure Sort(A, p, r).
% Sort r − p + 1 numbers ap, ap+1, . . . , ar in array A[p . . . r]. %
1: if p < r then
2: q ← �(p + r)/2�
3: Sort(A, p, q)

4: Sort(A, q + 1, r)
5: Merge(A, p, q, r)

6: end if
7: return A[p . . . r]
Procedure Merge(A, p, q, r).
% Merge sorted two arrays A[p . . . q] and A[p + 1 . . . r] into one. %
1: for i ← 1 to q − p + 1 do
2: B[i] ← A[p + i − 1]
3: end for
4: i ← 1
5: j ← p + 1
6: B[q − p + 2] ← +∞
7: A[r + 1] ← +∞
8: for k ← p to r do
9: if B[i] ≤ A[j] then
10: A[k] ← B[i]
11: i ← i + 1
12: else
13: A[k] ← A[j]
14: j ← j + 1
15: end if
16: end for
17: return A[p . . . r]

inputs into subproblems with larger inputs. This computation process on input
{5, 2, 7, 4, 6, 8, 1, 3} is shown in Fig. 2.1.

Note that the running time of procedure Merge at each level is O(n). Let t (n) be
the running time of merge sort on input of size n. By the recursive structure, we can
obtain that t (1) = 0 and

t (n) = t (�n/2�) + t (�n/2�) + O(n).

Suppose

t (n) ≤ 2 · t (�n/2�) + c · n

for some positive constant c. Define T (1) = 0 and

2.1 Algorithms with Self-Reducibility 15

Fig. 2.1 Computation process of merge sort

T (n) = 2 · T (�n/2�) + c · n.

By induction, we can prove that

t (n) ≤ T (n) for all n ≥ 1.

For base step, t (1) = 0 = T (1). For induction step,

t (n) ≤ 2 · t (�n/2�) + c · n

≤ 2 · T (�n/2�) + c · n (by induction hypothesis)

= T (n).

Now, let us discuss how to solve recursive equation about T (n). Usually, we use
two stages. In the first stage, we consider special numbers n = 2k and employ the
recursive tree to find T (2k) (Fig. 2.2), that is,

T (2k) = 2 · T (2k−1) + c · 2k

= 2 · (2 · T (2k−2) + c · 2k−1) + c · 2k

= . . .

= 2kT (1) + kc · 2k

16 2 Divide-and-Conquer

Fig. 2.2 Recursive tree

= c · k2k.

In general, we may guess that T (n) ≤ c′ · n log n for some constant c′ > 0. Let
us show it by mathematical induction.

First, we choose c′ to satisfy T (n) ≤ c′ for n ≤ n0 where n0 will be determined
later. This choice will make T (n) ≤ c′n log n for n ≤ n0, which meets the
requirement for the basic step of mathematical induction.

For induction step, consider n ≥ n0 + 1. Then we have

T (n) = 2 · T (�n/2�) + c · n

≤ 2 · c′�n/2� log�n/2� + c · n

≤ 2 · c′((n + 1)/2)(log(n + 1) − 1) + c · n

= c′ · (n + 1) log(n + 1) − c′(n + 1) + c · n

≤ c′(n + 1)(log n + 1/n) − (c′ − c)n − c′

= c′n log n + c′ log n − (c′ − c)n + c′/n.

Now, we choose n0 sufficiently large such that n/2 > log n + 1/n and c′ >

max(2c, T (1), . . . , T (n0)). Then the above mathematical induction proof will be
passed. Therefore, we obtained the following.

Theorem 2.1.1 Merge sort runs in O(n log n) time.

By the mathematical induction, we can also prove the following result.

Theorem 2.1.2 Let T (n) = aT (n/b) + f (n) where constants a > 1, b > 1, and
n/b mean �n/b� or �n/b�. Then we have the following:

2.1 Algorithms with Self-Reducibility 17

1. If f (n) = O(nlogb a−ε) for some positive constant ε, then T (n) = �(nlogb a).
2. If f (n) = �(nlogb a), then T (n) = �(nlogb a log n).
3. If f (n) = �(nlogb a+ε) for some positive constant ε and moreover, af (n/b) ≤

cf (n) for sufficiently large n and some constant c < 1, then T (n) = �(f (n)).

In Fig. 2.1, we see a tree structure between problem and subproblems. In general,
for any algorithm with self-reducibility, its computational process will produce a set
of subproblems on which we can also construct a graph to describe relationship
between them by adding an edge from subproblem A to subproblem B if at an
iteration, subproblem A is reduced to several problems, including subproblem B.
This graph is called the self-reducibility structure of the algorithm.

All algorithms with tree self-reducibility structure form a class, called divide-
and-conquer, that is, an algorithm is in class of divide-and-conquer if and only
if its self-reducibility structure is a tree. Thus, the merge sort is a divide-and-
conquer algorithm.

In a divide-and-conquer algorithm, it is not necessary to divide a problem evenly
or almost evenly. For example, we consider another sorting algorithm, called Quick
Sort. The idea is as follows.

In merge sort, the procedure Merge takes O(n) time, which is the main
consumption of time. However, if A[i] ≤ A[q] for p ≤ i < q and A[q] ≤ A[j] for
q < j ≤ r , then this procedure can be skipped, and after sort A[p . . . q − 1] and
A[q + 1 . . . r], we can simply put them together to obtain sorted A[p . . . r].

In order to have above property satisfied, Quick Sort uses A[r] to select all
elements A[p . . . r − 1] into two subsequences such that one contains elements less
than A[r] and the other one contains elements at least A[r]. A pseudocode of quick
sort is as shown in Algorithm 2.

The division is not balanced in Quick Sort. In the worst case, one part contains
nothing, and the other contains r − p elements. This will result in running time
O(n2). However, Quick Sort has expected running time O(n log n). To see it, let
T (n) denote the running time for n numbers. Note that the procedure Partition runs
in linear time. Then, we have

E[T (n)] ≤ 1

n
(E[T (n − 1)] + c1n)

+1

n
(E[T (1)] + E[T (n − 2)] + c1n)

+ · · ·
+1

n
(E[T (n − 1)] + c1n)

= c1n + 2

n

n−1∑

i=1

E[T (i)].

18 2 Divide-and-Conquer

Algorithm 2 Quick sort
Input: n numbers a1, a2, . . . , an in array A[1 . . . n].
Output: sorted numbers ai1 ≤ ai2 ≤ · · · ≤ ain in array A.
1: Quicksort(A, 1, n)

2: return A[1 . . . n]
Procedure Quicksort(A, p, r).
% Sort r − p + 1 numbers ap, ap+1, . . . , ar in array A[p . . . r]. %
1: if p < r then
2: q ← Partition(A, p, r)

3: Quicksort(A, p, q − 1)
4: Quicksort(A, q + 1, r)
5: end if
6: return A[p . . . r]
Procedure Partition(A, p, r).
% Find q such that there are q − p + 1 elements less than A[r] and others bigger than or equal to
A[r] %
1: x ← A[r]
2: i ← p − 1
3: for j ← p − 1 to r − 1 do
4: if A[j] < x then
5: i ← i + 1 and exchange A[i] ↔ A[j]
6: end if
7: exchange A[i + 1] ↔ A[r]
8: end for
9: return i + 1

Now, we prove by induction on n that

E[T (n)] ≤ cn log n

for some constant c. For n = 1, it is trivial. Next, consider n ≥ 2. By induction
hypothesis,

E[T (n)] ≤ c1n + 2c

n

n−1∑

i=1

i log i

= c1n + c(n − 1) log
(
�n−1

i=1 ii
)2/(n(n−1))

≤ c1n + c(n − 1) log
12 + 22 + · · · + (n − 1)2

n(n − 1)/2

= c1n + c(n − 1) log
2n − 1

3

≤ c1n + cn log
2n

3

2.2 Rectilinear Minimum Spanning Tree 19

= cn log n +
(

c1 − c log
3

2

)
n.

Choose c ≥ c1/ log 3
2 . We obtain E[T (n)] ≤ cn log n.

Theorem 2.1.3 Expected running time of Quick Sort is O(n log n).

2.2 Rectilinear Minimum Spanning Tree

Consider two points A = (x1, y1) and B = (x2, y2) in the plane. The rectilinear
distance of A and B is defined by

d(A,B) = |x1 − x2| + |y1 − y2|.

The rectilinear plane is the plane with the rectilinear distance, denoted by L1-plane.
In this section, we study the following problem.

Problem 2.2.1 (Rectilinear Minimum Spanning Tree) Given n points in the
rectilinear plane, compute the minimum spanning tree on those n given points.

In Chap. 1, we already present Kruskal algorithm which can compute a minimum
spanning tree within O(m log n) time. In this section, we will improve this result by
showing that the rectilinear minimum spanning tree can be computed in O(n log n)

time. To do so, we first study an interesting problem as follows.

Problem 2.2.2 (All Northeast Nearest Neighbors) Consider a set P of n points in
the rectilinear plane. For each A = (xA, yA) ∈ P , another point B = (xB, yB) ∈ P

is said to lie in northeast (NE) area of A if xA ≤ xB and yA ≤ yB , but A = B.
Furthermore, B is the NE nearest neighbor of A if B has the shortest distance from
A among all points lying in the NE area of A. This problem is required to compute
the NE nearest neighbor for every point in P . (The NE nearest neighbor of a point
A is “none” if no given point lies in the northeast area of A.)

Let us design a divide-and-conquer algorithm to solve this problem. For sim-
plicity of description, assume all n points have distinct x-coordinates and distinct
y-coordinates. Now, we bisect n points by a vertical line L. Let Pl be the set of
points lying on the left side of L and Pr the set of points lying on the right side
of L. Suppose we already solve the all NE nearest neighbors problem on input
point sets Pl and Pr , respectively. Let us discuss how to combine solutions for two
subproblems into a solution for all NE nearest neighbors on P .

For point A in Pr , the NE nearest neighbor in Pr is also the NE nearest neighbor
in P . However, for point A in Pl , the NE nearest neighbor in Pl may not be the NE
nearest neighbor in P . Actually, let B1 denote the NE nearest neighbor of A in Pl

and Br the NE nearest neighbor of A for B2 in Pr . Then, if d(A,B1) ≤ d(A,B2),

20 2 Divide-and-Conquer

then the NE nearest neighbor of A in P is B1; otherwise, it is B2. Therefore, to
complete the combination task, it is sufficient to compute the NE nearest neighbors
in Pr for all points in Pl . We will show that this computation takes O(n) time. To
do so, let us first show a lemma.

Lemma 2.2.3 Consider four points A, B, C, and D in the rectilinear plane.
Suppose C and D lie in the northeast area of A and the northeast area of B. Then
d(A,C) ≤ d(A,D) if and only if d(B,C) ≤ d(B,D).

Proof Clearly, we have

d(A,C) = (xC − xA) + (yC − yA) ≤ d(A,D) = (xD − xA) + (yD − yA)

⇔ xC + yC ≤ xD + yD

⇔ d(B,C) = (xC − xB) + (yC − yB) ≤ d(B,D) = (xD − xB) + (yD − yB).

��
By this lemma, we can compute the NE nearest neighbors in Pr for all points in

Pl as follows.

• For Pl , put all points in decreasing ordering of y-coordinates. For Pr , also, put all
points in deceasing ordering of y-coordinates. Put none in Pr as the first element.
Assume that none has y-coordinate +∞ and for any point A ∈ Pl , d(A, none) =
+∞.

• Employ three pointers left, right, and min. left will be located in Pl . right and min
work in Pr and none.

• Initially, assign left with the first point in Pl , and assign right and min with the
first element Pr .

• If right has y-coordinate higher than left and d(lef t, right) ≥ d(lef t,min),
then move right to next point in Pr .

• If right has y-coordinate higher than left and d(lef t, right) < d(lef t,min),
then set min = right, and move right to next one in Pr .

• If right has y-coordinate lower than left, then min is the NE nearest neighbor of
left. Put this fact in record, and move left to next one in Pl .

Since left, right, and min always move down and never move up, above procedure
runs in O(n) time. Let T (n) be the running time for computing all NE nearest
neighbors for n points. Then we obtain T (n) = 2T (�n/2�) + O(n). Therefore,
T (n) = O(n log n).

We make a remark on the case that P contains points with the same x-coordinate
or y-coordinates. If P has some points with the same x-coordinate, then in order to
partition P into two even parts, we may also consider their y-coordinates. If P has
some points with same y-coordinate, then we may need to give a little adjustment
for combination procedure.

Theorem 2.2.4 Computing all NE nearest neighbors for n points can be done in
O(n log n) time.

2.2 Rectilinear Minimum Spanning Tree 21

Fig. 2.3 Eight octants of point A

Now, we move back our attention to the rectilinear minimum spanning tree.
Consider any point A. As shown in Fig. 2.3, divide the area surrounding A into

eight octants. To make them disjoint, we assume that each octant contains only one
boundary, which can be reached from an interior ray to turn in counterclockwise
direction.

Lemma 2.2.5 Suppose (A,B) is an edge in a rectilinear minimum spanning tree.
Then B must be the nearest neighbor of A in an octant.

Proof Without loss of generality, assume that B lies in octant I of point A. For
contradiction, suppose that B is not the nearest neighbor of A in octant I. Let C be
the nearest neighbor of A in octant I, i.e., C lies in octant I and d(A,C) < d(A,B).
Note that

{D ∈ octant I | d(A,D) ≤ d(A,B)}

is a triangle without boundary (A,B), which has a property that every two points
in this triangle has rectilinear distance less than d(A,B) (Fig. 2.3). Therefore,
d(C,B) < d(A,B).

Remove edge (A,B) from the rectilinear minimum spanning tree, which will
partition the tree into two connected components, containing points A and B,
respectively. IfA andC lie in the same component, then add edge (C,B); otherwise,
C and B must lie in the same component, and add edge (A,C). Therefore, we will
obtain a shorter rectilinear minimum spanning tree, a contradiction. ��

Construct a graph G in the following way: For each point A, if an octant of A

contains another given point, then find a nearest neighbor B for A in this octant, and
add edge (A,B) to G.

Lemma 2.2.6 G contains a rectilinear minimum spanning tree.

Proof Consider a rectilinear minimum spanning tree T . For each point A, T must
contain an edge (A,B). By Lemma 2.2.5, B is the nearest neighbor of A in an
octant. Suppose (A,B) is not an edge of G. Then G must contain an edge (A,C)

22 2 Divide-and-Conquer

lying in the same octant, and C is another nearest neighbor of A in the same octant.
Note that

d(A,B) = d(A,C) > d(B,C).

Delete (A,B) from tree T . Then T is partitioned into two connected components.
We claim that C and B must lie in the same component. In fact, otherwise, assume
that A and C lie in the same component. Then we can shorten T by replacing (A,B)

with (B,C), contradicting the minimality of T . Therefore, our claim is tree. It
follows that replacing (A,B) by (A,C) in T results in another minimum spanning
tree T ′. Continue above operations; we will find a rectilinear minimum spanning
tree contained in G. ��

Lemma 2.2.7 G can be constructed in O(n log n) time.

Proof For each point A, its octant represents a direction. Fix an octant, i.e., fix a
direction. We claim that computing all octant nearest neighbors for all given points
in P takes O(n log n) time. Without loss of generality, consider octant I. Define a
mapping

φ : (x, y) → ((x − y)/2, y).

Then φ has the following properties:

• Point B lies in octant I of point A if and only if φ(B) lies in the first quadrant of
φ(A).

• d(A,B) ≤ d(A,C) if and only d(φ(A), φ(B)) ≤ d(φ(A), φ(C)).

It follows from those properties that B is the octant nearest neighbor of A if and
only if φ(B) is the NE nearest neighbor of φ(A). This means that computing all
octant nearest neighbors can be reduced to computing all NE nearest neighbors. By
Theorem 2.2.4, this computation can be done in O(n log n) time.

For each of eight octants, O(n log n) time is required. The total time is still
bounded by O(n log n). ��

Theorem 2.2.8 The rectilinear minimum spanning tree can be computed in
O(n log n) time where n is the number of given points.

Proof By Lemmas 2.2.6 and 2.2.7, it is sufficient to compute the minimum spanning
tree of graph G with Kruskal algorithm, since the number of edges in G is bounded
by O(n). Kruskal algorithm will spend O(n log n) time on G. ��

2.3 Fibonacci Search 23

2.3 Fibonacci Search

Consider a sequence of n distinct integers which are stored in an array A[1..n]. An
element A[i] is a local maximum if A[i − 1] < A[i] and A[i] > A[i + 1] for
1 < i < n, A[i] > S[i + 1] for i = 1, and A[i − 1] < A[i] for i = n. The
sequence A[1..n] is said to be bitonic if it contains exactly one local maximum,
which is actually the global maximum one. Consider the following problem.

Problem 2.3.1 (Maximum Element in Bitonic Sequence) Given a sequence
A[1..n] of n distinct integers, find the maximum element.

The problem can be solved by the following lemma.

Lemma 2.3.2 Assume 1 ≤ i < j ≤ n. If A[i] < A[j], then A[i + 1..n] must
contain a local maximum. If A[i] > A[j], then A[1..j − 1] must contain a local
maximum.

Proof First, assume A[i] < A[j]. Consider two cases.
Case 1. A[j] < A[j + 1]. In this case, if none of A[j + 1], . . . , A[n − 1] is a

local maximum, then A[j + 1] < A[j + 2] < · · · < A[n]. Hence, A[n]
is a local maximum.

Case 2. A[j] > A[j + 1]. In this case, if none of A[j], A[j − 1], . . . , A[i − 1] is
a local maximum, then A[j] < A[j − 1] < · · · < A[i], contradicting to
A[i] < A[j].

Similarly, we can show the second statement. ��
For n ≥ 4, we can choose i and j such that 1 ≤ i < j ≤ n, i ≥ n/3, and

n − j + 1 ≥ n/3. With such i and j , for each comparison, the sequence can be
cut off at least one third. Therefore, the maximum element can be found within
O(log n) comparisons.

Next, we consider a situation that A[i] = f (i), that is, A[i] has to be obtained
through evaluation of a function f (i). Therefore, we want to find the maximum
element with the minimum number of evaluations. In this situation, i and j will be
selected based on a rule with Fibonacci number Fi defined as follows:

F0 = F1 = 1, Fi = Fi−2 + Fi−1 for i ≥ 2.

Associated Fibonacci search method is as follows.

Step 0. Select the maximum m such that Fm ≤ n. Set k ← 0.
Step 1. Set i ← k + Fm−1 and j ← k + Fm.
Step 2. If A[i] < A[j], then set k ← i.
Step 3. Set m ← m − 1.
Step 4. If m ≥ 2, then go back to Step 1. Else, return A[i + 1], i.e., A[k + 1] is

the maximum element.

About this method, we have the following result.

24 2 Divide-and-Conquer

Theorem 2.3.3 Let m be the maximum integer such that Fm ≤ n. Then, it is
sufficient to make m evaluations to search the maximum element from a bitonic
sequence of n distinct integers. Moreover, in the worst case, it is necessary to make
m evaluations.

Proof Sufficiency can be seen from the Fibonacci search algorithm. We prove the
necessity by induction on m. For m = 1, we have n = 1, and evaluation for A[1]
is required. For m = 2, we have n = 2, and evaluations for A[1] and A[2] are
necessary. For m ≥ 3, suppose we compare A[i] and A[j] for 1 ≤ i < j ≤ n.
Consider two cases.

Case 1. i ≤ Fm−2. In this case, n− i ≥ Fm−1. If A[i] < A[j], then the maximum
element is inA[i+1..n]. By induction hypothesis, in the worst case,m−1
evaluations are required to find the maximum element. Add A[i]. Total
number of evaluations is m.

Case 2. i > Fm−2. If A[i] > A[j], then the maximum element is in A[1..j −
1]. In the next step, we need to select a number k ∈ {1, . . . , i − 1} ∪
{i + 1, . . . , j − 1} and compare A[i] and A[k]. It does not matter if k ∈
{1, . . . , i − 1} or k ∈ {i + 1, . . . , j − 1}, we can have a comparison
result to keep A[1..i − 1] left. Since i − 1 ≥ Fm−2. In the worst case, we
need at least m − 2 evaluations to find the maximum element from the
subsequence containing A[1..i − 1]. Add evaluations on A[i] and A[j].
Total number of required evaluations is at least m. ��

2.4 Heap

Heap is a quite useful data structure. Let us introduce it here and, by the way, give
another sorting algorithm, Heap Sort.

A heap is a nearly complete binary tree, stored in an array (Fig. 2.4). What is
nearly complete binary tree? It is a binary tree satisfying the following conditions:

• Every level other than bottom is complete.
• On the bottom, nodes are placed as left as possible.

For example, binary trees in Fig. 2.5 are not nearly complete. An advantage of nearly
complete binary tree is to operate on it easily. For example, for node i (i.e., a node
with address i), its parent, left-child, and right-child can be easily figured out as
follows:

Parent(i)
return �i/2�.

Left(i)
return 2i.

2.4 Heap 25

Fig. 2.4 A heap

Fig. 2.5 They are not nearly complete

Right(i)
return 2i + 1.

There are two types of heaps with special properties, respectively.

Max-heap: For every node i other than root, A[Parent(i)] ≥ A[i].
Min-heap: For every node i other than root, A[Parent(i)] ≤ A[i].
Max-heap has two special operations: Max-Heapify and Build-Max-Heap. We
describe them as follows.

When operation Max-Heapify(A, i) is called, two subtrees rooted, respectively,
at Left(i) and Right(i) are max-heaps, but A[i] may not satisfy the max-heap
property. Max-Heapify(A, i) makes the subtree rooted at A[i] become a max-heap
by moving A[i] downside. An example is as shown in Fig. 2.6.

The following is an algorithmic description for this operation.

26 2 Divide-and-Conquer

Fig. 2.6 An example for Max-Heapify(A, i)

Max-Heapify(A, i)

if Left(i) ≥Right(i) and Left(i) > A[i]
then Exchange A[i] and Left(i)

Max-Heapify(A,Left(i))
if Left(i) <Right(i) and Right(i) > A[i]

then Exchange A[i] and Right(i)
Max-Heapify(A,Right(i));

Operation Build-Max-Heap applies to a heap and makes it become a max-heap,
which can be described as follows. (Note that Parent(size[A]) = �size[A]/2�.)
Build-Max-Heap(A)

for i ← �size[A]/2� down to 1
do Max-Heapify(A, i);

An example is as shown in Fig. 2.7.
It is interesting to estimate the running time of this operation. Let h be the height

of heap A. Then h = �log2 n�. At level i, A has 2i nodes, at each of which Max-
Heapify spends at most h − i steps to float down. Therefore, the running time of
Build-Max-Heap(A) is

2.4 Heap 27

Fig. 2.7 An example for Build-Max-Heap(A)

O

(
h∑

i=0

2i (h − i)

)
= O

(
2h

h∑

i=0

h − i

2h−i

)

= O

(
2h

h∑

i=0

i

2i

)

= O(n).

Now, as shown in Algorithm 3, a sorting algorithm can be designed with max-
heap. Initially, build a max-heap A. In each subsequent step, the algorithm first
exchanges A[1] and A[heap − size(A)] and then reduces heap − size(A) by 1,
meanwhile with Max-Heapify(A, 1) to recover the max-heap. An example is as
shown in Fig. 2.8.

28 2 Divide-and-Conquer

Algorithm 3 Heap Sort
Input: n numbers a1, a2, . . . , an in array A[1 . . . n].
Output: n numbers ai1 ≤ ai2 ≤ · · · ≤ ain in array A.
1: Build-Max-Heap(A)

2: for i ← n down to 2 do
3: exchange A[1] ↔ A[i]
4: heap-size [A] ← i − 1
5: Max-Heapify(A, 1)
6: end for
7: return A[1 . . . n]

Fig. 2.8 An example for Heap Sort

2.4 Heap 29

Fig. 2.9 Decision tree

Since the number of steps is O(n) and Max-Heapify(A, 1) takes O(log n) time,
the running time of Heap Sort is O(n log n).

Theorem 2.4.1 Heap Sort runs in O(n log n) time.

We already have two sorting algorithms with O(n log n) running time and one
sorting algorithm with expected O(n log n) running time. But, there is no sorting
algorithm with running time faster than O(n log n). Is O(n log n) a barrier of
running time for sorting algorithm? In some sense, the answer is yes. All sorting
algorithms presented previously belong to a class, called comparison sort.

In comparison sort, order information about input sequence can be obtained only
by comparison between elements in the input sequence. Suppose input sequence
contains n positive integers. Then there are n! possible permutations. The aim of
sorting algorithm is to determine a permutation which gives a nondecreasing order.
Each comparison divides the set of possible permutations into two subsets. The
comparison result tells which subset contains a nondecreasing order. Therefore,
every comparison sort algorithm can be represented by a binary decision tree
(Fig. 2.9). The (worst case) running time of the algorithm is the height (or depth)
of the decision tree.

Since the binary decision tree has n! leaves, its height T (n) satisfies

1 + 2 + · · · + 2T (n) ≥ n!

that is,

2T (n)+1 − 1 ≥ √
2πn

(n

e

)n

.

30 2 Divide-and-Conquer

Thus,

T (n) = �(n log n).

Therefore, no comparison sort can do better than O(n log n).

Theorem 2.4.2 The running time of any comparison sort is �(n log n).

2.5 Counting Sort

To break the barrier of running time O(n log n), one has to design a sorting
algorithm without using comparison. Counting sort is such an algorithm.

Let us use an example to illustrate Counting Sort as shown in Algorithm 4. This
algorithm contains three arrays, A, B, and C. Array A contains input sequence of
positive integers. Suppose A = {4, 6, 5, 1, 4, 5, 2, 5}. Let k be the largest integer
in input sequence. Initially, the algorithm makes preprocessing on array C in three
stages:

1. Clean up array C.
2. For 1 ≤ i ≤ k, assign C[i] with the number of i’s appearing in array A. (In the

example, C = {1, 1, 0, 2, 3, 1} at this stage.)
3. Update C[i] such that C[i] is equal to the number of integers with value at most

i appearing in A. (In the example, C = {1, 2, 2, 4, 7, 8} at this stage.)
With the help of array C, the algorithm moves element A[j] to array B for j = n

down to 1, by

B[C[A[j]]] ← A[j]

Algorithm 4 Counting Sort
Input: n numbers a1, a2, . . . , an in array A[1 . . . n].
Output: n numbers ai1 ≤ ai2 ≤ · · · ≤ ain in array B.
1: for i ← 1 to k do
2: C[i] ← 0
3: end for
4: for j ← 1 to n do
5: C[A[j]] ← C[A[j]] + 1
6: end for
7: for i ← 2 to k do
8: C[i] ← C[i] + C[i − 1]
9: end for
10: for j ← n down to 1 do
11: B[C[A[j]]] ← A[j]
12: C[A[j]] ← C[A[j]] − 1
13: end for
14: return B[1 . . . n]

2.5 Counting Sort 31

and then updates array C by

C[A[j]] ← C[A[j]] − 1.

This part of computation about the example is as follows.

C 1 2 2 4 7 8
A 4 6 5 1 4 5 2 5̂
B 5

C 1 2 2 4 6 8
A 4 6 5 1 4 5 2̂ 5
B 2 5

C 1 1 2 4 6 8
A 4 6 5 1 4 5̂ 2 5
B 2 5 5

C 1 1 2 4 5 8
A 4 6 5 1 4̂ 5 2 5
B 2 4 5 5

C 1 1 2 3 5 8
A 4 6 5 1̂ 4 5 2 5
B 1 2 4 5 5

C 0 1 2 3 5 8
A 4 6 5̂ 1 4 5 2 5
B 1 2 4 5 5 5

C 0 1 2 3 4 8
A 4 6̂ 5 1 4 5 2 5
B 1 2 4 5 5 5 6

C 0 1 2 3 4 7
A 4̂ 6 5 1 4 5 2 5
B 1 2 4 4 5 5 5 6

Now, let us estimate the running time of Counting Sort.

Theorem 2.5.1 Counting Sort runs in O(n + k) time.

32 2 Divide-and-Conquer

Proof The loop at line 1 takes O(k) time. The loop at line 4 takes O(n) time. The
loop at line 7 takes O(k) time. The loop at line 10 takes O(n) time. Putting all
together, the running time is O(n + k). ��

A student found a simple way to improve Counting Sort. Let consider the same
example. At the second stage, C = {1, 1, 0, 2, 3, 1} where C[i] is equal to the
number of i’s appearing in array A. The student found that with this array C, array
B can be put in integers immediately without array A.

C 1 1 0 2 3 1
B 1
B 1 2
B 1 2 4 4
B 1 2 4 4 5 5 5
B 1 2 4 4 5 5 5 6

Is this method acceptable? The answer is no. Why not? Let us explain.
First, we should note that those numbers in input sequence may come from

labels of objects. The same numbers may come from different objects. For
example, consider a sequence of objects {329, 457, 657, 839, 436, 720, 355}. If
we use their first digits from left as labels, then we will obtain a sequence
{9, 7, 7, 9, 6, 0, 5}. When apply Counting Sort on this sequence, we will obtain a
sequence {720, 355, 436, 457, 657, 329, 839}. This is because a label gets moved
together with its object in Counting Sort.

Moreover, consider two objects 329 and 839 with the same label 9. In input
sequence, 329 lies on the left side of 839. After Counting Sort, 329 lies still on the
left side of 839.

A sorting algorithm is stable if for different objects with the same label, after
labels are sorted, the ordering of objects in output sequence is the same as their
ordering in input sequence. The following can be proved easily.

Lemma 2.5.2 Counting Sort is stable.

The student’s method cannot keep stable property.
With stable property, we can use Counting Sort in the following way. Remember,

after sorting the leftmost digit, we obtain sequence

{720, 355, 436, 457, 657, 329, 839}.

Now, we continue to sort this sequence based on the second leftmost digit. Then we
will obtain sequence

{720, 329, 436, 839, 355, 457, 657}.

Continue to sort based on the rightmost digit, we will obtain sequence

2.6 More Examples 33

{329, 355, 436, 457, 657, 720, 839}.

Now, let us use this technique to solve a problem.

Example 2.5.3 There are n integers between 0 and n2 − 1. Design an algorithm to
sort them. The algorithm is required to run in O(n) time.

Each integer between 0 and n2 − 1 can be represented as

an + b for 0 ≤ a ≤ n − 1, 0 ≤ b ≤ n − 1.

Apply Counting Sort first to b and then to a. Each application takes O(n) = O(n +
k) time since k = n. Therefore, total time is still O(n).

In general, suppose there are n integers, each of which can be represented in the
form

adkd + ad−11k
d−1 + · · · + a0

where 0 ≤ ai ≤ k − 1 for 0 ≤ i ≤ d. Then we can sort these n integers by using
Counting Sort first on a0, second on a1, . . . , finally on ad . This method is called
Radix Sort.

Theorem 2.5.4 Radix Sort takes O(d(n + k)) time.

2.6 More Examples

Let us study more examples with divide-and-conquer technique and sorting algo-
rithms.

Example 2.6.1 (Maximum Consecutive Subsequence Sum) Given a sequence of n

integers, find a consecutive subsequence with maximum sum.

Divide input sequence S into two subsequence S1 and S2 such that |S1| = �n/2�
and |S2| = �n/2�. Let MaxSub(S) denote the consecutive subsequence of S with
maximum sum. Then there are two cases.

Case 1. MaxSub(S) is contained in either S1 or S2. In this case, MaxSub(s) =
MaxSub(S1) or MaxSub(s) = MaxSub(S2).

Case 2. MaxSub(S) ∩ S1 = ∅ and MaxSub(S) ∩ S2 = ∅. In this case,
MaxSub(S) ∩ S1 is the tail subsequence with maximum sum. That
is, suppose S1 = {a1, a2, . . . , ap}. Then among subsequences {ap},
{ap−1, ap}, . . . , {a1, . . . , ap}, MaxSub(S)∩S1 is the one with maximum
sum. Therefore, it can be found inO(n) time. Similarly,MaxSub(S)∩S2
is the head subsequence with maximum sum, which can be computed in
O(n) time.

34 2 Divide-and-Conquer

Fig. 2.10 Closest pair of points

Suppose MaxSub(S) can be computed in T (n) time. Summarized from the
above two cases, we obtain

T (n) = 2T (�n/2�) + O(n).

Therefore, T (n) = O(n log n).
Next, we present another algorithm running in O(n) time.
Let Sj be the maximum sum of a consecutive subsequence ending at the j th

integer aj . Then, we have

S1 = a1

Sj+1 =
{

Sj + aj+1 if Sj > 0,
aj+1 if Sj ≤ 0.

This recursive formula gives a linear time algorithm to compute Sj for all 1 ≤
j ≤ n. From them, find the maximum one, which is the solution for the maximum
consecutive subsequence sum problem.

Example 2.6.2 (Closest Pair of Points) Given n points in the Euclidean plane, find
a pair of points to minimize the distance between them.

Initially, we may assume that all n points have distinct x-coordinates since, if
not, we may rotate the coordinate system a little.

Now, divide all points into two half parts based on x-coordinates. Find the closest
pair of points in each part. Suppose δ1 and δ2 are distances of closest pairs in two
parts, respectively. Let δ = min(δ1, δ2). We next study if there is a pair of points
lying in both parts, respectively, and with distance less than δ (Fig. 2.10).

For each point u = (xu, yu) in the left part (Fig. 2.10), consider the rectangle
Ru = {(x, y) | xu ≤ x ≤ xu + δ, yu − δ ≤ y ≤ yu + δ}. It has the following
properties:

• Every point in the right part and within distance δ from u lies in this rectangle.
• This rectangle contains at most six points in the right part because every two

points have distance at least δ.

2.6 More Examples 35

Fig. 2.11 x is selected
through first three steps

For each u in the left part, check every point v lying inRu, if distance d(u, v) < δ. If
yes, then we keep the record and choose the closest pair of points from them, which
should be the solution. If not, then the solution should either be the closest pair of
points in the left part or the closest pair of points in the right part.

Let T (n) be the time for finding the closest pair of points from n points. Above
method gives a recursive relation

T (n) = 2T (�n/2�) + O(n).

Therefore, T (n) = O(n log n).

Example 2.6.3 (The ith Smallest Number) Given a sequence of n distinct numbers
and a positive integer i, find ith smallest number in O(n) time.

This algorithm consists of five steps. Let us name this algorithm as A(n, i) for
convenience of recursive call.

Step 1. Divide n numbers into �n/5� groups of five elements, possibly except the
last one of less than five elements (Fig. 2.11).

Step 2. Find the median of each group by merge sort. Possibly, for the last group,
there are two median; in such a case, take the smaller one (Fig. 2.11).

Step 3. Make a recursive callA(�n/5�, ��n/5�/2�). This call will find the median
x of �n/5� group median and, moreover, will select the smaller one in case that two
candidates of x exist (Fig. 2.11).

Step 4. Exchange x with the last element in input array, and partition all numbers
into two parts by using Partition procedure in Quick Sort. One part (on the left)
contains numbers less than x, and the other part (on the right) contains numbers
larger than x (Fig. 2.12).

Step 5. Let k be the number of elements in the left part (Fig. 2.12). If k = i − 1,
then x is the ith smallest number. If k ≥ i, then the ith smallest number lies on the

36 2 Divide-and-Conquer

Fig. 2.12 x is selected through the first three steps

left of x and hence makes a recursive call A(k, i). If k ≤ i − 2, then the ith smallest
number lies in the right of x and hence makes a recursive call A(n−k−1, i−k−1).

Now, let us analyze this algorithm. Let T (n) be the running time of A(n, i).

• Steps 1 and 2 take O(n) time.
• Step 3 takes T (�n/5�) time.
• Step 4 takes O(n) time.
• Step 5 takes T (max(k, n − k − 1)) time.

Therefore,

T (n) = T (�n/5�) + T (max(k, n − k − 1)) + O(n).

We claim that

max(k, n − k − 1) ≤ n −
(
3

⌈
1

2

⌈n

5

⌉⌉
− 2

)
.

In fact, as shown in Fig. 2.13,

k + 1 = 3

⌈
1

2

⌈n

5

⌉⌉

and

n − k ≥ 3

⌈
1

2

⌈n

5

⌉⌉
− 2.

2.6 More Examples 37

Fig. 2.13 Estimation of
k + 1 and n − k

Therefore,

n − k − 1 ≤ n − 3

⌈
1

2

⌈n

5

⌉⌉

and

k ≤ n −
(
3

⌈
1

2

⌈n

5

⌉⌉
− 2

)
.

Note that

n −
(
3

⌈
1

2

⌈n

5

⌉⌉
− 2

)
≤ n −

(
3n

10
− 2

)
≤ 7n

10
+ 2.

By the claim,

T (n) ≤ T (�n/5�) + T

(
7n

10
+ 2

)
+ c′n

for some constant c′ > 0. Next, we show that

T (n) ≤ cn (2.1)

for some constant c > 0. Choose

c = max(20c′, T (1), T (2)/2, . . . , T (59)/59).

38 2 Divide-and-Conquer

Fig. 2.14 Largest rectangular
area in histogram

Therefore, (2.1) holds for n ≤ 59. Next, consider n ≥ 60. By induction hypothesis,
we have

T (n) ≤ c(n/5 + 1) + c(7n/10 + 2) + c′n

≤ cn − (cn/10 − 3c − c′n)

≤ cn

since

c(n/10 − 3) ≥ n/20 ≥ c′n.

The first inequality is due to n ≥ 60, and the second one is due to c ≥ 20c′. This
ends the proof of T (n) = O(n).

Example 2.6.4 (Largest Rectangular Area in Histogram) Consider a histogram as
shown in Fig. 2.14. Assume every bar has unit width and heights are h1, h2, . . . , hn,
respectively. Find the largest rectangular area.

Let hk = min(hi, h2, . . . , hj). Denote by m(i, j) the largest rectangular area in
histogram with bars between i and j . Then, we can obtain the following recursive
formula.

m(i, j) = max(m(i, k − 1),m(k + 1, j), hk(j − i + 1)).

It is similar to Quicksort that expected running time can be proved to be O(n log n).

Exercises 39

Exercises

1. Use a recursion tree to estimate a good upper bound on the recurrence T (n) =
3T (�n/2�) + n and T (1) = 0. Use the mathematical induction to prove
correctness of your estimation.

2. Draw the recursion tree for T (n) = 3T (�n/2�) + cn, where c is a positive
constant, and guess an asymptotic upper bound on its solution. Prove your
bound by mathematical induction.

3. Show that for input sequence in decreasing order the running time of Quick
Sort is �(n2).

4. Show that Counting Sort is stable.
5. Find an algorithm to sort n integers in the range 0 to n3 − 1 in O(n) time.
6. Let A[1 : n] be an array of n distinct integers sorted in increasing order.

(Assume, for simplicity, that n is a power of 2.) Give an O(log n)-time
algorithm to decide if there is an integer i, 1 ≤ i ≤ n, such that A[i] = i.

7. Given an array A of integers, please return an array B such that B[i] = |{A[k] |
k > i and A[k] < A[i]}|.

8. Given a string S and an integer k > 0, find the longest substring of s such that
each symbol appears at least k times if it appears in the substring.

9. Given an integer arrayA, please compute the number of pairs {i, j}withA[i] >

2 · A[j].
10. Given a sorted sequence of distinct nonnegative integers, find the smallest

missing number.
11. Given two sorted sequences with m, n elements, respectively, design and

analyze an efficient divide-and-conquer algorithm to find the kth element
in the merge of the two sequences. The best algorithm runs in time
O(log(max(m, n))).

12. Design a divide-and-conquer algorithm for the following longest ascending
subsequence problem: Given an array A[1..n] of natural numbers, find the
length of the longest ascending subsequence. (A subsequence is a list A[i1],
A[i2], . . . , A[im] where m is the length.)

13. Show that in a max-heap of length n, the number of nodes rooted at which the
subtree has height h is at most � n

2h+1 �.
14. Let A be an n × n matrix of integers such that each row is strictly increasing

from left to right and each column is strictly increasing from top to bottom. Give
an O(n)-time algorithm for finding whether a given number x is an element of
A, i.e., whether x = A(i, j) for some i, j .

15. Let S be a set of n points, pi = (xi, yi), 1 ≤ i ≤ n, in the plane. A point pj ∈ S

is a maximal point of S if there is no other point pk ∈ S such that xk ≥ xj and
yk ≥ yj . In Fig. 2.15, it illustrates the maximal points of a point-set S. Note
that the maximal points form a “staircase” which descends rightward. Give an
efficient divide-and-conquer algorithm to determine the maximal points of S.

16. Let A[1..n] be an array of n distinct integers where n ≥ 2. An element A[i]
is a local maximum if A[i − 1] < A[i] and A[i] > A[i + 1] for 1 < i < n,

40 2 Divide-and-Conquer

Fig. 2.15 Maximal points
and non-maximal points

A[i] > S[i + 1] for i = 1, and A[i − 1] < A[i] for i = n. Please design an
algorithm to find a local maximum in O(log n) time.

17. The maximum subsequence sum problem is defined as follows: Given an array
A[1..n] of integer numbers, find values of i and j with 1 ≤ i ≤ j ≤ n such that∑j

k=i A[i] is maximized. Design a divide-and-conquer algorithm for solving
the maximum subsequence sum problem in time O(n log n).

18. In the plane, there are n distinct points p1, p2, . . . , pn lying on line y = 0 and
also n distinct points q1, q2, . . . , qn lying on line y = 0. Consider n segments
[p1, q1], [p2, q2], . . . , [pn, qn]. Design an algorithm to count how many cross
pairs in these n segments. Your algorithm should run in O(n log n) time.

19. Design a divide-and-conquer algorithm for multiplying n complex numbers
using only 3(n − 1) real multiplications.

20. Consider a 0-1 matrix of order (2n−1)×n. All rows have distinct 0-1 sequences
of length n, that is, no two rows are identical. Design a O(n) time algorithm to
find the missing sequence.

21. Given a sequence of n distinct integers and a positive integer i, finding the ith
smallest one in the sequence can be done in O(n) time (see Example 2.6.3).
Now, consider the problem of finding the ith smallest one for every i =
1, 2, . . . , k. Can you do it in O(n log k) time?

22. An inversion in an array A[1..n] is a pair of indices i and j such that i < j

and A[i] > A[j]. Design an algorithm to count the number of inversions in an
n-element array in O(n log n) time.

23. In Example 2.6.3, a linear time algorithm is given for finding the ith smallest
number in a unsorted list of n distinct integers. Now, let us modify the first two
steps as follows: Initially, suppose all n integers are given in array A. Partition
all input integers into groups of three elements. Then sort each group, and place
its median into another array B. Repeat the same process for B, that is, partition
elements in B into groups of three elements, and then place the median of each
group into array C. Now, make a recursive call to find the median x of C. The
remaining part is the same as later steps in the linear time algorithm. Please
analyze the running time of this modified algorithm.

Historical Notes 41

24. Design an O(nlog2 3) step algorithms for multiplication of two n-digit numbers.
A single step only allows the multiplication/division or addition/subtraction
of single digit numbers. Could you improve your algorithm with running
O(nlog3 5) steps?

Historical Notes

Divide-and-conquer is a popular technique for algorithm design. It has a special
case, decrease-and-conquer. In decrease-and-conquer, the problem is reduced to a
single subproblem. Both divide-and-conquer and decrease-and-conquer have a long
history. Their stamps can be found in many earlier works, such as Gauss’s work on
Fourier transform in 1850 [209], John von Neumann’s work on merge sort in 1945
[258], and John Mauchly’s work in 1946 [258]. Quick Sort was developed by Tony
Hoare in 1959 [210] (published in 1962 [211]). Counting Sort and its applications
to Radix Sort were found by Harold H. Seward in 1954 [73, 258, 362].

The closest-point problem and its variations, such as the problem of all nearest
neighbors, have many applications. Construction of rectilinear minimum spanning
tree in O(n log n) time [192] is one of them. There is another way to obtain
O(n log n)-time algorithm for the rectilinear minimum spanning tree [222], in
which the Voronoi diagram in L1 is constructed in O(n log n) time [274, 363]
and then compute the rectilinear minimum spanning tree in the Voronoi diagram
in O(n) time. The idea was initiated by Yao [433] to consider closest neighbors
in different directions in construction of minimum spanning tree in a plane. In a
Euclidean plane, the minimum spanning tree can also be computed in O(n log n)

time [273, 274, 363]. For planar graphs, the minimum spanning tree can be
computed in O(n) time [63]. Several algorithms exist for a long time for computing
the minimum spanning tree with arbitrary distance [36, 65, 266, 339].

Fibonacci search [140] is motivated from Golden section search [244] to find
the maximum value of a unimodal function since Fk/Fk+1 ← (

√
5 − 1)/2, which

is called the Golden ratio. The Golden section search has received a great deal of
applications [140, 218, 258, 333].

	2 Divide-and-Conquer
	2.1 Algorithms with Self-Reducibility
	2.2 Rectilinear Minimum Spanning Tree
	2.3 Fibonacci Search
	2.4 Heap
	2.5 Counting Sort
	2.6 More Examples
	Exercises
	Historical Notes

