
Springer Optimization and Its Applications 196

Ding-Zhu Du
Panos M. Pardalos
Xiaodong Hu
Weili Wu

Introduction
to Combinatorial
Optimization

Springer Optimization and Its Applications

Volume 196

Series Editors
Panos M. Pardalos , University of Florida
My T. Thai , University of Florida

Honorary Editor
Ding-Zhu Du, University of Texas at Dallas

Advisory Editors
Roman V. Belavkin, Middlesex University
John R. Birge, University of Chicago
Sergiy Butenko, Texas A&M University
Vipin Kumar, University of Minnesota
Anna Nagurney, University of Massachusetts Amherst
Jun Pei, Hefei University of Technology
Oleg Prokopyev, University of Pittsburgh
Steffen Rebennack, Karlsruhe Institute of Technology
Mauricio Resende, Amazon
Tamás Terlaky, Lehigh University
Van Vu, Yale University
Michael N. Vrahatis, University of Patras
Guoliang Xue, Arizona State University
Yinyu Ye, Stanford University

https://orcid.org/0000-0003-2824-101X
https://orcid.org/0000-0003-0503-2012

Aims and Scope
Optimization has continued to expand in all directions at an astonishing rate. New
algorithmic and theoretical techniques are continually developing and the diffusion
into other disciplines is proceeding at a rapid pace, with a spot light on machine
learning, artificial intelligence, and quantum computing. Our knowledge of all
aspects of the field has grown even more profound. At the same time, one of the
most striking trends in optimization is the constantly increasing emphasis on the
interdisciplinary nature of the field. Optimization has been a basic tool in areas
not limited to applied mathematics, engineering, medicine, economics, computer
science, operations research, and other sciences.

The series Springer Optimization and Its Applications (SOIA) aims to publish
state-of-the-art expository works (monographs, contributed volumes, textbooks,
handbooks) that focus on theory, methods, and applications of optimization. Topics
covered include, but are not limited to, nonlinear optimization, combinatorial opti-
mization, continuous optimization, stochastic optimization, Bayesian optimization,
optimal control, discrete optimization, multi-objective optimization, and more. New
to the series portfolio include Works at the intersection of optimization and machine
learning, artificial intelligence, and quantum computing.

Volumes from this series are indexed by Web of Science, zbMATH, Mathematical
Reviews, and SCOPUS.

Ding-Zhu Du • Panos M. Pardalos • Xiaodong Hu •
Weili Wu

Introduction to
Combinatorial Optimization

Ding-Zhu Du
Department of Computer Science
University of Texas, Dallas
Richardson, TX, USA

Panos M. Pardalos
Department of Industrial & Systems
Engineering
University of Florida
Gainesville, FL, USA

Xiaodong Hu
University of Chinese Academy of Sciences
Academy of Math and System Science
Chinese Academy of Sciences
Beijing, China

Weili Wu
Department of Computer Science
University of Texas at Dallas
Richardson, TX, USA

ISSN 1931-6828 ISSN 1931-6836 (electronic)
Springer Optimization and Its Applications
ISBN 978-3-031-10594-4 ISBN 978-3-031-10596-8 (eBook)
https://doi.org/10.1007/978-3-031-10596-8

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2824-101X

 -2016 40369 a -2016 40369 a

https://doi.org/10.1007/978-3-031-10596-8

Since the fabric of the world is the most
perfect and was established by the wisest
Creator, nothing happens in this world in
which some reason of maximum or minimum
would not come to light.

—Euler

When you say it, it’s marketing. When they
say it, it’s social proof.

—Andy Crestodina

God used beautiful mathematics in creating
the world.

—Paul Dirac

Preface

The motivation for writing this book came from our previous teaching experience
in the undergraduate, junior graduate, and senior graduate levels.

The first observation is about organization of courses on combinatorial opti-
mization. Many textbooks are problem oriented. But our experience indicates that a
methodology-oriented organization is preferred by students.

The second observation is about contents. At present, technological develop-
ments, such as wireless communication, cloud computing, social networks, and
machine learning, involve many applications of combinatorial optimization and
provide a platform for their new issues, new techniques, and new subareas to grow.
This makes us update teaching materials.

This book is methodology oriented and organized along a line leading the reader
step by step from the very beginning toward frontier of this field. Actually, all
materials are selected from lecture notes from three courses, which are taught at
undergraduate level, junior graduate (MS) level, and senior graduate (PhD) level,
respectively.

The first part is selected from a course on computer algorithm design and analy-
sis. This course does not clearly state that it is about combinatorial optimization.
However, its contents have a very large portion overlapping with combinatorial
optimization.

The second part comes from a course on the design and analysis of approxima-
tion algorithms. The third part comes from a course on nonlinear combinatorial
optimization. These two parts are overlapping at a few chapters. Therefore, we
combined and simplified them.

While all three parts have been used for teaching at the University of Texas
at Dallas and the University of Florida for many years, the second and the third
parts are also utilized for teaching in short summer courses at the University of
Chinese Academy of Sciences, Beijing University, Tsinghua University, Beijing
Jiaotong University, Xi’an Jiaotong University, Ocean University of China, Bei-
jing University of Technology, Lanzhou University, Zhejiang Normal University,
Shandong University, Harbin Institute of Technology, CityU of Hong Kong, and
PolyU of Hong Kong. Therefore, we wish to thank Professors Andy Yao, Francis

vii

viii Preface

Yao, Jianzhong Li, Hong Gao, Xiaohua Jia, Jiannong Cao, Qizhi Fang, Jianliang
Wu, Naihua Xiu, Lingchen Kong, Dachuan Xu, Suixiang Gao, Wenguo Yang, Zhao
Zhang, Xujin Chen, Xianyue Li, and Hejiao Huang for their support.

Finally, we would like to acknowledge the support in part by NSF of USA under
grants 1747818, 1822985, and 1907472.

Richardson, TX, USA Ding-Zhu Du
Gainesville, FL, USA Panos M. Pardalos
Beijing, China Xiaodong Hu
Richardson, TX, USA Weili Wu
January 2022

Contents

1 Introduction . 1
1.1 What Is Combinatorial Optimization? . 1
1.2 Optimal and Approximation Solutions . 3
1.3 Preprocessing . 5
1.4 Running Time . 7
1.5 Data Structure . 8
Exercises . 10
Historical Notes . 11

2 Divide-and-Conquer . 13
2.1 Algorithms with Self-Reducibility . 13
2.2 Rectilinear Minimum Spanning Tree . 19
2.3 Fibonacci Search . 23
2.4 Heap . 24
2.5 Counting Sort . 30
2.6 More Examples . 33
Exercises . 39
Historical Notes . 41

3 Dynamic Programming and Shortest Path . 43
3.1 Dynamic Programming . 43
3.2 Shortest Path . 50
3.3 Dijkstra Algorithm . 56
3.4 Priority Queue . 59
3.5 Bellman-Ford Algorithm . 61
3.6 All Pairs Shortest Paths . 63
Exercises . 68
Historical Notes . 73

4 Greedy Algorithm and Spanning Tree . 75
4.1 Greedy Algorithms . 75
4.2 Matroid . 80

ix

x Contents

4.3 Minimum Spanning Tree . 86
4.4 Local Ratio Method . 89
Exercises . 93
Historical Notes . 96

5 Incremental Method and Maximum Network Flow . 97
5.1 Maximum Flow . 97
5.2 Edmonds-Karp Algorithm . 104
5.3 Applications . 106
5.4 Matching . 109
5.5 Dinitz Algorithm . 115
5.6 Goldberg-Tarjan Algorithm . 116
Exercises . 123
Historical Notes . 127

6 Linear Programming . 129
6.1 Simplex Algorithm . 129
6.2 Lexicographical Ordering . 136
6.3 Bland’s Rule . 140
6.4 Initial Feasible Basis . 143
6.5 Duality . 146
6.6 Primal-Dual Algorithm . 150
6.7 Interior Point Algorithm . 152
6.8 Polyhedral Techniques . 157
Exercises . 166
Historical Notes . 173

7 Primal-Dual Methods and Minimum Cost Flow . 175
7.1 Hungarian Algorithm . 175
7.2 Label-Correcting . 180
7.3 Minimum Cost Flow . 183
7.4 Minimum Cost Circulation . 186
7.5 Cost Scaling . 189
7.6 Strongly Polynomial-Time Algorithm . 191
Exercises . 196
Historical Notes . 197

8 NP-Hard Problems and Approximation Algorithms 199
8.1 What Is the Class NP? . 199
8.2 What Is NP-Completeness? . 206
8.3 Hamiltonian Cycle . 211
8.4 Vertex Cover . 219
8.5 Three-Dimensional Matching . 222
8.6 Partition . 226
8.7 Planar 3SAT . 236
8.8 Complexity of Approximation . 240

Contents xi

9 Restriction and Steiner Tree . 259
9.1 Idea of Restriction . 259
9.2 Role of Minimum Spanning Tree . 262
9.3 Rectilinear Steiner Minimum Tree . 273
9.4 Connected Dominating Set . 279

10 Greedy Approximation and Submodular Optimization. 293
10.1 What Is the Submodular Function? . 293
10.2 Submodular Set Cover . 298
10.3 Monotone Submodular Maximization . 305
10.4 Random Greedy . 311
Exercises . 315
Historical Notes . 320

11 Relaxation and Rounding . 323
11.1 The Role of Rounding . 323
11.2 Group Set Coverage . 329
11.3 Pipage Rounding . 333
11.4 Continuous Greedy . 339
Exercises . 346
Historical Notes . 347

12 Nonsubmodular Optimization . 349
12.1 An Example . 349
12.2 Properties of Set Functions . 352
12.3 Parameterized Methods . 357
12.4 Sandwich Method . 366
12.5 Algorithm Ending at Local Optimal Solution . 369
12.6 Global Approximation of Local Optimality . 371
12.7 Large-Scale System . 373
Exercises . 377
Historical Notes . 380

Bibliography . 383

Chapter 1
Introduction

True optimization is the revolutionary contribution of modern
research to decision processes.

—George Dantzig

Let us start this textbook from a fundamental question and tell you what will
constitute this book.

1.1 What Is Combinatorial Optimization?

The aim of combinatorial optimization is to find an optimal object from a finite set
of objects. Those candidate objects are called feasible solutions, while the optimal
one is called an optimal solution. For example, consider the following problem.

Problem 1.1.1 (Minimum Spanning Tree) Given a connected graph G = (V ,E)

with nonnegative edge weight c : E → R+, find a spanning tree with minimum total
weight, where “spanning” means that all nodes are included in the tree and hence
a spanning tree interconnects all nodes in V . An example is as shown in Fig. 1.1.

Clearly, the set of all spanning trees is finite, and the aim of this problem is to
find one with minimum total weight from this set. Each spanning tree is a feasible
solution, and the optimal solution is the spanning tree with minimum total weight,
which is also called the minimum spanning tree. Therefore, this is a combinatorial
optimization problem.

A combinatorial optimization problem may have more than one optimal solution.
For example, in Fig. 1.1, there are two spanning trees with minimum total length.
(The second one can be obtained by using edge (e, f) to replace edge (d, f).)
Therefore, by the optimal solution as mentioned in the above, it means a general
member in the class of optimal solutions.

The combinatorial optimization is a proper subfield of discrete optimization.
In fact, there exist some problems in discrete optimization, which do not belong

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_1&domain=pdf

 7680 61494 a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_1

2 1 Introduction

a

b

c

d

e

f

1 1

2

1
31

3

Fig. 1.1 A example for the minimum spanning tree

to combinatorial optimization. For example, consider the integer programming.
It always belongs to discrete optimization. However, when feasible domain is
infinite, it does not belong to combinatorial optimization. But such a difference
is not recognized very well in the literature. Actually, if a paper on lattice-point
optimization is submitted to Journal of Combinatorial Optimization, then usually, it
will not be rejected due to out of scope.

In view of methodologies, combinatorial optimization and discrete optimiza-
tion have very close relationship. For example, to prove NP-hardness of integer
programming, we need to cut its infinitely large feasible domain into a finite
subset containing optimal solution (see Chap. 8 for details), i.e., transform it into
a combinatorial optimization problem.

Geometric optimization is another example. Consider the following problem.

Problem 1.1.2 (Minimum Length Guillotine Partition) Given a rectangle with
point-holes inside, partition it into smaller rectangles without hole inside by a
sequence of guillotine cuts to minimize the total length of cuts. Here, the guillotine
cut is a vertical or horizontal straight line segment which partitions a rectangle into
two smaller rectangles. An example is as shown in Fig. 1.2.

There exist infinitely many numbers of partitions. Therefore, it is not a combi-
natorial optimization problem. However, we can prove that optimal partition can
be found from a finite set of partitions of a special type (for detail, see Chap. 3).
Therefore, to solve the problem, we need only to study partitions of this special
type, i.e., a combinatorial optimization problem.

Due to above, we do not make a clear cut to exclude other parts of discrete
optimization. Actually, this book is methodology oriented. Problems are selected
to illustrate methodology. Especially, for each method, we may select a typical
problem as companion to explore the method, such as its requirements and
applications. For example, we use the shortest path problem to explain dynamic

1.2 Optimal and Approximation Solutions 3

Fig. 1.2 Rectangular guillotine partition

programming, employ the minimum spanning tree problem to illustrate greedy
algorithms, etc.

1.2 Optimal and Approximation Solutions

Let us show an optimality condition for the minimum spanning tree.

Theorem 1.2.1 (Path Optimality) A spanning tree T ∗ is a minimum spanning tree
if and only if it satisfies the following condition:

Path Optimality Condition For every edge (u, v) not in T ∗, there exists a path
p in T ∗, connecting u and v, and moreover, c(u, v) ≥ c(x, y) for every edge
(x, y) in path p.

Proof Suppose, for contradiction, that c(u, v) < c(x, y) for some edge (x, y) in
the path p. Then T ′ = (T ∗ \ (x, y)) ∪ (u, v) is a spanning tree with cost less than
c(T ∗), contradicting the minimality of T ∗.

Conversely, suppose that T ∗ satisfies the path optimality condition. Let T ′ be a
minimum spanning tree such that among all minimum spanning tree, T ′ is the one
with the most edges in common with T ∗. Suppose, for contradiction, that T ′ �= T ∗.
We claim that there exists an edge (u, v) ∈ T ∗ such that the path in T ′ between u

and v contains an edge (x, y) with length c(x, y) ≥ c(u, v). If this claim is true, then
(T ′ \ (x, y)) ∪ (u, v) is still a minimum spanning tree, contradicting the definition
of T ′.

Now, we show the claim by contradiction. Suppose the claim is not true. Consider
an edge (u1, v1) ∈ T ∗\T ′. the path in T ′ connecting u1 and v1 must contain an edge
(x1, y1) not in T ∗. Since the claim is not true, we have c(u1, v1) < c(x1, y1). Next,
consider the path in T ∗ connecting x1 and y1, which must contain an edge (u2, v2) �∈
T ′. Since T ∗ satisfies the path optimality condition, we have c(x1, y1) ≤ c(u2, v2).
Hence, c(u1, v1) < c(u2, v2). As this argument continues, we will find a sequence
of edges in T ∗ such that c(u1, v2) < c(u2, v2) < c(u3, v3) < · · · , contradicting the
finiteness of T ∗.
�

4 1 Introduction

An algorithm can be designed based on path optimality condition.

Kruskal Algorithm
input: A connected graph G = (V ,E) with nonnegative edge weight

c : E → R+.
output: A minimum spanning tree T .

Sort all edges e1, e2, . . . , em in nondecreasing order of weight,
i.e., c(e1) ≤ c(e2) ≤ · · · ≤ c(em);
T ← ∅;
for i ← 1 to m do

if T ∪ ei does not contain a cycle
then T ← T ∪ ei ;

return T .

From this algorithm, we see that it is not hard to find the optimal solution for the
minimum spanning tree problem. If every combinatorial optimization problem likes
the minimum spanning tree, then we would be very happy to find optimal solution
for it. Unfortunately, there exist a large number of problems that it is unlikely to
be able to compute their optimal solution efficiently. For example, consider the
following problem.

Problem 1.2.2 (Minimum Length Rectangular Partition) Given a rectangle
with point-holes inside, partition it into smaller rectangles without hole to minimize
the total length of cuts.

Problems 1.1.2 and 1.2.2 are quite different. Problem 1.2.2 is intractable, while
there exists an efficient algorithm to compute an optimal solution for Problem 1.1.2.
Actually, in theory of combinatorial optimization, we need to study not only how to
design and analyze algorithms for finding optimal solutions but also how to design
and analyze algorithms for computing approximation solutions. When do we put
our efforts on optimal solution? When should we pay attention to approximation
solutions? Ability for making such a judgement has to be growth from study
computational complexity.

The book consists of three building blocks, design and analysis of computer algo-
rithm for exact optimal solution, design and analysis of approximation algorithms,
and nonlinear combinatorial optimization.

The first block contains Chaps. 2–7, which can be divided into two parts
(Fig. 1.3). The first part is on algorithms with self-reducibility, including the divide-
and-conquer, the dynamic program, the greedy algorithm, the local search, the local
ratio, etc., which are organized into Chaps. 2–4. The second part is on incremental
method, including the primal algorithm, the dual algorithm, and the primal-dual
algorithm, which are organized also into Chaps. 5–7. There is an intersection
between algorithms with self-reducibility and primal-dual algorithms. In fact, in
computation process of the former, an optimal feasible solution is built up step
by step based on certain techniques, and the latter also has a process to build up
an optimal primal solution by using information from dual side. Therefore, some

1.3 Preprocessing 5

Fig. 1.3 Design and analysis of computer algorithms

algorithm can be illustrated as an algorithm with self-reducibility, and meanwhile it
can also be explained as a prima-dual algorithm.

The second block contains Chaps. 8–11, covering the fundamental knowledge on
computational complexity, including theory on NP-hardness and inapproximability,
and basic techniques for design of approximation, including the restriction, the
greedy approximation, and the relaxation with rounding.

The third block contains Chaps. 10, 11, and 12. Since Chaps. 10–11 serve both
the second and the third blocks, selected examples are mainly coming from the
submodular optimization. Then, Chaps. 12 is contributed to the nonsubmodular
optimization. Nonsubmodular optimization is an active research area currently.
There are a lot of recent publications in the literature. Probably, Chap. 12 can be
seen as an introduction to this area. For a complete coverage, we may need a new
book.

Now, we put above structure of this book into Fig. 1.4 for a clear overview.

1.3 Preprocessing

In Kruskal algorithm, the first line is to sort all edges into a nondecreasing order
of cost. This requires a preprocessing procedure for solving the sorting problem as
follows.

6 1 Introduction

Fig. 1.4 Structure of this book

Problem 1.3.1 (Sorting) Given a sequence of positive integers, sort them into
nondecreasing order.

The following is a simple algorithm to do sorting job.

Insertion Sort
input: An array A with a sequence of positive integers.
output: An array A with a sequence of positive integers in

nondecreasing order.
for j ← 2 to length[A]

do key ← A[j]
i ← j − 1
while i > 0 and A[i] > key

do A[i + 1] ← A[i]
i ← i − 1

end-while
A[i + 1] ← key

end-for
return A.

An example for using insertion sort is as shown in Fig. 1.5.
Although insertion sort is simpler, it runs a little slow. Since sorting appears

very often in algorithm design for combinatorial optimization problems, we have to
spend some space in Chap. 2 to introduce faster algorithms.

1.4 Running Time 7

Fig. 1.5 An example for insertion sort. σ is the key lying outside of array A

1.4 Running Time

The most important measure of quality for algorithms is the running time. However,
for the same algorithm, it may take different times when we run it in different
computers. To give a uniform standard, we have to get an agreement that runs
algorithms in a theoretical computer model. This model is the multi-tape Turing
machine which has been accepted by a very large population. Based on the Turing
machine, the theory of computational complexity has been built up. We will touch
this part of theory in Chap. 8.

But, we will use RAM model to evaluate the running time for algorithms
throughout this book except Chap. 8. In RAM model, assume that each line of
pseudocode requires a constant time. For example, the running time of insertion
sort is calculated in Fig. 1.6.

Actually, RAM model and Turing machine model are closely related. The
running time estimated based on these two models is considered to be close enough.
However, they are sometimes different in estimation of running time. For example,
the following is a piece of pseudocode.

for i = 1 to n

do assign First(i) ← i

end-for

According to RAM model, the running time of this piece is O(n). However, based
on the Turing machine, the running time of this piece is O(n log n) because the
assigned value has to be represented by a string with O(log n) symbols.

Theoretically, a constant factor is often ignored. For example, we usually say that
the running time of insertion sort is O(n2) instead of giving the specific quadratic
function with respect to n. Here f (n) = O(g(n)) means that there exist constants
c > 0 and n0 > 0 such that

f (n) ≤ c · g(n) for n ≥ n0

8 1 Introduction

Fig. 1.6 Running time calculation

There are two more notations which appear very often in representation of running
time. f (n) = �(g(n)) means that there exist constant c > 0 and n0 > 0 such that

0 ≤ c · g(n) ≤ f (n) for n ≥ n0.

f (n) = �(g(n)) means that there exist constants c1 > 0, c2 > 0 and n0 > 0 such
that

c1 · g(n) ≤ f (n) ≤ c2 · g(n) for n ≥ n0.

Finally, let us make a remark on input numbers.
In the minimum spanning tree problem, every edge has a nonnegative weight

which is an input number. In the problem definition, we assumed that this is a real
number. However, a real number cannot be exactly input in a computer. Actually,
the computation of a real number is sometimes a very hard problem in the theory
of computational complexity [260]. Therefore, we have to treat each real number
with an oracle which can provide a rational number with expected accuracy, without
computation cost. In other words, we ignore the computation trouble of the real
number.

However, when our analysis of running time has to consider the size of input
numbers, e.g., in analysis of weakly polynomial-time algorithms, we have to change
the setting from the real number to the integer.

1.5 Data Structure

A data structure is a data storage format which is organized and managed to
have efficient access and modification. Each data structure has several standard
operations. They are building bricks to construct algorithms. The data structure

1.5 Data Structure 9

plays an important role in improving efficiency of algorithms. For example, we may
introduce a data structure “Disjoint Sets” to improve Kruskal algorithm.

Consider a collection of disjoint sets. For each set S, let First(S) denote the first
node in set S. For each element x in set S, denote First(x) = First(S). Define three
operations as follows:

Make-Set(x) creates a new set containing only x.
Union(x, y) unions sets Sx and Sy containing x and y, respectively, into Sx ∪ Sy ,

Moreover, set

First(Sx ∪ Sy) =
{

First(Sx) if |Sx | ≥ |Sy |,
First(Sy) otherwise.

Find-Set(x) returns First(Sx) where Sx is the set containing element x.

With this data structure, Kruskal algorithm can be modified as follows.

Kruskal Algorithm
input: A connected graph G = (V ,E) with nonnegative edge weight c : E → R+.
output: A minimum spanning tree T .

Sort all edges e1, e2, . . . , em in nondecreasing order of weight,
i.e., c(e1) ≤ c(e2) ≤ · · · ≤ c(em);
T ← ∅;
for each node v ∈ V do

Make-Set(v);
end-for
for i ← 1 to m do

if Find-Set(x) �= Find-Set(y) where ei = (x, y)

then T ← T ∪ ei

and Union(x, y);
end-for
return T .

An example for running this algorithm is as shown in Fig. 1.7.
Denote m = |E| and n = |V |. Let us estimate the running time of Kruskal

algorithm.

• Sorting on all edges takes O(m log n) time.
• Assigning First(v) for all v ∈ V takes O(n) time.
• For each node v, the value of First(v) can be changed at most O(log n) time.

This is because the value of First(v) is changed only if v is included in Union
operation, and after the operation, the set containing v has size doubled.

• Thus, the second “for-loop” takes O(n log n) time.
• Put total together, the running time is O(m log n) = O(m log n + n log n).

10 1 Introduction

Fig. 1.7 An example for the Kruskal algorithm

Exercises

1. In a city there are N houses, each of which is in need of a water supply. It costs
Wi dollars to build a well at house i, and it costs Cij to build a pipe in between
houses i and j . A house can receive water if either there is a well built there or
there is some path of pipes to a house with a well. Give an algorithm to find the
minimum amount of money needed to supply every house with water.

2. Consider a connected graph G with all distinct edge weights. Show that the
minimum spanning tree of G is unique.

3. Consider a connected graph G = (V ,E) with nonnegative edge weight c :
E → R+. Suppose e∗1, e∗2, . . . , e∗k are edges generated by Kruskal algorithm,
and e1, e2, . . . , ek are edges of a spanning tree in ordering c(e1) ≤ c(e2) ≤
· · · ≤ c(ek). Show that c(e∗i) ≤ c(ei) for all 1 ≤ i ≤ k.

Historical Notes 11

4. Let V be a fixed set of n vertices. Consider a sequence of m undirected edges
e1, e2, . . . , em. For 1 ≤ i ≤ m, let Gi denote the graph with vertex set V and
edge set Ei = {e1, . . . , ei}. Let ci denote the number of connected components
of Gi . Design an algorithm to compute ci for all i. Your algorithm should be
asymptotically as fast as possible. What is the running time of your algorithm?

5. There are n points lying in the Euclidean plane. Show that there exists a
minimum spanning tree on these n points such that every node (i.e., point) has
degree at most five.

6. Can you modify Kruskal algorithm to compute a maximum weight spanning
tree?

7. Consider a connected graph G = (V ,E) with edge weight c : E → R, i.e.,
the weight is possibly negative. Does Kruskal algorithm work for computing a
minimum weight spanning tree?

8. Consider a connected graph G = (V ,E) with nonnegative edge weight c :
E → R+. Suppose edge e is unique longest edge in a cycle. Show that e cannot
be included in any minimum spanning tree.

9. Consider a connected graph G = (V ,E) with nonnegative edge weight c :
E → R+. While a cycle exists, delete the longest edge from the cycle. Show
that this computation ends at a minimum spanning tree.

10. Consider a game with two players on an undirected given graph G. Two players
take turn alternatively. The first player removes an edge of his/her choice.
Then the second player adds an edge of her/his choice. The rule is that no
removed edge can be added back, and no added edge can be removed. The
first player wins if he/she manages to disconnect the graph. The second player
wins if she/he manages to have a spanning tree in the graph. Prove that the
second player has a winning strategy if and only if G contains two edge-disjoint
spanning trees.

Historical Notes

There are many books which have been written for combinatorial optimization
[72, 105, 264, 272, 275, 335, 358, 367, 368]. There are also many books published
in design and analysis of computer algorithms [73, 280], which cover a large
portion on combinatorial optimization problems. However, those books mainly on
computing exact optimal solutions and possibly a small part on approximation
solutions. For approximation solutions, a large part of materials are usually covered
in separated books [100, 387, 408]. For issues on computational complexity, the
reader may refer to [99, 260].

In recent developments of technology, combinatorial optimization gets a lot of
new applications and new research directions [337, 338, 422, 425]. In this book,
we try to meet requests from various areas for teaching, research, and reference,
to put together three components, the classic part of combinatorial optimization,
approximation theory developed in recent years, and newly appeared nonlinear
combinatorial optimization.

Chapter 2
Divide-and-Conquer

Defeat Them in Detail: The Divide and Conquer Strategy. Look
at the parts and determine how to control the individual parts,
create dissension and leverage it.

—Robert Greene

The divide-and-conquer is an important technique for design of algorithms. In this
chapter, we will employ several examples to introduce this technique, including
the rectilinear minimum spanning tree, the Fibonacci search method, and the
sorting problem. Sorting is not a combinatorial optimization problem. However,
it appears in algorithms very often as a procedure, especially in algorithms for
solving combinatorial optimization problems. Therefore, we would like to make
more discussion in this chapter.

2.1 Algorithms with Self-Reducibility

There exist a large number of algorithms in which the problem is reduced to several
subproblems, each of which is the same problem on a smaller-size input. Such a
problem is said to have the self-reducibility, and the algorithm is said to be with
self-reducibility.

For example, consider sorting problem again. Suppose input contains n numbers.
We may divide these n numbers into two subproblems. One subproblem is the
sorting problem on �n/2� numbers, and the other subproblem is the sorting problem
on �n/2� numbers. After completely sorting each subproblem, combine two sorted
sequences into one. This idea will result in a sorting algorithm, called the merge
sort. The pseudocode of this algorithm is shown in Algorithm 1.

The main body calls a procedure. This procedure contains two self-calls, which
means that the merge sort is a recursive algorithm, that is, the divide will continue
until each subproblem has input of single number. Then this procedure employs
another procedure (Merge) to combine solutions of subproblems with smaller

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_2&domain=pdf

 7680 61494 a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_2

14 2 Divide-and-Conquer

Algorithm 1 Merge sort
Input: n numbers a1, a2, . . . , an in array A[1 . . . n].
Output: n numbers ai1 ≤ ai2 ≤ · · · ≤ ain in array A.
1: Sort(A, 1, n)

2: return A[1 . . . n]
Procedure Sort(A, p, r).
% Sort r − p + 1 numbers ap, ap+1, . . . , ar in array A[p . . . r]. %
1: if p < r then
2: q ← �(p + r)/2�
3: Sort(A, p, q)

4: Sort(A, q + 1, r)

5: Merge(A, p, q, r)

6: end if
7: return A[p . . . r]
Procedure Merge(A, p, q, r).
% Merge sorted two arrays A[p . . . q] and A[p + 1 . . . r] into one. %
1: for i ← 1 to q − p + 1 do
2: B[i] ← A[p + i − 1]
3: end for
4: i ← 1
5: j ← p + 1
6: B[q − p + 2] ← +∞
7: A[r + 1] ← +∞
8: for k ← p to r do
9: if B[i] ≤ A[j] then

10: A[k] ← B[i]
11: i ← i + 1
12: else
13: A[k] ← A[j]
14: j ← j + 1
15: end if
16: end for
17: return A[p . . . r]

inputs into subproblems with larger inputs. This computation process on input
{5, 2, 7, 4, 6, 8, 1, 3} is shown in Fig. 2.1.

Note that the running time of procedure Merge at each level is O(n). Let t (n) be
the running time of merge sort on input of size n. By the recursive structure, we can
obtain that t (1) = 0 and

t (n) = t (�n/2�) + t (�n/2�) + O(n).

Suppose

t (n) ≤ 2 · t (�n/2�) + c · n

for some positive constant c. Define T (1) = 0 and

2.1 Algorithms with Self-Reducibility 15

Fig. 2.1 Computation process of merge sort

T (n) = 2 · T (�n/2�) + c · n.

By induction, we can prove that

t (n) ≤ T (n) for all n ≥ 1.

For base step, t (1) = 0 = T (1). For induction step,

t (n) ≤ 2 · t (�n/2�) + c · n
≤ 2 · T (�n/2�) + c · n (by induction hypothesis)

= T (n).

Now, let us discuss how to solve recursive equation about T (n). Usually, we use
two stages. In the first stage, we consider special numbers n = 2k and employ the
recursive tree to find T (2k) (Fig. 2.2), that is,

T (2k) = 2 · T (2k−1) + c · 2k

= 2 · (2 · T (2k−2) + c · 2k−1) + c · 2k

= . . .

= 2kT (1) + kc · 2k

16 2 Divide-and-Conquer

Fig. 2.2 Recursive tree

= c · k2k.

In general, we may guess that T (n) ≤ c′ · n log n for some constant c′ > 0. Let
us show it by mathematical induction.

First, we choose c′ to satisfy T (n) ≤ c′ for n ≤ n0 where n0 will be determined
later. This choice will make T (n) ≤ c′n log n for n ≤ n0, which meets the
requirement for the basic step of mathematical induction.

For induction step, consider n ≥ n0 + 1. Then we have

T (n) = 2 · T (�n/2�) + c · n
≤ 2 · c′�n/2� log�n/2� + c · n
≤ 2 · c′((n + 1)/2)(log(n + 1) − 1) + c · n
= c′ · (n + 1) log(n + 1) − c′(n + 1) + c · n
≤ c′(n + 1)(log n + 1/n) − (c′ − c)n − c′

= c′n log n + c′ log n − (c′ − c)n + c′/n.

Now, we choose n0 sufficiently large such that n/2 > log n + 1/n and c′ >

max(2c, T (1), . . . , T (n0)). Then the above mathematical induction proof will be
passed. Therefore, we obtained the following.

Theorem 2.1.1 Merge sort runs in O(n log n) time.

By the mathematical induction, we can also prove the following result.

Theorem 2.1.2 Let T (n) = aT (n/b) + f (n) where constants a > 1, b > 1, and
n/b mean �n/b� or �n/b�. Then we have the following:

2.1 Algorithms with Self-Reducibility 17

1. If f (n) = O(nlogb a−ε) for some positive constant ε, then T (n) = �(nlogb a).
2. If f (n) = �(nlogb a), then T (n) = �(nlogb a log n).
3. If f (n) = �(nlogb a+ε) for some positive constant ε and moreover, af (n/b) ≤

cf (n) for sufficiently large n and some constant c < 1, then T (n) = �(f (n)).

In Fig. 2.1, we see a tree structure between problem and subproblems. In general,
for any algorithm with self-reducibility, its computational process will produce a set
of subproblems on which we can also construct a graph to describe relationship
between them by adding an edge from subproblem A to subproblem B if at an
iteration, subproblem A is reduced to several problems, including subproblem B.
This graph is called the self-reducibility structure of the algorithm.

All algorithms with tree self-reducibility structure form a class, called divide-
and-conquer, that is, an algorithm is in class of divide-and-conquer if and only
if its self-reducibility structure is a tree. Thus, the merge sort is a divide-and-
conquer algorithm.

In a divide-and-conquer algorithm, it is not necessary to divide a problem evenly
or almost evenly. For example, we consider another sorting algorithm, called Quick
Sort. The idea is as follows.

In merge sort, the procedure Merge takes O(n) time, which is the main
consumption of time. However, if A[i] ≤ A[q] for p ≤ i < q and A[q] ≤ A[j] for
q < j ≤ r , then this procedure can be skipped, and after sort A[p . . . q − 1] and
A[q + 1 . . . r], we can simply put them together to obtain sorted A[p . . . r].

In order to have above property satisfied, Quick Sort uses A[r] to select all
elements A[p . . . r − 1] into two subsequences such that one contains elements less
than A[r] and the other one contains elements at least A[r]. A pseudocode of quick
sort is as shown in Algorithm 2.

The division is not balanced in Quick Sort. In the worst case, one part contains
nothing, and the other contains r − p elements. This will result in running time
O(n2). However, Quick Sort has expected running time O(n log n). To see it, let
T (n) denote the running time for n numbers. Note that the procedure Partition runs
in linear time. Then, we have

E[T (n)] ≤ 1

n
(E[T (n − 1)] + c1n)

+1

n
(E[T (1)] + E[T (n − 2)] + c1n)

+ · · ·
+1

n
(E[T (n − 1)] + c1n)

= c1n + 2

n

n−1∑
i=1

E[T (i)].

18 2 Divide-and-Conquer

Algorithm 2 Quick sort
Input: n numbers a1, a2, . . . , an in array A[1 . . . n].
Output: sorted numbers ai1 ≤ ai2 ≤ · · · ≤ ain in array A.
1: Quicksort(A, 1, n)

2: return A[1 . . . n]
Procedure Quicksort(A, p, r).
% Sort r − p + 1 numbers ap, ap+1, . . . , ar in array A[p . . . r]. %
1: if p < r then
2: q ← Partition(A, p, r)

3: Quicksort(A, p, q − 1)

4: Quicksort(A, q + 1, r)

5: end if
6: return A[p . . . r]
Procedure Partition(A, p, r).
% Find q such that there are q − p + 1 elements less than A[r] and others bigger than or equal to
A[r] %
1: x ← A[r]
2: i ← p − 1
3: for j ← p − 1 to r − 1 do
4: if A[j] < x then
5: i ← i + 1 and exchange A[i] ↔ A[j]
6: end if
7: exchange A[i + 1] ↔ A[r]
8: end for
9: return i + 1

Now, we prove by induction on n that

E[T (n)] ≤ cn log n

for some constant c. For n = 1, it is trivial. Next, consider n ≥ 2. By induction
hypothesis,

E[T (n)] ≤ c1n + 2c

n

n−1∑
i=1

i log i

= c1n + c(n − 1) log
(
�n−1

i=1 ii
)2/(n(n−1))

≤ c1n + c(n − 1) log
12 + 22 + · · · + (n − 1)2

n(n − 1)/2

= c1n + c(n − 1) log
2n − 1

3

≤ c1n + cn log
2n

3

2.2 Rectilinear Minimum Spanning Tree 19

= cn log n +
(

c1 − c log
3

2

)
n.

Choose c ≥ c1/ log 3
2 . We obtain E[T (n)] ≤ cn log n.

Theorem 2.1.3 Expected running time of Quick Sort is O(n log n).

2.2 Rectilinear Minimum Spanning Tree

Consider two points A = (x1, y1) and B = (x2, y2) in the plane. The rectilinear
distance of A and B is defined by

d(A,B) = |x1 − x2| + |y1 − y2|.

The rectilinear plane is the plane with the rectilinear distance, denoted by L1-plane.
In this section, we study the following problem.

Problem 2.2.1 (Rectilinear Minimum Spanning Tree) Given n points in the
rectilinear plane, compute the minimum spanning tree on those n given points.

In Chap. 1, we already present Kruskal algorithm which can compute a minimum
spanning tree within O(m log n) time. In this section, we will improve this result by
showing that the rectilinear minimum spanning tree can be computed in O(n log n)

time. To do so, we first study an interesting problem as follows.

Problem 2.2.2 (All Northeast Nearest Neighbors) Consider a set P of n points in
the rectilinear plane. For each A = (xA, yA) ∈ P , another point B = (xB, yB) ∈ P

is said to lie in northeast (NE) area of A if xA ≤ xB and yA ≤ yB , but A �= B.
Furthermore, B is the NE nearest neighbor of A if B has the shortest distance from
A among all points lying in the NE area of A. This problem is required to compute
the NE nearest neighbor for every point in P . (The NE nearest neighbor of a point
A is “none” if no given point lies in the northeast area of A.)

Let us design a divide-and-conquer algorithm to solve this problem. For sim-
plicity of description, assume all n points have distinct x-coordinates and distinct
y-coordinates. Now, we bisect n points by a vertical line L. Let Pl be the set of
points lying on the left side of L and Pr the set of points lying on the right side
of L. Suppose we already solve the all NE nearest neighbors problem on input
point sets Pl and Pr , respectively. Let us discuss how to combine solutions for two
subproblems into a solution for all NE nearest neighbors on P .

For point A in Pr , the NE nearest neighbor in Pr is also the NE nearest neighbor
in P . However, for point A in Pl , the NE nearest neighbor in Pl may not be the NE
nearest neighbor in P . Actually, let B1 denote the NE nearest neighbor of A in Pl

and Br the NE nearest neighbor of A for B2 in Pr . Then, if d(A,B1) ≤ d(A,B2),

20 2 Divide-and-Conquer

then the NE nearest neighbor of A in P is B1; otherwise, it is B2. Therefore, to
complete the combination task, it is sufficient to compute the NE nearest neighbors
in Pr for all points in Pl . We will show that this computation takes O(n) time. To
do so, let us first show a lemma.

Lemma 2.2.3 Consider four points A, B, C, and D in the rectilinear plane.
Suppose C and D lie in the northeast area of A and the northeast area of B. Then
d(A,C) ≤ d(A,D) if and only if d(B,C) ≤ d(B,D).

Proof Clearly, we have

d(A,C) = (xC − xA) + (yC − yA) ≤ d(A,D) = (xD − xA) + (yD − yA)

⇔ xC + yC ≤ xD + yD

⇔ d(B,C) = (xC − xB) + (yC − yB) ≤ d(B,D) = (xD − xB) + (yD − yB).

�
By this lemma, we can compute the NE nearest neighbors in Pr for all points in

Pl as follows.

• For Pl , put all points in decreasing ordering of y-coordinates. For Pr , also, put all
points in deceasing ordering of y-coordinates. Put none in Pr as the first element.
Assume that none has y-coordinate +∞ and for any point A ∈ Pl , d(A, none) =
+∞.

• Employ three pointers left, right, and min. left will be located in Pl . right and min
work in Pr and none.

• Initially, assign left with the first point in Pl , and assign right and min with the
first element Pr .

• If right has y-coordinate higher than left and d(lef t, right) ≥ d(lef t,min),
then move right to next point in Pr .

• If right has y-coordinate higher than left and d(lef t, right) < d(lef t,min),
then set min = right, and move right to next one in Pr .

• If right has y-coordinate lower than left, then min is the NE nearest neighbor of
left. Put this fact in record, and move left to next one in Pl .

Since left, right, and min always move down and never move up, above procedure
runs in O(n) time. Let T (n) be the running time for computing all NE nearest
neighbors for n points. Then we obtain T (n) = 2T (�n/2�) + O(n). Therefore,
T (n) = O(n log n).

We make a remark on the case that P contains points with the same x-coordinate
or y-coordinates. If P has some points with the same x-coordinate, then in order to
partition P into two even parts, we may also consider their y-coordinates. If P has
some points with same y-coordinate, then we may need to give a little adjustment
for combination procedure.

Theorem 2.2.4 Computing all NE nearest neighbors for n points can be done in
O(n log n) time.

2.2 Rectilinear Minimum Spanning Tree 21

Fig. 2.3 Eight octants of point A

Now, we move back our attention to the rectilinear minimum spanning tree.
Consider any point A. As shown in Fig. 2.3, divide the area surrounding A into

eight octants. To make them disjoint, we assume that each octant contains only one
boundary, which can be reached from an interior ray to turn in counterclockwise
direction.

Lemma 2.2.5 Suppose (A,B) is an edge in a rectilinear minimum spanning tree.
Then B must be the nearest neighbor of A in an octant.

Proof Without loss of generality, assume that B lies in octant I of point A. For
contradiction, suppose that B is not the nearest neighbor of A in octant I. Let C be
the nearest neighbor of A in octant I, i.e., C lies in octant I and d(A,C) < d(A,B).
Note that

{D ∈ octant I | d(A,D) ≤ d(A,B)}

is a triangle without boundary (A,B), which has a property that every two points
in this triangle has rectilinear distance less than d(A,B) (Fig. 2.3). Therefore,
d(C,B) < d(A,B).

Remove edge (A,B) from the rectilinear minimum spanning tree, which will
partition the tree into two connected components, containing points A and B,
respectively. If A and C lie in the same component, then add edge (C,B); otherwise,
C and B must lie in the same component, and add edge (A,C). Therefore, we will
obtain a shorter rectilinear minimum spanning tree, a contradiction.
�

Construct a graph G in the following way: For each point A, if an octant of A

contains another given point, then find a nearest neighbor B for A in this octant, and
add edge (A,B) to G.

Lemma 2.2.6 G contains a rectilinear minimum spanning tree.

Proof Consider a rectilinear minimum spanning tree T . For each point A, T must
contain an edge (A,B). By Lemma 2.2.5, B is the nearest neighbor of A in an
octant. Suppose (A,B) is not an edge of G. Then G must contain an edge (A,C)

22 2 Divide-and-Conquer

lying in the same octant, and C is another nearest neighbor of A in the same octant.
Note that

d(A,B) = d(A,C) > d(B,C).

Delete (A,B) from tree T . Then T is partitioned into two connected components.
We claim that C and B must lie in the same component. In fact, otherwise, assume
that A and C lie in the same component. Then we can shorten T by replacing (A,B)

with (B,C), contradicting the minimality of T . Therefore, our claim is tree. It
follows that replacing (A,B) by (A,C) in T results in another minimum spanning
tree T ′. Continue above operations; we will find a rectilinear minimum spanning
tree contained in G.
�

Lemma 2.2.7 G can be constructed in O(n log n) time.

Proof For each point A, its octant represents a direction. Fix an octant, i.e., fix a
direction. We claim that computing all octant nearest neighbors for all given points
in P takes O(n log n) time. Without loss of generality, consider octant I. Define a
mapping

φ : (x, y) → ((x − y)/2, y).

Then φ has the following properties:

• Point B lies in octant I of point A if and only if φ(B) lies in the first quadrant of
φ(A).

• d(A,B) ≤ d(A,C) if and only d(φ(A), φ(B)) ≤ d(φ(A), φ(C)).

It follows from those properties that B is the octant nearest neighbor of A if and
only if φ(B) is the NE nearest neighbor of φ(A). This means that computing all
octant nearest neighbors can be reduced to computing all NE nearest neighbors. By
Theorem 2.2.4, this computation can be done in O(n log n) time.

For each of eight octants, O(n log n) time is required. The total time is still
bounded by O(n log n).
�

Theorem 2.2.8 The rectilinear minimum spanning tree can be computed in
O(n log n) time where n is the number of given points.

Proof By Lemmas 2.2.6 and 2.2.7, it is sufficient to compute the minimum spanning
tree of graph G with Kruskal algorithm, since the number of edges in G is bounded
by O(n). Kruskal algorithm will spend O(n log n) time on G.
�

2.3 Fibonacci Search 23

2.3 Fibonacci Search

Consider a sequence of n distinct integers which are stored in an array A[1..n]. An
element A[i] is a local maximum if A[i − 1] < A[i] and A[i] > A[i + 1] for
1 < i < n, A[i] > S[i + 1] for i = 1, and A[i − 1] < A[i] for i = n. The
sequence A[1..n] is said to be bitonic if it contains exactly one local maximum,
which is actually the global maximum one. Consider the following problem.

Problem 2.3.1 (Maximum Element in Bitonic Sequence) Given a sequence
A[1..n] of n distinct integers, find the maximum element.

The problem can be solved by the following lemma.

Lemma 2.3.2 Assume 1 ≤ i < j ≤ n. If A[i] < A[j], then A[i + 1..n] must
contain a local maximum. If A[i] > A[j], then A[1..j − 1] must contain a local
maximum.

Proof First, assume A[i] < A[j]. Consider two cases.

Case 1. A[j] < A[j + 1]. In this case, if none of A[j + 1], . . . , A[n − 1] is a
local maximum, then A[j + 1] < A[j + 2] < · · · < A[n]. Hence, A[n]
is a local maximum.

Case 2. A[j] > A[j + 1]. In this case, if none of A[j], A[j − 1], . . . , A[i − 1] is
a local maximum, then A[j] < A[j − 1] < · · · < A[i], contradicting to
A[i] < A[j].

Similarly, we can show the second statement.
�
For n ≥ 4, we can choose i and j such that 1 ≤ i < j ≤ n, i ≥ n/3, and

n − j + 1 ≥ n/3. With such i and j , for each comparison, the sequence can be
cut off at least one third. Therefore, the maximum element can be found within
O(log n) comparisons.

Next, we consider a situation that A[i] = f (i), that is, A[i] has to be obtained
through evaluation of a function f (i). Therefore, we want to find the maximum
element with the minimum number of evaluations. In this situation, i and j will be
selected based on a rule with Fibonacci number Fi defined as follows:

F0 = F1 = 1, Fi = Fi−2 + Fi−1 for i ≥ 2.

Associated Fibonacci search method is as follows.

Step 0. Select the maximum m such that Fm ≤ n. Set k ← 0.
Step 1. Set i ← k + Fm−1 and j ← k + Fm.
Step 2. If A[i] < A[j], then set k ← i.
Step 3. Set m ← m − 1.
Step 4. If m ≥ 2, then go back to Step 1. Else, return A[i + 1], i.e., A[k + 1] is

the maximum element.

About this method, we have the following result.

24 2 Divide-and-Conquer

Theorem 2.3.3 Let m be the maximum integer such that Fm ≤ n. Then, it is
sufficient to make m evaluations to search the maximum element from a bitonic
sequence of n distinct integers. Moreover, in the worst case, it is necessary to make
m evaluations.

Proof Sufficiency can be seen from the Fibonacci search algorithm. We prove the
necessity by induction on m. For m = 1, we have n = 1, and evaluation for A[1]
is required. For m = 2, we have n = 2, and evaluations for A[1] and A[2] are
necessary. For m ≥ 3, suppose we compare A[i] and A[j] for 1 ≤ i < j ≤ n.
Consider two cases.

Case 1. i ≤ Fm−2. In this case, n− i ≥ Fm−1. If A[i] < A[j], then the maximum
element is in A[i+1..n]. By induction hypothesis, in the worst case, m−1
evaluations are required to find the maximum element. Add A[i]. Total
number of evaluations is m.

Case 2. i > Fm−2. If A[i] > A[j], then the maximum element is in A[1..j −
1]. In the next step, we need to select a number k ∈ {1, . . . , i − 1} ∪
{i + 1, . . . , j − 1} and compare A[i] and A[k]. It does not matter if k ∈
{1, . . . , i − 1} or k ∈ {i + 1, . . . , j − 1}, we can have a comparison
result to keep A[1..i − 1] left. Since i − 1 ≥ Fm−2. In the worst case, we
need at least m − 2 evaluations to find the maximum element from the
subsequence containing A[1..i − 1]. Add evaluations on A[i] and A[j].
Total number of required evaluations is at least m.
�

2.4 Heap

Heap is a quite useful data structure. Let us introduce it here and, by the way, give
another sorting algorithm, Heap Sort.

A heap is a nearly complete binary tree, stored in an array (Fig. 2.4). What is
nearly complete binary tree? It is a binary tree satisfying the following conditions:

• Every level other than bottom is complete.
• On the bottom, nodes are placed as left as possible.

For example, binary trees in Fig. 2.5 are not nearly complete. An advantage of nearly
complete binary tree is to operate on it easily. For example, for node i (i.e., a node
with address i), its parent, left-child, and right-child can be easily figured out as
follows:

Parent(i)
return �i/2�.

Left(i)
return 2i.

2.4 Heap 25

Fig. 2.4 A heap

Fig. 2.5 They are not nearly complete

Right(i)
return 2i + 1.

There are two types of heaps with special properties, respectively.

Max-heap: For every node i other than root, A[Parent(i)] ≥ A[i].
Min-heap: For every node i other than root, A[Parent(i)] ≤ A[i].
Max-heap has two special operations: Max-Heapify and Build-Max-Heap. We
describe them as follows.

When operation Max-Heapify(A, i) is called, two subtrees rooted, respectively,
at Left(i) and Right(i) are max-heaps, but A[i] may not satisfy the max-heap
property. Max-Heapify(A, i) makes the subtree rooted at A[i] become a max-heap
by moving A[i] downside. An example is as shown in Fig. 2.6.

The following is an algorithmic description for this operation.

26 2 Divide-and-Conquer

Fig. 2.6 An example for Max-Heapify(A, i)

Max-Heapify(A, i)

if Left(i) ≥Right(i) and Left(i) > A[i]
then Exchange A[i] and Left(i)

Max-Heapify(A, Left(i))
if Left(i) <Right(i) and Right(i) > A[i]

then Exchange A[i] and Right(i)
Max-Heapify(A, Right(i));

Operation Build-Max-Heap applies to a heap and makes it become a max-heap,
which can be described as follows. (Note that Parent(size[A]) = �size[A]/2�.)

Build-Max-Heap(A)

for i ← �size[A]/2� down to 1
do Max-Heapify(A, i);

An example is as shown in Fig. 2.7.
It is interesting to estimate the running time of this operation. Let h be the height

of heap A. Then h = �log2 n�. At level i, A has 2i nodes, at each of which Max-
Heapify spends at most h − i steps to float down. Therefore, the running time of
Build-Max-Heap(A) is

2.4 Heap 27

Fig. 2.7 An example for Build-Max-Heap(A)

O

(
h∑

i=0

2i (h − i)

)
= O

(
2h

h∑
i=0

h − i

2h−i

)

= O

(
2h

h∑
i=0

i

2i

)

= O(n).

Now, as shown in Algorithm 3, a sorting algorithm can be designed with max-
heap. Initially, build a max-heap A. In each subsequent step, the algorithm first
exchanges A[1] and A[heap − size(A)] and then reduces heap − size(A) by 1,
meanwhile with Max-Heapify(A, 1) to recover the max-heap. An example is as
shown in Fig. 2.8.

28 2 Divide-and-Conquer

Algorithm 3 Heap Sort
Input: n numbers a1, a2, . . . , an in array A[1 . . . n].
Output: n numbers ai1 ≤ ai2 ≤ · · · ≤ ain in array A.
1: Build-Max-Heap(A)

2: for i ← n down to 2 do
3: exchange A[1] ↔ A[i]
4: heap-size [A] ← i − 1
5: Max-Heapify(A, 1)

6: end for
7: return A[1 . . . n]

Fig. 2.8 An example for Heap Sort

2.4 Heap 29

Fig. 2.9 Decision tree

Since the number of steps is O(n) and Max-Heapify(A, 1) takes O(log n) time,
the running time of Heap Sort is O(n log n).

Theorem 2.4.1 Heap Sort runs in O(n log n) time.

We already have two sorting algorithms with O(n log n) running time and one
sorting algorithm with expected O(n log n) running time. But, there is no sorting
algorithm with running time faster than O(n log n). Is O(n log n) a barrier of
running time for sorting algorithm? In some sense, the answer is yes. All sorting
algorithms presented previously belong to a class, called comparison sort.

In comparison sort, order information about input sequence can be obtained only
by comparison between elements in the input sequence. Suppose input sequence
contains n positive integers. Then there are n! possible permutations. The aim of
sorting algorithm is to determine a permutation which gives a nondecreasing order.
Each comparison divides the set of possible permutations into two subsets. The
comparison result tells which subset contains a nondecreasing order. Therefore,
every comparison sort algorithm can be represented by a binary decision tree
(Fig. 2.9). The (worst case) running time of the algorithm is the height (or depth)
of the decision tree.

Since the binary decision tree has n! leaves, its height T (n) satisfies

1 + 2 + · · · + 2T (n) ≥ n!

that is,

2T (n)+1 − 1 ≥ √
2πn

(n

e

)n

.

30 2 Divide-and-Conquer

Thus,

T (n) = �(n log n).

Therefore, no comparison sort can do better than O(n log n).

Theorem 2.4.2 The running time of any comparison sort is �(n log n).

2.5 Counting Sort

To break the barrier of running time O(n log n), one has to design a sorting
algorithm without using comparison. Counting sort is such an algorithm.

Let us use an example to illustrate Counting Sort as shown in Algorithm 4. This
algorithm contains three arrays, A, B, and C. Array A contains input sequence of
positive integers. Suppose A = {4, 6, 5, 1, 4, 5, 2, 5}. Let k be the largest integer
in input sequence. Initially, the algorithm makes preprocessing on array C in three
stages:

1. Clean up array C.
2. For 1 ≤ i ≤ k, assign C[i] with the number of i’s appearing in array A. (In the

example, C = {1, 1, 0, 2, 3, 1} at this stage.)
3. Update C[i] such that C[i] is equal to the number of integers with value at most

i appearing in A. (In the example, C = {1, 2, 2, 4, 7, 8} at this stage.)

With the help of array C, the algorithm moves element A[j] to array B for j = n

down to 1, by

B[C[A[j]]] ← A[j]

Algorithm 4 Counting Sort
Input: n numbers a1, a2, . . . , an in array A[1 . . . n].
Output: n numbers ai1 ≤ ai2 ≤ · · · ≤ ain in array B.
1: for i ← 1 to k do
2: C[i] ← 0
3: end for
4: for j ← 1 to n do
5: C[A[j]] ← C[A[j]] + 1
6: end for
7: for i ← 2 to k do
8: C[i] ← C[i] + C[i − 1]
9: end for

10: for j ← n down to 1 do
11: B[C[A[j]]] ← A[j]
12: C[A[j]] ← C[A[j]] − 1
13: end for
14: return B[1 . . . n]

2.5 Counting Sort 31

and then updates array C by

C[A[j]] ← C[A[j]] − 1.

This part of computation about the example is as follows.

C 1 2 2 4 7 8
A 4 6 5 1 4 5 2 5̂
B 5

C 1 2 2 4 6 8
A 4 6 5 1 4 5 2̂ 5
B 2 5

C 1 1 2 4 6 8
A 4 6 5 1 4 5̂ 2 5
B 2 5 5

C 1 1 2 4 5 8
A 4 6 5 1 4̂ 5 2 5
B 2 4 5 5

C 1 1 2 3 5 8
A 4 6 5 1̂ 4 5 2 5
B 1 2 4 5 5

C 0 1 2 3 5 8
A 4 6 5̂ 1 4 5 2 5
B 1 2 4 5 5 5

C 0 1 2 3 4 8
A 4 6̂ 5 1 4 5 2 5
B 1 2 4 5 5 5 6

C 0 1 2 3 4 7
A 4̂ 6 5 1 4 5 2 5
B 1 2 4 4 5 5 5 6

Now, let us estimate the running time of Counting Sort.

Theorem 2.5.1 Counting Sort runs in O(n + k) time.

32 2 Divide-and-Conquer

Proof The loop at line 1 takes O(k) time. The loop at line 4 takes O(n) time. The
loop at line 7 takes O(k) time. The loop at line 10 takes O(n) time. Putting all
together, the running time is O(n + k).
�

A student found a simple way to improve Counting Sort. Let consider the same
example. At the second stage, C = {1, 1, 0, 2, 3, 1} where C[i] is equal to the
number of i’s appearing in array A. The student found that with this array C, array
B can be put in integers immediately without array A.

C 1 1 0 2 3 1
B 1
B 1 2
B 1 2 4 4
B 1 2 4 4 5 5 5
B 1 2 4 4 5 5 5 6

Is this method acceptable? The answer is no. Why not? Let us explain.
First, we should note that those numbers in input sequence may come from

labels of objects. The same numbers may come from different objects. For
example, consider a sequence of objects {329, 457, 657, 839, 436, 720, 355}. If
we use their first digits from left as labels, then we will obtain a sequence
{9, 7, 7, 9, 6, 0, 5}. When apply Counting Sort on this sequence, we will obtain a
sequence {720, 355, 436, 457, 657, 329, 839}. This is because a label gets moved
together with its object in Counting Sort.

Moreover, consider two objects 329 and 839 with the same label 9. In input
sequence, 329 lies on the left side of 839. After Counting Sort, 329 lies still on the
left side of 839.

A sorting algorithm is stable if for different objects with the same label, after
labels are sorted, the ordering of objects in output sequence is the same as their
ordering in input sequence. The following can be proved easily.

Lemma 2.5.2 Counting Sort is stable.

The student’s method cannot keep stable property.
With stable property, we can use Counting Sort in the following way. Remember,

after sorting the leftmost digit, we obtain sequence

{720, 355, 436, 457, 657, 329, 839}.

Now, we continue to sort this sequence based on the second leftmost digit. Then we
will obtain sequence

{720, 329, 436, 839, 355, 457, 657}.

Continue to sort based on the rightmost digit, we will obtain sequence

2.6 More Examples 33

{329, 355, 436, 457, 657, 720, 839}.

Now, let us use this technique to solve a problem.

Example 2.5.3 There are n integers between 0 and n2 − 1. Design an algorithm to
sort them. The algorithm is required to run in O(n) time.

Each integer between 0 and n2 − 1 can be represented as

an + b for 0 ≤ a ≤ n − 1, 0 ≤ b ≤ n − 1.

Apply Counting Sort first to b and then to a. Each application takes O(n) = O(n+
k) time since k = n. Therefore, total time is still O(n).

In general, suppose there are n integers, each of which can be represented in the
form

adkd + ad−11kd−1 + · · · + a0

where 0 ≤ ai ≤ k − 1 for 0 ≤ i ≤ d. Then we can sort these n integers by using
Counting Sort first on a0, second on a1, . . . , finally on ad . This method is called
Radix Sort.

Theorem 2.5.4 Radix Sort takes O(d(n + k)) time.

2.6 More Examples

Let us study more examples with divide-and-conquer technique and sorting algo-
rithms.

Example 2.6.1 (Maximum Consecutive Subsequence Sum) Given a sequence of n

integers, find a consecutive subsequence with maximum sum.

Divide input sequence S into two subsequence S1 and S2 such that |S1| = �n/2�
and |S2| = �n/2�. Let MaxSub(S) denote the consecutive subsequence of S with
maximum sum. Then there are two cases.

Case 1. MaxSub(S) is contained in either S1 or S2. In this case, MaxSub(s) =
MaxSub(S1) or MaxSub(s) = MaxSub(S2).

Case 2. MaxSub(S) ∩ S1 �= ∅ and MaxSub(S) ∩ S2 �= ∅. In this case,
MaxSub(S) ∩ S1 is the tail subsequence with maximum sum. That
is, suppose S1 = {a1, a2, . . . , ap}. Then among subsequences {ap},
{ap−1, ap}, . . . , {a1, . . . , ap}, MaxSub(S)∩S1 is the one with maximum
sum. Therefore, it can be found in O(n) time. Similarly, MaxSub(S)∩S2
is the head subsequence with maximum sum, which can be computed in
O(n) time.

34 2 Divide-and-Conquer

Fig. 2.10 Closest pair of points

Suppose MaxSub(S) can be computed in T (n) time. Summarized from the
above two cases, we obtain

T (n) = 2T (�n/2�) + O(n).

Therefore, T (n) = O(n log n).
Next, we present another algorithm running in O(n) time.
Let Sj be the maximum sum of a consecutive subsequence ending at the j th

integer aj . Then, we have

S1 = a1

Sj+1 =
{

Sj + aj+1 if Sj > 0,

aj+1 if Sj ≤ 0.

This recursive formula gives a linear time algorithm to compute Sj for all 1 ≤
j ≤ n. From them, find the maximum one, which is the solution for the maximum
consecutive subsequence sum problem.

Example 2.6.2 (Closest Pair of Points) Given n points in the Euclidean plane, find
a pair of points to minimize the distance between them.

Initially, we may assume that all n points have distinct x-coordinates since, if
not, we may rotate the coordinate system a little.

Now, divide all points into two half parts based on x-coordinates. Find the closest
pair of points in each part. Suppose δ1 and δ2 are distances of closest pairs in two
parts, respectively. Let δ = min(δ1, δ2). We next study if there is a pair of points
lying in both parts, respectively, and with distance less than δ (Fig. 2.10).

For each point u = (xu, yu) in the left part (Fig. 2.10), consider the rectangle
Ru = {(x, y) | xu ≤ x ≤ xu + δ, yu − δ ≤ y ≤ yu + δ}. It has the following
properties:

• Every point in the right part and within distance δ from u lies in this rectangle.
• This rectangle contains at most six points in the right part because every two

points have distance at least δ.

2.6 More Examples 35

Fig. 2.11 x is selected
through first three steps

For each u in the left part, check every point v lying in Ru, if distance d(u, v) < δ. If
yes, then we keep the record and choose the closest pair of points from them, which
should be the solution. If not, then the solution should either be the closest pair of
points in the left part or the closest pair of points in the right part.

Let T (n) be the time for finding the closest pair of points from n points. Above
method gives a recursive relation

T (n) = 2T (�n/2�) + O(n).

Therefore, T (n) = O(n log n).

Example 2.6.3 (The ith Smallest Number) Given a sequence of n distinct numbers
and a positive integer i, find ith smallest number in O(n) time.

This algorithm consists of five steps. Let us name this algorithm as A(n, i) for
convenience of recursive call.

Step 1. Divide n numbers into �n/5� groups of five elements, possibly except the
last one of less than five elements (Fig. 2.11).

Step 2. Find the median of each group by merge sort. Possibly, for the last group,
there are two median; in such a case, take the smaller one (Fig. 2.11).

Step 3. Make a recursive call A(�n/5�, ��n/5�/2�). This call will find the median
x of �n/5� group median and, moreover, will select the smaller one in case that two
candidates of x exist (Fig. 2.11).

Step 4. Exchange x with the last element in input array, and partition all numbers
into two parts by using Partition procedure in Quick Sort. One part (on the left)
contains numbers less than x, and the other part (on the right) contains numbers
larger than x (Fig. 2.12).

Step 5. Let k be the number of elements in the left part (Fig. 2.12). If k = i − 1,
then x is the ith smallest number. If k ≥ i, then the ith smallest number lies on the

36 2 Divide-and-Conquer

Fig. 2.12 x is selected through the first three steps

left of x and hence makes a recursive call A(k, i). If k ≤ i − 2, then the ith smallest
number lies in the right of x and hence makes a recursive call A(n−k−1, i−k−1).

Now, let us analyze this algorithm. Let T (n) be the running time of A(n, i).

• Steps 1 and 2 take O(n) time.
• Step 3 takes T (�n/5�) time.
• Step 4 takes O(n) time.
• Step 5 takes T (max(k, n − k − 1)) time.

Therefore,

T (n) = T (�n/5�) + T (max(k, n − k − 1)) + O(n).

We claim that

max(k, n − k − 1) ≤ n −
(

3

⌈
1

2

⌈n

5

⌉⌉
− 2

)
.

In fact, as shown in Fig. 2.13,

k + 1 = 3

⌈
1

2

⌈n

5

⌉⌉

and

n − k ≥ 3

⌈
1

2

⌈n

5

⌉⌉
− 2.

2.6 More Examples 37

Fig. 2.13 Estimation of
k + 1 and n − k

Therefore,

n − k − 1 ≤ n − 3

⌈
1

2

⌈n

5

⌉⌉

and

k ≤ n −
(

3

⌈
1

2

⌈n

5

⌉⌉
− 2

)
.

Note that

n −
(

3

⌈
1

2

⌈n

5

⌉⌉
− 2

)
≤ n −

(
3n

10
− 2

)
≤ 7n

10
+ 2.

By the claim,

T (n) ≤ T (�n/5�) + T

(
7n

10
+ 2

)
+ c′n

for some constant c′ > 0. Next, we show that

T (n) ≤ cn (2.1)

for some constant c > 0. Choose

c = max(20c′, T (1), T (2)/2, . . . , T (59)/59).

38 2 Divide-and-Conquer

Fig. 2.14 Largest
rectangular area in histogram

Therefore, (2.1) holds for n ≤ 59. Next, consider n ≥ 60. By induction hypothesis,
we have

T (n) ≤ c(n/5 + 1) + c(7n/10 + 2) + c′n

≤ cn − (cn/10 − 3c − c′n)

≤ cn

since

c(n/10 − 3) ≥ n/20 ≥ c′n.

The first inequality is due to n ≥ 60, and the second one is due to c ≥ 20c′. This
ends the proof of T (n) = O(n).

Example 2.6.4 (Largest Rectangular Area in Histogram) Consider a histogram as
shown in Fig. 2.14. Assume every bar has unit width and heights are h1, h2, . . . , hn,
respectively. Find the largest rectangular area.

Let hk = min(hi, h2, . . . , hj). Denote by m(i, j) the largest rectangular area in
histogram with bars between i and j . Then, we can obtain the following recursive
formula.

m(i, j) = max(m(i, k − 1),m(k + 1, j), hk(j − i + 1)).

It is similar to Quicksort that expected running time can be proved to be O(n log n).

Exercises 39

Exercises

1. Use a recursion tree to estimate a good upper bound on the recurrence T (n) =
3T (�n/2�) + n and T (1) = 0. Use the mathematical induction to prove
correctness of your estimation.

2. Draw the recursion tree for T (n) = 3T (�n/2�) + cn, where c is a positive
constant, and guess an asymptotic upper bound on its solution. Prove your
bound by mathematical induction.

3. Show that for input sequence in decreasing order the running time of Quick
Sort is �(n2).

4. Show that Counting Sort is stable.
5. Find an algorithm to sort n integers in the range 0 to n3 − 1 in O(n) time.
6. Let A[1 : n] be an array of n distinct integers sorted in increasing order.

(Assume, for simplicity, that n is a power of 2.) Give an O(log n)-time
algorithm to decide if there is an integer i, 1 ≤ i ≤ n, such that A[i] = i.

7. Given an array A of integers, please return an array B such that B[i] = |{A[k] |
k > i and A[k] < A[i]}|.

8. Given a string S and an integer k > 0, find the longest substring of s such that
each symbol appears at least k times if it appears in the substring.

9. Given an integer array A, please compute the number of pairs {i, j} with A[i] >

2 · A[j].
10. Given a sorted sequence of distinct nonnegative integers, find the smallest

missing number.
11. Given two sorted sequences with m, n elements, respectively, design and

analyze an efficient divide-and-conquer algorithm to find the kth element
in the merge of the two sequences. The best algorithm runs in time
O(log(max(m, n))).

12. Design a divide-and-conquer algorithm for the following longest ascending
subsequence problem: Given an array A[1..n] of natural numbers, find the
length of the longest ascending subsequence. (A subsequence is a list A[i1],
A[i2], . . . , A[im] where m is the length.)

13. Show that in a max-heap of length n, the number of nodes rooted at which the
subtree has height h is at most � n

2h+1 �.
14. Let A be an n × n matrix of integers such that each row is strictly increasing

from left to right and each column is strictly increasing from top to bottom. Give
an O(n)-time algorithm for finding whether a given number x is an element of
A, i.e., whether x = A(i, j) for some i, j .

15. Let S be a set of n points, pi = (xi, yi), 1 ≤ i ≤ n, in the plane. A point pj ∈ S

is a maximal point of S if there is no other point pk ∈ S such that xk ≥ xj and
yk ≥ yj . In Fig. 2.15, it illustrates the maximal points of a point-set S. Note
that the maximal points form a “staircase” which descends rightward. Give an
efficient divide-and-conquer algorithm to determine the maximal points of S.

16. Let A[1..n] be an array of n distinct integers where n ≥ 2. An element A[i]
is a local maximum if A[i − 1] < A[i] and A[i] > A[i + 1] for 1 < i < n,

40 2 Divide-and-Conquer

Fig. 2.15 Maximal points
and non-maximal points

A[i] > S[i + 1] for i = 1, and A[i − 1] < A[i] for i = n. Please design an
algorithm to find a local maximum in O(log n) time.

17. The maximum subsequence sum problem is defined as follows: Given an array
A[1..n] of integer numbers, find values of i and j with 1 ≤ i ≤ j ≤ n such that∑j

k=i A[i] is maximized. Design a divide-and-conquer algorithm for solving
the maximum subsequence sum problem in time O(n log n).

18. In the plane, there are n distinct points p1, p2, . . . , pn lying on line y = 0 and
also n distinct points q1, q2, . . . , qn lying on line y = 0. Consider n segments
[p1, q1], [p2, q2], . . . , [pn, qn]. Design an algorithm to count how many cross
pairs in these n segments. Your algorithm should run in O(n log n) time.

19. Design a divide-and-conquer algorithm for multiplying n complex numbers
using only 3(n − 1) real multiplications.

20. Consider a 0-1 matrix of order (2n−1)×n. All rows have distinct 0-1 sequences
of length n, that is, no two rows are identical. Design a O(n) time algorithm to
find the missing sequence.

21. Given a sequence of n distinct integers and a positive integer i, finding the ith
smallest one in the sequence can be done in O(n) time (see Example 2.6.3).
Now, consider the problem of finding the ith smallest one for every i =
1, 2, . . . , k. Can you do it in O(n log k) time?

22. An inversion in an array A[1..n] is a pair of indices i and j such that i < j

and A[i] > A[j]. Design an algorithm to count the number of inversions in an
n-element array in O(n log n) time.

23. In Example 2.6.3, a linear time algorithm is given for finding the ith smallest
number in a unsorted list of n distinct integers. Now, let us modify the first two
steps as follows: Initially, suppose all n integers are given in array A. Partition
all input integers into groups of three elements. Then sort each group, and place
its median into another array B. Repeat the same process for B, that is, partition
elements in B into groups of three elements, and then place the median of each
group into array C. Now, make a recursive call to find the median x of C. The
remaining part is the same as later steps in the linear time algorithm. Please
analyze the running time of this modified algorithm.

Historical Notes 41

24. Design an O(nlog2 3) step algorithms for multiplication of two n-digit numbers.
A single step only allows the multiplication/division or addition/subtraction
of single digit numbers. Could you improve your algorithm with running
O(nlog3 5) steps?

Historical Notes

Divide-and-conquer is a popular technique for algorithm design. It has a special
case, decrease-and-conquer. In decrease-and-conquer, the problem is reduced to a
single subproblem. Both divide-and-conquer and decrease-and-conquer have a long
history. Their stamps can be found in many earlier works, such as Gauss’s work on
Fourier transform in 1850 [209], John von Neumann’s work on merge sort in 1945
[258], and John Mauchly’s work in 1946 [258]. Quick Sort was developed by Tony
Hoare in 1959 [210] (published in 1962 [211]). Counting Sort and its applications
to Radix Sort were found by Harold H. Seward in 1954 [73, 258, 362].

The closest-point problem and its variations, such as the problem of all nearest
neighbors, have many applications. Construction of rectilinear minimum spanning
tree in O(n log n) time [192] is one of them. There is another way to obtain
O(n log n)-time algorithm for the rectilinear minimum spanning tree [222], in
which the Voronoi diagram in L1 is constructed in O(n log n) time [274, 363]
and then compute the rectilinear minimum spanning tree in the Voronoi diagram
in O(n) time. The idea was initiated by Yao [433] to consider closest neighbors
in different directions in construction of minimum spanning tree in a plane. In a
Euclidean plane, the minimum spanning tree can also be computed in O(n log n)

time [273, 274, 363]. For planar graphs, the minimum spanning tree can be
computed in O(n) time [63]. Several algorithms exist for a long time for computing
the minimum spanning tree with arbitrary distance [36, 65, 266, 339].

Fibonacci search [140] is motivated from Golden section search [244] to find
the maximum value of a unimodal function since Fk/Fk+1 ← (

√
5 − 1)/2, which

is called the Golden ratio. The Golden section search has received a great deal of
applications [140, 218, 258, 333].

Chapter 3
Dynamic Programming and Shortest
Path

The art of programming is the art of organizing complexity.

—Edsger Dijkstra

A divide-and-conquer algorithm consists of many iterations. Usually, each iteration
contains three steps. In the first step (called the divide step), divide the problem
into smaller subproblems. In the second step (called conquer step), solve those
subproblems. In the third step (called the combination step), combine solutions
for subproblems into a solution for the original problem. Is it true that every
algorithm with each iteration consisting of the above three steps belongs to
the class of divide-and-conquer? The answer is No. In this chapter, we would like
to introduce a class of algorithms, called dynamic programming. Every algorithm in
this class consists of discrete iterations, each of which contains the divide step, the
conquer step, and the combination step. However, they may not be the divide-and-
conquer algorithms. Actually, their self-reducibility structure may not be a tree.

3.1 Dynamic Programming

Let us first study several examples and start from a simpler one.

Example 3.1.1 (Fibonacci Number) Fibonacci number Fi for i = 0, 1, . . . is
defined by

F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2.

The computational process can be considered as a dynamic programming with
self-reducibility structure as shown in Fig. 3.1.

Example 3.1.2 (Labeled Tree) Let a1, a2, . . . , an be a sequence of n positive
integers. A labeled tree for this sequence is a binary tree T of n leaves named
v1, v2, . . . , vn from left to right. We label vi by ai for all i, 1 ≤ i ≤ n. Let Di

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_3&domain=pdf

 7680 61494
a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_3

44 3 Dynamic Programming

Fig. 3.1 Fibonacci numbers

Fig. 3.2 The table of
subproblems T (i, j)

be the length of the path from vi to the root of T . The cost of T is defined by

cost (T) =
n∑

i=1

aiDi.

The problem is to construct a labeled tree T to minimize the cost cost (T) for a
given sequence of positive integers a1, a2, . . . , an.

Let T (i, j) be the optimal labeled tree for subsequence {ai, ai+1, . . . , aj } and
sum(i, j) = ai + ai+1 + · · · + aj . Then

cost (T (i, j)) = min
i≤k<j

{cost (T (i, k)) + cost (T (k + 1, j))} + sum(i, j)

where

sum(i, j) =
{

ai if i = j

ai + sum(i + 1, j) if i < j.

As shown in Fig. 3.2, there are 1 + 2 + · · · + n = n(n+1)
2 subproblems T (i, j) in

the table. From recursive formula, it can be seen that solution of each subproblem
T (i, j) can be computed in O(n) time. Therefore, this dynamic programming runs
totally in O(n3) time.

Actually, the running time of a dynamic programming is often estimated by the
following formula:

running time = (number of subproblems) × (computing time of recursion).

3.1 Dynamic Programming 45

Algorithm 5 Algorithm for labeled tree
Input: A sequence of positive integers a1, a2, . . . , an.
Output: Minimum cost of a labeled tree.
1: return cost (T (1, n)).
function cost (T (i, j)) (i ≤ j)

1: if i = j then
2: temp ← ai

3: else
4: temp ← +∞
5: for k = i to j − 1 do
6: temp ← min(temp, cost (T (i, k)) + cost (T (k + 1, j)) + sum(i, j))

7: end for
8: end if
9: return cost (T (i, j)) ← temp;
function sum(i, j) (i ≤ j)

1: if i = j then
2: return sum(i, j) ← ai

3: else
4: return sum(i, j) ← ai + sum(i + 1, j)

5: end if

Algorithm 6 Algorithm for labeled tree
Input: A sequence of positive integers a1, a2, . . . , an.
Output: Minimum cost of a labeled tree.
1: for i = 1 to n do
2: cost (T (i, i)) ← ai ; sum(i, i) ← ai

3: end for
4: for l = 2 to n do
5: for i = 1 to n − l + 1 do
6: j ← i + l − 1
7: cost (T (i, j)) ← +∞; sum(i, j) ← sum(i, j − 1) + aj

8: for k = i to j − 1 do
9: q ← cost (T (i, k)) + cost (T (k + 1, j)) + sum(i, j)

10: cost (T (i, j)) ← min(cost (T (i, j)), q)

11: end for
12: end for
13: end for
14: return cost (T (1, n))

There are two remarks on this formula: (1) There are some exceptional cases. We
will see one in the next section. (2) The divide-and-conquer can be considered as a
special case of the dynamic programming. Therefore, its running time can also be
estimated with this formula. However, the outcome is usually too rough.

It is similar to the divide-and-conquer that there are two ways to write software
codes for the dynamic programming. The first way is to employ recursive call as
shown in Algorithm 5. The second way is as shown in Algorithm 6 which saves the
recursive calls, and hence in practice, it runs faster with smaller space requirement.

46 3 Dynamic Programming

Fig. 3.3 A rectangle with
point-holes inside

A

B

Before we study the next example, let us first introduce a concept, guillotine cut.
Consider a rectangle P , a cut on P is called a guillotine cut if it cuts P into two
parts. A guillotine partition is a sequence of guillotine cuts.

Example 3.1.3 (Minimum Length Guillotine Partition) Given a rectangle with
point-holes inside, partition it into smaller rectangles without a hole inside by a
sequence of guillotine cuts to minimize the total length of cuts. Here, the guillotine
cut is a vertical or horizontal straight line segment which partitions a rectangle into
two smaller rectangles. An example is shown in Fig. 1.2.

Example 3.1.3 is a geometric optimization problem. It has infinitely many
feasible solutions. Therefore, strictly speaking, it is not a combinatorial optimization
problem. However, it can be reduced to a combinatorial optimization problem.

Lemma 3.1.4 (Canonical Partition) There exists a minimum length guillotine
partition such that every guillotine cut passes through a point-hole.

Proof Suppose there exists a guillotine cut AB not passing through any point-hole
(Fig. 3.3). Without loss of generality, assume that AB is a vertical cut. Let n1 be the
number of guillotine cuts touching AB on the left and n2 the number of guillotine
cuts touching AB on the right. Without loss of generality, assume n1 ≥ n2. Then we
can move AB to the left without increasing the total length of rectangular guillotine
partition, until a point-hole is met. If this moving cannot meet a point-hole, then AB

can be moved to meet another vertical cut or vertical boundary, and in either case,
AB can be deleted, contradicting the optimality of the partition.
�

By Lemma 3.1.4, we may consider only canonical guillotine partitions. During
the canonical guillotine partition, each subproblem can be determined by a rectangle
in which each boundary edge is obtained by a guillotine cut or a boundary edge of a
given rectangle, and hence there are O(n) possibility. This implies that the number
of subproblems is O(n4).

To find an optimal one, let us study a guillotine cut on a rectangle P . Let n be
the number of point-holes. Since the guillotine cut passes a point-hole, there are at

3.1 Dynamic Programming 47

most 2n possible positions. Suppose P1 and P2 are two rectangles obtained from
P by the guillotine cut. Let opt(P) denote the minimum total length of guillotine
partition on P . Then we have

opt(P) = min
candidate cuts

[opt(P1) + opt(P2) + (cut length)],

The computation time for this recurrence is O(n). Therefore, the optimal rectan-
gular guillotine partition can be computed by a dynamic programming in O(n5)

time.
One of the important techniques for design of dynamic programming for a given

problem is to replace the original problem by a proper one which can be easily found
to have a self-reducibility. The following is such an example.

Example 3.1.5 Consider a horizontal strip. There are n target points lying inside
and m unit disks with centers lying outside of the strip where each unit disk di has
radius one and a positive weight w(di). Each target point is covered by at least one
unit disk. The problem is to find a subset of unit disks, with minimum total weight,
to cover all target points.

First, without loss of generality, assume all target points have distinct x-
coordinates; otherwise, we may rotate the strip together with coordinate system
a little to reach such a property. Line up all target points p1, p2, . . . , pn in the
increasing ordering of x-coordinate. Let Da be the set of all unit disks with centers
lying above the strip and Db the set of all unit disks with centers lying below the
strip. Let
1,
2, . . . ,
n be vertical lines passing through p1, p2, . . . , pn, respectively.
For any two disks d, d ′ ∈ Da , define d ≺i d ′ if the lowest intersection between
the boundary of disk d and
i is not lower than the lowest intersection between the
boundary of disk d ′ and
i . Similarly, for any two sensors d, d ′ ∈ Db, define d ≺i d ′
if the highest intersection between the boundary of disk d and
i is not higher than
the highest intersection between the boundary of disk d ′ and
i .

For any two disks da ∈ Da and db ∈ Db with pi covered by da or db, let
Di(da, db) be an optimal solution of the following problem.

min w(D) =
∑
d∈D

w(d) (3.1)

subject to da, db ∈ D,

∀d ∈ D ∩Da : d ≺i da,

∀d ∈ D ∩Db : d ≺i db,

D covers target points p1, p2, . . . , pi .

Then, we have the following recursive formula.

48 3 Dynamic Programming

Lemma 3.1.6

w(Di(da, db)) = min{w(Si−1(d
′
a, d

′
b)) + [da �= d ′

a]w(da) + [db �= d ′
b]w(db)

| d ′
a ≺i da, d ′

b ≺i db, and pi−1 is covered by d ′
a or d ′

b}

where

[d �= d ′] =
{

1 if d �= d ′,
0 otherwise .

Proof Let d ′
a be the disk in Di(da, db) ∩ Da whose boundary has the lowest

intersection with
i−1 and d ′
b the disk in Di(da, db) ∩ Db whose boundary has the

highest intersection with
i−1. We claim that

w(Di(da, db)) = w(Di−1(d
′
a, d

′
b)) + [da �= d ′

a]w(da) + [db �= d ′
b]w(db). (3.2)

To prove it, we first show that if da �= d ′
a , then da �∈ Di−1(d

′
a, d

′
b) for w(da) > 0.

In fact, for otherwise, there exists i′ < i − 1 such that pi′ is covered by da , but not
covered by d ′

a .
This is impossible (Fig. 3.4). To see this, let A be the lowest intersection between

the boundary of disk d ′
a and
i′ and B the lowest intersection between the boundary

of disk d ′
a and
i . Then A and B lie inside the disk da . Let C and D be intersection

points between line AB and the boundary of disk da . Let E be the lowest intersection
between the boundary of disk da and
i−1 and F the lowest intersection between

Fig. 3.4 Proof of Lemma 3.1.6

3.1 Dynamic Programming 49

the boundary of disk d ′
a and
i−1. Note that da and d ′

a lie above the strip. We have
� CED > � AFB > π/2 and hence sin � CED < sin � AFB. Moreover, we have
|AB| < |CD|. Thus,

radius (da) = |CD|
2 sin � CED

>
|AB|

2 sin � AFB
= radius(d ′

a),

contradicting the homogeneous assumption of disks. Therefore, our claim is true.
Similarly, if db �= d ′

b, then db �∈ Si−1(d
′
a, d

′
b) for w(sb) > 0. Therefore, (3.2) holds.

This means that for equation in Lemma 3.1.6, the left-side ≥ the right-side.
To see the left-side ≤ the right-side for the equation in Lemma 3.1.6, we note

that in the right side, Si−1(d
′
a, d

′
b) ∪ {da, db} is always a feasible solution of the

problem (3.1).
�
Let us employ the recursive formula in Lemma 3.1.6 to compute all Si(da, db).

There are totally O(m2n) problems. With the recursive formula, each Si(da, db, k)

can be computed in time O(m2). Therefore, all Si(da, db, k) can be computed by
dynamic programming in time O(m4n). The solution of Example 3.1.5 can be
computed by

S = argminSn(da,db)
w(Sn(da, db))

where da ∈ Da , db ∈ Db, and pn is covered by da or db. This requires additional
computation within time O(m2). Therefore, putting all computations together, the
time is O(m4n).

Example 3.1.7 Consider a directed graph G = (V ,E). A node v is said to
be influenced by another node u if there exists a path from u to v. Given a
positive integer k, the influence maximization problem is to find a subset of at
most k nodes, called seeds, to influence the maximum number of nodes. Suppose
G is an in-arborescence, i.e., a directed tree with all arc directed to the root.
A dynamic programming algorithm can give a polynomial-time solution to the
influence maximization problem.

First, note that for an arc (u, v), selecting u as a seed is better than selecting v. It
follows that all seeds should be selected from leaves.

Second, note that we may introduce some virtual nodes to transform the input
in-arborescence into a binary in-arborescence that every internal node has in-degree
at most two (Fig. 3.5). Then, assign every original node with weight one and every
virtual node with weight zero. Then, the number of virtual nodes is at most |E|
(< |V | for any arborescence).

Let f (v, k) denote the maximum total weight of influenced nodes when k seeds
are placed in the sub-arborescence rooted at v. If v is a leaf, then v must be an
original node and hence, f (v, k) = 1 for every k ≥ 1. If v is not a leaf, then v have
either one coming neighbor u or two coming neighbors u1 and u2. In the former
case,

50 3 Dynamic Programming

Fig. 3.5 Transform an
arborescence to a binary
arborescence by adding
virtual nodes

f (v, k) = f (u, k) + wv

where wv is the weight of node v. In the latter case,

f (v, k) = wv + max
k1+k2=k,k1,k2≥0

[f (u1, k1) + f (u2, k2)].

This recurrence suggests a dynamic programming algorithm with running time
O(nk2) where n = |V |.

3.2 Shortest Path

Often, the running time of a dynamic programming algorithm can be estimated by
the product of the table size (the number of subproblems) and the computation time
of the recursive formula (i.e., the time for recursively computing the solution of
each subproblem). Does this estimation hold for every dynamic programming
algorithm? The answer is No. In this section, we would like to provide a
counterexample, the shortest path problem. For this problem, we must consider
something else in order to estimate the running time of a dynamic programming
algorithm.

Problem 3.2.1 (Shortest Path) Given a directed graph G = (V ,E) with arc cost
c : E → R, a source node s, and a sink node t in V , where R is the set of real
numbers, find a path from s to t with minimum total arc cost.

In the study of shortest path, arcs coming to s and arc going out from t are useless.
Therefore, we assume that those arcs do not exist in G, which may simplify some
statements later.

For any node u ∈ V , let d∗(s, u) denote the total cost of the shortest path from
node s to node u and N−(u), the in-neighbor set of u, i.e., the set of nodes each with
an arc coming to u. Then, we can obtain the following recursive formula (Fig. 3.6).

d∗(s) = 0,

d∗(u) = min
v∈N−(v)

{d∗(v) + c(v, u)}.

3.2 Shortest Path 51

Fig. 3.6 Recursive relation
of d∗(u)

Fig. 3.7 When S = {s},
there is no node u such that
N−(u) ⊆ S

Based on this recursive formula, we may write down an algorithm as follows:

DP1 for the Shortest Path
S ← {s};
T ← V − S;
while T �= ∅ do begin

find u ∈ T such that N−(u) ⊆ S;
compute d∗(u) = minv∈N−(u){d∗(v) + c(v, u)};
S ← S ∪ {u};
T ← T − {u};

end-while
output d∗(t).

This is a dynamic programming algorithm which works correctly for all acyclic
digraphs due to the following.

Theorem 3.2.2 Consider an acyclic network G = (V ,E) with a source node s and
a sink node t . Assume that for any v ∈ V −{s}, N−(v) �= ∅. Let (S, T) be a partition
of V such that s ∈ S and t ∈ T . Then there exists u ∈ T such that N−(u) ⊆ S.

Proof Note that for any u ∈ T , N−(u) �= ∅. If N−(u) �⊆ S, then there exists
v ∈ N−(u) such that v ∈ T . If N−(v) �⊆ S, then there exists w ∈ N−(v) such
that w ∈ T . This process cannot go forever. Finally, we would find z ∈ T such that
N−(z) ⊆ S.
�

In this theorem, the acyclic condition cannot be dropped. In Fig. 3.7, a counterex-
ample is shown that a simple cycle may make no node u in T satisfy N−(u) ⊆ S.

To estimate the running time of algorithm DP1, we note that d∗(u) needs to be
computed for u over all nodes, that is, the size of table for holding all subproblems is
O(n) where n is the number of nodes. In the recursive formula for computing each
d∗(u), the “min” operation is over all nodes in N−(u) which may contain O(n)

52 3 Dynamic Programming

nodes. Thus, the product of the table size and the computation time of recursive
formula is O(n2). However, this estimation for the running time of algorithm DP1
is not correct. In fact, we need also to consider the time for finding u ∈ T such
that N−(u) ⊆ S. This requires to check if a set is a subset of another set. What is
the running time of this computation? Roughly speaking, this may take O(n log n)

time, and hence, totally the running time of algorithm DP1 is O(n(n + n log n)) =
O(n2 log n).

Can we improve this running time by a smarter implementation? The answer is
yes. Let us do this in two steps.

First, we introduce a new number d(u) = minv∈N−(u)∩S(d∗(v) + c(v, u)) and
rewrite the algorithm DP1 as follows.

DP2 for the Shortest Path
S ← ∅;
T ← V ;
while T �= ∅ do begin

find u ∈ T such that N−(u) ⊆ S;
S ← S ∪ {u};
T ← T − {u};
d∗(u) = d(u);
for every w ∈ N+(u) update d(w) ← min(d(w), d∗(u) + c(u,w));

end-while
output d∗(t).

In this algorithm, updating value of d(u) would be performed on all edges, and
for each edge, update once. Therefore, the total time is O(m) where m is the number
of edges, i.e., m = |E|.

Secondly, we introduce the topological sort. The topological sort of nodes in a
digraph G = (V ,E) is an ordering such that for any arc (u, v) ∈ E, node u has
position before node v. Please note that the topological sort exists only for directed
acyclic graphs, which are exactly those networks where the dynamic programming
can work for the shortest path problem by Theorem 3.2.2.

There is an algorithm with running time O(m) for topological sort as shown in
Algorithm 7. Actually, in Algorithm 7, line 3 takes O(n) time, and line 7 takes
O(m) time. Hence, it runs totally in O(m + n) time. However, for the shortest path
problem, input directed graph is connected if ignoring the arc direction, and hence
n = O(m). Therefore, O(m + n) = O(m).

An example for topological sort is shown in Fig. 3.8. In each iteration, yellow
node is the one selected from S to initiate the iteration. During the iteration, the
yellow node will be moved from S to end of L, and all arcs from the yellow node
will be deleted; meanwhile, new nodes will be added to S.

3.2 Shortest Path 53

Algorithm 7 Topological sort
Input: A directed graph G = (V ,E).
Output: A topologically sorted sequence of nodes.
1: L ← ∅
2: S ← {s}
3: while S �= ∅ do
4: remove a node u from S

5: put u at tail of L

6: for each node v ∈ N+(u) do
7: remove arc (u, v) from graph G

8: if v has no other incoming arc then
9: insert v into S

10: end if
11: end for
12: end while
13: if graph G has an arc then
14: return error (G contains at least one cycle)
15: else
16: return L

17: end if

Algorithm 8 Dynamic programming for shortest path
Input: A directed graph G = (V ,E) with arc weight c : E → Z, and two nodes s and t in V .
Output: The length of shortest path from s to t .
1: S ← ∅
2: T ← V

3: do topological sort on T

4: d(s) ← 0
5: for every u ∈ V \ {s} do
6: d(u) ← ∞
7: end for
8: while T �= ∅ do
9: remove the first node u from T

10: S ← S ∪ {u}
11: d∗(u) ← d(u)

12: for every (u, v) ∈ E do
13: d(v) ← min(d(v), d∗(u) + c(u, v))

14: end for
15: end while
16: return d∗(t)

Now, we can first do topological sort and then carry out dynamic programming,
which will result in a dynamic programming (Algorithm 8 for the shortest path
problem, running in O(m) time).

An example is shown in Fig. 3.9. At the beginning, the topological sort is done in
the previous example as shown in Fig. 3.8. In Fig. 3.9, the yellow node represents the
one removed from the front of T to initiate an iteration. During the iteration, all red

54 3 Dynamic Programming

Fig. 3.8 An example of topological sort

arcs from the yellow node are used for updating the value of d(·), and meanwhile,
the yellow node is added to S whose d∗(·)’s value equals to d(·)’s value.

It may be worth mentioning that Algorithm 8 works for acyclic directed graph
without restriction on arc weight, i.e., arc weight can be negative. This implies that
the longest path problem can be solved in O(m) time if input graph is acyclic. For
definition of the longest path problem, please find it in Chap. 8. The longest path

3.2 Shortest Path 55

Fig. 3.9 An example of dynamic programming for shortest path

56 3 Dynamic Programming

problem is NP-hard and hence unlikely to have a polynomial-time solution. This
means that for the shortest path problem, if input directed graph is not acyclic and
arc weights can be negative, then solution may not be polynomial-time computable.
What about the case when input directed graph is not acyclic and all arc weights are
nonnegative? In the next section, we present a polynomial-time solution.

3.3 Dijkstra Algorithm

Dijkstra algorithm is able to find the shortest path in any directed graph with
nonnegative arc weights. Its design is based on the following important discovery.

Theorem 3.3.1 Consider a directed network G = (V ,E) with a source node s

and a sink node t and every arc (u, v) has a nonnegative weight c(u, v). Suppose
(S, T) is a partition of V such that s ∈ S and t ∈ T . If d(u) = minv∈T d(v), then
d∗(u) = d(u).

Proof For contradiction, suppose d(u) = minv∈T d(v) > d∗(u). Then there exists
a path p (Fig. 3.10) from s to u such that

length(p) = d∗(u) < d(u).

Let w be the first node in T on path p. Then d(w) = length(p(s,w)) where
p(s,w) is the piece of path p from s to w. Since all arc weights are nonnegative,
we have

length(p) ≥ length(p(s,w)) = d(w) ≥ d(u) > d∗(u) = length(p),

a contradiction.
�
By Theorem 3.3.1, in dynamic programming for shortest path, we may replace

N−(u) ⊆ S by d(u) = minv∈T d(v) when all arc weights are nonnegative. This
replacement results in Dijkstra algorithm.

Fig. 3.10 In proof of
Theorem 3.3.1

3.3 Dijkstra Algorithm 57

Dijkstra Algorithm
S ← ∅;
T ← V ;
while T �= ∅ do begin

find u ← argminv∈T d(v);
S ← S ∪ {u};
T ← T − {u};
d∗(u) = d(u);
for every w ∈ N+(u), update d(w) ← min(d(w), d∗(u) + c(u,w));

end-while
output d∗(t).

With different data structures, Dijkstra algorithm can be implemented with
different running times.

With min-priority queue, Dijkstra algorithm can be implemented in time O((m+
n) log n).

With Fibonacci heap, Dijkstra algorithm can be implemented in time O(m +
n log n).

With Radix heap, Dijkstra algorithm can be implemented in time O(m+n log c)

where c is the maximum arc weight.
We will pick up one of them to introduce in the next section. Before doing it,

let us first implement Dijkstra algorithm with simple buckets (also known as Dial
algorithm). This implementation requires all arc weights as integers. It can achieve
running time O(m + nc) where c is the maximum arc weight, of course, also an
integer. When c is small, e.g., c = 1, it could be a good choice. (This case occurs in
the study of Edmonds-Karp algorithm for maximum flow in Chap. 5.)

In this implementation, (n − 1)c + 2 buckets are prepared with labels
0, 1, . . . , (n − 1)c, ∞. They are used for storing nodes in T such that every
node u is stored in bucket d(u). Therefore, initially, s is in bucket 0, and other nodes
are in bucket ∞. As d(u)’s value is updated, node u will be moved from a bucket
to another bucket with smaller label. Note that if d(u) < ∞, then there must exist
a simple path from s to u such that d(u) is equal to the total weight of this path.
Therefore, d(u) ≤ c(n−1), i.e., buckets set up as above are enough for our purpose.
In Fig. 3.11, an example is computed by Dijkstra algorithm with simple buckets.

Now, let us estimate the running time of Dijkstra algorithm with simple buckets.

• Time to create buckets is O(nc).
• Time for finding u to satisfy d(u) = minv∈T d(v) is O(nc). In fact, u can be

chosen arbitrarily from the nonempty bucket with smallest label. Such a bucket
in Fig. 3.11 is pointed by a red arrow, which is traveling from left to right without
going backward. This is because, after update d(w) for w ∈ T , we always have
d∗(u) ≤ d(w) for w ∈ T .

• Time to update d(w) for w ∈ T and update buckets is O(m).
• Therefore, total time is O(m + nc).

58 3 Dynamic Programming

Fig. 3.11 An example for Dijkstra algorithm with simple buckets

3.4 Priority Queue 59

3.4 Priority Queue

Although Dijkstra algorithm with simple buckets runs faster for small c, it cannot be
counted as a polynomial-time solution. In fact, the input size of c is log c. Therefore,
we would like to select a data structure which implements Dijkstra algorithm in
polynomial-time. This data structure is priority queue.

A priority queue is a data structure for maintaining a set S of elements, each
with an associated value, called a key. All keys are stored in an array A such that an
element belongs to set S if and only if its key is in array A. There are two types of
priority queues, the min-priority queue and the max-priority queue. Since they are
similar, we introduce one of them, the min-priority queue.

A min-priority queue supports the following operations: Minimum(S), Extract-
Min(S), Increase-Key(S, x, k), and Insert(S, x).

The min-heap can be employed in implementation of those operations.
Minimum(S) returns the element of S with the smallest key, which can be

implemented as follows.

Heap-Minimum(A)
return A[1].
Extract-Min(S) removes and returns the element of S with the smallest key,

which can be implemented by using min-heap as follows.

Heap-Extract-Min(A)
min ← A[1];
A[1] ← A[heap-size[A]];
heap-size[A] ← heap-size[A]-1;
Min-Heapify(A, 1);
return min.

Decrease-Key(S, x, k) decreases the value of element x’s key to the new value
k, which is assumed to be no more than x’s current key value. Suppose that A[i]
contains x’s key. Then, Decrease-Key(S, x, k) can be implemented as an operation
of min-heap as follows.

Heap-Decrease-Key(A, i, key)
if key > A[i]

then error “new key is larger than current key”;
A[i] ← key;
while i > 1 and A[Parent(i)] > A[i]

do exchange A[i] ↔ A[Parent(i)]
and i ← Parent(i).

Insert(S, x.key) inserts the element x into S, which is implemented in the
following.

60 3 Dynamic Programming

Fig. 3.12 Heap-Decrease-Key(A, 9, 1)

Insert(A, key)
array-size[A] ← array-size[A] + 1;
A[array-size[A]] ← +∞;
Decrease-Key(A, array-size[A], key).

Now, we analyze these four operations. Minimum(S) runs clearly in O(1)

time. Each of the other three operations runs in O(log n) time. Actually, since
Min-Heapify(A, 1) runs in O(log n) time, so does Extract-Min(S). For Decrease-
Key(S, x, k), as shown in Fig. 3.12, computation is along a path from a node
approaching to the root of the heap and hence runs in O(log n) time. This also
implies that Insert(S, x.key) can be implemented in O(log n) time.

In Algorithm 9, Dijkstra algorithm is implemented with priority queue as follows.

• Use min-priority queue to keep set T , and for every node u ∈ T , use d(u) for the
key of u.

• Use operation Extract-Min(T) to obtain u satisfying d(u) = minv∈T d(v). This
operation at line 9 will be used for O(n) times.

• Use operation Decrease-Key(T , v, key) on each edge (u, v) to update d(v) and
the min-heap. This operation on line 14 will be used for O(m) times.

• Therefore, the total running time is O((m + n) log n).

3.5 Bellman-Ford Algorithm 61

Algorithm 9 Dijkstra algorithm with priority queue
Input: A directed graph G = (V ,E) with arc weight c : E → Z and source node s and sink node
t in V .
Output: The length of shortest path from s to t .
1: S ← ∅
2: T ← V

3: d(s) ← 0
4: for every u ∈ V \ {s} do
5: d(u) ← ∞
6: end for
7: build a min-priority queue on T with key d(u) for each node u ∈ T , i.e., use keys to build a

min-heap.
8: while T �= ∅ do
9: u ← Extract-Min(T)

10: S ← S ∪ {u}
11: d∗(u) ← d(u)

12: for every (u, v) ∈ E do
13: if d(v) > d∗(u) + c(u, v)) then
14: Decrease-Key(T , v, d∗(u) + c(u, v))

15: end if
16: end for
17: end while
18: return d∗(t)

An example is as shown in Fig. 3.13.

3.5 Bellman-Ford Algorithm

Bellman-Ford algorithm allows negative arc cost; only restriction is no negative
weight cycle. The disadvantage of this algorithm is that the running time is a little
slow. The idea behind this algorithm is very simple.

Initially, assign d(s) = 0 and d(u) = ∞ for every u ∈ V \ {s}. Then, algorithm
updates d(u) such that in iteration i, d(u) is equal to the shortest distance from s

to u passing through at most i arcs. If there is no negative weight cycle, then the
shortest path contains at most n−1 arcs. Therefore, after n−1 iterations, d(t) is the
minimum weight of the path from s to t . If in the nth iteration, d(u) is still updated
for some u, then it means that a negative weight cycle exists.

Bellman-Ford Algorithm
input:A directed graph G = (V ,E) with weight c : E → R+,

a source node s and a sink node t .
output: The minimum weight of path from s to t ,

or a message “G contains a negative weight cycle”.
d(s) ← 0;
for u ∈ V \ {s} do

62 3 Dynamic Programming

Fig. 3.13 An example for Dijkstra algorithm with priority queue

3.6 All Pairs Shortest Paths 63

d(u) ← ∞;
for i ← 1 to n − 1 do

for each arc (u, v) ∈ E do
if d(u) + c(u, v) < d(v)

then d(v) ← d(u) + c(u, v);
for each arc (u, v) ∈ E do

if d(u) + c(u, v) < d(v)

then return “G contains a negative weight cycle”.
else return d(t).

Its running time is easily estimated.

Theorem 3.5.1 Bellman-Ford algorithm computes a shortest path from s to t within
O(mn) time where n is the number of nodes and m is the number of arcs in input
directed graph.

3.6 All Pairs Shortest Paths

In this section, we study the following problem.

Problem 3.6.1 (All-Pairs-Shortest-Paths) Given a directed graph G = (V ,E),
find the shortest path from s to t for all pairs {s, t} of nodes.

If we apply the Bellman-Ford algorithm for single pair of nodes for each of
O(n2) pairs, then the total time for computing a solution of the all-pairs-shortest-
paths problem is O(n3m). In the following, we will present two faster algorithms,
with running time O(n3 log n) and O(n3), respectively, with only restriction that
no negative weight cycle exists. Before doing so, let us consider an example on
which we introduce an approach which can be used for the all-pairs-shortest-paths
problem.

Example 3.6.2 (Path Counting) Given a directed graph G = (V ,E) and a positive
integer k, count the number of paths with exactly k arcs from s to t for all pairs {s, t}
of nodes

Let a
(k)
st denote the number of paths with exactly k arcs from s to t . Then, we

have

a
(1)
st =

{
1 if (s, t) ∈ E,

0 otherwise.

This means that (a
(1)
st) is the adjacency matrix of graph G. Denote

A(G) = (a
(1)
st).

64 3 Dynamic Programming

We claim that

A(G)k = (a
(k)
st).

Let us prove this claim by induction on k. Suppose it is true for k. Consider a path
from s to t with exactly k + 1 arcs. Decompose the path at a node h such that the
subpath from s to h contains exactly k arcs and (h, t) is an arc. Then the subpath
from s to h has a

(k)
sh choices and (h, t) has a

(1)
ht choices. Therefore,

a
(k+1)
st =

∑
h∈V

a
(k)
sh a

(1)
ht .

It follows that

(a
(k+1)
st) = (a

(k)
sh)(a

(1)
ht) = A(G)k · A(G) = A(G)k+1.

Now, we come back to the all-pairs-shortest-paths problem. First, we assume that
G has no loop. In fact, a loop with nonnegative weight does not play any role in a
shortest path and a loop with negative weight means that the problem is meaningless.

Let

(k)
st denote the weight of the shortest path with at most k arcs from s to t . For

k = 1, we have

(1)
st =

⎧⎨
⎩

c(s, t) if (s, t) ∈ E,

∞ if (s, t) �∈ E and s �= t,

0 if s = t.

Denote

L(G) = (

(1)
st).

This is called the weighted adjacency matrix. For example, the graph in Fig. 3.14
has weighted adjacency matrix

⎛
⎝ 0 4 ∞
∞ 0 6
5 ∞ 0

⎞
⎠ .

Fig. 3.14 A weighted
directed graph

3.6 All Pairs Shortest Paths 65

We next establish a recursive formula for

(k)
st .

Lemma 3.6.3

(k+1)
st = min

h∈V
(

(k)
sh +

(1)
st).

Proof Since the shortest path from s to h with at most k arcs and the shortest path
from h to t with at most one arc form a path from s to t with at most k + 1 arcs, we
have

(k+1)
st ≤ min

h∈V
(

(k)
sh +

(1)
ht).

Next, we show

(k+1)
st ≥ min

h∈V
(

(k)
sh +

(1)
ht).

To do so, consider two cases.

Case 1. There is a path with weight

(k+1)
st from s to t containing at most k arcs.

In this case, we have

(k+1)
st =

(k)
st

=

(k)
st +

(1)
ht

≥ min
h∈V

(

(k)
sh +

(1)
ht).

Case 2. Every path with weight

(k+1)
st from s to t contains exactly k + 1 arcs.

In this case, we can find a node h′ on the path such that the piece from s to h′
contains exactly k arcs and (h′, t) ∈ E. Their weights should be

(k)

sh′ and

(1)

h′t ,
respectively. Therefore,

(k+1)
st =

(k)

sh′ +

(1)

h′t

≥ min
h∈V

(

(k)
sh +

(1)
ht).

�
If G does not contain negative weight cycle, then each shortest path does not

need to contain a cycle. Therefore, we have

Theorem 3.6.4 If G does not have a negative weight cycle, then

(n−1)
st is the weight

of shortest path from s to t where n = |V |.
This suggests a dynamic programming to solve the all-pairs-shortest-paths

problem by using recursive formula in Lemma 3.6.3. Since each

(k)
st is computed

66 3 Dynamic Programming

Fig. 3.15 A new matrix
multiplication

in O(n) time, this algorithm will run in O(n4) time to compute

(n−1)
st for all pairs

{s, t}.
Next, we give a method to speed up this algorithm. To do so, let us define a

new operation for matrixes. Consider two n × n square matrixes A = (aij) and
B = (bij). Define

A ◦ B =
(

min
1≤h≤n

(aih + bhj)

)
.

An example is as shown in Fig. 3.15.
This operation satisfies associative law.

Lemma 3.6.5

(A ◦ B) ◦ C = A ◦ (B ◦ C).

We leave proof of this lemma as an exercise.
By this lemma, the following is well-defined.

A(k) = A ◦ · · · ◦ A︸ ︷︷ ︸
k

.

Note that if G has no negative weight cycle, then for m ≥ n − 1,
L(G)(m) = L(G)(n−1). This observation suggests the following algorithm to
compute L(G)(n−1).

n ← |V |;
m ← 1;
L(1) ← L(G);
while m < n − 1

do L2m ← L(m) ◦ L(m) and
m ← 2m;

return L(m).

With this improvement, the dynamic programming with recursive formula in
Lemma 3.6.3 is called the faster-all-pairs-shortest-paths algorithm, which runs in
O(n3 log n) time.

3.6 All Pairs Shortest Paths 67

Fig. 3.16 Proof of
Lemma 3.6.7

The above result is derived under assumption that G does not have a negative
weight cycle. Suppose G is unknown to have a negative weight cycle or not. Can we
modify the faster-all-pairs-shortest-paths algorithm to find a negative weight cycle
if G has one? The answer is yes. However, we need to compute L(G)(m) for m ≥ n.

Theorem 3.6.6 G contains a negative weight cycle if and only if L(G)(n) contains
a negative diagonal entry. Moreover, if L(G)(n) contains a negative diagonal entry,
then such an entry keeps negative sign in every L(G)(m) for m ≥ n.

Proof It follows immediately from the fact that a simple cycle contains at most n

arcs.
�
Next, let us study another algorithm for the all-pairs-shortest-paths problem.

First, we show a lemma.

Lemma 3.6.7 Assume V = {1, 2, . . . , n}. Let d
(k)
ij denote the weight of shortest

path from i to j with internal nodes in {1, 2, . . . , k}. Then for i �= j ,

d
(k)
ij =

{
c(i, j) if k = 0,

min(d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj) if 1 ≤ k ≤ n,

and d
(k)
ij = 0 for i = j and k ≥ 0.

Proof We need only to consider i �= j . Let p be the shortest path from i to j with
internal nodes in {1, 2, . . . , k}. For k = 0, p does not contain any internal node.
Hence, its weight is c(i, j). For k ≥ 1, there are two cases (Fig. 3.16).

Case 1. p does not contain internal node k. In this case,

d
(k)
ij = d

(k−1)
ij .

Case 2. p contains an internal node k. Since p does not contain a cycle, node k

appears exactly once. Suppose that node k decomposes path p into two pieces p1
and p2, from i to k and from k to j , respectively. Then the weight of p1 should
be d

(k−1)
ik , and the weight of p2 should be d

(k−1)
ij . Therefore, in this case, we have

68 3 Dynamic Programming

Algorithm 10 Floyd-Warshall algorithm
Input: A directed graph G = (V ,E) with arc weight c : E → Z.
Output: The weight of shortest path from s to t for all pairs of nodes s and t .
1: n ← |V |
2: D(0) ← L(G)

3: for k ← 1 to n do
4: for i ← 1 to n do
5: for j ← 1 to n do
6: d

(k)
ij ← min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj)

7: end for
8: end for
9: end for

10: return D(n)

d
(k)
ij = d

(k−1)
ik + d

(k−1)
kj .

�
Denote D(k) = (d

(k)
ij). Based on recursive formula in Lemma 3.6.7, we obtain a

dynamic programming as shown in Algorithm 10, which is called Floyd-Warshall
algorithm.

From algorithm description, we can see the following.

Theorem 3.6.8 If G does not contain a negative weight cycle, then Floyd-Warshall
algorithm computes all-pairs shortest paths in O(n3) time.

If G contains a negative weight cycle, could Floyd-Warshall algorithm tell us this
fact? The answer is yes. Actually, we also have

Theorem 3.6.9 G contains a negative weight cycle if and only if D(n) contains a
negative diagonal element.

Exercises

1. Please construct a directed graph G = (V ,E) with arc weight and source
vertex s such that for every arc (u, v) ∈ E, there is a shortest-paths tree rooted
at s that contains (u, v), and there is another shortest-paths tree rooted at s that
does not contain (u, v).

2. Show that the graph G contains a negative weight cycle if and only if
A(G)(n−1) �= A(G)(2n−1).

3. Please design an O(n2)-time algorithm to compute the longest monotonically
increasing subsequence for a given sequence of n numbers.

4. How can we use the output of the Floyd-Warshall algorithm to detect the
presence of a negative weight cycle?

Exercises 69

Fig. 3.17 PA stair

5. A stair is a rectilinear polygon as shown in Fig. 3.17. Show that the minimum
length rectangular partition for a given stair can be computed by a dynamic
programming in time O(n2 log n).

6. Given a rectilinear polygon with hole free, design a dynamic programming to
partition it into small rectangles with minimum total length of cuts.

7. Consider a horizontal line. There are n points lying below the line and m unit
disks with centers above the line. Every one of the n points is covered by some
unit disk. Each unit disk has a weight. Design a dynamic programming to find
a subset of unit disks covering all n points, with the minimum total weight. The
dynamic programming should run in polynomial time with respect to m and n.

8. Given a convex polygon in the Euclidean plane, partition it into triangles with
minimum total length of cuts. Design a dynamic programming to solve this
problem in time O(n3) where n is the number of vertices of input polygon.

9. Does Dijkstra’s algorithm for shortest path work for input with negative weight
and without negative weight cycle? If yes, please give a proof. If not, please
give a counterexample and a way to modify the algorithm to work for input
with negative weight and without negative weight cycle.

10. Given a directed graph G = (V ,E) and a positive integer k, count the number
of paths with at most k arcs from s to t for all pairs of nodes s and t .

11. Given a graph G = (V ,E) and a positive integer k, count the number of paths
with at most k edges from s to t for all pairs of nodes s and t .

12. Given a directed graph G = (V ,E) without loop, and a positive integer k,
count the number of paths with at most k arcs from s to t for all pairs of nodes
s and t .

13. Show Lemma 3.6.5, that is, A ◦ (B ◦ C) = (A ◦ B) ◦ C.
14. Does FASTER-ALL-PAIR-SHORTEST-PATH algorithm work for input with

negative weight and without negative weight cycle? If yes, please give a proof.
If not, please give a counterexample.

15. Does Floyd-Warshall algorithm work for input with negative weight and
without negative weight cycle? If yes, please give a proof. If not, please give a
counterexample.

70 3 Dynamic Programming

16. Given a sequence x1, x2, . . . , xn of (not necessary positive) integers, find a
subsequence xi, xi+1, . . . , xi+j of consecutive elements to maximize the sum
xi + xi+1 + · · · + xi+j . Can your algorithm run in linear time?

17. Assume that you have an unlimited supply of coins in each of the integer
denominations d1, d2, . . . , dn, where each di > 0. Given an integer amount
m ≥ 0, we wish to make change for m using the minimum number of
coins drawn from the above denominations. Design a dynamic programming
algorithm for this problem.

18. Recall that C(n, k)—the binomial coefficient—is the number of ways of
choosing an unordered subset of k objects from a set of n objects. (Here n ≥ 0
and 0 ≤ k ≤ n.) Give a dynamic programming algorithm to compute the value
of C(n, k) in O(nk) time and O(k) space.

19. Given a directed graph G = (V ,E), with nonnegative weight on its edges,
and in addition, each edge is colored red or blue. A path from u to v in G is
characterized by its total length and the number of times it switches colors. Let
δ(u, k) be the length of a shortest path from a source node s to u that is allowed
to change color at most k times. Design a dynamic program to compute δ(u, k)

for all u ∈ V . Explain why your algorithm is correct, and analyze its running
time.

20. Modify Dijkstra’s algorithm in order to solve the bottleneck path problem:
Given a directed graph G = (V ,E) with edge weight c : E → R and
two nodes s, t ∈ V , find an s-t-path whose longest edge is shortest possible.
Describe the whole algorithm, and show the correctness of your algorithm.

21. Given a set of n distinct points x1, x2, . . . , xn and a set of m weighted closed
intervals I1, I2, . . . , Im on the real number line, find a subset of intervals to
cover all points with the minimum total weight.

22. Consider a directed graph G = (V ,E) with a nonnegative arc weight w : E →
R+. Let s and t be two distinct nodes in V . Suppose H is a subgraph obtained
from G by deleting some arc. Design a O(|E| log |V |)-time algorithm to find
the shortest distance from s to t among all graphs from H by putting back one
arc in G \ H .

23. Consider a directed graph G = (V ,E) with a nonnegative arc weight w :
E → R+. Let s and t be two distinct nodes in V . Design a polynomial-time
algorithm to find the second shortest path from s to t .

24. Design a dynamic programming algorithm to solve the knapsack problem as
follows.

max c1x1 + c2x2 + · · · + cnxn

subject to a1x1 + a2x2 + · · · + anxn ≤ S,

x1, x2, . . . , xn ∈ {0, 1},

where c1, c2, . . . , cn, a1, a2, . . . , an and S are given positive integers.
25. Given two sequences X and Y , design dynamic programming to compute

solution of the following problems.

Exercises 71

(a) Find the longest common subsequence.
(b) Find the longest consecutive subsequence.
(c) Find the shortest sequence which contains both X and Y as subsequences.

26. Consider two sequences X = x1x2 · · · xm and Y = y1y2 · · · yn and a set P of
pairs (i, j) where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Suppose Z = z1z2 · · · zk is a
common subsequence of X and Y such that z1 = xi1 = yj1 , z2 = xi2 = yj2 ,
. . . , zk = xik = yjk

. Then (ih, jh) ∈ P is called a loved pair. Design a dynamic
programming algorithm to find a longest common subsequence Z of X and Y

such that among all longest common subsequence, Z contains the maximum
number of loved pairs.

27. Consider a horizontal strip. There are n target points pi for 1 ≤ i ≤ n, lying
inside of the strip and m unit disks dj for 1 ≤ j ≤ m with centers lying outside
of the strip, where each unit disk di has radius one. Assume that each target
point is covered by at least one unit disk. Given a positive integer k, design
an algorithm to find a subset of at most k unit disks, covering the maximum
number of target points.

28. Consider a horizontal strip. There are n target points pi for 1 ≤ i ≤ n, lying
inside of the strip and m unit disks dj for 1 ≤ j ≤ m with centers lying outside
of the strip, where each unit disk di has radius one. Assume that each target
point is covered by at least one unit disk. Given a positive integer k, design
an algorithm to find the smallest subset of unit disks to cover at least k target
points.

29. Design a dynamic programming algorithm to solve the following problem:
Given n activities each with a time period [si, fi) and a positive weight wi ,
find a nonoverlapping subset of activities to maximize the total weight.

30. Consider the following recurrence:

c(i, i) = 0

c(i, j) = w(i, j) + min
i<k≤j

(c(i, k − 1) + c(k, j)).

Suppose w satisfies the quadrangle inequality

w(i, k) + w(j, l) ≤ w(j, k) + w(i, l),

and monotone,

w(j, k) ≤ w(i, l),

for all i ≤ j ≤ k ≤ l. Show that a dynamic programming algorithm can
compute all c(i, j) for 1 ≤ i ≤ j ≤ n in O(n2) time.

31. Consider a set of n points (x1, y1), (x2, y2), . . . , (xn, yn) lying in the plane
with all xi ≥ 0 and yi ≥ 0 for 1 ≤ i ≤ n. Design a dynamic programming
algorithm to compute the minimum length rectilinear arborescence rooted at

72 3 Dynamic Programming

original (0, 0), in which every arc can have its direction either going up or to
the right.

32. Consider three strings X, Y,Z over alphabet �. Z is said to be a shuffle of
X and Y if Z = X1Y1X2Y2 · · ·XnYn where X1, X2, . . . , Xn are substring of
X such that X = X1X2 · · ·Xn and Y1, Y2, . . . , Yn are substrings of Y such
that Y = Y1Y2 · · · Yn. Design a dynamic programming algorithm to determine
whether Z is a shuffle of X and Y for given X, Y , and Z.

33. Consider a tree T = (V ,E) with arbitrary integer weights w : E → Z.
Design an algorithm to compute the diameter of T , i.e., the maximum weight
of a simple path in T .

34. Let G = (V ,E) be a planar graph lying in the Euclidean plane. The weight
of any edge (u, v) is the Euclidean distance between nodes u and v, denoted
by L(u, v). For any two nodes x and y, denote by d(x, y) the total weight of
shortest path between x and y. If there is no path between x and y, then define
d(x, y) = ∞. The stretch factor is defined to be the smallest upper bound for
ratio d(x, y)/L(x, y) for any two distinct nodes x, y ∈ V . Design an efficient
algorithm to find the stretch factor for given graph G.

35. Given a set of n integers a1, a2, . . . , an and a target integer T , design a dynamic
programming algorithm to determine whether there exists a subset of given
integers such that their sum is equal to T . Your algorithm should run in O(nT)

time.
36. (Sensor Barrier Cover) Consider a rectangle R. Randomly deploy a set of

sensors. Each sensor can monitor an area, called sensing area. Suppose that
the sensing area of every sensor is a unit disk. A subset of sensors is called a
barrier cover if their sensing areas cover a curve connecting two vertical edges
of R. Given a set of sensors, find the minimum barrier cover. Please formulate
this problem into a shortest path problem.

37. (Influence Maximization) A social network is a directed graph G = (V ,E)

with an information diffusion model m. Suppose m is the linear threshold (LT)
model as follows: Each arc (u, v) is associated with a weight wuv ∈ [0, 1]
such that for any node v, the total weight of arcs coming to v is at most one.
Each node has two possible states, active and inactive. Initially, all nodes are
inactive. To start an information diffusion process, we may select a few nodes,
called seed, to activate and select, for each node v, a threshold θv uniformly and
randomly from [0, 1]. Then step by step, more nodes will be activated. In each
step, every inactive node v gets evaluated for the total weight of coming arcs
from active nodes. If it is less than its threshold θv , then v is kept in inactive
state; otherwise, v is activated. This process ends at the step in which no new
node can be activated. Given a positive integer k, select k seeds to maximize
the expected number of active nodes (including themselves) at the end of the
process. This problem is called the influence maximization. Suppose G is an
in-arborescence. Design a dynamic programming algorithm for the influence
maximization problem. Could your algorithm run in a polynomial-time with
respect to |V |?

Historical Notes 73

38. (Effector Detection) Consider a social network G = (V ,E) with the informa-
tion diffusion model LT as stated in previous problem. The effector detection
problem is as follows: given a set of active nodes, A, at the end of a process,
find the set of seeds, S, called effectors to minimize

∑
u∈A

|1 − Prob(S, u)| +
∑

u∈V \A
|0 − Prob(S, u)|,

where Prob(S, u) is the probability that node u becomes active when S is
selected as the seed set. Suppose G is a tree with undirected edges. Design a
dynamic programming algorithm to show that the effector detection problem
can be solved in polynomial-time.

39. (Active Friending) Consider a social network G = (V ,E) with the information
diffusion model LT as stated in previous problem. Given a positive integer k, a
subset Q of nodes (k ≤ Q), and a node t �∈ Q, find a subset of k seeds in Q to
maximize the probability that t is activated. This problem is called the active
friending. Suppose that G is an in-arborescence rooted at t . Design a dynamic
programming algorithm to solve this problem in a polynomial-time.

Historical Notes

Dynamic programming was proposed by Richard Bellman in 1953 [95] and later
became a popular method in optimization and control theory. The basic idea
is stemmed from self-reducibility. In the design of computer algorithms, it is a
powerful and elegant technique to find an efficient solution for many optimization
problems, which attracts a lot of researchers’ efforts in the literature, especially
in the direction of speed-up dynamic programming. For example, Yao [434] and
Borchers and Gupta [35] speed up dynamic programming with the quadrangle
inequality, including a construction for the rectilinear Steiner arborescence [345]
from O(n3) time to O(n2) time.

The shortest path problem became a classical graph problem as early as in 1873
[407]. A. Schrijver [361] provides a quite detail historical note with a large list
of references. There are many algorithms in the literature. Those closely related to
dynamic programming algorithms can be found in Bellman [24], Dijkstra [83],
Dial [82], and Fredman and Tarjan [149].

All-pair-shortest-paths problem was first studied by Alfonso Shimbel in 1953
[366], who gave a O(n4)-time solution. Floyd [144] and Marshall [402] found a
O(n3)-time solution independently in the same year.

Examples and exercises about disk (or sensor) coverage can be found in [4,
160, 219, 296, 421], and those about social influence can be found in [393] for the
influence maximization, [271] for the effector detection, and [427] for the active
friending. Extended reading materials can be found in [188, 304, 379, 380, 435,
445].

Chapter 4
Greedy Algorithm and Spanning Tree

Greed, in the end, fails even the greedy.

—Cathryn Louis

Self-reducibility is the backbone of each greedy algorithm in which self-reducibility
structure is a tree of special kind, i.e., its internal nodes lie on a path. In this chapter,
we study algorithms with such a self-reducibility structure and related combinatorial
theory supporting greedy algorithms.

4.1 Greedy Algorithms

A problem that the greedy algorithm works for computing optimal solutions often
has the self-reducibility and a simple exchange property. Let us use two examples
to explain this point.

Example 4.1.1 (Activity Selection) Consider n activities with starting times
s1, s2, . . . , sn and ending times f1, f2, . . . , fn, respectively. They may be
represented by intervals [s1, f1), [s2, f2), . . ., and [sn, fn). The problem is to
find a maximum subset of nonoverlapping activities, i.e., nonoverlapping intervals.

This problem has the following exchange property.

Lemma 4.1.2 (Exchange Property) Suppose f1 ≤ f2 ≤ · · · ≤ fn. In a maximum
solution without interval [s1, f1), we can always exchange [s1, f1) with the first
activity in the maximum solution preserving the maximality.

Proof Let [si, fi) be the first activity in the maximum solution mentioned in the
lemma. Since f1 ≤ fi , replacing [si, fi) by [s1, f1) will not cost any overlapping.

�
The following lemma states a self-reducibility.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_4

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_4&domain=pdf

 7680 61494 a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_4

76 4 Greedy Algorithm and Spanning Tree

Lemma 4.1.3 (Self-Reducibility) Suppose {I ∗1 , I ∗2 , . . . , I ∗k } is an optimal solution.
Then, {I ∗2 , . . . , I ∗k } is an optimal solution for the activity problem on input {Ii |
Ii ∩ I ∗1 } where Ii = [si, fi).

Proof For contradiction, suppose that {I ∗2 , . . . , I ∗k } is not an optimal solution for the
activity problem on input {Ii | Ii∩I ∗1 }. Then, {Ii | Ii∩I ∗1 } contains k nonoverlapping
activities, which all are not overlapping with I ∗1 . Putting I ∗1 in these k activities,
we will obtain a feasible solution containing k + 1 activities, contradicting the
assumption that {I ∗1 , I ∗2 , . . . , I ∗k } is an optimal solution.
�

Based on Lemmas 4.1.2 and 4.1.3, we can design a greedy algorithm in
Algorithm 11 and obtain the following result.

Algorithm 11 Greedy algorithm for activity selection
Input: A sequence of n activities [s1, f1), [s2, f2), . . ., [sn, fn).
Output: A maximum subset of nonoverlapping activities.
1: sort all activities into ordering f1 ≤ f2 ≤ . . . ≤ fn

2: S ← ∅
3: for i ← 1 to n do
4: if [si , fi) does not overlap any activity in S then
5: S ← S ∪ {[si , fi)}
6: end if
7: end for
8: return S

Theorem 4.1.4 Algorithm 11 produces an optimal solution for the activity selection
problem.

Proof Let us prove it by induction on n. For n = 1, it is trivial.
Consider n ≥ 2. Suppose {I ∗1 , I ∗2 , . . . , I ∗k } is an optimal solution. By

Lemma 4.1.2, we may assume that I ∗1 = [s1, f1). By Lemma 4.1.3, {I ∗2 , . . . , I ∗k } is
an optimal solution for the activity selection problem on input {Ii | Ii ∩ I ∗1 = ∅}.

Note that after select [s1, f1), if we ignore all iterations i with [si, fi)∩[s1, f1) �=
∅, then the remaining part is the same as greedy algorithm running on input {Ii |
Ii ∩ I ∗1 = ∅}. By induction hypothesis, it will produce an optimal solution for the
activity selection problem on input {Ii | Ii ∩ I ∗1 = ∅}, which must contain k − 1
activities. Together with [s1, f1), they form a subset of k non-overlapping activities,
which should be optimal.
�

Next, we study another example.

Example 4.1.5 (Huffman Tree) Given n characters a1, a2, . . . , an with weights
f1, f2, . . . , fn, respectively, find a binary tree with n leaves labeled by
a1, a2, . . . , an, respectively, to minimize

d(a1) · f1 + d(a2) · f2 + · · · + d(an) · fn

4.1 Greedy Algorithms 77

where d(ai) is the depth of leaf ai , i.e., the number of edges on the path from the
root to ai .

First, we show a property of optimal solutions.

Lemma 4.1.6 In any optimal solution, every internal node has two children, i.e.,
every optimal binary tree is full.

Proof If an internal node has only one child, then this internal node can be removed
to reduce the objective function value.
�

We can also show an exchange property and a self-reducibility.

Lemma 4.1.7 (Exchange Property) If fi > fj and d(ai) > d(aj), then
exchanging ai with aj would make the objective function value decrease.

Proof Let d ′(ai) and d(aj) be the depths of ai and aj , respectively, after exchanging
ai with aj . Then d ′(ai) = d(aj) and d ′(aj) = d(ai). Therefore, the difference of
objective function values before and after exchange is

(d(ai) · fi + d(aj) · fj) − (d ′(ai) · fi + d ′(aj) · fj)

= (d(ai) · fi + d(aj) · fj) − (d(aj) · fi + d(ai) · fj)

= (d(ai) − d(aj))(fi − fj)

> 0

�

Lemma 4.1.8 (Self-Reducibility) In any optimal tree T ∗, if we assign the weight
of an internal node u with the total weight wu of its descendant leaves, then removal
of the subtree Tu at the internal node results in an optimal tree T ′

u for weights at
remainder’s leaves (Fig. 4.1).

Proof Let c(T) denote the objective function value of tree T , i.e.,

Fig. 4.1 A self-reducibility

78 4 Greedy Algorithm and Spanning Tree

c(T) =
∑

a over leaves of T

d(a) · f (a)

where d(a) is the depth of leaf a and f (a) is the weight of leaf a. Then we have

c(T ∗) = c(Tu) + c(T ′
u).

If T ′
u is not optimal for weights at leaves of T ′

u, then we have a binary tree T ′′
u for

those weights with c(T ′′
u) < c(T ′

u). Therefore, c(Tu ∪ T ′′
u) < c(T ∗), contradicting

optimality of T ∗.
�
By Lemmas 4.1.7 and 4.1.8, we can construct an optimal Huffman tree in the

following:

• Sort f1 ≤ f2 ≤ · · · ≤ fn.
• By exchange property, there must exist an optimal tree in which a1 and a2 are

sibling at bottom level.
• By self-reducibility, the problem can be reduced to construct optimal tree for

leaves weights {f1 + f2, f3, . . . , fn}.
• Go back to initial sorting step. This process continues until only two weights

exist.

In Fig. 4.2, an example is presented to explain this construction. This construction
can be implemented with min-priority queue (Algorithm 12)

The Huffman tree problem is raised from the study of Huffman codes as follows.

Problem 4.1.9 (Huffman Codes) Given n characters a1, a2, . . . , an with frequen-
cies f1, f2, . . . , fn, respectively, find prefix binary codes c1, c2, . . . , cn to minimize

|c1| · f1 + |c2| · f2 + · · · + |cn| · fn,

where |ci | is the length of code ci , i.e., the number of symbols in ci .

Actually, c1, c2, . . . , cn are called prefix binary codes if no one is a prefix of
another one. Therefore, they have a binary tree representation.

Fig. 4.2 An example for construction of Huffman tree

4.1 Greedy Algorithms 79

Algorithm 12 Greedy algorithm for Huffman tree
Input: A sequence of leaf weights {f1, f2, . . . , fn}.
Output: A binary tree.
1: Put f1, f2, . . . , fn into a min-priority queue Q

2: for i ← 1 to n − 1 do
3: allocate a new node z

4: lef t[z] ← x ← Extract-Min(Q)

5: right[z] ← y ← Extract-Min(Q)

6: f [z] ← f [x] + f [y]
7: Insert(Q, z)

8: end for
9: return Extract-Min(Q)

Fig. 4.3 Huffman codes

• Each edge is labeled with 0 or 1.
• Each code is represented by a path from the root to a leaf.
• Each leaf is labeled with a character.
• The length of a code is the length of corresponding path.

An example is as shown in Fig. 4.3. With this representation, the Huffman codes
problem can be transformed exactly to the Huffman tree problem.

In Chap. 1, we see that the Kruskal greedy algorithm can compute the minimum
spanning tree. Thus, we may have a question: Does the minimum spanning tree
problem have an exchange property and self-reducibility? The answer is yes, and
they are given in the following.

Lemma 4.1.10 (Exchange Property) For an edge e with the smallest weight in a
graph G and a minimum spanning tree T without e, there must exist an edge e′ in
T such that (T \ e′) ∪ e is still a minimum spanning tree.

Proof Suppose u and v are two endpoints of edge e. Then T contains a path p

connecting u and v. On path p, every edge e′ must have weight c(e′) = c(e).
Otherwise, (T \ e′) ∪ e will be a spanning tree with total weight smaller than c(T),
contradicting minimality of c(T).

Now, select any edge e′ in path p. Then (T \ e′)∪ e is a minimum spanning tree.

�

80 4 Greedy Algorithm and Spanning Tree

Fig. 4.4 Lemma 4.1.11

Lemma 4.1.11 (Self-Reducibility) Suppose T is a minimum spanning tree of a
graph G and edge e in T has the smallest weight. Let G′ and T ′ be obtained from
G and T , respectively, by shrinking e into a node (Fig. 4.4). Then T ′ is a minimum
spanning tree of G′.

Proof Note that T is a minimum spanning tree of G if and only if T ′ is a minimum
spanning tree of G′.
�

With the above two lemmas, we are able to give an alternative proof for
correctness of the Kruskal algorithm. We leave it as an exercise for readers.

4.2 Matroid

There is a combinatorial structure which has a close relationship with greedy
algorithms. This is the matroid. To introduce matroid, let us first study independent
systems.

Consider a finite set S and a collection C of subsets of S. (S, C) is called an
independent system if

A ⊂ B,B ∈ C ⇒ A ∈ C,

i.e., it is hereditary. In the independent system (S, C), each subset in C is called an
independent set.

Consider a maximization problem as follows.

Problem 4.2.1 (Independent Set Maximization) Let c be a nonnegative cost
function on S. Denote c(A) = ∑

x∈A c(x) for any A ⊆ S. The problem is to
maximize c(A) subject to A ∈ C.

Also, consider the greedy algorithm in Algorithm 13.
For any F ⊆ E, a subset I of F is called a maximal independent subset if no

independent subset of E contains F as a proper subset. Define

u(F) = max{|I | | I is an independent subset of F },
v(F) = min{|I | | I is a maximal independent subset of F }.

4.2 Matroid 81

Algorithm 13 Greedy algorithm for independent set maximization
Input: An independent system (S, C) with a nonnegative cost function c on S.
Output: An independent set.
1: Sort all elements in S into ordering c(x1) ≥ c(x2) ≥ · · · ≥ c(xn)

2: A ← ∅
3: for i ← 1 to n do
4: if A ∪ {xi} ∈ C then
5: A ← A ∪ {xi}
6: end if
7: end for
8: return A

where |I | is the number of elements in I . Then we have the following theorem to
estimate the performance of Algorithm 13.

Theorem 4.2.2 Let AG be a solution obtained by Algorithm 13. Let A∗ be an
optimal solution for the independent set maximization. Then

1 ≤ c(A∗)
c(AG)

≤ max
F⊆S

u(F)

v(F)
.

Proof Note that S = {x1, x2, . . . , xn} and c(x1) ≥ c(x2) ≥ · · · ≥ c(xn). Denote
Si = {x1, . . . , xi}. Then

c(AG) = c(x1)|S1 ∩ AG| +
n∑

i=2

c(xi)(|Si ∩ AG| − |Ai−1 ∩ AG|)

=
n−1∑
i=1

|Si ∩ AG|(c(xi) − c(xi+1)) + |An ∩ AG|c(xn).

Similarly,

c(A∗) =
n−1∑
i=1

|Si ∩ A∗|(c(xi) − c(xi+1)) + |Sn ∩ A∗|c(xn).

Thus,

c(A∗)
c(AG)

≤ max
1≤i≤n

|A∗ ∩ Si |
|AG ∩ Si | .

We claim that Ai ∩ AG is a maximal independent subset of Si . In fact, for
contradiction, suppose that Si ∩AG is not a maximal independent subset of Si . Then
there exists an element xj ∈ Si \ AG such that (Si ∩ AG) ∪ {xj } is independent.

82 4 Greedy Algorithm and Spanning Tree

Thus, in the computation of Algorithm 2.1, I ∪ {ej } as a subset of (Si ∩ AG){xj }
should be independent. This implies that xj should be in AG, a contradiction.

Now, from our claim, we see that

|Si ∩ AG| ≥ v(Si).

Moreover, since Si ∩ A∗ is independent, we have

|Si ∩ A∗| ≤ u(Si).

Therefore,

c(A∗)
c(AG)

≤ max
F⊆S

u(F)

v(F)
.

�
The matroid is an independent system satisfying an additional property, called

augmentation property:

A,B ∈ C and |A| > |B|
⇒ ∃x ∈ A \ B : B ∪ {x} ∈ C.

This property is equivalent to some others.

Theorem 4.2.3 An independent system (S, C) is a matroid if and only if for any
F ⊆ S, u(F) = v(F).

Proof For forward direction, consider two maximal independent sets A and B. If
|A| > |B|, then there exists x ∈ A \ B such that B ∪ {x} ∈ C, contradicting
maximality of B.

For backward direction, consider two independent sets with |A| > |B|. Set F =
A ∪ B. Then every maximal independent set of F has size at least |A| (> |B|).
Hence, B cannot be a maximal independent set of F . Thus, there exists an element
x ∈ F \ B = A \ B such that B ∪ {x} ∈ C.
�

Theorem 4.2.4 An independent system (S, C) is a matroid if and only if for any
cost function c(·), Algorithm 13 gives a maximum solution.

Proof For necessity, we note that when (S, C) is matroid, we have u(F) = v(F)

for any F ⊆ S. Therefore, Algorithm 13 gives an optimal solution.
For sufficiency, we give a contradiction argument. To this end, suppose indepen-

dent system (S, C) is not a matroid. Then, there exists F ⊆ S such that F has two
maximal independent sets I and J with |I | < |J |. Define

4.2 Matroid 83

c(e) =
⎧⎨
⎩

1 + ε if e ∈ I

1 if e ∈ J \ I

0 otherwise

where ε is a sufficient small positive number to satisfy c(I) < c(J). The greedy
algorithm will produce I , which is not optimal.
�

This theorem gives tight relationship between matroids and greedy algorithms,
which is built up on all nonnegative objective function. It may be worth mentioning
that the greedy algorithm reaches optimal for a certain class of objective functions
may not provide any additional information to the independent system. The
following is a counterexample.

Example 4.2.5 Consider a complete bipartite graph G = (V1, V2, E) with |V1| =
|V2|. Let I be the family of all matchings. Clearly, (E, I) is an independent system.
However, it is not a matroid. An interesting fact is that maximal matchings may have
different cardinalities for some subgraph of G although all maximal matchings for
G have the same cardinality.

Furthermore, consider the problem max{c(·) | I ∈ I}, called the maximum
assignment problem.

If c(·) is a nonnegative function such that for any u, u′ ∈ V1 and v, v′ ∈ V2,

c(u, v) ≥ max(c(u, v′), c(u′, v)) �⇒ c(u, v) + c(u′, v′) ≥ c(u, v′) + c(u′, v).

This means that replacing edges (u1, v
′) and (u′, v1) in M∗ by (u1, v1) and (u′, v′)

will not decrease the total cost of the matching. Similarly, we can put all (ui, vi) into
an optimal solution, that is, they form an optimal solution. This gives an exchange
property. Actually, we can design a greedy algorithm to solve the maximum
assignment problem. (We leave this as an exercise.)

Next, let us present some examples of the matroid.

Example 4.2.6 (Linear Vector Space) Let S be a finite set of vectors and I the
family of linearly independent subsets of S. Then (S, I) is a matroid.

Example 4.2.7 (Graph Matroid) Given a graph G = (V ,E) where V and E are
its vertex set and edge set, respectively. Let I be the family of edge sets of acyclic
subgraphs of G. Then (E, I) is a matroid.

Proof Clearly, (E, I) is an independent system. Consider a subset F of E. Suppose
that the subgraph (V , F) has m connected components. Note that in each connected
component, every maximal acyclic subgraph must be a spanning tree which has
the number of edges one less than the number of vertices. Thus, every maximal
acyclic subgraph of (V ,E) has exactly |V | −m edges. By Theorem 4.2.3, (E, I) is
a matroid.
�

84 4 Greedy Algorithm and Spanning Tree

In a matroid, all maximal independent subsets have the same cardinality. They
are also called bases. In a graph matroid obtained from a connected graph, every
base is a spanning tree.

Let B be the family of all bases of a matroid (S, C). Consider the following
problem:

Problem 4.2.8 (Base Cost Minimization) Consider a matroid (S, C) with base
family B and a nonnegative cost function on S. The problem is to minimize c(B)

subject to B ∈ B.

Algorithm 14 Greedy algorithm for base cost minimization
Input: A matroid (S, C) with a nonnegative cost function c on S.
Output: A base.
1: Sort all elements in S into ordering c(x1) ≤ c(x2) ≤ · · · ≤ c(xn)

2: A ← ∅
3: for i ← 1 to n do
4: if A ∪ {xi} ∈ C then
5: A ← A ∪ {xi}
6: end if
7: end for
8: return A

Theorem 4.2.9 An optimal solution of the base cost minimization can be computed
by Algorithm 14, a variation of Algorithm 13.

Proof Suppose that every base has the cardinality m. Let M be a positive number
such that for any e ∈ S, c(e) < M . Define c′(e) = M − c(e) for all e ∈ E. Then
c′(·) is a positive function on S, and the non-decreasing ordering with respect to c(·)
is the non-increasing ordering with respect to c′(·). Note that c′(B) = mM − c(B)

for any B ∈ B. Since Algorithm 13 produces a base with maximum value of c′,
Algorithm 14 produces a base with minimum value of function c.
�

The correctness of greedy algorithm for the minimum spanning tree can also be
obtained from this theorem.

Next, consider the following problem.

Problem 4.2.10 (Unit-Time Task Scheduling) Consider a set of n unit-time tasks,
S = {1, 2, . . . , n}. Each task i can be processed during a unit-time and has to be
completed before an integer deadline di and, if not completed, will receive a penalty
wi . The problem is to find a schedule for S on a machine within time n to minimize
total penalty.

A set of tasks is independent if there exists a schedule for these tasks without
penalty. Then we have the following.

Lemma 4.2.11 A set A of tasks is independent if and only if for any t = 1, 2, . . . , n,
Nt(A) ≤ t where Nt(A) = |{i ∈ A | di ≤ t}|.

4.2 Matroid 85

Proof It is trivial for “only if” part. For the “if” part, note that if the condition
holds, then tasks in A can be scheduled in order of nondecreasing deadlines without
penalty.
�

Example 4.2.12 Let S be a set of unit-time tasks with deadlines and penalties and C
the collection of all independent subsets of S. Then, (S, C) is a matroid. Therefore,
an optimal solution for the unit-time task scheduling problem can be computed by
a greedy algorithm (i.e., Algorithm 13).

Proof (Hereditary) Trivial.
(Augmentation) Consider two independent sets A and B with |A| < |B|. Let k

be the largest k such that Nt(A) ≥ Nt(B). (A few examples are presented in Fig. 4.5
to explain the definition of k.) Then k < n and Nt(A) < Nt(B) for k + 1 ≤ t ≤ n.
Choose x ∈ {i ∈ B \ A | di = k + 1}. Then

Nt(A ∪ {x}) = Nt(A) ≤ t for 1 ≤ t ≤ k

and

Nt(A ∪ {x}) ≤ Nt(A) + 1 ≤ Nt(B) ≤ t for k + 1 ≤ t ≤ n.

�

Example 4.2.13 Consider an independent system (S, C). For any fixed A ⊆ S,
define

CA = {B ⊆ S | A �⊆ B}.

Fig. 4.5 In proof of Example 4.2.12

86 4 Greedy Algorithm and Spanning Tree

Then, (S, CA) is a matroid.

Proof Consider any F ⊆ S. If A �⊆ F , then F has unique maximal independent
set, which is F . Hence, u(F) = v(F).

If A ⊆ F , then every maximal independent subset of F is in the form F \ {x} for
some x ∈ A. Hence, u(F) = v(F) = |F | − 1.
�

4.3 Minimum Spanning Tree

Let us revisit the minimum spanning tree problem.
Consider a graph G = (V ,E) with nonnegative edge weight c : E → R+, and

a spanning tree T . Let (u, v) be an edge in T . Removal (u, v) would break T into
two connected components. Let U and W be vertex sets of these two components,
respectively. The edges between U and V constitute a cut, denoted by (U,W). The
cut (U,W) is said to be induced by deleting (u, v). For example, in Fig. 4.6, deleting
(3, 4) induces a cut ({1, 2, 3}, {4, 5, 6, 7, 8}).
Theorem 4.3.1 (Cut Optimality) A spanning tree T ∗ is a minimum spanning tree
if and only if it satisfies the cut optimality condition as follows:

Cut Optimality Condition For every edge (u, v) in T ∗, c(u, v) ≤ c(x, y) for
every edge (x, y) contained in the cut induced by deleting (u, v).

Proof Suppose, for contradiction, that c(u, v) > c(x, y) for some edge (x, y) in
the cut induced by deleting (u, v) from T ∗. Then T ′ = (T ∗ \ (u, v)) ∪ (x, y) is a
spanning tree with cost less than c(T ∗), contradicting the minimality of T ∗.

Conversely, suppose that T ∗ satisfies the cut optimality condition. Let T ′ be a
minimum spanning tree such that among all minimum spanning trees, T ′ is the one
with the most edges in common with T ∗. Suppose, for contradiction, that T ′ �= T ∗.
Consider an edge (u, v) in T ∗ \ T ′. Let p be the path from u to v in T ′. Then
p has at least one edge (x, y) in the cut induced by deleting (u, v) from T ∗. Thus,
c(u, v) ≤ c(x, y) by the cut optimality condition. Hence, T ′′ = (T ′ \(x, y))∪(u, v)

is also a minimum spanning tree, contradicting the assumption on T ′.
�
The following algorithm is designed based on cut optimality condition.

Fig. 4.6 A cut induced by
deleting an edge from a
spanning tree

4.3 Minimum Spanning Tree 87

Prim Algorithm
input: A graph G = (V ,E) with nonnegative edge weight c :→ R+.
output: A spanning tree T .

U ← {s} for some s ∈ V ;
T ← ∅;
while U �= V do

find the minimum weight edge (u, v) from cut (U, V \ U)

and T ← T ∪ (u, v);
return T .

An example for using Prim algorithm is shown in Fig. 4.7. The construction starts
at node 1 and guarantees that the cut optimality conditions are satisfied at the end.

The min-priority queue can be used for implementing Prim algorithm to obtain
the following result.

Theorem 4.3.2 Prim algorithm can construct a minimum spanning tree in
O(m log m) time where m is the number of edges in input graph.

Proof Prim algorithm can be implemented by using min-priority queue in the
following way:

• Keep to store all edges in a cut (U,W) in the min-priority queue S.
• At each iteration, choose the minimum weight edge (u, v) in the cut (U,W) by

using operation Extract-Min(S) where u ∈ U and v ∈ W .
• For every edge (x, v) with x ∈ U , delete (c, v) from S. This needs a new

operation on min-priority queue, which runs O(m) time.
• Add v to U .
• For every edge (v, y) with y ∈ V \U , insert (v, y) into priority queue. This also

requires O(log m) time.

In this implementation, Prim algorithm runs in O(m log m) time.
�
Prim algorithm can be considered as a local-information greedy algorithm.

Actually, its correctness can also be established by an exchange property and a self-
reducibility as follows.

Lemma 4.3.3 (Exchange Property) Consider a cut (U,W) in a graph G =
(V ,E). Suppose edge e has the smallest weight in cut (U,W). If a minimum
spanning tree T does not contain e, then there must exist an edge e′ in T such
that (T \ e′) ∪ e is still a minimum spanning tree.

Lemma 4.3.4 (Self-Reducibility) Suppose T is a minimum spanning tree of a
graph G and edge e in T has the smallest weight in the cut induced by deleting
e from T . Let G′ and T ′ be obtained from G and T , respectively, by shrinking e into
a node. Then T ′ is a minimum spanning tree of G′.

We leave proofs of them as exercises.

88 4 Greedy Algorithm and Spanning Tree

Fig. 4.7 An example with Prim algorithm

4.4 Local Ratio Method 89

4.4 Local Ratio Method

The local ratio method is also a type of algorithm with self-reducibility. Its basic
idea is as follows.

Lemma 4.4.1 Let c(x) = c1(x) + c2(x). Suppose x∗ is an optimal solution
of minx∈� c1(x) and minx∈Omega c2(x). Then x∗ is an optimal solution of
minx∈� c(x). The similar statement holds for the maximization problem.

Proof For any x ∈ �, c1(x) ≥ c1(x
∗), c2(x) ≥ c2(x

∗), and hence c(x) ≥ c(x∗).

�

Usually, the objective function c(x) is decomposed into c1(x) and c2(x) such
that optimal solutions of minx∈� c1(x) constitute a big pool so that the problem is
reduced to find an optimal solution of minx∈� c2(x) in the pool. In this section, we
present two examples to explain this idea.

First, we study the following problem.

Problem 4.4.2 (Weighted Activity Selection) Given n activities each with a time
period [si, fi) and a positive weight wi , find a nonoverlapping subset of activities to
maximize the total weight.

Suppose, without loss of generality, f1 ≤ f2 ≤ · · · ≤ fn. First, we consider a
special case that for every activity [si, fi), if si < f1, i.e., activity [si, fi) overlaps
with activity [s1, f1), then wi = w1 > 0, and if si ≥ f1, then wi = 0. In this case,
every feasible solution containing an activity overlapping with [s1, f1) is an optimal
solution. Motivated from this special case, we may decompose the problem into two
subproblems. The first one is in the special case, and the second one has weight as
follows

w′
i =

{
wi − w1 if si < f1,

wi otherwise.

In the second subproblem obtained from the decomposition, some activity may
have non-positive weight. Such an activity can be removed from our consideration
because putting it in any feasible solution would not increase the total weight. This
operation would simplify the problem by removing at least one activity. Repeat the
decomposition and simplification until no activity is left.

To explain how to obtain an optimal solution, let A′ be the set of remaining
activities after the first decomposition and simplification and Opt ′ is an optimal
solution for the weighted activity selection problem on A′. Since simplification
does not effect the objective function value of optimal solution, Opt ′ is an optimal
solution of the second subproblem in the decomposition. If Opt ′ contains an activity
overlapping with activity [s1, f1), then Opt ′ is also an optimal solution of the
first subproblem, and hence by Lemma 4.4.1, Opt ′ is an optimal solution for the
weighted activity selection problem on original input A. If Opt ′ does not contain an
activity overlapping with [s1, f1), then Opt ′ ∪ {[s1, f1)} is an optimal solution for

90 4 Greedy Algorithm and Spanning Tree

the first subproblem and the second subproblem and hence also an optimal solution
for the original problem.

Based on the above analysis, we may construct the following algorithm.

Local Ratio Algorithm for Weighted Activity Selection
input A = {[s1, f1), [s2, f2), . . . , [sn, fn)} with f1 ≤ f2 ≤ · · · ≤ fn.
B ← ∅.
output Opt .

while A �= ∅ do begin
[sj , fj) ← argmin[si ,fi)∈Afi ;
B ← B ∪ {[sj , fj)};
for every [si, fi) ∈ A do

if si < fj then wi ← wi − wj ;
end-for
for every [si, fi) ∈ A do

if wi ≤ 0 then A ← A − {[si, fi)};
end-for

end-while;
[sk, fk) ← argmax[si ,fi)∈Bfi ;
Opt ← {[sk, fk)};
B ← B − {[sk, fk)};
while B �= ∅ do

[sh, fh) ← argmax[si ,fi)∈Bfi ;
if sk ≥ fh,

then Opt ← Opt ∪ {[sh, fh)}
and [sk, fk) ← [sh, fh);

end-if
B ← B − {[sh, fh)};

end-while;
return Opt .

Now, we run this algorithm on an example as shown in Fig. 4.8.
Next, we study the second example.
Consider a directed graph G = (V ,E). A subgraph T is called an arborescence

rooted at a vertex r if T satisfies the following two conditions:

(a) If it ignores direction on every arc, then T is a tree.
(b) For any vertex v ∈ V , T contains a directed path from r to v.

Let T be an arborescence with root r . Then for any vertex v ∈ V − {r}, there is
exactly one arc coming to v. This property is quite important.

Lemma 4.4.3 Suppose T is obtained by choosing one incoming arc at each vertex
v ∈ V −{r}. Then T is an arborescence if and only if T does not contain a directed
cycle.

4.4 Local Ratio Method 91

Fig. 4.8 An example for weighted activity selection

Proof Note that the number of arcs in T is equal to |V | − 1. Thus, condition (b)
implies the connectivity of T when ignore direction, which implies condition (a).
Therefore, if T is not an arborescence, then condition (b) does not hold, i.e., there
exists v ∈ V −{r} such that there does not exist a directed path from r to v. Now, T

contains an arc (v1, v) coming to v with v1 �= r , an arc (v2, v1) coming to v1 with
v2 �= v, and so on. Since the directed graph G is finite. The sequence (v, v1, v2, . . .)

must contain a cycle.
Conversely, if T contains a cycle, then T is not an arborescence by the definition.

This completes the proof of the lemma.
�
Now, we consider the minimum arborescence problem.

Problem 4.4.4 (Minimum Arborescence) Given a directed graph G = (V ,E)

with positive arc weight w : E → R+ and a vertex r ∈ V , compute an arborescence
with root r to minimize total arc weight.

The following special case gives a basic idea for a local ratio method.

Lemma 4.4.5 Suppose for each vertex v ∈ V − {r} all arcs coming to v have
the same weight. Then every arborescence with root r is optimal for the MIN

ARBORESCENCE problem.

Proof It follows immediately from the fact that each arborescence contains exactly
one arc coming to v for each vertex v ∈ V − {r}.
�

92 4 Greedy Algorithm and Spanning Tree

Since arcs coming to r are useless in construction of an arborescence with root r ,
we remove them at the beginning. For each v ∈ V −{r}, let wv denote the minimum
weight of an arc coming to v. By Lemma 4.4.5, we may decompose the minimum
arborescence problem into two subproblems. In the first one, every arc coming to
a vertex v has weight wv . In the second one, every arc e coming to a vertex v has
weight w(e)−wv , so that every vertex v ∈ V −{r} has a coming arc with weight 0. If
all 0-weight arcs contain an arborescence T , then T must be an optimal solution for
the second subproblem and hence also an optimal solution for the original problem.
If not, then by Lemma 4.4.3, there exists a directed cycle with weight 0. Contract
this cycle into one vertex. Repeat the decomposition and the contraction until an
arborescence with weight 0 is found. Then in backward direction, we may find a
minimum arborescence for the original weight. An example is shown in Fig. 4.9.

Fig. 4.9 An example for computing a minimum arborescence

4.4 Local Ratio Method 93

According to above analysis, we may construct the following algorithm.

Local Ratio Algorithm for Minimum Arborescence
input a directed graph G = (V ,E) with arc weight w : E → R+,

and a root r ∈ V .
output An arborescence T with root r .

C ← ∅;
repeat

for every v ∈ V \ {r} do
let ev be the one with minimum weight among arcs coming
to v and T ← T ∪ {ev};
for every edge e = (u, v) coming to v do

w(e) ← w(e) − wv;
end-for

end-for
if T contains a cycle C

then C ← C ∪ {C} and
contract cycle C into one vertex in G and T ;

end-if
until T does not contain a cycle;
for every C ∈ C do

add C into T and properly delete an arc of C.
end-for
return T .

Exercises

1. Suppose that for every cut of the graph, there is a unique light edge crossing the
cut. Show that the graph has a unique minimum spanning tree. Does the inverse
hold? If not, please give a counterexample.

2. Consider a finite set S. Let Ik be the collection of all subsets of S with size at
most k. Show that (S, Ik) is a matroid.

3. Solve the following instance of the unit-time task scheduling problem.

ai 1 2 3 4 5 6 7
di 4 2 4 3 1 4 6
wi 70 60 50 40 30 20 10

Please solve the problem again when each penalty wi is replaced by 80 − wi .
4. Suppose that the characters in an alphabet is ordered so that their frequencies

are monotonically decreasing. Prove that there exists an optimal prefix code
whose codeword length are monotonically increasing.

5. Show that if (S, I) is a matroid, then (S, I ′) is a matroid, where

94 4 Greedy Algorithm and Spanning Tree

I ′ = {A′ | S − A′ contains some maximal A ∈ I}.

That is, the maximal independent sets of (S, I ′) are just complements of the
maximal independent sets of (S, I).

6. Suppose that a set of activities are required to schedule in a large number of
lecture halls. We wish to schedule all the activities using as few lecture halls as
possible. Give an efficient greedy algorithm to determine which activity should
use which lecture hall.

7. Consider a set of n files, f1, f2, . . . , fn, of distinct sizes m1,m2, . . . , mn,
respectively. They are required to be recorded sequentially on a single tape, in
some order, and retrieve each file exactly once, in the reverse order. The retrieval
of a file involves rewinding the tape to the beginning and then scanning the files
sequentially until the desired file is reached. The cost of retrieving a file is the
sum of the sizes of the files scanned plus the size of the file retrieved. (Ignore
the cost of rewinding the tape.) The total cost of retrieving all the files is the
sum of the individual costs.

(a) Suppose that the files are stored in some order fi1 , fi2 , . . . , fin . Derive a
formula for the total cost of retrieving the files, as a function of n and the
mik ’s.

(a) Describe a greedy strategy to order the files on the tape so that the total cost
is minimized, and prove that this strategy is indeed optimal.

8. In merge sort, the merge procedure is able to merge two sorted lists of lengths
n1 and n2, respectively, into one by using n1 +n2 comparisons. Given m sorted
lists, we can select two of them and merge these two lists into one. We can then
select two lists from the m− 1 sorted lists and merge them into one. Repeating
this step, we shall eventually end up with one merged list. Describe a general
algorithm for determining an order in which m sorted lists A1, A2, . . . , Am are
to be merged so that the total number of comparisons is minimum. Prove that
your algorithm is correct.

9. Let G = (V ,E) be a connected undirected graph. The distance between two
vertices x and y, denoted by d(x, y), is the number of edges on the shortest
path between x and y. The diameter of G is the maximum of d(x, y) over all
pairs (x, y) in V × V . In the remainder of this problem, assume that G has at
least two vertices.

Consider the following algorithm on G: Initially, choose arbitrarily x0 ∈
V . Repeatedly, choose xi+1 such that d(xi+1, xi) = maxv∈V d(v, xi) until
d(xi+1, xi) = d(xi, xi−1).

Can this algorithm always terminate? When it terminates, is d(xi+1, xi)

guaranteed to equal the diameter of G? (Prove or disprove your answer.)
10. Consider a graph G = (V ,E) with positive edge weight c : E → R+. Show

that for any spanning tree T and the minimum spanning tree T ∗, there exists
a one-to-one onto mapping ρ : E(T) → E(T ∗) such that c(ρ(e)) ≤ c(e) for
every e ∈ E(T) where E(T) denotes the edge set of T .

4.4 Local Ratio Method 95

11. Consider a point set P in the Euclidean plane. Let R be a fixed positive number.
A steinerized spanning tree on P is a tree obtained from a spanning tree on P

by putting some Steiner points on its edges to break them into pieces each of
length at most R. Show that the steinerized spanning with minimum number of
Steiner points is obtained from the minimum spanning tree.

12. Consider a graph G = (V ,E) with edge weight w : E → R+. Show that the
spanning tree T which minimizes

∑
e∈E(T) ‖e‖α for any fixed 1 < α is the

minimum spanning tree, i.e., the one which minimizes
∑

e∈E(T) ‖e‖.
13. Let B be the family of all maximal independent subsets of an independent

system (E, I). Then (E, I) is a matroid if and only if for any nonnegative
function c(·), Algorithm 14 produces an optimal solution for the problem
min{c(I) | I ∈ B}.

14. Consider a complete bipartite graph G = (U, V,E) with |U | = |V |. Let c(·)
be a nonnegative function on E such that for any u, u′ ∈ V1 and v, v′ ∈ V2,

c(u, v) ≥ max(c(u, v′), c(u′, v)) �⇒ c(u, v)+ c(u′, v′) ≥ c(u, v′)+ c(u′, v).

(a) Design a greedy algorithm for problem max{c(·) | I ∈ I}.
(b) Design a greedy algorithm for problem min{c(·) | I ∈ I}.

15. Given n intervals [si, fi) each with weight wi ≥ 0, design an algorithm to
compute the maximum weight subset of disjoint intervals.

16. Give a counterexample to show that an independent system with all maximal
independent sets of the same size may not be a matroid.

17. Consider the following scheduling problem. There are n jobs, i = 1, 2, . . . , n,
and there is one super-computer and n identical PCs. Each job needs to be pre-
processed first on the supercomputer and then finished by one of the PCs. The
time required by job i on the supercomputer is pi for i = 1, 2, . . . , n; the time
required on a PC for job i is fi for i = 1, 2, . . . , n. Finishing several jobs
can be done in parallel since we have as many PCs as there are jobs. But the
supercomputer processes only one job at a time. The input to the problem is
the vectors p = [p1, p2, . . . , pn] and f = [f1, f2, . . . , fn]. The objective of
the problem is to minimize the completion time of last job (i.e., minimize the
maximum completion time of any job). Describe a greedy algorithm that solves
the problem in O(n log n) time. Prove that your algorithm is correct.

18. Consider an independent system (S, C). For a fixed A ∈ C, define CA = {B ⊆
S | A \ B �= ∅}. Prove that (S, CA) is a matroid.

19. Prove that every independent system is an intersection of several matroids, that
is, for every independent system (S, C), there exist matroids (S, C1), (S, C2),
. . . (S, Ck) such that C = ∩k

i=1Ci .
20. Suppose that an independent system (S, C) is the intersection of k matroids.

Prove that for any subset F ⊆ S, u(F)/v(F) ≤ k where u(F) is the cardinality
of maximum independent subset of F and v(F) is the minimum cardinality of
maximal independent subset of F .

96 4 Greedy Algorithm and Spanning Tree

21. Design a local ratio algorithm to compute a minimum spanning tree.
22. Consider a graph G = (V ,E) with edge weight w : E → Z and a minimum

spanning tree T of G. Suppose the weight of an edge e ∈ T is increased by an
amount δ > 0. Design an efficient algorithm to find a minimum spanning tree
of G after this change.

23. Consider a graph G = (V ,E) with distinct edge weights. Suppose that a
minimum spanning tree T is already computed by Prim algorithm. A new
edge (u, v) (not in E) is being added to the graph. Please write an efficient
algorithm to update the minimum spanning tree. Note that no credit is given for
just computing a minimum spanning tree for graph G′ = (V ,E ∪ {(u, v)}).

24. Consider a matroid M = (X, I). Each minimal dependent set C is called a
circuit. A cut D is a minimal set such that D intersects every base. Suppose
that a circuit C intersects a cut D. Show that |C ∩ D| ≥ 2.

Historical Notes

The greedy algorithm is an important class of computer algorithms with self-
reducibility, for solving combinatorial optimization problems. It uses the greedy
strategy in construction of an optimal solution. There are several variations of
greedy algorithms, e.g., Prim algorithm for minimum spanning tree in which greedy
principal applies not globally but a subset of edges.

Could Prim algorithm be considered as a local search method? The answer is
no. Actually, in a local search method, a solution is improved by finding a better
one within a local area. Therefore, the greedy strategy applies to search for the
best moving from a solution to another better solution. This can also be called as
incremental method, which will be introduced in the next chapter.

The minimum spanning tree has been studied since 1926 [30]. Its history can be
found a remarkable article [185]. The best known theoretical algorithm is due to
Bernard Chazelle [49, 50]. The algorithm runs almost in O(m) time. However, it is
too complicated to implement and hence may not be practical.

Matroid was first introduced by Hassler Whitney in 1935 [406] and inde-
pendently by Takeo Nakasawa [329]. It is an important combinatorial structure
to describe the independence with axioms. Especially, those axioms provide an
abstraction for common properties in linear algebra and graphs. Therefore, many
concepts and terminologies are analogous in these two areas. The relationship
between matroid and greedy algorithm is only a small portion in the theory of
matroid [334, 384, 403]. Actually, the study of a matroid contains a much larger
field, with connections to many topics [404], such as combinatorial geometry
[37, 74, 405], unimodular matrices [171], projective geometry [308], electrical
networks [316, 348], and software systems [254].

Chapter 5
Incremental Method and Maximum
Network Flow

Change is incremental. Change is small.

—Theodore Melfi

In this chapter, we study the incremental method which is very different from those
methods in the previous chapters. This method does not use the self-reducibility.
It starts from a feasible solution, and in each iteration, computation moves from a
feasible solution to another feasible solution by improving the objective function
value. The incremental method has been used in the study of many problems,
especially in the study of network flow.

5.1 Maximum Flow

Consider a flow network G = (V ,E), i.e., a directed graph with a nonnegative
capacity c(u, v) on each arc (u, v), and two given nodes, source s and sink t . An
example of the flow network is shown in Fig. 5.1. For simplicity of description for
flow, we may extend capacity c(u, v) to every pair of nodes u and v by defining
c(u, v) = 0 if (u, v) �∈ E.

A flow in flow network G is a real function f on V × V satisfying the following
three conditions:

1. (Capacity constraint) f (u, v) ≤ c(u, v) for every u, v ∈ V .
2. (Skew symmetry) f (u, v) = −f (v, u) for all u, v ∈ V .
3. (Flow conservation)

∑
v∈V \{u} f (u, v) = 0 for every u ∈ V \ {s, t}.

The flow has the following properties.

Lemma 5.1.1 Let f be a flow of network G = (V ,E). Then the following holds:

(a) If (u, v) �∈ E and (v, u) �∈ E, then f (u, v) = 0.
(b) For any x ∈ V \ {s, t}, ∑f (u,x)>0 f (u, x) = ∑

f (x,v)>0 f (x, v).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_5

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_5&domain=pdf

 7680 61494
a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_5

98 5 Incremental Method

Fig. 5.1 A flow network

(c)
∑

f (s,v)>0 f (s, v)−∑f (u,s)>0 f (u, s)=∑
f (u,t)>0 f (u, t)−∑f (t,v)>0 f (t, v).

Proof

(a) By capacity constraint, f (u, v) ≤ c(u, v) = 0 and f (v, u) ≤ c(v, u) = 0. By
skew symmetric, f (u, v) = −f (v, u) ≥ 0. Hence, f (u, v) = 0.

(b) By flow conservation, for any x ∈ V \ {s, t},
∑

f (x,u)<0

f (x, u) +
∑

f (x,v)>0

f (x, v) =
∑
v∈V

f (x, v) = 0.

By skew symmetry,

∑
f (u,x)>0

f (u, x) = −
∑

f (x,u)<0

f (x, u) =
∑

f (x,v)>0

f (x, v).

(c) By (b), we have

∑
x∈V \{s,t}

∑
f (u,x)>0

f (u, x) =
∑

x∈V \{s,t}

∑
f (x,v)>0

f (x, v).

For (y, z) ∈ E with y, z ∈ V \ {s, t}, if f (y, z) > 0, then f (y, z) appears in
both the left-hand and the right-hand sides, and hence it will be cancelled. After
cancellation, we obtain

∑
f (s,v)>0

f (s, v) +
∑

f (t,v)>0

=
∑

f (u,s)>0

f (u, s) +
∑

f (u,t)>0

f (u, t).

�
Now, the flow value of f is defined to be

|f | =
∑

f (s,v)>0

f (s, v) −
∑

f (u,s)>0

f (u, s) =
∑

f (u,t)>0

f (u, t) −
∑

f (t,v)>0

f (t, v).

5.1 Maximum Flow 99

In case that the source s does not have arc coming in, we have

|f | =
∑

f (s,v)>0

f (s, v).

In general, we can also represent |f | as

|f | =
∑

v∈V \{s}
f (s, v) =

∑
u∈V \{t}

f (u, t).

In Fig. 5.2, arc labels with underline give a flow. This flow has value 11.
The maximum flow problem is as follows.

Problem 5.1.2 (Maximum Flow) Given a flow network G = (V ,E) with arc
capacity c : V × V → R+, a source s, and a sink t , find a flow f with maximum
flow value. Usually, assume that s does not have incoming arc and t does not have
outgoing arc.

An important tool for study of the maximum flow problem is the residual
network. The residual network for a flow f in a network G = (V ,E) with capacity
c is the flow network with Gf (V,E′) with capacity c′(u, v) = c(u, v)−f (u, v) for
any u, v ∈ V where E′ = {(u, v) ∈ V × V | c′(u, v) > 0}. For example, the flow
in Fig. 5.2 has its residual network as shown in Fig. 5.3. Two important properties
of the residual network are included in the following lemmas.

Lemma 5.1.3 Suppose f ′ is a flow in the residual network Gf . Then f + f ′ is a
flow in network G and |f + f ′| = |f | + |f ′|.

Fig. 5.2 A flow in network

Fig. 5.3 The residual
network Gf of the flow f in
Fig. 5.2

100 5 Incremental Method

Proof For any u, v ∈ V , since f ′(u, v) ≤ c′(u, v) = c(u, v) − f (u, v), we have
f (u, v) + f ′(u, v) ≤ c(u, v), that is, f + f ′ satisfies the capacity constraint.
Moreover, f (u, v) + f ′(u, v) = −f (v, u) − f ′(v, u) = −(f (v, u) + f ′(v, u))

and for every u ∈ V \ {s, t},
∑

v∈V \{u}
(f + f ′)(u, v) =

∑
v∈V \{u}

f (u, v) +
∑

v∈V \{u}
f ′(u, v) = 0.

This means that f + f ′ satisfies the skew symmetry and the flow conservation
conditions. Therefore, f + f ′ is a flow. Finally,

|f + f ′| =
∑

v∈V \{s}
(f + f ′)(s, v) =

∑
v∈V \{s}

f (s, v)+
∑

v∈V \{s}
f ′(s, v) = |f | + |f ′|.

�

Lemma 5.1.4 Suppose f ′ is a flow in the residual network Gf . Then (Gf)f ′ =
Gf+f ′ , i.e., the residual network of f ′ in network Gf is the residual network of
f + f ′ in network G.

Proof The arc capacity of (Gf)f ′ is

c′(u, v) − f ′(u, v) = c(u, v) − f (u, v) − f ′(u, v) = c(u, v) − (f + f ′)(u, v)

which is the same as that in Gf+f ′ .
�
In order to get a flow with larger value, Lemmas 5.1.3 and. 5.1.4 suggest us to

find a flow f ′ in Gf with |f ′| > 0. A simple way is to find a path P from s to t and
define f ′ by

f ′(u, v) =
{

min(x,y)∈P c′(x, y) if (u, v) ∈ P,

0 otherwise.

The following algorithm is motivated from this idea.
Using this algorithm, an example is shown in Fig. 5.4. The s-t path of the residual

network is called an augmenting path, and hence Ford-Fulkerson algorithm is an
augmenting path algorithm (Algorithm 15).

Now, we may have two questions: Can Ford-Fulkerson algorithm stop within
finitely many steps? When Ford-Fulkerson algorithm stops, does output reach the
maximum?

The answer for the first question is negative, that is, Ford-Fulkerson algorithm
may run infinitely many steps. A counterexample can be obtained from the one
as shown in Fig. 5.5 by setting m = ∞. However, with certain condition, Ford-
Fulkerson algorithm will run within finitely many steps.

5.1 Maximum Flow 101

Algorithm 15 Ford-Fulkerson algorithm for maximum flow
Input: A flow network G = (V ,E) with capacity function c, a source s, and a sink t .
Output: A flow f .
1: G ← G;
2: f ← 0; (i.e., ∀u, v ∈ V, f (u, v) = 0)
3: while there exists a path P from s to t in G do
4: δ ← min{c(u, v) | (u, v) ∈ P } and
5: send a flow f ′ with value δ from s to t along path P ;
6: G ← Gf ′ ;
7: f ← f + f ′;
8: end while
9: return f .

Fig. 5.4 An example for using the Ford-Fulkerson Algorithm

Theorem 5.1.5 If every arc capacity is a finite integer, then Ford-Fulkerson
algorithm runs within finitely many steps.

Proof The flow value has upper bound
∑

(s,v)∈E c(s, v). Since every arc capacity is
an integer, in each step, the flow value will be increased by at least one. Therefore,
the algorithm will run within at most

∑
(s,v)∈E c(s, v) steps.
�

Remark Ford-Fulkerson algorithm may run with infinitely many augmentations
even if all arc capacities are finite, but there is an irrational arc capacity. Such an
example can be found in exercises.

102 5 Incremental Method

Fig. 5.5 Ford-Fulkerson algorithm runs not in polynomial time

The answer for the second question is positive. Actually, we have the following.

Theorem 5.1.6 A flow f is maximum if and only if its residual network Gf does
not contain a path from source s to sink t .

To prove this theorem, let us first show a lemma.
A partition (S, T) of V is called an s-t cut if s ∈ S and t ∈ T . The capacity of

an s-t cut is defined by

CAP(S, T) =
∑

u∈S,v∈T

c(u, v).

Lemma 5.1.7 Let (S, T) be an s-t cut. Then for any flow f ,

|f | =
∑

f (u,v)>0,u∈S,v∈T

f (u, v) −
∑

f (v,u)>0,u∈S,v∈T

f (v, u) ≤ CAP(S, T).

Proof By Lemma 5.1.1(b),

∑
x∈S\{s}

∑
f (u,x)>0

f (u, x) =
∑

x∈S\{s}

∑
f (x,v)>0

f (x, v).

Simplifying this equation, we will obtain

∑
f (s,x)>0,x∈S\{s}

f (s, x) +
∑

u∈T ,x∈S\{s},f (u,x)>0

f (u, x)

=
∑

f (x,s)>0,x∈S\{s}
f (x, s) +

∑
v∈T ,x∈S\{s},f (x,v)>0

f (x, v).

Thus,

5.1 Maximum Flow 103

∑
f (s,x)>0

f (s, x) +
∑

u∈T ,x∈S,f (u,x)>0

f (u, x)

=
∑

f (x,s)>0

f (x, s) +
∑

v∈T ,x∈S,f (x,v)>0

f (x, v),

that is,

|f | =
∑

f (s,x)>0

f (s, x) −
∑

f (x,s)>0

f (x, s)

=
∑

v∈T ,x∈S,f (x,v)>0

f (x, v) −
∑

u∈T ,x∈S,f (u,x)>0

f (u, x)

≤
∑

v∈T ,x∈S,f (x,v)>0

f (x, v)

≤
∑

x∈S,v∈T

c(x, v).

�
Now, we prove Theorem 5.1.6.

Proof of Theorem 5.1.6 If residual network Gf contains a path from source s to
sink t , then a positive flow can be added to f and hence f is not maximum. Next,
we assume that Gf does not contain a path from s to t .

Let S be the set of all nodes each of which can be reached by a path from s. Set
T = V \ S. Then (S, T) is a partition of V such that s ∈ S and t ∈ T . Moreover,
Gf has no arc from S to T . This fact implies two important facts:

(a) For any arc (u, v) with u ∈ S and v ∈ T , f (u, v) = c(u, v).
(b) For any arc (v, u) with u ∈ S and v ∈ T , f (v, u) = 0.

Based on these two facts, by Lemma 5.1.7, we obtain that

|f | =
∑

u∈S,v∈T

c(u, v).

Hence, f is a maximum flow.
�

Corollary 5.1.8 The maximum flow is equal to minimum s-t cut capacity.

Finally, we remark that Ford-Fulkerson algorithm is not a polynomial-time. A
counterexample is given in Fig. 5.5. On this counterexample, the algorithm runs in
2m steps. However, the input size is O(log m). Clearly, 2m is not a polynomial with
respect to O(log m).

104 5 Incremental Method

5.2 Edmonds-Karp Algorithm

To improve the running time of Ford-Fulkerson algorithm, a simple modification is
found which works very well, that is, at each iteration, find a shortest augmenting
path instead of an arbitrary augmenting. By the shortest, we mean the path contains
the minimum number of arcs. This algorithm is called Admonds-Karp algorithm
(Algorithm 16).

An example for using Edmonds-Karp algorithm is shown in Fig. 5.6. Compared
with Fig. 5.4, we may find that input flow network is the same, but obtained
maximum flows are different. Thus, for this input flow network, there are two
different maximum flows. Actually, in this case, there are infinitely many maximum
flows. The reader may prove it as an exercise.

To estimate the running time, let us study some properties of Edmonds-Karp
algorithm.

Algorithm 16 Edmonds-Karp algorithm for maximum flow
Input: A flow network G = (V ,E) with capacity function c, a source s and a sink t .
Output: A flow f .
1: G ← G;
2: f ← 0; (i.e., ∀u, v ∈ V, f (u, v) = 0)
3: while there exists a path from s to t in G do
4: find a shortest path P from s to t ;
5: set δ ← min{c(u, v) | (u, v) ∈ P } and
6: send a flow f ′ with value δ from s to t along path P ;
7: G ← Gf ′ ;
8: f ← f + f ′;
9: end while

10: return f .

Fig. 5.6 An example for using the Edmonds-Karp algorithm

5.2 Edmonds-Karp Algorithm 105

Let δf (x) denote the shortest path distance from source s to node x in the residual
network Gf of flow f where each arc is considered to have unit distance.

Lemma 5.2.1 When Edmonds-Karp algorithm runs, δf (x) increases monotoni-
cally with each flow augmentation.

Proof For contradiction, suppose flow f ′ is obtained from flow f through an
augmentation with path P and δf ′(v) < δf (v) for some node v. Without loss of
generality, assume δf ′(v) reaches the smallest value among such v, i.e.,

δf ′(u) < δf ′(v) ⇒ δf ′(u) ≥ δf (u).

Suppose arc (u, v) is on the shortest path from s to v in Gf ′ . Then δf ′(u) = δf ′(v)−
1 and hence δf ′(u) ≥ δf (u). Next, let us consider two cases.

Case 1. (u, v) ∈ Gf . In this case, we have

δf (v) ≤ δf (u) + 1 ≤ δf ′(u) + 1 = δf ′(v),

a contradiction.
Case 2. (u, v) �∈ Gf . Then arc (v, u) must lie on the augmenting path P in Gf

(Fig. 5.7). Therefore,

δf (v) = δf (u) − 1 ≤ δf ′(u) − 1 = δf ′(v) − 2 < δf ′(v),

a contradiction.
�

An arc (u, v) is critical in residual network Gf if (u, v) has the smallest capacity
in the shortest augmenting path in Gf .

Lemma 5.2.2 Each arc (u, v) can be critical at most (|V | + 1)/2 times.

Proof Suppose arc (u, v) is critical in Gf . Then (u, v) will disappear in the next
residual network. Before (u, v) appears again, (v, u) has to appear in augmenting
path of a residual network Gf ′ . Thus, we have

δf ′(u) = δf ′(v) + 1.

Fig. 5.7 Proof of
Lemma 5.2.1

106 5 Incremental Method

Since δf (v) ≤ δf ′(v), we have

δf ′(u) = δf ′(v) + 1 ≥ δf (v) + 1 = δf (u) + 2.

By Lemma 5.2.1, the shortest path distance from s to u will increase by 2(k − 1)

when arc (u, v) can be critical k times. Since this distance is at most |V | − 1, we
have 2(k − 1) ≤ |V | − 1, and hence k ≤ (|V | + 1)/2.
�

Now, we establish a theorem on running time.

Theorem 5.2.3 Edmonds-Karp algorithm runs in time O(|V | · |E|2).
Proof In each augmentation, there exists a critical arc. Since each arc can be
critical (|V | + 1)/2 times, there are at most O(|V | · |E|) augmentations. In each
augmentation, finding the shortest path takes O(|E|) time, and operations on
the augmenting path take also O(|E|) time. Putting all together, Edmonds-Karp
algorithm runs in time O(|V | · |E|2).
�

Note that the above theorem does not require that all arc capacities are integers.
Therefore, the modification of Edmonds and Karp is twofold: (1) Make the
algorithm halt within finitely many iterations, and (2) the number of iterations is
bounded by a polynomial.

5.3 Applications

The maximum flow has many applications. Let us show a few examples in this
section.

Example 5.3.1 Given an undirected graph G = (V ,E) and two distinct vertices
s, t ∈ V , please give an algorithm to determine the connectivity between s and t ,
i.e., the maximum number of s-to-t paths that are vertex-disjoint paths (other than
at s and t).

For each vertex v ∈ V , create two vertices v+ and v− together with an arc
(v+, v−). For each edge (u, v) ∈ E, create two arcs (u−, v+) and (v−, u+). Then,
we obtain a directed graph G′ from G (Fig. 5.8). Every path from s to t in G induces
a path from s− to t+ in G′, and a family of vertex-disjoint paths from s to t in G

will induce a family of arc-disjoint paths from s− to t+, vice versa. Therefore, assign
every arc with unit capacity in G′. Then the connectivity between s and t in G is
equal to the maximum flow value from s− to t+ in G′.

Example 5.3.2 Consider a set of wireless sensors lying in a rectangle which is a
piece of boundary area of the region of interest. The region is below the rectangle
and outside is above the rectangle. The monitoring area of each sensor is a unit
disk, i.e., a disk with radius of unit length. A point is said to be covered by a
sensor if it lies in the monitoring disk of the sensor. The set of sensors is called

5.3 Applications 107

Fig. 5.8 Construct G′
from G

Fig. 5.9 Sensor barrier
covers

a barrier cover if they can cover a line (not necessarily straight) connecting two
vertical edges (Fig. 5.9) of the rectangle. The barrier cover is used for protecting
any intruder coming from outside. Sensors are powered with batteries and hence
lifetime is limited. Assume that all sensors have unit lifetime. The problem is to find
the maximum number of disjoint barrier covers so that they can be used in turn to
maximize the lifetime of the system.

Use two points s and t to represent two vertical edges of the rectangle; we call them
vertical lines s and t , respectively. Construct a graph G by setting the vertex set
consisting of all sensors together with s and t (Fig. 5.9). The edge is constructed
based on the following rules:

• If the monitoring disk of sensor u and the monitoring disk of sensor v have
nonempty intersection, then add an edge (u, v).

• If vertical line s and the monitoring disk of sensor v have nonempty intersection,
then add an edge (s, v).

• If the monitoring disk of sensor u and vertical line t have nonempty intersection,
then add an edge (u, t).

In graph G, every path between s and t induces a barrier cover, and every set of
vertex-disjoint paths between s and t will induce a set of disjoint barrier covers,
vice versa. Therefore, we can further construct G′ from G as above (Fig. 5.8), so

108 5 Incremental Method

the maximization of disjoint barrier is transformed to the maximum flow problem
in G′.

Definition 5.3.3 (Matching) Consider a graph G = (V ,E). A subset of edges is
called a matching if edges in the subset are not adjacent to each other. In other words,
a matching is an independent edge subset. A bipartite matching is a matching in a
bipartite graph.

Example 5.3.4 (Maximum Bipartite Matching) Given a bipartite graph (U, V,E),
find a matching with maximum cardinality.

This problem can be transformed into a maximum flow problem as follows. Add
a source node s and a sink node t . Connect s to every node u in U by adding an
arc (s, u). Connect every node v in V to t by adding an arc (v, t). Add to every
edge in E the direction from U to V . Finally, assign every arc with unit capacity.
An example is shown in Fig. 5.10.

Motivated from observation on the example in Fig. 5.10, we may have questions:

(1) Can we do augmentation directly in bipartite graph without putting it in a flow
network?

(2) Can we perform the first three augmentations in the same time?

For both questions, the answer is yes. Let us explain the answer in the next
section.

Fig. 5.10 Maximum bipartite matching is transformed to maximum flow

5.4 Matching 109

5.4 Matching

In this section, we study matching in a directed way. First, we define the augmenting
path as follows.

Consider a matching M in a bipartite graph G = (U, V,E). Let us call every
edge in M as matched edge and every edge not in M as unmatched edge. A node v

is called a free node if v is not an ending point of a matched edge.

Definition 5.4.1 (Augmenting Path) The augmenting path is now defined to be a
path satisfying the following:

• It is an alternating path, that is, edges on the path are alternatively unmatched
and matched.

• The path is between two free nodes.

There are totally odd number of edges in an augmenting path. The number of
unmatched edges is one more than the number of matched edges. Therefore, on an
augmenting path, turn all matched edges to unmatched and turn all unmatched edges
to matched. Then considered matching will become a matching with one more edge.
Therefore, if a matching M has an augmenting path, then M cannot be maximum.
The following theorem indicates that the inverse holds.

Theorem 5.4.2 A matching M is maximum if and only if M does not have an
augmenting path.

Proof Let M be a matching without augmenting path. For contradiction, suppose
M is not maximum. Let M∗ be a maximum matching. Then |M| < |M∗|. Consider
M ⊕ M∗ = (M \ M∗) ∪ (M∗ \ M), in which every node has degree at most two
(Fig. 5.11).

Hence, it is disjoint union of paths and cycles. Since each node with degree two
must be incident to two edges belonging to M and M ′, respectively. Those paths
and cycles must be alternative. They can be classified into four types as shown in
Fig. 5.12.

Note that in each of the first three types of connected components, the number of
edges in M is not less than the number of edges in M∗. Since |M| < |M∗|, we have
|M \M∗| < |M∗ \M|. Therefore, the connected component of the fourth type must
exist, that is, M has an augmenting path, a contradiction.
�

We now return to the question on augmentation of several paths at the same time.
The following algorithm is the result of a positive answer.

We next analyze Hopcroft-Karp algorithm (Algorithm 17).

Lemma 5.4.3 In each iteration, the length of the shortest augmenting path is
increased by at least two.

Proof Suppose matching M ′ is obtained from matching M through augmentation
on a maximal set of shortest augmenting paths, {P1, P2, . . . , Pk}, for M . Let P be
a shortest augmenting path for M ′. If P is disjoint from {P1, P2, . . . , Pk}, then P is

110 5 Incremental Method

Fig. 5.11 M ⊕ M∗

Fig. 5.12 Connected components of M ⊕ M∗

Algorithm 17 Hopcroft-Karp algorithm for maximum bipartite matching
Input: A bipartite graph G = (U, V,E).
Output: A maximum matching M .

1: M ← any edge;
2: while there exists an augmenting path do
3: find a maximal set of disjoint augmenting paths {P1, P2, . . . , Pk};
4: M ← M ⊕ (P1 ∪ P2 ∪ · · ·Pk);
5: end while
6: return M .

also an augmenting path for M . Hence, the length of P is longer than the length of
P1. Note that the augmenting path must have odd length. Therefore, the length of P

at-least-two longer than the length of P1.
Next, assume that P has an edge lying in Pi for some i. Note that every

augmenting path has two endpoints in U and V , respectively. Let u and v be two
endpoints of P and ui and vi two endpoints of Pi where u, ui ∈ U and v, vi ∈ V .
Without loss of generality, assume that (x, y) is the edge lying on P and also on
some Pi such that no such edge exists from y to v. Clearly,

5.4 Matching 111

distP (y, v) ≥ distPi
(y, vi), (5.1)

where distP (y, v) denotes the distance between y and v on path P . In fact, if
distP (y, v) < distPi

(y, vi), then replacing the piece of Pi between y and vi by
the piece of P between y and v, we obtain an augmenting path for M , shorter than
Pi , contradicting to shortest property of Pi . Now, we claim that the following holds.

distPi
(ui, y) + 1 = distPi

(ui, x) ≤ distP (u, x) = distP (u, y) − 1. (5.2)

To prove this claim, we may put the bipartite graph into a flow network as shown
in Fig. 5.10. Then every augmenting path receives a direction from U to V , and the
claim can be proved as follows.

Firstly, note that on path P , we assumed that the piece from y to v is disjoint from
all P1, P2, . . . , Pk . This assumption implies that edge (x, y) is in direction from x

to y on P , so that distP (u, x) = distP (u, y) − 1.
Secondly, note that edge (x, y) also appears on Pi , and after augmentation, every

edge in Pi must change its direction. Thus, edge (x, y) is in direction from y to x

on Pi . Hence, distPi
(ui, y) + 1 = distPi

(ui, x).
Thirdly, by Lemma 5.2.1, we have distPi

(ui, x) ≤ distP (u, x).
Finally, putting (5.1) and (5.2) together, we obtain

distPi
(ui, vi) + 2 ≤ distP (u, v).

�

Theorem 5.4.4 Hopcroft-Karp algorithm computes a maximum bipartite matching
in time O(|E|√|V |).
Proof In each iteration, it takes O(|E|) time to find a maximal set of shortest
augmenting paths and to perform augmentation on these paths. (We will give more
explanation after the proof of this theorem.) Let M be the matching obtained
through

√|V | iterations. Let M∗ be the maximum matching. Then M⊕M∗ contains
|M∗| \ |M| augmenting path, each of length at least 1 + 2

√|V | by Lemma 5.4.3.
Therefore, each takes at least 2 + 2

√|V | nodes. This implies that the number of
augmenting paths in M ⊕ M∗ is upper bounded by

|V |/(2 + 2
√|V |) <

√|V |/2.

Thus, M∗ can be obtained from M through at most
√|V |/2 iterations. Therefore,

M∗ can be obtained within at most 3
2 · √|V | iterations. This completes the proof.

�
There are two steps in finding a maximal set of disjoint augmenting paths for a

matching M in bipartite graph G = (U, V,E).
In the first step, employ the breadth-first search to put nodes into different levels

as follows. Initially, select all free nodes in U and put them in the first level. Next,

112 5 Incremental Method

Fig. 5.13 The breadth-first
search

put in the second level all nodes each with an unmatched edge connecting to a node
in the first level. Then, put in the third level all nodes each with a matched edge
connecting to a node in the second level. Continue in this alternating ways, until a
free node in V is discovered, say in the kth level (Fig. 5.13). Let F be all free nodes
in the kth level and H the obtained subgraph. If the breadth-first search comes to an
end and still cannot find a free node in V , then this means that there is no augmenting
path, and a maximum matching has already obtained by Hopcroft-Karp algorithm.

In the second step, employ the depth-first search to find path from each node in
F to a node in the first level. Such paths will be searched one by one in H , and once
a path is obtained, all nodes on this depth-first-search path will be deleted from H ,
until no more such path can be found.

Since both steps can work in O(|E|) time, the total time for finishing this task is
O(|E|).

The alternating path method can also be used for the maximum matching in
general graph.

Problem 5.4.5 (Maximum Graph Matching) Given a graph G = (V ,E), find a
matching with maximum cardinality.

The augmenting path is also defined to be a path satisfying the following:

• It is an alternating path, that is, edges on the path are alternatively unmatched
and matched.

• The path is between two free nodes.

Now, the proof of Theorem. 5.4.2 can be applied to the graph matching without
any change, to show the following.

Theorem 5.4.6 A matching M is maximum if and only if M does not have an
augmenting path.

Therefore, we obtained Algorithm 18 for the maximum graph matching problem.

How to find an augmenting path for matching in a general graph G = (V ,E)?
Let us introduce the Blossom algorithm of Edmonds. A blossom is an almost
alternating odd cycle as shown in Fig. 5.14.

5.4 Matching 113

Algorithm 18 Algorithm for maximum graph matching
Input: A graph G = (V ,E).
Output: A maximum matching M .
1: M ← {an arbitrary edge};
2: while there exists an augmenting path P do
3: M ← M ⊕ P ;
4: end while
5: return M .

Fig. 5.14 A blossom shrinks
into a node

The blossom algorithm is similar to the first step of augmenting-path finding in
Hopcroft-Karp algorithm, i.e., employ the breadth-first search by using unmatched
edge and matched edge alternatively. However, start from one free node x at a time.

Definition 5.4.7 (Alternating Tree) The alternating tree has a root at a free node
x. Its first level consists of unmatched edges, its second level consists of matched
edges, and alternatively continue.

Definition 5.4.8 (Even and Odd Nodes) In an alternating tree, a node is called an
odd node if its distance to the root has odd length. A node is called an even node if
its distance to the root has even length, e.g., the root is an even node.

Now, let us describe the blossom algorithm.

• For each free node x, construct an alternating tree with root x in the breadth-first-
search ordering.

• At an odd node y, if no matched edge is incident to y, then y is a free node, and
an augmenting path from x to y is found. If there exists a matched edge incident
to y, then such a matched edge is unique, and y can be extended uniquely to an
even node.

• At an even node z, if no unmatched edge is incident to z, then z cannot be
extended. If there exists an unmatched edge (u, z) incident to z, then consider
another ending node u of this edge. If u is a known even node, then a blossom is
found; shrink the blossom into an even node. If u is not a known even node, then
u can be counted as an odd node to continue our construction.

114 5 Incremental Method

• At a level consisting of even nodes, if none of them can be extended, then there
is no augmenting path starting from free node x.

• Therefore, above construction of alternating tree, we can either find an augment-
ing path starting from free node x or determine not existing of such a path. As
soon as an augmenting path is found, we can carry out an augmentation, matching
is updated, and we restart to search for an augmenting path.

• If for all free nodes, no augmenting path can be found from construction of
alternating trees, then current matching is maximum.

To show the correctness of the above algorithm, it is sufficient to explain why we
can shrink a blossom into a node. An explanation is given in the following.

Lemma 5.4.9 Let B be a blossom in graph G. Let G/B denote the graph obtained
from G by shrinking B into a node. Then G contains an augmenting path if and only
if G/B contains an augmenting path.

Proof Note that the alternating path can be extended passing through a blossom
out-reach to its any connection (Fig. 5.15). Therefore, if an augmenting path passes
through a blossom, then after shrink the blossom into a node, the augmenting path is
still an augmenting path. Conversely, if an augmenting path contains a node which
is obtained from a blossom, then after de-shrink the blossom, we can still obtain an
augmenting path.
�

Clearly, this algorithm runs in O(|V | · |E|) time. Thus, we have the following.

Theorem 5.4.10 With blossom algorithm, the maximum cardinality matching in
graph G = (V ,E) can be computed in O(|V |2 · |E|) time.

Proof To obtain a maximum matching, we can carry out at most |V | augmentations.
To find an augmenting path, we may spend O(|V | · |E|) time to construct alternating
trees. Therefore, the total running time is O(|V |2|E|).
�

For weighted bipartite matching and weighted graph matching, can we use
the alternating path to deal with them? The answer is yes. However, it is more
complicated. We can find a better way, which will be introduced in Sect. 6.8.

Fig. 5.15 An alternating path
passes a blossom

5.5 Dinitz Algorithm 115

5.5 Dinitz Algorithm

In this and the next sections, we present more algorithms for the maximum flow
problem. They have running time better than Edmonds-Karp algorithm.

First, we note that the idea in Hopcroft-Karp algorithm can be extended from
matching to flow. This extension gives a variation of Edmonds-Karp algorithm,
called Dinitz algorithm.

Consider a flow network G = (V ,E). The algorithm starts with a zero flow
f (u, v) = 0 for every arc (u, v). In each substantial iteration, consider residual
network Gf for flow f . Start from source node s to do the breadth-first search
until node t is reached. If t cannot be researched, then algorithm stops, and the
maximum flow is already obtained. If t is reached with distance
 from node s,
then the breadth-first-search tree contains
 level, and its nodes are divided into

classes V0, V1, . . . , V
 where Vi is the set of all nodes each with distance i from s

and
 ≤ |V |. Collect all arcs from Vi to Vi+1 for i = 0, 1, . . . ,
 − 1. Let L(s) be
the obtained levelable subnetwork. Above computation can be done in O(|E|) time.

Next, the algorithm finds augmenting paths to do augmentations in the following
way.

Step 1. Iteratively, for v �= t and u �= s, remove, from L(s), every arc (u, v) with
no coming arc at u or no outgoing arc at v. Denote by L̂(s) the obtained levelable
network.

Step 2. If L̂(s) is empty, then this iteration is completed, and go to the next
iteration. If L̂(s) is not empty, then it contains a path of length
, from s to t .
Find such a path P by using the depth-first search. Do augmentation along the
path P . Update L(s) by using L̂(s) and deleting all critical arcs on P . Go to Step
1.

This algorithm has the following property.

Lemma 5.5.1 Let δf (s, t) denote the distance from s to t in residual graph Gf

of flow f . Suppose flow f ′ is obtained from flow f through an iteration of Dinitz
algorithm. Then δf ′(s, t) ≥ δf (s, t) + 2.

Proof The proof is similar to the proof of Lemma 5.2.1.
�
The correctness of Dinitz algorithm is stated in the following theorem.

Theorem 5.5.2 Dinitz algorithm produces a maximum flow in O(|V |2|E|) time.

Proof By Lemma 5.5.1, Dinitz algorithm runs within O(|V |) iterations. Let us
estimate the running time in each iteration.

• The construction of L(s) spends O(|E|) time.
• It needs O(|V |) time to find each augmenting path and to do augmentation. Since

each augmentation will remove at least one critical arc, there are at most O(|E|)
augmentations. Thus, the total time for augmentations is O(|V | · |E|).

• Amortizing all time for removing arcs, it is at most O(|E|).

116 5 Incremental Method

Therefore, each iteration runs in O(|V | · |E|) time. Hence, Dinitz algorithm runs in
O(|V |2|E|) time. At the end of the algorithm, Gf does not contain a path from s to
t . Thus, f is a maximum flow.
�

5.6 Goldberg-Tarjan Algorithm

In this section, we study a different type of incremental method for maximum
network flow. In this method, a valid label will play an important role. This valid
label will be on each arc to guide the incremental direction.

Consider a flow network G = (V ,E) with capacity c(u, v) for each arc (u, v) ∈
E; s and t are source and sink, respectively. As usual, for simplicity of description,
we extend capacity c(u, v) to every pair of nodes u and v by defining c(u, v) = 0 if
(u, v) �∈ E.

A function f : V × V → R is called a preflow if

1. (Capacity constraint) f (u, v) ≤ c(u, v) for every u, v ∈ V .
2. (Skew symmetry) f (u, v) = −f (v, u) for all u, v ∈ V .
3. For every v ∈ V \ {s, t}, ∑v∈V \{u} f (u, v) ≥ 0, i.e.,

∑
(u,v)∈E f (u, v) ≥∑

(v,w)∈E f (v,w).

Compared with those three conditions in the definition of flow, the first two are
the same, and the third one is different. The flow conservation condition is relaxed
to allow more flow coming than going out at any node other than s and t . This
difference is called the excess at node v and denotes

e(v) =
∑

(u,v)∈E

f (u, v) ≥
∑

(v,w)∈E

f (v,w).

A node v is said to be active if e(v) > 0, v �= s, and v �= t . In preflow-relabel
algorithm, the excess will be pushed from an active node toward the sink, relying
on the valid distance label d(v) for v ∈ V , satisfying the following conditions.

• d(t) = 0.
• d(u) ≤ d(v) + 1 for (u, v) ∈ E.

An arc (u, v) is said to be admissible if d(u) = d(v) + 1 and c(u, v) > 0. Note
that if we consider a residual graph, then c(u, v) should be considered as updated
capacity.

Lemma 5.6.1 Let dist (u, v) denote the minimum number of arcs on the path from
u to v. Then d(u) ≤ dist (u, t).

Proof It can be proved by induction on dist (u, t). For dist (u, t) = 0, u must be t ,
and hence d(t) ≤ dist (t, t). For dist (u, t) = k > 0, suppose (u, u1, . . . , uk = t)

is the shortest path from u to t . Then dist (u1, t) = k − 1. By induction hypothesis,

5.6 Goldberg-Tarjan Algorithm 117

d(u1) ≤ dist (u1, t). Hence,

d(u, t) ≤ 1 + d(u1) ≤ 1 + dist (u1, t) = dist (u, t).

�
Next, we explain two operations, push and relabel. Consider an active node v.

Suppose that there exists an admissible arc (v,w). Then a flow min(e(v), c(v,w))

will be pushed along arc (v,w). If e(v) ≤ c(v,w), then it is called a saturated push.
Otherwise, the push is called a non-saturated one.

Suppose that there does not exist an admissible arc (v,w). Then relabel d(v) by
setting

d(v) = 1 + min{d(w) | c(v,w) > 0}.

An important observation is stated in the following lemma.

Lemma 5.6.2 After push and relabel, the (residual) network and label d(·)
are updated. However, d(·) is still a valid label for updated network. Hence,
Lemma 5.6.1 holds. Moreover, each relabel for node v will increase its label at least
one.

Proof First, consider a push along arc (v,w). This push may add a new arc (w, v)

to the residual network. Therefore, we need to make sure d(w) ≤ d(v) + 1. This is
true because d(v) = d(w) + 1.

Next, consider relabel node v. By the rule, new label for v is upper bounded
by d(w) + 1 for any arc (v,w) with c(v,w) > 0. Moreover, suppose (v,w′) =
argmin{d(w) | c(v,w) > 0}. Since (v,w′) is not admissible, we have d(v) ≤
d(w′). Hence, the new label for v is d(w′) + 1 ≥ d(v) + 1.
�

Now, we are ready to describe the push-relabel algorithm of Goldberg and Tarjan
(see Algorithm 19). An example is shown as in Fig. 5.16.

We next analyze this algorithm.

Lemma 5.6.3 Let f be a preflow appearing in computation process of Goldberg-
Tarjan algorithm. Then, in residual network Gf , every active node v has a path
connecting to s.

Proof In flow decomposition of f , there is a path flow from s to active node v. This
path flow will result in a path from v to s in residual network Gf .
�

Lemma 5.6.4 For any node v, d(v) ≤ 2n during computation, and there are at
most 2n relabels at each node v, where n is the number of nodes. Moreover, all
relabels need at most O(mn) time of computation.

Proof Note that the relabel occurs only at active nodes. If a node has never been
active, then its label is at most n − 1. If a node v has been active, then at last time
that v is active, there is a path from v to s. After push, this path still exists, and

118 5 Incremental Method

Algorithm 19 Goldberg-Tarjan algorithm for maximum flow
Input: A flow network G = (V ,E) with source s, sink t , and capacity c(u, v) for every (u, v) ∈ E.
Output: A flow f : V × V → R.
1: f (u, v) ← 0 for all (u, v) ∈ V × V ;
2: d(v) ← dist (v, t);
3: f (s, v) ← c(s, v) for (s, v) ∈ E;
4: d(s) ← n; (n = |V |)
5: G ← Gf ;
6: while there is an active node v do
7: if there is an admissible arc (v,w) then
8: f (v,w) ← min(e(v), c(v,w))

9: else
10: d(v) ← min{d(w) | c(v,w) > 0}
11: end if
12: G ← Gf ;
13: end while
14: return f

Fig. 5.16 An example for Goldberg-Tarjan algorithm (it contains three iterations from (5) to (6)
and two iterations from (8) to (9))

hence, d(v) ≤ n − 1 + d(s) = 2n − 1. Since each relabel makes a node’s label
increased at least once, a node can be relabeled at most 2n − 1 times.

Let deg(v) be the number of arcs at node v. Then each relabel spends time at
most deg(v). Therefore, all relabels need computational time at most

5.6 Goldberg-Tarjan Algorithm 119

∑
v∈V

deg(v)(2n − 1) ≤ (2n − 1) · 2m = O(mn)

where m = |E|.
�

Lemma 5.6.5 There are at most O(mn) saturated pushes in computation of
Goldberg-Tarjan algorithm, where n = |V | and m = |E|.
Proof Note that a push must be on an arc (u, v) in Gf , and hence (u, v) ∈ E

or (v, u) ∈ E where E is the set of arcs in input flow network G. Between two
consecutive saturated pushes on an arc (u, v), there must exist a relabel for v. The
total number of relabels for v is at most 2n. Therefore, the total number of saturated
pushes is at most O(mn).
�

Lemma 5.6.6 There are at most O(mn2) non-saturated pushes in computation of
Goldberg-Tarjan algorithm, where n = |V | and m = |E|.
Proof Consider a potential function � = ∑

v:active d(v). For simplicity of
speaking, let us call some operation making a “deposit” if it decreases the value
of � and “withdraw” if it increases the values of �.

First, note that each node has its label at most 2n − 1. Therefore, the relabel can
make total deposit at a node at most 2n − 1. Hence, totally, the relabel can make
deposit at most 2n2 − n.

Now, consider the saturated push. Each saturated push may increase a new active
node, which results in a deposit at most 2n − 1. Since there are totally O(mn)

saturated pushes, the saturated push can make totally O(mn2) deposit.
Finally, consider the non-saturated push. Each non-saturated push will remove an

active node while increasing an active node. Suppose the push is on arc (u, v). Then
d(u) = d(v) + 1. When u is removed and v may be added, the non-saturated push
will make a withdraw at least one. Therefore, the number of non-saturated pushes is
at most

n2 + O(n2) + O(mn2) = O(m2)

where note that initially, � has value at most n2.
�

Theorem 5.6.7 Goldberg-Tarjan algorithm must terminate at a maximum flow
within time O(mn2).

Proof The algorithm must terminate after all pushes and relabels are done. There-
fore, by Lemmas 5.6.4, 5.6.5, and 5.6.6, the algorithm will terminate within time

O(mn) + O(mn) + O(mn2) = O(mn2).

Moreover, when the algorithm terminates, there is no active node, and hence the
preflow becomes a normal flow. Moreover, the label of s is still d(s) = n, which

120 5 Incremental Method

means that there is no path from s to t in the residual graph. Therefore, the flow is
maximum.
�

Note that in Goldberg-Tarjan algorithm, the selection of an active node is
arbitrary. This gives an opportunity for improvement. There are two interesting rules
for the selection of active node, which can improve the running time.

The First Rule (Excess Scaling) The algorithm is divided into phases, �-scaling
phase for � = 2�log2 C�, 2�log2 C�−1, . . . , 1 where C = max{c(u, v) | (u, v) ∈ E}.
At beginning of the �-scaling phase, e(v) ≤ � for every active node v. At the end
of the �-scaling phase, e(v) ≤ �/2 for every active node v. (When � = 1, �/2 is
replaced by 0.) During the �-scaling phase, active node v is selected to be

v = argmin{d(u) | e(u) > �/2}.

In order to keep all active nodes with excess no more than �, a modification has
to be made on flow amount in a push. Along an admissible arc (u, v), the flow of
amount min(e(u), c(v,w),� − e(w)) is pushed.

Note that with the modification, there is no change on the relabel and the
saturated push. Therefore, Lemmas 5.6.4 and 5.6.5 still hold. However, the non-
saturated push occurs when pushed amount is either e(v) or �−e(w). In either case,
this amount is at least �/2. In Fig. 5.17, an example is presented for computation in
a �-scaling phase.

We next analyze the excess scaling algorithm, i.e., Goldberg-Tarjan algorithm
with excess scaling rule.

Lemma 5.6.8 In each �-scaling phase, the number of non-saturated pushes is at
most O(n2).

Proof Consider a potential function � = ∑
v∈V d(v) · e(v)/�. For simplicity of

speaking, let us call some operation making a “deposit” if it decreases the value of
� and “withdraw” if it increases the values of �.

Note that e(v) is nondecreasing during computation and e(v) ≤ 2n. Therefore,
the relabel can deposit at most 2n at each node v. Hence, the relabel deposits totally
at most 2n2 for �.

Every push will withdraw from � since it moves a certain amount value from
node v to w with d(v) = d(w)+ 1. Especially, every non-saturated push will move
at least �/2 from e(v) to e(w), that is, it withdraws at least 1/2 from �. Thus, the
total number of non-saturated pushes is at most 4n2 during each �-scaling phase.

�

Theorem 5.6.9 The excess scaling algorithm must terminate at a maximum flow
within time O(mn + n2 log C).

Proof By Lemmas 5.6.4 and 5.6.5, the relabel and the saturated push use totally
O(mn) time. By Lemma 5.6.8, the non-saturated push spends totally n2 log C time.
At the end of algorithm, there is no active node, i.e., the preflow becomes a flow.

5.6 Goldberg-Tarjan Algorithm 121

Fig. 5.17 An example for �-scaling phase (� = 8)

Moreover, in its residual graph, there is no path from source s to sink t since d(s) =
n. Thus, the flow is maximum.
�

The Second Rule (Highest-Level Pushing) A level is subset of nodes with the
same label. In this rule, the active node v is selected from the highest level, i.e.,

v = argmax{d(u) | u is active}.

In Fig. 5.18, an example is presented for computation in Goldberg-Tarjan algorithm
with this rule for selection of active node.

We next analyze Goldberg-Tarjan algorithm with highest-level pushing.
Let a phase be a consecutive sequence of pushes all at the same level.

Lemma 5.6.10 There are totally at most O(n2) phases.

Proof Let v be selected active node. A phase ends only if one of the following two
cases occurs:

(a) All active nodes at level d(v) have become inactive.
(b) A relabel for v occurs before v becomes inactive.

122 5 Incremental Method

Fig. 5.18 An example for a phase of highest-level pushing

By Lemma 5.6.4, there are at most O(n2) relabels, and hence (b) occurs at most
O(n2) times. Let � = max{d(v) | v is active}. Then initially, � ≤ n. If (b) occurs,
then � is increased. However, the total amount of increasing at each node is at most
2n. Hence, � can be increased at most 2n2 by relabels. If (a) occurs, then � will be
decreased by one. Therefore, (b) can occur at most n+ 2n2 = O(n2) times. Putting
together, the number of phases is at most O(n2).
�

Lemma 5.6.11 There are at most O(n2m1/2) non-saturated pushes.

Proof Let k = �m1/2�. Call a phase as a cheap one if it contains at most k non-
saturated pushes. Otherwise, call it as an expensive phase. Since there are at most
O(n2) phases. The number of non-saturated pushes in all cheap phases is at most
O(n2k) = O(n2m1/2). In the following, we estimate the number of non-saturated
pushes in all expensive phases.

To do so, define a potential function:

� =
∑

active v

z(v)

where z(v) is the number of nodes each with label at most d(v), i.e.,

z(v) = |{u ∈ V | d(u) ≤ d(v)}|.

Exercises 123

Again, for simplicity of speaking, let us call some operation making a “deposit” if
it decreases the value of � and “withdraw” if it increases the values of �.

Each relabel makes an active node v have label increased, which will make
z(v) increased. However, the increase cannot exceed n, the total number of nodes.
Therefore, each relabel makes a deposit with at most value n. O(n2) relabels will
deposit with at most value O(n3).

Each saturated push may activate a node, which will deposit with value at most
2n. Since there are totally O(mn) saturated pushes, they can deposit with value at
most O(n2).

Every non-saturated push on admissible arc (v,w) will make u inactive. Since
d(v) = d(w) + 1, z(v) − z(w) is equal to the number of nodes at the highest level
in the phase containing the non-saturated push. Note that during a phase, an active
node v at the level becomes inactive if and only if a non-saturated push occurs at
active node v. Therefore, at beginning of an expensive phase, there must exist at
least k active nodes at the highest level. This means that every non-saturated push
will withdraw at least value k from �.

Summarized from above argument, we can conclude that the total number of non-
saturated pushes in expensive phases is at most O((n3 + n2m)/k) = O(n2m1/2).
Therefore, the total number of non-saturated pushes during whole computation is at
most O(n2m1/2).
�

Theorem 5.6.12 The Goldberg-Tarjan algorithm with highest-level push must
terminate at a maximum flow within time O(n2m1/2).

Proof It follows immediately from Lemmas 5.6.4, 5.6.5, and 5.6.11.
�

Exercises

1. A conference organizer wants to set up a review plan. There are m submitted
papers and n reviewers. Each reviewer has made p papers as “prefer to review.”
Each paper should have at least q review reports. Find a method to determine
whether such a review plan exists or not.

2. A conference organizer wants to set up a review plan. There are m submitted
papers and n reviewers. Each reviewer is allowed to make at least p1 papers
as “prefer to review” and at least p2 papers as “likely to review.” Each paper
should have at least q1 review reports and at most q2 review reports. Please give
a procedure to make the review plan.

3. Let f be a flow of flow network G and f ′ a flow of residual network Gf . Show
that f + f ′ is a flow of G.

4. Let G be a flow network in which every arc capacity is a positive even integer.
Show that its maximum flow value is an even integer.

124 5 Incremental Method

5. Let G be a flow network in which every arc capacity is a positive odd integer.
Can we conclude that its maximum flow value is an odd integer? If not, please
give a counterexample.

6. Let G be a flow network. An arc (u, v) is said to be critical for a maximum flow
f if f (u, v) = c(u, v) where c(u, v) is the capacity of (u, v). Show that an arc
(u, v) is critical for every maximum flow if and only if decreasing it capacity
by one will result in maximum flow value getting decreased by one.

7. Let A be an m × n matrix with non-negative real numbers such that for every
row and every column, the sum of entries is an integer. Prove that there exists
an m × n matrix B with non-negative integers and the same sums as in A, for
every row and every column.

8. Suppose there exist two distinct maximum flows f1 and f2. Show that there
exist infinitely many maximum flows.

9. Consider a directed graph G with a source s, a sink t and nonnegative arc
capacities. Find a polynomial-time algorithm to determine whether G contains
a unique s-t cut.

10. (This is an example on which Ford-Fulkerson algorithm runs with infinitely
many augmentations.) Consider a flow network as shown in Fig. 5.19 where

x =
√

5−1
2 . Show by induction on k that the residual capacity c(u, v)− f (u, v)

on three vertical arcs can be xk, 0, xk+1 for every k = 0, 1, 2, (Hint: The
case of k = 0 is shown in Fig. 5.20. The induction step is as shown in Fig. 5.21.)

11. Consider a flow network G = (V ,E) with a source s, a sink t , and nonnegative
capacities. Suppose a maximum flow f is given. If an arc is broken, find a fast
algorithm to compute a new maximum flow based on f . A favorite algorithm
will run in O(|E| log |V |) time.

12. Consider a flow network G = (V ,E) with a source s, a sink t , and nonnegative
integer capacities. Suppose a maximum flow f is given. If the capacity of an

s t

16

6

66 x

1

6

6

Fig. 5.19 An example for Ford-Fulkerson algorithm

Exercises 125

s t

16

6

66 x

1

6

6

s t

16

5

66 x

1

5

6

Fig. 5.20 Base step

Fig. 5.21 Induction step

arc is increased by one, find a fast algorithm to update the maximum flow. A
favorite algorithm runs in O(|E| + |V |) time.

13. Consider a directed graph G = (V ,E) with a source s and a sink t . Instead
of arc capacity, assume that there is the nonnegative integer node capacity c(v)

on each node v ∈ V , that is, the total flow passing node v cannot exceed c(v).
Show that the maximum flow can be computed in polynomial-time.

14. Show that the maximum flow of a flow network G = (V ,E) can be
decomposed into at most |E| path-flows.

126 5 Incremental Method

15. Let G = (V ,E) be a undirected connected graph with two distinct nodes s

and t . Find two disjoint node subsets S and T such that s ∈ S and t ∈ T , to
minimize δ(S)+δ(T) where δ(X) denotes the number of edges between X and
V \ X.

16. Suppose a flow network G = (V ,E) is symmetric, i.e., (u, v) ∈ E if and
only if (v, u) ∈ E and c(u, v) = c(v, u). Show that Edmonds-Karp algorithm
terminates within at most |V | · |E|/4 iterations.

17. Consider a directed graph G. A node-disjoint set of cycles is called a cycle-
cover if it covers all nodes. Find a polynomial-time algorithm to determine
whether a given graph G has a cycle-cover or not.

18. Consider a graph G. Given two nodes s and t , and a positive integer k, find
a polynomial-time algorithm to determine whether there exist or not k edge-
disjoint paths between s and t .

19. Consider a graph G. Given two nodes s and t and a positive integer k, find
a polynomial-time algorithm to determine whether there exist or not k node-
disjoint paths between s and t .

20. Consider a graph G. Given three nodes x, y, and z, find a polynomial-time
algorithm to determine whether there exists a simple path from x to z passing
through y.

21. Prove or disprove (by counterexample) the following statements.

(a) If a flow network has unique maximum flow, then it has a unique minimum
s-t cut.

(b) If a flow network has unique minimum s-t cut, then it has a unique
maximum flow.

(c) A maximum flow must associate with a minimum s-t cut such that the flow
passes through the minimum s-t cut.

(d) A minimum s-t cut must associate with a maximum flow such that the flow
passes through the minimum s-t cut.

22. Let M be a maximal matching of a graph G. Show that for any matching M ′ of
G, |M ′| ≤ 2 · |M|.

23. We say that a bipartite graph G = (L,R,E) is d-regular if every vertex v ∈
L ∪ R has degree exactly d. Prove that every d-regular bipartite graph has a
matching of size |L|.

24. There are n students who studied at a late-night study for final exam. The time
has come to order pizzas. Each student has his own list of required toppings
(e.g., mushroom, pepperoni, onions, garlic, sausage, etc.). Everyone wants to
eat at least half a pizza, and the topping of that pizza must be in his required
list. A pizza may have only one topping. How to compute the minimum number
of pizzas to order to make everyone happy?

25. Consider bipartite graph G = (U, V,E). Let H be the collection of all
subgraphs H that for every u ∈ U , H has at most one edge incident to u.
Let E(H) denote the edge set of H and I = {E(H) | H ∈ H}. Show that
(a) (E, I) is a matroid and (b) all matchings in G form an intersection of two
matroids.

Historical Notes 127

26. Consider a graph G = (V ,E) with nonnegative integer function c : V → N .
Find an augmenting path method to compute a subgraph H = (V , F) (F ⊆ E)
with maximum number of edges such that for every v ∈ V , deg(v) ≤ c(v).

27. A conference with a program committee of 30 members received 100 papers.
Before making an assignment, the PC-chair first asked all PC-members each
to choose 15 preferred papers. Based on what PC-members choose, the PC-
chair wants to find an assignment such that each PC-member reviews 10 papers
among 15 chosen ones and each paper gets 3 PC-members to review. How do
we figure out whether such an assignment exists? Please design a maximum
flow formulation to answer this question.

28. Let U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}. A bipartite graph G =
(U, V,E) is convex if (ui, vk), (uj , vk) ∈ E with i < j imply (uh, vk) ∈ E

for all h = i, i + 1, . . . , j . Find a greedy algorithm to compute the maximum
matching in a convex bipartite graph.

29. Consider a bipartite graph G = (U, V,E) and two node subsets A ⊆ U and
B ⊆ V . Show that if there exist a matching MA covering A and a matching MB

covering B, then there exists a matching MA∪B covering A ∪ B.
30. For a graph G, let odd(G) denote the number of connected components of odd

size in G. Prove the following.

(a) In any graph G = (V ,E), the minimum number of free nodes in any
matching is

max
U⊆V

(odd(G \ U) − |U |).

(b) In any graph G, the maximum size of a matching is

min
U⊆V

1

2
· (|V | + |U | − odd(G \ U)).

(c) A graph G = (V ,E) has a perfect matching if and only if for any U ⊆ V ,
odd(G \ U) ≤ |U |.

Historical Notes

Maximum flow problem was proposed by T. E. Harris and F. S. Ross in 1955
[204, 360] and was first solved by L.R. Ford and D.R. Fulkerson in 1956 [145].
However, Ford-Fulkerson algorithm is a pseudo polynomial-time algorithm when
all arc capacities are integers. If arc capacities may not be integers, the termination
of the algorithm may meet a trouble. The first strong polynomial-time algorithm
was designed by Edmonds and Karp [123]. Later, various designs appeared in
the literature, including Dinitz algorithm [88, 89], Goldberg-Tarjan push-relabel

128 5 Incremental Method

algorithm [178], Goldberg-Rao algorithm [175], Sherman algorithm [365], and the
algorithm of Kelner, Lee, Orecchia, and Sidford [240]. Currently, the best running
time is O(|V ||E|). This record is kept by Orlin algorithm [331] for approximation
solution, running time can be further improved [239].

Matching is a classical subject in graph theory. Both maximum (cardinality)
matching and minimum cost perfect matching problems in bipartite graphs can be
easily transformed to maximum flow problems. However, they can also be solved
with alternating path methods. So far, Hopcroft-Karp algorithm [215] is the fastest
algorithm for the maximum bipartite matching. In general graph, they have to be
solved with alternating path method since currently, no reduction has been found to
transform matching problem to flow problem. Those algorithms were designed by
Edmonds [118]. An extension of Hopcroft-Karp algorithm was made by Micali and
Vazirani [313], which runs in O(

√|E||V |) time.
For maximum weight matching, nobody has found any method to transform it to

a flow problem. Therefore, we have to employ the alternating path and cycle method
[118], too.

Chinese postman problem was proposed by Kwan [269], and the first
polynomial-time algorithm was given by Edmonds and Johnson [122] with
minimum cost perfect matching in complete graph with even number of nodes.

Chapter 6
Linear Programming

Our intuition about the future is linear.

—Ray Kurzweil

Linear programming (LP) is an important combinatorial optimization problem, and
in addition, it is an important tool to design and to understand algorithms for other
problems. In this chapter, we introduce LP theory starting from Simplex Algorithm,
which is an incremental method.

6.1 Simplex Algorithm

An LP is an optimization problem with linear objective function and a constraint
system of equalities and inequalities. The following is an example:

maximize z = 4x + 5y

subject to 2x + 3y ≤ 60

x ≥ 0, y ≥ 0.

This example can be explained in the Euclidean plane as shown in Fig. 6.1. Each of
three inequalities gives a half plane. Their intersection is a triangle, which is called
a feasible domain. In general, the feasible domain of an LP is the set of all points
satisfying all constraints. For different value of z, z = 4x + 5y gives different lines
which form a family of parallel lines. When z increases, line z = 4x + 5y moves
from left to right, and at point (30, 0), it is the last moment to intersect the feasible
domain. Hence, (30, 0) is the point at which z = 4x + 5y reaches its maximum
value, i.e., 120.

In general, an LP may contain a large number of variables and a large number
of constraints and hence cannot be solved geometrically as above. However, above
example gives us a hint to find a general method. An important observation is that

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_6

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_6&domain=pdf

 7680 61494
a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_6

130 6 Linear Programming

Fig. 6.1 An example of LP

the maximum value of objective function is achieved at a vertex of the feasible
domain. This observation suggests an incremental method as follows: Start from
a vertex of the feasible domain and move from a vertex to another vertex with
improvement on objective function value.

Before we implement this idea, let us look at a standard form of LP. Every LP
can be transformed into the following form:

max z = cx

s.t. Ax = b

x ≥ 0,

where c is an n-dimensional row vector; b is an m-dimensional column vector; A

is an m × n coefficient matrix with rank m, i.e., rank(A) = m; and x is a column
vector with n variables as components. Thus, the above example can be transformed
into the following:

maximize z = 4x + 5y

subject to 2x + 3y + w = 60

x ≥ 0, y ≥ 0, w ≥ 0.

The feasible domain of this LP is in the three-dimensional space as shown in
Fig. 6.2. It is still a triangle with three vertices: (30, 0, 0), (0, 20, 0), and (0, 0, 60).

In general, what is the vertex of the feasible domain? A point in a convex domain
� is a vertex if

x = y + z

2
, y, z ∈ � ⇒ x = y = z.

6.1 Simplex Algorithm 131

Fig. 6.2 The feasible domain
of an LP in standard form

Theorem 6.1.1 (Fundamental Theorem) Let � = {x | Ax = b, x ≥ 0}. If
max cx over x ∈ � has an optimal solution, then it can be found in vertices of
�.

Proof Consider an optimal solution x∗ with minimum number of zero components
among all optimal solutions. We will show that x∗ is a vertex of �. By contradiction,
suppose x∗ is not, that is, there exist y, z ∈ � such that x∗ = (y + z)/2 and x∗, y, z

are distinct. Since cx∗ ≥ cy, cx∗ ≥ cz, and cx∗ = (cy + cz)/2, we must have
cx∗ = cy = cz. This means that y and z are also optimal solutions. It follows that
all feasible points on line x∗+α(y−x∗) are optimal solutions. However, � does not
contain any line. Thus, the line must contain a point x′ not in �, that is, x′ violates
at least one constraint.

Note that for any α, A(x∗ + α(y − x∗)) = b. Thus, x′ cannot violate constraint
Ax = b. Suppose x∗

i = 0. Since yi ≥, zi ≥ 0, and x∗
i = (yi + zi)/2, we have

zi = yi = x∗
i = 0. Therefore, the ith component of x∗ + α(y − x∗) is equal to 0 for

any α. Hence, x′ must violate some constraint xj ≥ 0 with x∗
j > 0, that is, x′

j < 0.
Now, we can easily find an optimal solution on the line segment between x∗ and x′,
which has one more zero component than x∗ has, a contradiction.
�

Let us consider our example again and start with (0, 0, 60) to look at how to
move from a vertex to another vertex.

(0, 0, 60) is special because the objective function z = 4x + 5y does not contain
w so that the value of w does not affect the objective function value directly. Clearly,
if we want to increase the objective function value, then we should increase value
of x or y. Let us choose to increase y. To keep 2x + 3y + w = 60, we may set
y = 20 and x = w = 0, i.e., we move from vertex (0, 0, 60) to vertex (0, 20, 0).
The objective function value is increased from 0 to 100.

132 6 Linear Programming

Working with (0, 20, 0), we get a little problem with objective function z = 4x+
5y. From this representation, we know that increasing x would increase the objective
function value z; however, this would bring down y, in order to keep 2x+3y+w =
60, and hence bring down objective function value z. Can we give a representation
of the objective function which does not contain y? The answer is yes. Substituting
y = 20 − 2

3x − 1
3w into z = 4x + 5y, we would obtain

z = 100 + 2

3
x − 2

3
w.

From this representation, we can easily see that increasing x would increase
objective function value z although y would be brought down. As long as y is kept
being nonnegative, it is ok. When y is brought down to 0, x can be increased to 30,
that is, we move from vertex (0, 20, 0) to vertex (30, 0, 0).

At vertex (30, 0, 0), we substitute x = 30 − 3
2y − 1

2w into z = 4x + 5y and
obtain

z = 120 − y − w.

Since y ≥ 0 and w ≥ 0, z = 120 − y − w ≥ 120 and equality sign holds when
y = w = 0. This means that (30, 0, 0) is the maximum point.

In above example, we were lucky to have all vertices each of which has only
one nonzero variable and objective function can always be represented in a form not
containing this nonzero variable. Can we always be so lucky? The answer is yes.
Why? Let us consider the general standard form of LP.

Since rank(A) = m, there are m linearly independent columns. Suppose their
indices form a set I , called a basis, and the rest of indices form a set Ī , i.e., Ī =
{1, 2, . . . , n} − I . Then we can write

A = (AI ,AĪ),

x =
(

xI

xĪ

)
,

c = (cI , cĪ).

Thus,

Ax = AIxI + AĪ xĪ = b, (6.1)

and

z = cI xI + cĪ xĪ . (6.2)

6.1 Simplex Algorithm 133

From (6.1), we obtain

xI = A−1
I b − A−1

I AĪ xĪ .

Substituting it into (6.2), we obtain

z = cIA
−1
I b + (cĪ − cIA

−1
I AĪ)xĪ .

This means that if we can have a feasible solution xĪ = 0, xI = A−1
I b, then we can

have a representation of z, which does not contain any nonzero variable.
Actually, if A−1

I b ≥ 0, then I is called a feasible basis, which induces a basic
feasible solution xĪ = 0, xI = A−1

I b. This basic feasible solution reaches the
maximum if c′̄

I
= cĪ − cIA

−1
I AĪ ≤ 0.

At this point, we may have some feeling that the basic feasible solution has
something to do with the vertex of the feasible domain. Let us first explain their
relationship and then continue our discussion.

Lemma 6.1.2 A feasible solution is a vertex of the feasible domain if and only if it
is a basic feasible solution.

Proof Denote � = {x | Ax = b, x ≥ 0}. First, we show that every basic feasible
solution is a vertex. Consider a basic feasible solution x with feasible basis I . Then
xĪ = 0 and xI = A−1

I b. Suppose x = (y + z)/2 for y, z ∈ �. Then xĪ = (yĪ +
zĪ)/2 = 0 and y ≥ 0, z ≥ 0. It follows that yĪ = zĪ = 0. Therefore, AIyI = b and
AIzI = b. This means that yI = zI = A−1

I b = xI , implying that y = z = x.
Next, suppose x is a vertex. We claim that {aj | xj > 0} is a set of linearly

independent vectors where aj is the j th column vector of A. For contradiction,
suppose that those column vectors are not linearly independent. Then there exist αj

for j with xj > 0 such that
∑

j :xj >0 αjaj = 0 and not all αj are zero. Define an
n-dimensional column vector d = (dj) by setting

dj =
{

αj if xj > 0,

0 if xj = 0.

Then d �= 0 and for sufficiently small ε > 0, y = x+ εd ∈ �, z = x− εd ∈ �, and
x = (y + z)/2. This means that x is not a vertex, a contradiction. Thus, our claim is
true.

Now, note that every linearly independent subset of column vectors can be
enlarged into a maximum linearly independent subset with m column vectors. Let I

be the set of indices of those column vectors. Then xI = A−1
I b ≥ 0, xĪ = 0, that is,

x is a basic feasible solution with basis I .
�
Now, we return to our discussion and consider a feasible basis I with c′̄

I
=

cĪ − cIA
−1
I AĪ . If c′̄

I
≤ 0, then the basic feasible solution (xI , xĪ) = (A−1

I b, 0)

is optimal.

134 6 Linear Programming

If c′j∗ > 0 for some j∗ ∈ Ī , then it means that increasing xj∗ will increase
the objective function value z. How much can xj∗ be increased? Denote (aij) =
A−1

I A = (Im,A−1
I AĪ) and b′ = A−1

I b where Im is the identity matrix of order m.
We want to increase xj∗ and keep xj = 0 for all j ∈ Ī −{j∗}. Thus, for every j ∈ I ,
xj = b′ij − aij j∗xj∗ where ij is the row index such that aij j = 1. If aij j∗ ≤ 0, then

xj ≥ 0 for any xj∗ ≥ 0. However, if aij j∗ > 0, then xj ≥ 0 only for xj∗ ≤ b′ij /aij j∗ .
This means that xj∗ can be increased at most to

b′i∗
ai∗j∗

= min{ b′i
aij∗

| aij∗ > 0}, (6.3)

and when xj∗ is increased to this value, xj ′ for j ′ ∈ I with ai∗j ′ = 1 would become
0. This means that such j ′ ∈ I can be replaced by j∗.

Above process of replacing j∗ by j ′ is called a pivot. Let us summarize the
process of a pivot.

• Choose j∗ from outside of feasible basis I because c′j > 0.
• Choose row index i∗ by (6.3).
• Choose j ′ if ai∗j ′ = 1.

Those choices imply that the new basis I ′ = (I \ {j ′}) ∪ {j∗} must be feasible.
Wait for a moment! (6.3) requires the existence i such that aij∗ > 0. What

happens if aij∗ ≤ 0 for all i = 1, 2, . . . , m? In such a case, xj∗ can be increased
to any large number so that the objective function value gets an increment c′j∗xj∗ ,
which is going to ∞ as xj∗ goes to ∞. Therefore, the LP has no optimal solution.

Now, let us come back to the case that there exists i such that aij∗ > 0. When xj∗
is increased to b′i∗/ai∗j∗ , the objective function value gets an increment c′j∗b′i∗/ai∗j∗ ,
which is positive if b′i∗ > 0. At this moment, we would like to make an assumption
that the following condition holds:

Nondegeneracy Condition For every feasible basis I , A−1
I b > 0.

Under this condition, we can always have b′i∗ > 0 so that the objective function
value is increased from a feasible basis I to another feasible basis I ′ = (I \
{j ′}) ∪ {j∗}.

We summarize results of above discussion into Algorithm 20, where ai denotes
the ith row of A, and Theorem 6.1.3.

Theorem 6.1.3 Under nondegeneracy condition, simplex method starting from a
basic feasible solution can find an optimal solution or no optimal solution in finitely
many iterations.

Now, we work on an example with simplex algorithm.
We will use a table designed as follows:

6.1 Simplex Algorithm 135

Algorithm 20 Simplex algorithm
Input: A LP max{cx | Ax = b, x ≥ 0} and a feasible basis I .
Output: An optimal solution x or “optimal value = +∞”.
1: A ← A−1

I A;
2: b ← A−1

I b;
3: c ← c − cA−1

I A;
4: c0 ← −cA−1

I b;
5: while c0 < +∞ and there exists cj∗ > 0 for j∗ ∈ Ī do
6: if aij∗ ≤ 0 for all i then
7: c0 ← +∞
8: else
9: select i∗ such that bi∗

ai∗j∗ = min{ bi

aij∗ | aij∗ > 0};
10: select j ′ such that ai∗j ′ = 1;
11: I ← (I \ {j ′}) ∪ {j∗};
12: (bi , ai) ← (bi , ai) − (bi∗ , ai∗) · aij∗

ai∗j∗ ;

13: (c0, c) ← (c0, c) − (bi∗ , ai∗) · cj∗
ai∗j∗ ;

14: end if
15: end while
16: return c0 and x if c0 < +∞

−z xT

0 c

b A

With initial feasible basis I , this initial table can be changed to

−z xT

−cA−1
I b c − cA−1

I A

A−1
I b A−1

I A

Consider this example:

max z = 3x1 + x2 + 2x3

s.t. x1 + x2 + 3x3 + x4 = 30

2x1 + 2x2 + 5x3 + x5 = 24

4x1 + x2 + 2x3 + x6 = 36

x1, x2, x3, x4, x5, x6 ≥ 0.

Its initial simplex table with feasible basis I0 = {4, 5, 6} is as follows:

136 6 Linear Programming

−z x1 x2 x3 x4 x5 x6

0 3 1 2
30 1 1 3 1
24 2 2 5 1
36 4 1 2 1

Since c′1 = 3 > 0, we may move x1 into basis. Note that 36/4 =
min(30/1, 24/2, 36/4). We choose the black 4 as pivoting element. This means
that I1 = (I0 − {6}) ∪ {1} = {4, 5, 1}. The simplex table with I1 is as follows:

−z x1 x2 x3 x4 x5 x6

−27 1/4 1/2 −3/4
21 3/4 5/2 1 −1/4

6 3/2 4 1 −1/2
9 1 1/4 1/2 1/4

Since c′2 > 0 and 6/(3/2) = min(21/(3/4), 6/(3/2), 9/(1/4)), we choose the black
3/2 as pivoting element and set I2 = (I1 − {5}) ∪ {2} = {4, 2, 1}. The simplex table
with I2 is as follows:

−z x1 x2 x3 x4 x5 x6

−28 −1/6 −3/8 −2/3
18 1/2 1 −9/8
4 1 8/3 3/2 −1/3
8 1 −1/6 −3/8 1/3

Now, c′j ≤ 0 for all j ∈ Ī2. Therefore, the basic feasible solution given by I2,
(x1 = 8, x2 = 4, x4 = 18, x3 = x5 = x6 = 0), is optimal, which achieves the
objective function value 28.

6.2 Lexicographical Ordering

When the nondegeneracy condition does not hold, the simplex method may fail into
a cycle. The following is an example provided in [22]:

−z x1 x2 x3 x4 x5 x6 x7

1 3/4 −20 1/2 −6 0 0 0
0 1/4 −8 −1 9 1 0 0
0 1/2 −12 −1/2 3 0 1 0
0 0 0 1 0 0 0 1

6.2 Lexicographical Ordering 137

After the first pivot, the following is obtained:

−z x1 x2 x3 x4 x5 x6 x7

1 0 4 7/2 −33 −3 0 0
0 1 −32 −4 36 4 0 0
0 0 4 3/2 −15 −2 1 0
0 0 0 1 0 0 0 1

After the second pivot, the following is obtained:

−z x1 x2 x3 x4 x5 x6 x7

1 0 0 2 −18 −1 −1 0
0 1 0 8 −84 −12 8 0
0 0 1 3/8 −15/4 −1/2 1/4 0
0 0 0 1 0 0 0 1

After the third pivot, the following is obtained:

−z x1 x2 x3 x4 x5 x6 x7

1 −1/4 0 0 3 2 −3 0
0 1/8 0 1 −21/2 −3/2 1 0
0 −3/64 1 0 3/16 1/16 −1/8 0
0 −1/8 0 0 21/2 3/2 −1 1

After the fourth pivot, the following is obtained:

−z x1 x2 x3 x4 x5 x6 x7

1 1/2 −16 0 0 1 −1 0
0 −3/2 56 1 0 2 −6 0
0 −1/4 16/3 0 1 1/3 −2/3 0
0 5/2 −56 0 0 −2 6 1

After the fifth pivot, the following is obtained:

−z x1 x2 x3 x4 x5 x6 x7

1 7/4 −44 −1/2 0 0 2 0
0 −5/4 28 1/2 0 1 −3 0
0 1/6 −4 −1/6 1 0 1/3 0
0 0 0 1 0 0 0 1

After the sixth pivot, the following is obtained:

138 6 Linear Programming

−z x1 x2 x3 x4 x5 x6 x7

z 3/4 −20 1/2 −6 0 0 0
0 1/4 −8 −1 9 1 0 0
0 1/2 −12 −1/2 3 0 1 0
0 0 0 1 0 0 0 1

Therefore, we return to original table.
There are two ways to deal with the degeneracy, i.e., avoiding the cycle

occurrence. The first one is called the lexicographical ordering method.
Consider two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). x is said

to be lexicographically larger than y, written as x >L y if x1 = y1, . . . , xi−1 =
yi−1, xi > yi for some 1 ≤ i ≤ n. A vector x is lexicographically positive if
x >L 0.

Now, we modify the simplex method as follows:
Initially, rearrange the ordering of n columns such that the initial feasible basis

is placed at the first m columns as shown in the following simplex table:

−z xT
I xT

Ī

c0 0 cĪ

b Im AĪ

This arrangement makes m rows, other than the top row, lexicographically positive.
Moreover, they are distinct since they are distinct within identity matrix Im.

If cĪ ≤ 0, then I is an optimal basis. Otherwise, choose j∗ such as cj∗ > 0.
Denote A = (Im,AĪ) and c = (0, cĪ). If aij∗ ≤ 0, then algorithm stops and we
can conclude that the LP has no optimal solution. If there exists some i such that
aij∗ > 0, then choose i∗ such that

(
bi∗

ai∗j∗
,

ai∗1

ai∗j∗
, . . . ,

ai∗n
ai∗j∗

)

is the lexicographically smallest one among

(
bi

aij∗
,

ai1

aij∗
, . . . ,

ain

aij∗

)

for aij∗ > 0.
Next, choose j ′ with ai∗j ′ = 1 and then carry out pivot I ← (I \ {j ′}) ∪ {j∗} by

operations

(bi, ai) ← (bi, ai) − (bi∗ , ai∗) · aij∗

ai∗j∗

and

6.2 Lexicographical Ordering 139

(c0, c) ← (c0, c) − (bi∗ , ai∗) · cj∗

ai∗j∗
.

This means that after a pivot, the new simplex table becomes

−z xT

c0 − bi∗ · aij∗
ai∗j∗ c − ai∗ · cj∗

ai∗j∗

bi − bi∗ · aij∗
ai∗j∗ ai − ai∗ · aij∗

ai∗j∗

This table has the following two properties:

(a) By choice of i∗, all rows, other than the top row, are lexicographically positive
and distinct.

(b) Since cj∗ > 0, ai∗j∗ > 0, and (bi∗ , ai∗) >L 0, the top row gets strictly
lexicographically decreasing.

Property (a) guarantees the continuation of this method. Property (b) implies that
each feasible basis can appear at most once, and hence, if the optimal value is not
infinity, then an optimal solution will be reached within finitely many iterations.

Theorem 6.2.1 Simplex algorithm runs in finitely many iterations. It can either
determine the optimal value is infinity or return an optimal solution.

Next, we work on the example at the beginning of this section with lexicograph-
ical ordering method. Initially, we have

−z x5 x6 x7 x1 x2 x3 x4

1 0 0 0 3/4 −20 1/2 −6
0 1 0 0 1/4 −8 −1 9
0 0 1 0 1/2 −12 −1/2 3
0 0 0 1 0 0 1 0

After the first pivot, we obtain

−z x5 x6 x7 x1 x2 x3 x4

1 0 −3/2 0 0 −2 5/4 −21/2
0 1 −1/2 0 0 −2 −3/4 15/2
0 0 2 0 1 −24 −1 6
0 0 0 1 0 0 1 0

After the second pivot, we obtain

140 6 Linear Programming

−z x5 x6 x7 x1 x2 x3 x4

1 0 −3/2 −5/4 0 −2 0 −21/2
0 1 −1/2 3/4 0 −2 0 15/2
0 0 2 1 1 −24 0 6
0 0 0 1 0 0 1 0

Thus, the algorithm ends after two iterations.

6.3 Bland’s Rule

The second method for dealing with degeneracy is to modify the simplex algorithm
by Bland’s rule as follows:

• Choose the entering column index j∗ satisfying

j∗ = min{j ∈ Ī | cj > 0}.

• Choose the row index i∗ which is the smallest one if there are more than one i∗
satisfying

bi∗

ai∗j∗
= min

{
bi

aij∗
| aij∗ > 0

}
.

Theorem 6.3.1 With Bland’s rule, simplex algorithm will not run into a cycle, so
that within finitely many iterations, the algorithm is able to determine whether the
optimal value goes to infinity or not, and if the optimal value is finite, then the
algorithm will obtain an optimal solution.

Proof It is sufficient to show that with Bland’s rule, simplex algorithm will not run
into a cycle. For contradiction, suppose a cycle exists. For simplicity of discussion,
we delete all constraints with row indices not selected in the cycle. Thus, for
remaining row index i, bi = 0 since objective function value cannot be changed
during computation of the cycle. In this cycle, there also exist some column indices
entering the feasible basis and then leaving or vice versa. Let t be the largest column
index among them. For simplicity of discussion, we also delete all columns with
index j > t since we will always assign 0 to variable xj for j > t . Next, let us
consider two moments in this cycle.

At the first moment, t leaves the feasible basis. Assume column index s enters the
feasible basis. Denote by aij and cj coefficients of constraints and cost, respectively,
at this moment.

At the second moment, t enters the feasible basis. Denote by a′ij and c′j
coefficients of constraints and cost, respectively.

6.3 Bland’s Rule 141

After deletion, suppose there are m rows left. Assume that at the first moment,
j1, j2, . . . , jm are base indices such that a1j1 = a2j2 = · · · = amjm = 1. Consider a
variable assignment x̂ with the following values:

x̂j =
⎧⎨
⎩
−1 if j = s,

ais if j = ji for i = 1, 2, . . . , m,

0 otherwise

Clearly, x̂ satisfies all constraints. Note that (c′j) can be obtained from (cj) through
elementary row operations. Therefore, at the first moment and at the second
moment, the cost function value should be the same at x̂, that is,

−cs = −c′s +
m∑

i=1

c′ji
ais .

Since at the first moment, s enters in the feasible basis, we have cs > 0. Note that
s < t and at the second moment, t enters in the feasible basis. By Bland’s rule, we
have c′s ≤ 0. Therefore,

m∑
i=1

c′ji
ais < 0.

It follows that for some i, c′ji
ais < 0. By Bland’s rule, c′ji

≤ 0. Therefore, ais > 0,
contradicting that t is the leaving index at the first moment.
�

Now, we apply Bland’s rule to the following LP:

−z x1 x2 x3 x4 x5 x6 x7

1 3/4 −20 1/2 −6 0 0 0
0 1/4 −8 −1 9 1 0 0
0 1/2 −12 −1/2 3 0 1 0
0 0 0 1 0 0 0 1

After the seventh pivot, the following is obtained:

−z x1 x2 x3 x4 x5 x6 x7

1 0 4 7/2 −33 −3 0 0
0 1 −32 −4 36 4 0 0
0 0 4 3/2 −15 −2 1 0
0 0 0 1 0 0 0 1

142 6 Linear Programming

After the seventh pivot, the following is obtained:

−z x1 x2 x3 x4 x5 x6 x7

1 0 0 2 −18 −1 −1 0
0 1 0 8 −84 −12 8 0
0 0 1 3/8 −15/4 −1/2 1/4 0
0 0 0 1 0 0 0 1

After the third pivot, the following is obtained:

−z x1 x2 x3 x4 x5 x6 x7

1 −1/4 0 0 3 2 −3 0
0 1/8 0 1 −21/2 −3/2 1 0
0 −3/64 1 0 3/16 1/16 −1/8 0
0 −1/8 0 0 21/2 3/2 −1 1

After the fourth pivot, the following is obtained:

−z x1 x2 x3 x4 x5 x6 x7

1 1/2 −16 0 0 1 −1 0
0 −3/2 56 1 0 2 −6 0
0 −1/4 16/3 0 1 1/3 −2/3 0
0 5/2 −56 0 0 −2 6 1

After the fifth pivot, the following is obtained:

−z x1 x2 x3 x4 x5 x6 x7

1 0 −24/5 0 0 7/5 −11/5 −1/5
0 0 112/5 1 0 4/5 −12/5 3/5
0 0 −4/15 0 1 2/15 −1/15 1/10
0 1 −112/5 0 0 −4/5 12/5 2/5

After the sixth pivot, the following is obtained:

−z x1 x2 x3 x4 x5 x6 x7

1 0 −44 0 0 0 2 −4/5
0 0 28 5/4 0 1 −3 3/4
0 0 −4 −1/6 1 0 1/3 0
0 1 0 1 0 0 0 1

After the seventh pivot, the following is obtained:

6.4 Initial Feasible Basis 143

−z x1 x2 x3 x4 x5 x6 x7

1 0 −20 1 −6 0 0 −4/5
0 0 −8 −1/4 0 1 0 3/4
0 0 −12 −1/2 3 0 1 0
0 1 0 1 0 0 0 1

After the eighth pivot, the following is obtained:

−z x1 x2 x3 x4 x5 x6 x7

1 −1 −20 0 −6 0 0 −9/5
0 1/4 −8 0 0 1 0 1
0 1/2 −12 0 3 0 1 1/2
0 1 0 1 0 0 0 1

Now, computation stops.

6.4 Initial Feasible Basis

How do we find the initial feasible basis? A popular way is to introduce artificial
variables y = (y1, y2, . . . , ym)T and solve the following LP:

max w = −ey

subject to Ax + Imy = b

x ≥ 0, y ≥ 0,

where e = (1, 1, . . . , 1) and Im is the identity matrix of order m. In this LP, those
artificial variables form a feasible basis. There are three possible outcomes resulting
from solving this LP.

(1) The cost function value w is reduced to 0 and all artificial variables are removed
from the feasible basis. In this case, the final feasible basis can be used as initial
feasible basis in original LP.

(2) The cost function reaches a negative maximum value. In this case, the original
LP has no feasible solution.

(3) The cost function value w is reduced to 0; however, there is an artificial variable
yi in the feasible basis. Let bi and aij denote coefficients of constraints at the
last moment. In this case, we must have yi = bi = 0; otherwise, w = ey > 0.
Note that there exists a variable xj such that aij �= 0 since rank(A) = m. This
means that we may take aij as pivot element to move yi out from feasible basis
and to move in xj , preserving cost function value 0. When all artificial variables
are moved out from the feasible basis, this case is reduced to case (1).

144 6 Linear Programming

We next show an example as follows:

max z = −2x1

subject to x1 −x3 = 3,

x1 −x2 −2x4 = 1,

2x1 +x4 ≤ 7,

x1, x2, x3, x4 ≥ 0.

First, we transform it into a standard form:

max z = −2x1

subject to x1 −x3 = 3,

x1 −x2 −2x4 = 1,

2x1 +x4 +x5 = 7,

x1, x2, x3, x4, x5, ≥ 0.

To find an initial feasible basis, we introduce two artificial variables y1 and y2 and
solve the following LP:

max w = −y1 −y2

subject to x1 −x3 y1 = 3,

x1 −x2 −2x4 y2 = 1,

2x1 +x4 +x5 = 7,

x1, x2, x3, x4, x5, y1, y2 ≥ 0.

The following tables are obtained with simplex algorithm with lexicographical rule:

−w y1 y2 x5 x1 x2 x3 x4

4 2 −1 −1
3 1 1 −1
1 1 1 −1 −2
7 1 2 1

−w y1 y2 x5 x1 x2 x3 x4

2 −2 1 −1 4
2 1 −1 1 −1 2
1 1 1 −1 −2
5 −2 1 2 5

6.4 Initial Feasible Basis 145

−w y1 y2 x5 x1 x2 x3 x4

0 −1 −1 2
2 1 −1 1 −1 2
3 1 1 −1
1 −2 1 2 1

At this point, we may stop the algorithm since w has been reduced to 0 and
all artificial variables are already moved out of feasible basis. An feasible basis
{x5, x1, x2} is obtained for the original LP. Deleting columns of artificial variables
and putting back original cost function, we obtain the following:

−z x5 x1 x2 x3 x4

0 −2
2 1 −1 2
3 1 −1
1 1 2 1

−z x5 x1 x2 x3 x4

6 −2
2 1 −1 2
3 1 −1
1 1 2 1

It is pretty lucky that this basis already reaches the optimal. Therefore, we obtain
optimal solution (x1 = 3, x2 = 2, x3 = x4 = 0) with maximum objective function
value −6.

Now, we can summarize what we obtained on the LP as follows:

Theorem 6.4.1 There are three possible outcomes for solving LP max{cx | Ax =
b, x ≥ 0}.
(a) There is no feasible solution.
(b) The maximum value of objective function is +∞.
(c) There is a maximum solution with finite objective function value. Then, there

exists a maximum solution which is a basic feasible solution associated with
a feasible basis I such that c − cIA

−1
I A ≤ 0. Moreover, if a basic feasible

solution is associated with the feasible basis I satisfying c− cIA
−1
I A ≤ 0, then

it is a maximum solution.

146 6 Linear Programming

6.5 Duality

Consider the following two LPs:

(P) : max z = cx

subject to Ax = b

x ≥ 0,

and

(D) : min w = yb

subject to yA ≥ c,

where c is an n-dimensional row vector, b is an m-dimensional column vector, and
M is a m×n matrix with rank(A) = m. LP (P) is called primal LP while LP (D) is
called dual LP. x is said to be primal-feasible if x lies in the feasible domain of (P).
y is said to be dual-feasible if y lies in the feasible domain of (D).

Lemma 6.5.1 If x is primal-feasible and y is dual-feasible, then yb ≥ cx.

Proof yb = yAx ≥ cx.
�

Theorem 6.5.2 (Duality)

(a) The primal LP (P) has no feasible solution if and only if the dual LP (D) has
minimum value −∞.

(b) The primal LP (P) has maximum value +∞ if and only if the dual LP has no
feasible solution.

(c) If both the primal LP (P) and the LP (D) have feasible solutions, then they both
have optimal solutions, say x∗ and y∗, respectively. Moreover, cx∗ = y∗b.

Proof First two statements (a) and (b) follow from Lemma 6.5.1. To show (c), by
Theorem 6.4.1, an optimal feasible basis I satisfies

c − cIA
−1
I A ≤ 0.

Set y = cIA
−1
I . Then yA ≥ c, i.e., y is dual-feasible. Suppose x is a maximum

basic feasible solution associated with feasible basis I , i.e., xI = A−1
I b and xĪ = 0.

then

yb = yax = cIA
−1
I Ax = (cI , cIA

−1
I AĪ)x = cI xI = cx.

�

6.5 Duality 147

Corollary 6.5.3 (Complementary Slackness) Consider a primal-feasible solution
x and a dual-feasible solution y. Then both x and y are optimal if and only if
(yA − c)x = 0.

Proof By the duality theorem, both x and y are optimal if and only if cx = yb.
Since b = Ax, cx = yb if and only if cx = yAx, i.e., (yA − c)x = 0.
�

The condition (yA − c)x = 0 is called the complementary slackness condition.
Consider a pair of primal and dual LPs in symmetric form as follows:

(P) : max z = cx

subject to Ax ≤ b,

x ≥ 0,

and

(D) : min w = yb

subject to yA ≥ c,

y ≥ 0.

The duality theorem still holds for them and the complementary slackness condition
has a different expression.

Corollary 6.5.4 (Complementary-Slackness) Consider a primal-feasible solu-
tion x and a dual-feasible solution y in a pair of primal LP and dual LP in symmetric
form. Then both x and y are optimal if and only if (yA−c)x = 0 and y(b−Ax) = 0.

Proof Note that

cx ≤ yAx ≤ yb.

By the duality theorem, both x and y are optimal if and only if cx = by, that is,
cx = yAx and yAx = yb. These two equalities are equivalent (yA − c)x = 0 and
y(b − Ax) = 0, respectively.
�

Another important corollary of the duality theorem is about separating hyper-
plane.

Corollary 6.5.5 (Separating Hyperplane Theorem)

(a) There does not exist x ≥ 0 such that Ax = b if and only if there exists y such
that yA ≥ 0 and yb < 0.

(b) There does not exist x ≥ 0 such that Ax ≤ b if and only if there exists y ≥ 0
such that yA ≥ 0 and yb < 0.

148 6 Linear Programming

Proof First, we prove (a). Consider the following pair of primal and dual LPs:

(P) : max z = 0

subject to Ax = b

x ≥ 0,

and

(D) : min w = yb

subject to yA ≥ 0.

By the duality theorem, (P) has no feasible solution if and only if (D) approaches
to −∞. Note that if y is dual-feasible, so is αy for any α > 0. Therefore, (D)
approaches to −∞ if and only if there is a dual-feasible solution y such that yb < 0.

Similarly, we can show (b).
�
Let us give a little explanation for separating hyperplane. If the feasible domain

{x | Ax = b, x ≥ 0} is nonempty, then b is located in the cone generated by
a1, a2, . . . , an, i.e., {∑n

i=1 αiai | αi ≥ 0 for i = 1, 2, . . . , n}. The separating
hyperplane theorem (a) says that if b does not lie in this cone, then there exists a
hyperplane separating the core and b. (b) has a similar background. The separating
hyperplane theorem is quite useful in design of approximation algorithms in later
chapters.

The duality gives the possibility to design other algorithms for LP, which may
have advantage in some cases. The dual simplex algorithm is useful when initial
dual-feasible solution is easily obtained.

Consider a basis I . I is called a dual-feasible basis if c − cIA
−1
I A ≤ 0, i.e.,

y = cIA
−1
I is a dual-feasible solution. Clearly, the dual-feasible basis is optimal

if and only A−1
I b ≥ 0. In the following example, a primal-feasible basis is not

explicitly appeared. However, a dual-feasible basis {x4, x5, x6} is easy to be found:

max z = −3x1 − x2 − 2x3

subject to x1 + x2 + 3x3 + x4 = 30

2x1 − 2x2 + 5x3 + x5 = −24

4x1 + x2 + 2x3 + x6 = 36

x1, x2, x3, x4, x5, x6 ≥ 0.

Its initial table is as follows. Note that all coefficients of cost, cj ≤ 0:

6.5 Duality 149

−z x1 x2 x3 x4 x5 x6

0 −3 −1 −2
30 1 1 3 1
−24 2 −2 5 1

4 1 2 1

In dual simplex algorithm, the computation moves from a dual-feasible basis to
another dual-feasible basis through a pivot operation. To describe such a pivot, let
aij , bi , and cj be coefficients of constraints and cost in current table. Note that all
coefficients of cost, cj ≤ 0. However, some bj < 0. First, we choose row index i∗
such that bi∗ < 0. Then, choose column index j∗ such that

cj∗

ai∗j∗
= min{ cj

ai∗j
| ai∗j < 0}.

This condition yields that all cj is keep nonpositive after pivot. According to these
rules, the pivot element is a22 = −2 in this example. After, the first pivot, we obtain
the following:

−z x1 x2 x3 x4 x5 x6

12 −4 0 −9/2 −1/2
18 2 0 11/2 1 1/2
12 −1 1 −5/2 −1/2
24 5 0 9/2 1/2 1

This table gives an optimal solution x1 = x3 = 5 = 0, x2 = 12, x4 = 18, x6 = 24
with optimal value −12.

At the end of this section, let us list the correspondence between constraints in
primal and dual LPs. This would be very helpful to write down the dual LP based
on primal LP.

Primal LP ←→ Dual LP

max ←→ min∑
j

aij xj = bi ←→ yi has no restriction

∑
j

aij xj ≤ bi ←→ yi ≥ 0

∑
j

aij xj ≥ bi ←→ yi ≤ 0

xj has no restriction ←→
∑

i

aij yi = cj

150 6 Linear Programming

xj ≥ 0 ←→
∑

i

aij yi ≥ cj

xj ≤ 0 ←→
∑

i

aij yi ≤ cj .

For example, the maximum flow problem can be formulated as the following LP:

max
∑

(s,u)∈E

xsu

subject to 0 ≤ xuv ≤ c(u, v) for (u, v) ∈ E∑
(u,v)∈E

xuv =
∑

(v,w)∈E

for v ∈ V \ {s, t}.

Its dual LP is as follows:

min
∑

(u,v)∈E

c(u, v)zuv

subject to yu − yv + zuv ≥ 0 for (u, v) ∈ E, u �= s and v �= t

−yv ≥ 1 for (s, v) ∈ E

yu ≥ 0 for (u, t) ∈ E

zuv ≥ 0 for (u, v) ∈ E.

6.6 Primal-Dual Algorithm

In this section, we introduce an algorithm motivated from the complementary
slackness condition. Consider the following two LPs:

(P) : max z = cx

subject to Ax = b

x ≥ 0,

and

(D) : min w = yb

subject to yA ≥ c,

6.6 Primal-Dual Algorithm 151

where c is an n-dimensional row vector, b is an m-dimensional column vector, and
M is an m × n matrix with rank(A) = m. Then the complementary slackness
condition can be described equivalently as the following:

yaj > cj ⇒ xj = 0,

or

xj > 0 ⇒ yaj = cj

where aj is the j th column of A. Let y be a dual-feasible solution. Denote
J (y) = {i | yaj = cj }. Then, y is optimal if and only if there exists a primal-
feasible solution x satisfying the complementary slackness condition with y, i.e.,
the following LP has optimal value:

(RP) : max −
m∑

i=1

ui

subject to
∑

j∈J (y)

aij xj + ui = bi for i = 1, 2, . . . , m,

xj ≥ 0 for j ∈ J (y),

ui ≥ 0 for i = 1, 2, . . . , m.

If this LP does not have optimal value 0, then solve its dual LP:

(RD) : min vb

subject to vaj ≥ 0 for j ∈ J (y),

vi ≥ −1 for i = 1, 2, . . . , m.

Let us give (RD) another explanation. Consider applying the feasible direction
method to solve LP. At dual-feasible point y, we want to find next dual-feasible point
y + λv (λ > 0) such that yb > yb + λyv where v is a descend feasible direction.
We may like v to satisfy (RD). In fact, when (RP) does not have maximum value
0, it must have a negative maximum value. By the duality theorem, (RD) must have
negative minimum value and hence v is a descend direction. Next, we can determine
λ by

λ = min{cj − yaj

vaj

| vaj < 0}.

Here, note that if there does not exist j such that vaj < 0, then λ = +∞ and
hence (P) does not have a feasible solution. Now, we summarize the primal-dual
algorithm.

152 6 Linear Programming

Algorithm 21 Primal-dual algorithm
Input: A LP max{cx | Ax = b, x ≥ 0} and an initial dual-feasible solution y.
Output: An optimal solution x or “no primal-feasible solution”.
1: λ ← 0;
2: while λ < +∞ and (RP) have maximum value < 0 do
3: solve (RD) to obtain v;
4: if there exists j such that vaj < 0 then
5: compute λ ← min{ cj−yaj

vaj
| vaj < 0};

6: set y ← y + λv;
7: else
8: set λ ← +∞;
9: end if

10: end while
11: if λ < +∞ then
12: Solve (RP) to obtain x;
13: end if
14: return x or “(P) does not have a feasible solution” if λ = +∞.

Can this algorithm terminate within finitely many iterations? We cannot find a
conclusion in the literature. However, it can be known in nonlinear programming
that this feasible direction method has the global convergence, that is, if it generates
an infinite sequence, then every cluster point of the sequence is an optimal solution.

6.7 Interior Point Algorithm

Although three algorithms have been presented in previous sections for LP, they all
are running not in polynomial-time. The reason is that in general, the number of
extreme points (i.e., vertices) of feasible domain is exponential. In this section, we
present a polynomial-time algorithm which moves from a feasible point to another
feasible point in the interior of the feasible domain. Hence, it is called the interior
point algorithm.

First, we assume that the LP is in the following form:

min cx

subject to Ax = b

x ≥ 0

where without loss of generality, assume

• A is m × n matrix with full rank m, i.e., (AAT)−1 exists,
• the feasible domain is bounded,
• the minimum value of objective function is zero, and
• an initial feasible solution x0 is available.

6.7 Interior Point Algorithm 153

Actually, from LP (P) and its dual (D’) in Sect. 6.6, we can obtain LP as follows:

min w − z = yb − cx

subject to yA ≥ c

Ax = b

x ≥ 0.

This LP has zero as the objective function value of optimal solution. Modify it into
standard form. Then we will obtain an LP satisfying our assumptions.

In order to keep moving in the interior of feasible domain, we need to replace
our linear objective function by a nonlinear one, called the potential function,

f (x) = q log(cx) −
n∑

i=1

log xi

which contains a barrier terms
∑n

i=1 log xi to keep moving away from boundaries.
Moreover, for simplicity of notation, we assume the base of log is 2 in this section.

Next, we present the interior point algorithm and then explain and analyze it.

Interior Point Algorithm for LP
input: a LP described as above.
output: a minimum solution xk .

k ← 0;
while cxk ≥ ε do

Scaling: D ← diag

(
1
xk

1
, . . . , 1

xk
n

)
;

Ā ← AD−1;
c̄ ← cD−1;
yk ← Dxk;

Update: h ← P(−∇f̄ (yk)),
where P = I − ĀT (ĀĀT)−1Ā

and f̄ (y) = q log(c̄y) −∑n
i=1 log yi and q > 0;

yk+1 ← yk + λh, where λ = 0.3/‖h‖;
k ← k + 1;

Scale Back xk ← D−1yk;
end-while
return xk .

In this algorithm, each iteration is divided into three stages, scaling, update, and
scale back. In the scaling stage, the point xk is moved to yk = $1 where $1 is the
vector with 1 for every component, which is away from boundaries yi = 0 with
same distance. Let y = Dx. Then

154 6 Linear Programming

Ax = Āy,

cx = c̄y,

and

f̄ (y) = q log(c̄y) −
n∑

i=1

log yi

= q log(cx) −
n∑

i=1

log(Dixi)

= f (x) −
n∑

i=1

log Di.

Therefore, to decrease f (x), it suffices to decrease f̄ (y).
In the update stage, the search direction h is obtained by considering the

decreasing direction of f̄ (yk), i.e., the opposite of gradient, −∇f̄ (yk). To keep
the feasibility of the search direction, the algorithm project −∇f̄ (yk) into plane
Āy = b. Actually,

P = I − ĀT (ĀĀT)−1Ā

is the projection operator since we have

ĀP = 0

and for any vector y,

(y − Py)(Py)T = 0.

There are three parameters, q, λ, and ε. How do we choose q and ε? Why do we
choose λ = 0.3/‖h‖? We will explain them in the following analysis:

Lemma 6.7.1 For any k ≥ 0, Axk = b and xk ≥ 0.

Proof We prove it by induction on k. For k = 0, x0 is a feasible point and hence
Ax0 = b and x0 ≥ 0. Assume that Axk = b and xk ≥ 0. Then, we have

Axk+1 = Āyk+1 = Ā(yk + λh) = Āyk = Axk = b.

and

6.7 Interior Point Algorithm 155

yk+1 = yk + λh = $1 + 0.3 · h

‖h‖ ≥ 0.

�

Lemma 6.7.2 f̄ ($1 + λh) ≤ f̄ ($1) + λ∇f̄ ($1)T h + 2λ2‖h‖2.

Proof Let f̄ (y) = f1(y) − f2(y) where

f1(y) = q log(c̄y),

f2(y) =
n∑

i=1

log yi.

Then

d

dλ
f1($1 + λh) = ∇f1($1 + λh)T h,

d2

dλ2 f1($1 + λh) = q
−(c̄h)2

(c̄($1 + λh))2
≤ 0.

Thus, f1(λ) is concave. Hence,

f1($1 + λh) ≤ f1($1) + λ∇f1($1)T h.

Note that log(1 + δ) ≥ δ − 2δ2. Hence,

f2($1 + λh) ≥
n∑

i=1

λhi − 2
n∑

i=1

λ2h2
i

= f2($1) + λ∇f2($1)T h − 2λ2‖h‖,

where hi is the ith component of h. Putting together two inequalities, respectively
about f1 and f2, we obtain

f̄ ($1 + λh) ≤ f̄ ($1) + λ∇f̄ ($1)T h + 2λ2‖h‖.

�

Lemma 6.7.3 Select q = n +√
n. Then ‖h‖ ≥ 1.

Proof Let y∗ be the optimal solution, i.e., c̄y∗ = 0. Then, Ā(y∗−$1) = 0. Therefore,

156 6 Linear Programming

hT (y∗ − $1) = −(P (∇f̄ ($1)))T (y∗ − $1)

= −(∇f̄ ($1))T (y∗ − $1)

=
(
−qc̄

c̄$1 + ($1)T
)

(y∗ − $1)

= − q

c̄$1 · c̄y∗ + ($1)T y∗ + q − n

=
n∑

i=1

y∗
i +√

n

≥ ‖y∗‖ + √
n.

Moreover, hT (y∗ − $1) ≤ ‖h‖ · ‖y∗ − $1‖. Therefore,

‖h‖ ≥ ‖y∗‖ + √
n

‖y∗ − $1‖ ≥ ‖y∗‖ + √
n

‖y∗‖ + ‖$1‖ = 1.

�

Lemma 6.7.4 For any k ≥ 0, f (xk) − f (xk+1) ≥ 0.1.

Proof Note that

f (xk) − f (xk+1) = f̄ (yk) − f̄ (yk+1) = f̄ ($1) − f̄ ($1 + λh).

By Lemma 6.7.2,

f̄ ($1 + λh) ≤ f̄ ($1) + λ∇f̄ ($1)T h + 2λ2‖h‖2.

Since h ∈ Null(Ā), we have ∇f̄ ($1)T h = −‖h‖2. Therefore,

f̄ ($1 + λh) − f̄ ($1) ≤ −λ‖h‖2 + 2λ2‖h‖2

= −0.3 · ‖h‖ + 0.18

< −0.1

since ‖h‖ ≥ 1 by Lemma 6.7.3.
�
Let L be the number of bits which are required to represent all numbers in the

input, i.e., L = log |(product of all input numbers in A and c)|.
Lemma 6.7.5 Initial feasible solution x0 can be assumed to satisfy f (x0) ≤ 2nL.

Proof For any vertex x of the feasible domain, log(cx) ≤ L. By the fundamental
theorem of LP, the maximum value of cx is achieved by a vertex, for every feasible
solution x, log cx ≤ L. Thus, in order to have f (x0) ≤ 2nL, it suffices to have

6.8 Polyhedral Techniques 157

log x0
i ≤ L. From content of Sect. 6.4, we may assume that initially, x0 is a vertex.

Next, compute a x′ to satisfy Ax′ = b with log |xi | ≤ L for 1 ≤ i ≤ n. Since
the feasible domain is compact, we can find two boundary points y and y′ on line
passing through x0 and x′. Consider z = (y + y′)/2. Then z satisfies the condition.

�

Lemma 6.7.6 If cxk < 2−L, then xk can be rounded into an exact optimal solution
within O(n3) time.

Proof If xk is not a vertex, then we can find a line
 passing through xk such that

 contains two boundary points y and z of the feasible domain and xk ∈ (y, z). cx

is nonincreasing in either direction (xk, y] or (xk, z]. Thus, we will find either cy ≤
cxk or cz ≤ cxk . However, y and z have one more active constraint than xk . In this
way, we can find a vertex x′ of the feasible domain such that cx′ ≤ cxk < 2−L. Note
that for any vertex x′, each component is a rational number with denominator at most
2L since all numbers in the input are integers. Therefore, if x′ is not optimal, then
we must have cx′ ≥ 2−L. Hence, x′ is optimal. Above operation may be performed
O(n) time and in each operation, computing boundary points may take O(n2) time.
Therefore, the total running time is O(n3).
�

Theorem 6.7.7 Select ε = 2−L. The interior point algorithm will be terminated
within O(nL) steps.

Proof Since the feasible domain is compact,
∑n

i=1 xi has a upper bound M on the
feasible domain. Therefore, right before the algorithm terminates, f (xk) ≥ −L−M .
Therefore, by Lemmas 6.7.4 and 6.7.5, the number of iterations is upper-bounded
by

2nL + L + M

0.1
= O(nL).

�

Corollary 6.7.8 An optimal solution of LP can be obtained by the interior point
algorithm in O(n4L) time.

Proof It follows immediately from Theorem 6.7.7, Lemma 6.7.6, and the fact that
each iteration runs in O(n3) time.
�

6.8 Polyhedral Techniques

A polyhedron is a set of all points bounded by a system of linear inequalities and
linear equalities. For example, the feasible domain of each LP is a polyhedron.
Since LP is polynomial-time solvable, we may use LP as a tool for solving other

158 6 Linear Programming

combinatorial optimization problems in the following way: Find a polyhedron P

such that every vertex of P is a feasible solution of considered combinatorial
optimization problem, so that the problem is transformed into an LP. This method is
called the polyhedral technique. In this section, we introduce this technique through
a few examples.

The first example is the maximum weight bipartite matching.

Problem 6.8.1 (Maximum Weight Bipartite Matching) Given a bipartite graph
(V1, V2, E) with nonnegative edge weight w : E → R+, find a matching with
maximum total edge weight.

The polyhedron of bipartite matching is defined as follows:

Definition 6.8.2 (Polyhedron of Bipartite Matching) For each matching M ,
define χM ∈ {0, 1}|E| by

χM(e) =
{

1 if e ∈ M,

0 otherwise.

Define the polyhedron of bipartite match Pbmatch to be the convex hull of χM for M

over all matchings that is

Pbmatch = {
∑

M∈M
αMχM | αM ≥ 0,

∑
M∈M

αM = 1}

where M the set of all matchings.

Note that a bounded polyhedron is also called a polytope. Thus, the convex hull
of a finite number of vectors must be a bounded region. Therefore, Pbmatch is also
called the polytope of bipartite matching.

Let δ(v) denote the set of edges incident to vertex v.

Theorem 6.8.3 x ∈ Pbmatch if and only if

∑
e∈δ(v)

xe ≤ 1 for every v ∈ V1 ∪ V2,

xe ≥ 0 for every e ∈ E.

Proof First, we show the necessity. Note that for any M ∈ M and v ∈ V1 ∪ V2,∑
e∈δ(v) χM(e) ≤ 1. Therefore, for x ∈ Pbmatch,

∑
e∈δ(v)

xe =
∑

e∈δ(v)

(∑
M∈M

αMχM(e)

)

=
∑

M∈M
αM

∑
e∈δ(v)

χM(e)

6.8 Polyhedral Techniques 159

≤
∑

M∈M
αM

≤ 1.

Next, we show the sufficiency. For x ∈ Pbmatch, define

supp(x) = {e ∈ E | xe > 0}.

The proof is by induction on |supp(x)|. For |supp(x)| = 0, we have x = χ∅ ∈
Pbmatch since ∅ ∈ M. For induction step, consider |supp(x)| ≥ 1. We divide the
proof into three cases.

Case 1. supp(x) is a matching. Assume supp(x) = {e1, e2, . . . , ek} in ordering
xe1 ≤ xe2 ≤ · · · ≤ xek

. Denote Mi = {ei, ei+1, . . . , ek}. Then

x = xe1χM1 + (xe2 − xe1)χM2 + · · · + (xek
− xek−1)χMk

+ (1 − xek
)χ∅.

Case 2. supp(x) contains a cycle C = (e1, e2, . . . , ek). Since G is bipartite, k

must be even. Define a vector d by setting

dei
= 1 if i is odd,

dei
= −1 if i is even,

d(e) = 0 if e is not on the cycle C.

Let ε1 be the maximum ε > 0 such that x + εd ≥ 0 and ε2 the maximum ε > 0
such that x − εd ≥ 0. Denote y = x + ε1d and z = x − ε2d. Then, we have

|supp(y)| ≤ |supp(c)| − 1, |supp(z)| ≤ |supp(c)| − 1,

and

x = ε2

ε1 + ε2
y + ε1

ε1 + ε2
z.

By induction hypothesis, y ∈ Pbmatch and z ∈ Pbmatch. Hence, x ∈ Pbmatch.
Case 3. supp(x) is a forest, but not a matching. In this case, there exists a leaf-

to-leaf path (e1, . . . , ek) with k ≥ 2. Define d by setting

dei
= 1 if i is odd,

dei
= −1 if i is even,

d(e) = 0 if e is not on the path.

Note that xe1 + xe2 ≤ 1 and x2 > 0. Hence, 1− xe1 ≥ xe2 > 0. Similarly, 1− xek
≥

xek−1 > 0. Let ε1 be the maximum ε > 0 such that x + εd ≥ 0. Then, we must

160 6 Linear Programming

have xe1 + ε1de1 ≤ 1 and xek
+ ε1dek

≤ 1. Therefore, y = x + ε1d is a vector
satisfying constraints in the theorem. Similarly, let ε2 be the maximum ε > 0 such
that x − εd ≥ 0. Denote z = x − ε2d. then z satisfies constraints in the theorem.
Moreover,

|supp(y)| ≤ |supp(c)| − 1, |supp(z)| ≤ |supp(c)| − 1,

By induction hypothesis, y ∈ Pbmatch and z ∈ Pbmatch. Hence, x ∈ Pbmatch since

x = ε2

ε1 + ε2
y + ε1

ε1 + ε2
z.

�
Now let us look at applications of above theorem.

Corollary 6.8.4 The maximum weight bipartite matching problem is polynomial-
time solvable.

Proof By Theorem 6.8.3, the maximum weight bipartite matching problem can be
formulated as an LP problem max{wT x | x ∈ Pbmatch}. Since LP can be solved in
polynomial-time, so does the weight bipartite matching problem.
�

Corollary 6.8.5 (König Theorem) In any bipartite graph, the cardinality of the
maximum matching is equal to the cardinality of the minimum vertex cover.

Proof By duality of LP,

max{$1T x | x ∈ Pbmatch}
= max{$1T x | x ≥ 0 and ∀v ∈ V,

∑
e∈δ(v)

xe ≤ 1}

= min{y$1 | y ≥ 0 and ∀(u, v) ∈ E, yu + yv ≥ 1},

where $1 is a column vector in which every component is equal to 1.
�
Next, we study the matching in general graphs.

Problem 6.8.6 (Maximum Weight Matching) Given a graph (V ,E) with non-
negative edge weight w : E → R+, find a matching with maximum total edge
weight.

This problem can be reduced to the maximum weight perfect matching problem.

Problem 6.8.7 (Maximum Weight Perfect Matching) Consider a graph (V ,E)

with nonnegative edge weight w : E → R+. Assume that G has a perfect matching.
The problem is to find a perfect matching with maximum total edge weight.

6.8 Polyhedral Techniques 161

Fig. 6.3 Construction of
graph Ĝ

0 000 0

G

G’

Lemma 6.8.8 If the maximum weight perfect matching can be computed in
polynomial-time, so does the maximum weight matching.

Proof Let G be input graph of the maximum weight matching problem. Make a
copy G′ of G. Connect each pair of corresponding vertices by an edge with weight
0 (Fig. 6.3), and obtained graph is denoted by Ĝ. Then, the maximum weight perfect
matching in Ĝ will induce a maximum weight matching in G and vice versa.
�

Theorem 6.8.9 Consider a graph G = (V ,E). Let �(G) be the feasible region
defined by the following constraints:

∑
e∈δ(v)

xe = 1 for every v ∈ V,

∑
e∈δ(U)

xe ≥ 1 for every U ⊆ V with odd |U |,

xe ≥ 0 for every e ∈ E,

where δ(U) = {(u, v) ∈ V | u ∈ U and v �∈ U}. Then

�(G) = conv{χM | M is a perfect matching in G}.

Proof First, it can be verified that for every perfect matching, χM satisfies all
constraints. Hence,

�(G) ⊇ conv{χM | M is a perfect matching in G}.

Next, we show by induction on |E| that every x ∈ � belongs to conv{χM |
M is a perfect matching in G}.

For |E| = 1, � contains only one point χM where M is the perfect matching
consisting of the unique edge.

162 6 Linear Programming

For |E| ≥ 2, note that � is a bounded domain. Therefore, it suffices to show
that for every vertex of �, x ∈ conv{χM | M is a perfect matching in G}. First, we
consider three simple cases.

Case 1. x has a component xe = 0. In this case, we can delete edge e from G and
consider G′ = G\e. By induction hypothesis, x is a convex combination of χM , i.e.,
characteristic vectors of perfect matching M’s in G′. Since every perfect matching
in G′ is also a perfect matching in G, x is a convex combination of characteristic
vectors of perfect matching in G.

Case 2. x has a component xe = 1. In this case, we can delete e and its endpoints.
It is similar to Case 1 that the proof can be completed by using induction hypothesis.

Case 3. 0 < xe < 1 for all e ∈ E, and G is a cycle. It is similar to the argument
in the proof of Theorem 6.8.3 that x can be represented as a convex combination of
two vectors in �, contradicting that x is a vertex.

Now, we can assume, without of generality, that above three cases do not occur.
Therefore, for every e ∈ E, 0 < xe < 1, and every vertex has degree at least two;
moreover, there exists a vertex with degree at least three. It follows that |E| > |V |.
Since x is a vertex, there are at least |E| active constraints. Hence, there exists
U ⊆ V with odd |U | and |U | ≥ 3 such that

∑
e∈δ(U) xe = 1. Denote Ū = V ⊆ U .

We can also assume |Ū | ≥ 2. In fact, if Ū is a singleton, say Ū = {v}. Then, the
constraint

∑
e∈δ(U) xe = 1 will be identical to the constraint

∑
e∈δ(v) xe = 1.

Let G/U denote the graph obtained by contracting U into a vertex u. Let x′
be the restriction of x to those edges not disappearing in the contraction. Let G/Ū

denote the graph obtained by contracting Ū into a vertex w and x′′ the restriction
of x to those edges not disappearing in the contraction. Note that

∑
e∈δ(Ū) xe =∑

e∈δ(U) xe = 1. This fact implies that
∑

e∈δ(u) xe = 1 and
∑

e∈δ(w) xe = 1. Since

|U | is odd, we have that x′ ∈ �(G/U) and x′′ ∈ �(G/Ū). By induction hypothesis,

x′ =
∑
M ′

αM ′χM ′

x′′ =
∑
M ′′

αM ′′χM ′′ ,

where M ′ is over perfect matching in G/U and M ′′ is over perfect matching in
G/Ū . Since all constraints for �(G) have integer coefficients, every vertex of �(G)

has rational components. Thus, x is rational and so are x′ and x′′. By choosing a
common denominator m, we can write

x′ = 1

m

m∑
i=1

χM ′
i

x′′ = 1

m

m∑
i=1

χM ′′
i
,

6.8 Polyhedral Techniques 163

where M ′
i and M ′′

i are perfect matchings in G/U and G/Ū , respectively (they may
not be distinct). Since x′ and x′′ agree on δ(U) = δ(Ū), we are able to pair up M ′

i

and M ′′
i such that M ′

i and M ′′
i use the same edge in δ(U), so that Mi = M ′

i ∪ M ′′
i is

a perfect matching in G. Thus,

x = 1

m

m∑
i=1

χMi
.

This completes the proof of the theorem.
�
The following corollary can immediately appear in front of us:

Corollary 6.8.10 The minimum weight perfect matching can be computed in O(n2)

time.

However, this corollary cannot be driven immediately from the theorem. In fact,
to show this corollary, we may study LP, min{wT x | x ∈ �(G)}, i.e.,

min wT x

subject to
∑

e∈δ(v)

xe = 1 for every v ∈ V,

∑
e∈δ(U)

xe ≥ 1 for every U ⊆ V with odd |U |,

xe ≥ 0 for every e ∈ E.

This LP contains exponentially many constraints. Therefore, we cannot solve it in
polynomial-time by employing the polynomial-time algorithm described in the last
section. Therefore, we have to employ some techniques to overcome this difficulty.

In the following, we are going to design a primal-dual algorithm. Note that the
dual LP is as follows:

max
∑

|U |=odd

yU

subject to
∑

U :e∈δ(U),|U |=odd

yU ≤ we for all e ∈ E

yU ≥ 0 for all U ⊆ V with odd |U | ≥ 3.

In this algorithm, we do not need to write down all constraints; instead, only
consider those U in a laminar family.

Definition 6.8.11 (Laminar Family) A family of sets, F is a laminar family if for
any two sets A,B ∈ F , A ∩ B = ∅ or A or B, i.e., if A ∩ B �= ∅, then A ⊆ B or
B ⊆ A.

164 6 Linear Programming

Lemma 6.8.12 A laminar family F of distinct sets can have at most 2n−1 members
where n is the total number of elements.

Proof Suppose F contains all singletons, i.e., for every element x, {x} ∈ F .
Construct a graph T with node set F and edge (A,B) exists if and only if A ⊂ B

and there is no third set C ∈ F such that A ⊂ C ⊂ B. Then, G is a forest, and a
vertex is a leaf if and only if it is a singleton. Moreover, each connected component
of G is a rooted tree such that the root is a largest set in this component. Since every
singleton is in F , every internal node of G has at least two children. Let us give a
proof by induction on the number of internal node.

For basis step, consider G without internal node. Then the number of nodes in G

is n ≤ 2n − 1.
For induction step, consider G with at least one internal node. Suppose r is the

root of connected component which has at least one internal node. Then r has at
least two children. Removal r will result in at least two subtrees. Suppose that T1 is
one of them and T1 contains n1 leaves. Let T2 be the remaining part after removing
T1. Then T2 has n − n1 leaves. By induction hypothesis, T1 has at most 2n1 − 1
nodes and T2 has at most 2(n − n1)−! nodes. Therefore, the number of nodes in G

is at most

1 + 2n1 − 1 + 2(n − n1) − 1 = 2n − 1.

If F does not contain all singletons, then we can add those missing singletons
to F , which will enlarge F . However, the enlarged F can have at most 2n − 1
members.
�

In this primal-dual algorithm, a matching M will be growing through augmenta-
tions. Each augmentation is on an alternating path with two free nodes. A node is
free if it is not covered by matching M . To find an augmenting path, we may grow
an alternating tree starting from each free node. On this tree, a node is called an even
node if it has even distance from the free node; otherwise, it is called an odd node.

In this algorithm, we assume that input graph G = (V ,E) is simple and contains
a perfect matching. Then, the algorithm consists of five steps as follows:

Step 0. Initially, set M = ∅, � = {{v} | v ∈ V }, and yU = 0 for every U ∈ �.
Step 1. Let F be the set of free nodes with respect to matching M and

Ey = {e |
∑

U :e∈δ(U),|U |=odd

yU = we}.

If F = ∅, then M is a perfect matching and the algorithm stops. If F �= ∅,
then construct an alternating tree in Ey , starting from each free node v ∈ F . If
construction meets an edge between two even nodes, then a cycle of odd length is
generated. This cycle is called a blossom. Shrink the blossom into an even node
and put the union of nodes in the blossom, U into �. Continue the construction.

6.8 Polyhedral Techniques 165

Step 2. If alternating tree rooted at free node v meets another free node u, then an
augmenting path between v and u is found, perform an augmentation, and go
back to Step 1.

Step 3. If no blossom can be found, no augmenting path can be found, and no
alternating tree can be extended for all alternating tree, then for each alternating
tree, modify dual solution by increasing yU for all even nodes U and decreasing
yU for all odd nodes U at the same rate until stucking at boundary of the feasible
domain of the dual LP (Fig. 6.4). If the process does not get stuck, then the primal
is not feasible. (Since we assume that G contains a perfect matching, this cannot
occur.)

Step 4. When the process in Step 3 gets stuck, there are two possibilities. (a) The
first possibility is that a constraint

∑
e:e∈δ(U),|U |=odd yU ≤ we becomes active,

i.e., the equality is reached. In this case, add e to Ey and go back to Step 1.
(b) The second possibility is that the constraint yU ≥ 0 becomes active for |U | =
odd and |U | ≥ 3. In this case, de-shrink the blossom U , add �|U |/2� matching
edges back to M , remove U from �, and go back to Step 3 (Fig. 6.5). Please
note that case (b) cannot occur if every node U is singleton. Therefore, finally (a)
occurs and Ey will be increased.

Next, we analyze this algorithm.

Fig. 6.4 Increase yU for all
even nodes and decrease yU

for all odd nodes at the same
rate

+

+ +

+

+

-

-

-

-

Fig. 6.5 De-shrink a
blossom

166 6 Linear Programming

Lemma 6.8.13 Between a set U which is added to � and is removed, an augmen-
tation must occur.

Proof When a set U is added to �, U must be shrunk and yU becomes an even
node. However, when U is removed from �, yU must be an odd node. Therefore,
there must exist an augmentation which changes the parity of yU .
�

Lemma 6.8.14 The algorithm must stop within O(n3) time.

Proof By Lemma 6.8.13, between two augmentations, if a set U is added to �,
then it cannot be removed. Therefore, only those sets existing in � in the beginning
can be removed. Since � is a laminar family, we have |�| = O(n). Therefore, de-
shrinking can occur at most O(n) times. Also by Lemma 6.8.13, a set U added
to � cannot leave � before an augmentation takes place. Therefore, shrinking can
occur at most O(n) time. Moreover, Ey can be increased at most O(n) edges. Since
each operation of de-shrinking, shrinking, and Ey-increasing takes O(n) time, the
running time between two augmentation is O(n2). Finally, note that there are O(n)

augmentations. Therefore, the algorithm runs in O(n3) time.
�

Lemma 6.8.15 The algorithm terminates only when M is a minimum weight
perfect matching.

Proof First, we note that the algorithm is an extension of the blossom algorithm
for maximum matching. Therefore, if M is not a perfect matching, then the
algorithm cannot terminate. Moreover, note that every edge in M belongs to Ey , i.e.,
corresponds to an active dual constraint. Therefore, the complementary slackness
condition holds. Hence, M gives an optimal solution for minimum weight perfect
matching problem.
�

It follows immediately from above three lemmas that the minimum weight
perfect matching can be computed in O(n3) time. Since all perfect matching have
the same cardinality, the minimum weight perfect matching problem is equivalent
to the maximum perfect matching problem. Furthermore, by Lemma 6.8.8, we have
the following.

Corollary 6.8.16 The maximum weight matching in graph can be computed in
O(n3) time.

Exercises

1. Linda plans to put $12,000 in investment for two stocks. The history shows that
the first stock earns 6% interests and the second stock earns 8% interests. If
Linda wants to spend the money in the first stock at least twice as much as that
in the second stock, but must not be greater than $9000, then how can she buy
these two stocks in order to maximize her profit?

Exercises 167

2. A teacher plans to rent buses from a company for a trip of 200 students. The
company has nine drivers and two types of buses. The first type bus has 50
seats; the rental cost is $800. The second type bus has 40 seats; rental cost is
$600. The company has ten buses of the first type and eight buses of the second
type. What plan can get the lowest total rental cost?

3. Transform the following LP into an equivalent LP in standard form:

min x1 − x2

subject to 2x1 + x2 ≥ 3

3x1 − x3 ≤ 7

x1 ≥ 0.

4. Please formulate the following problem into an LP: Given n lines aix+biy = ci

for i = 1, 2, . . . , n in a plane, find a point to minimize the total distance from
the point to these lines.

5. Transform the following problem into an LP:

min max(c1x, c2x, . . . , ckx),

i.e., minimize the maximum of k linear functions.
6. Suppose in the following

max z = cx

subject to Ax = b

x ≥ 0,

A is an m × n coefficient matrix with rank rank(A) < m. Could you
transform it into the standard form of LP? What cases would occur during your
transformation?

7. Solve the following LPs:

(a)

max 5x1 + 7x2

subject to x1 + x2 ≤ 30

2x1 + x2 ≤ 50

4x1 + 3x2 ≥ 60

2x1 ≥ x2

x1 ≥ 0, x2 ≥ 0.

168 6 Linear Programming

(b)

max x + y

subject to x + 2y ≤ 10

2x + y ≤ 16

−x + y ≤ 3

x ≥ 0, y ≥ 0.

(c)

max x1 + x2 − 2x3 + 2x4

subject to x1 − x2 − x3 − 2x4 ≥ 2

x1 + x2 + x4 ≤ 8

x1 + 2x2 − x3 = 4

x1, x2, x3, x4 ≥ 0.

(d)

max 3x + cy + 2z

subject to 2x + 4y + 2z ≤ 200

x + 3y + 2z ≤ 100

x, y, z ≥ 0.

(e)

max u + v

subject to −u − 2v − w = 2

3u + v ≤ −1

v ≥ 0, w ≥ 0.

(f)

min 3x1 + 4x2 + 6x3 + 7x4 + x5

subject to 2x1 − x2 + x3 + 6x4 − 5x5 − x6 = 6

x1 + x2 + 2x3 + x4 + 2x5 − x6 = 3

x1, . . . , x6 ≥ 0.

Exercises 169

8. Can you find a simple method to solve the LP with only one equality constraint
as follows?

max cx

subject to Ax = b

x ≥ 0

where A is a coefficient matrix of 1 × n.
9. Show that under nondegeneracy condition, a feasible basis is optimal if and

only if cost coefficients cj ≤ 0 in the corresponding simplex table.
10. Give a counterexample to show that generally, in the simplex table correspond-

ing a feasible basis I , all cj ≤ 0 may not be necessary for I to be optimal.
11. Show that in the simplex algorithm, if a variable leaves the feasible basis at a

pivot, it cannot return to the feasible basis at next pivot.
12. Show that in the simplex algorithm, if a cycling occurs, there must exist an

iteration in which the choice for a variable leaving feasible basis is not unique.
13. When using the following

max w = −ey

subject to Ax + Imy = b

x ≥ 0, y ≥ 0,

to find initial feasible basis for LP min{cx | Ax = b, x ≥ 0}, it is found that
the maximum value of W is negative. Can you figure out what happens? Does
Ax = b not have a solution or does Ax = b not have a nonnegative solution?

14. Consider the following relaxation of an LP, which allows a violation of
constraints with an upper bound ε for total violations:

min yb

subject to yaj ≥ cj − εj for j = 1, 2, . . . , n

n∑
j=1

εj ≤ ε

y ≥ 0, εj ≥ 0 for j = 1, 2, . . . , n.

Find its dual LP and give an interpretation.
15. Show that if the LP

max cx

subject to Ax ≤ b

x ≥ 0

170 6 Linear Programming

is unbounded, then the LP

max ex

subject to Ax ≤ b

x ≥ 0

is unbounded where e = (1, 1, . . . , 1). Is the inverse true?
16. Show that if the LP

max cx

subject to Ax ≤ b

x ≥ 0

is unbounded, then for any b̂, the LP

max cx

subject to Ax ≤ b̂

x ≥ 0

is either infeasible or unbounded.
17. Design Bland’s rule for the dual simplex algorithm and prove the correctness

of your design.
18. Show that the following two problems are equivalent:

min cx

subject to b ≤ Ax ≤ b̂

x ≥ 0

and

min cx

subject to Ax + y = b

x ≥ 0

0 ≤ y ≤ b̂ − b.

Exercises 171

19. Show that the following LP has either optimal value 0 or no feasible solution:

min cx − yb

subject to Ax ≥ b

yb ≤ c

x ≥ 0, y ≥ 0,

where c is an n-dimensional row vector, b is an m-dimensional column vector,
and A is an m × n matrix.

20. Let A be an n × n symmetric matrix. Suppose that x satisfies Ax = cT and
x ≥ 0. Prove that x is an optimal solution of the following LP:

min cx

subject to Ax ≥ cT

x ≥ 0.

21. Using the primal-dual algorithm, please solve the following LP:

max x2 − 10x3 − 14x4 − x5

subject to x2 + x3 + x4 + x5 = 5

x2 + 2x3 + x4 − x5 = 4

x1 + x2 + 3x3 + 2x4 = 4

x1, . . . , x5 ≥ 0.

22. Consider a pair of primal LP (P) and dual LP (D). Suppose that both (P) and
(D) have feasible solutions. Show that there exist optimal solutions x∗ and y∗
for (P) and (D), respectively, such that

x∗
j = 0 if and only if y∗aj > cj

where aj is the j th column of constraint coefficient matrix A and cj is cost
coefficient of xj .

23. Consider a polyhedron P and v ∈ P . Show that the following statements are
equivalent:

(a) v is a vertex of P .
(b) There exists a hyperplane H = {x | aT x = α} such that aT x ≤ α for all

x ∈ P and P ∩ H = {v}.
(c) There are n constraints aT

j x ≤ bj valid for P , which are active at v, i.e.,

aT
j v = bj for 1 ≤ j ≤ n, and a1, . . . , an are linear independent.

172 6 Linear Programming

24. Show that in a bipartite graph G = (V1, V2, E),

x ∈ conv{χM | M is a perfect matching in G}.

if and only if

∑
e∈δ(v)

xe = 1 for every v ∈ V1 ∪ V2,

xe ≥ 0 for every e ∈ E.

25. Show that in a bipartite graph, every perfect matching cannot be represented as
a convex combination of other matchings.

26. (Doubly stochastic matrix) An n × n matrix A = (aij) is doubly stochastic
matrix if

for 1 ≤ i ≤ n, 1 ≤ j ≤ n, aij ≥ 0,

for 1 ≤ i ≤ n,

n∑
j=1

aij = 1,

for 1 ≤ j ≤ n,

n∑
i=1

aij = 1.

Show that every doubly stochastic matrix is a convex combination of permuta-
tion matrices.

27. (Unimodular Matrix) A matrix A is said to be totally unimodular if every square
submatrix has determinant 0, 1, or −1. Show that for every bipartite graph G,
the incidence matrix A is totally unimodular.

28. Consider a graph G = (V ,E). For b ∈ ZV+ , a b-matching is a subset M of
edges such that for every v ∈ V , |M ∩ δ(v)| ≤ bv . For c ∈ ZE+ , a c-cover is
a mapping y : V → Z+ such that every (u, v) ∈ E, yu + yv ≥ c(u,v). Show
that in any bipartite graph, for b ∈ ZV+ and c ∈ ZE+ , the maximum c-weighted
b-matching is equal to the minimum b-weighted c-vertex cover.

29. Consider a graph G = (V ,E). Let � be the feasible region defined by the
following constraints:

∑
e∈δ(v)

xe ≤ 1 for every v ∈ V,

∑
e∈E(U)

xe ≤ �|U |/2� for every U ⊆ V with odd |U |,

xe ≥ 0 for every e ∈ E,

where E(U) = {(u, v) ∈ E | u, v ∈ U}. Show that

Historical Notes 173

� = conv{χM | M is a matching in G}.

30. Every d-regular bipartite graph has an edge-coloring with d colors, such that
every vertex is incident to all d colors.

31. Let G = (U, V,E) be a bipartite graph. Suppose that there exists a matching
covering U and there exists a matching covering V . Show that a perfect
matching exists.

32. Consider a graph G. Let Pmatch(G) denote the matching polytope of G, i.e.,
Pmatch(G) = conv{χM | M is a matching in G}. Prove that Pmatch ∩ {x |
$1T x = k} is the convex hull of all matchings of size exactly k.

33. Consider a graph G and its perfect matching polytope P = conv{χM |
M is a perfect matching of G}. An edge is a line segment between two vertices
s = [χM, χM ′] such that s = H ∩ P for some hyperplane H = {x | wT x = α}
and wT x ≤ α for all x ∈ P . Prove that [χM, χM ′] is an edge if and only if
M ⊕ M ′ is a single cycle.

Historical Notes

The LP was initially proposed independently by Leonid Kantorovich [233] and T.
C. Koopmans with a large number of applications. Hence, they shared a Nobel Prize
in 1945. The simplex algorithm was designed by George B. Dantzig during 1946–
1947 [79]. This algorithm may fall into cycling [22]. The first method for dealing
with degeneracy was proposed by Charnes [47] in 1952. Lexicographical ordering
method is motivated from it [80]. In 1977, Bland found a completely new one [32].

Klee and Minty [256] gave an example on which simplex algorithm runs in
exponential number of iterations. The first polynomial-time algorithm for LP was
discovered by Khachiyan in 1979 [241] using ellipsoid method. In 1984, Karmarkar
[235] found the interior-point method, which has been developed extensively
[181, 311, 375], to form a big class of efficient algorithms for LP currently. The
interior point algorithm in Section 7.6 is a variation in [179], which is simpler to
describe and analyze, and however, to have O(nL) iterations. In the literature, there
are several algorithms using O(

√
nL) iterations [21, 180, 261, 321, 349, 376, 385].

Polyhedral technique is an important tool in the study of combinatorial optimiza-
tion. The technique is initiated from a naive attempt to solve other combinatorial
optimization problems by transforming them into LP [78, 79]. This method was
quite successful for the transportation, maximum flow, as assignment problems
[145–147, 214, 267, 268]. The pioneering work of Edmonds [116–121] opened a
new page for polyhedral methods since he characterized several basic polytopes,
such as the matching polytope and the perfect matching polytope, and found
elegant solutions for weighted version of corresponding combinatorial optimization
problems. Nowadays, the polyhedral technique also becomes an important tool for
finding efficient approximation solutions [357, 358].

174 6 Linear Programming

Since LP has been a subject of teaching in many areas, such as operations
research, industrial engineering, management science, and computer science, for
many years, many textbooks are already published in the literature. Here, we would
like to mention one by Zhang and Xu [440] because the book provides many good
exercises which do not appear in other publications. We adopt several of them in
this chapter.

Chapter 7
Primal-Dual Methods and Minimum
Cost Flow

Education today, more than ever before, must see clearly the
dual objectives: education for living and educating for making a
living.

—James Wood-Mason

There are three types of incremental methods, primal, dual, and primal-dual. In
Chap. 6, we touched all of them for linear programming (LP). This chapter is
contributed specially to primal-dual methods for further exploring techniques about
primal-dual with a special interest in the minimum cost flow. Actually, the minimum
cost flow is a fundamental optimization problem on networks. The shortest path
problem and the assignment problem can be formulated as its special cases. We
begin with the study of the assignment problem.

7.1 Hungarian Algorithm

Let us study the assignment problem as follows:

Problem 7.1.1 (Assignment) Consider a set of n workers, S = {s1, . . . , sn}; a set
of n jobs, T = {t1, t2, . . . , tn}; and with an n×n table in which each entry c(i, j) is
the cost required by worker i finishing job j . The problem is to find an assignment
for every worker to receive exactly one job with the minimum total cost.

This problem is equivalent to the minimum cost perfect matching in a complete
bipartite graph between node sets S and T . There is a very well-known primal-dual
algorithm for the problem. Actually, in the history, it is the first algorithm of primal-
dual type, called Hungarian algorithm, because the algorithm was initially designed
by two Hungarian mathematicians.

To describe this algorithm, each node v is given a label d(v). This label is valid
if d(u) + d(v) ≤ c(u, v) for every u ∈ S and v ∈ T . Clearly, if M is a perfect
matching, then

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_7

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_7&domain=pdf

 7680 61494 a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_7

176 7 Primal-Dual Methods and Minimum Cost Flow

c(M) =
∑

(u,v)∈M

c(u, v) ≥
∑
u∈S

d(u) +
∑
v∈T

d(v).

It implies the following immediately:

Lemma 7.1.2 If for a perfect matching M , there exists a valid label d such that for
every (u, v) ∈ M , d(u) + d(v) = c(u, v), then M has the minimum cost.

In Hungarian algorithm, initially, set d(v) = 0 for every v ∈ V and set matching
M = ∅. During the computation, label d and matching M will be updated and
finally, the condition in Lemma 7.1.2 will be reached. The success of this algorithm
will indicate that this condition is necessary and sufficient. Actually, the valid label
d(v) plays the role of dual solution. To see this, let us consider an LP formulation
of the assignment problem as follows:

min
n∑

u=1

n∑
v=1

c(u, v)xuv

subject to
∑
v∈T

xuv = 1 for all u ∈ S,

∑
u∈S

xuv = 1 for all v ∈ T ,

xuv ≥ 0 for all u ∈ S, v ∈ T .

The following is its dual LP:

max
∑
u∈S

d(u) +
∑
v∈T

d(v)

subject to d(u) + d(v) ≤ c(u, v) for all u ∈ S, v ∈ T .

For simplicity of description, an edge (u, v) is said to be tight if d(u) + d(v) =
c(u, v). Let us also assign an orientation to each edge between S and T . We intend
to use the orientation from T to S for representing edge in M , that is, an edge is in
M if and only if it has orientation from T to S. Therefore, initially, every edge is
assigned with orientation from S to T since M = ∅.

To update M , consider subgraph Gd consisting of all tight edges with their
orientation. Let RS be the set of free nodes in S, i.e., all nodes without incoming arc.
Let RT be the set of free nodes in T , i.e., all nodes without outgoing arc. If there is
a path from RS to RT in Gd , then this path is an alternating path for matching M .
Therefore, we can reverse the orientation on this path in order to increase members
of M . Otherwise, if M is not a perfect matching, then we can consider to update
valid label d as follows:

Let Z be the set of nodes each of which can be reached from RS through a
directed path in Gd . In this case, Z ∩ RT = ∅. Define

7.1 Hungarian Algorithm 177

� = min{c(u, v) − d(u) − d(v) | u ∈ Z ∩ S, v ∈ T \ Z}.

Lemma 7.1.3 If M is not a perfect matching and Z ∩ RT = ∅, then � > 0.

Proof Since M is not maximum, there must exist an alternating path P from RS to
RT . Since Z ∩ RT = ∅. P must contain loose (i.e., untight) arcs. Since every arc in
M is tight, every loose arc (u, v) in P has orientation from S to T , i.e., u ∈ S and
v ∈ T . We first claim that there exists a loose arc (u, v) such that u ∈ Z∩S. In fact,
suppose that (u, v) is the first loose arc. Then we must have u ∈ Z ∩ S.

Next, consider the last loose arc (u, v) in P such that u ∈ Z ∩ S. We claim that
v ∈ T \ Z. In fact, if not, i.e., v ∈ Z, then there exists a path P ′ from RS to v in
Gd . Replace the part of P , from RS to v, by P ′. The resulting path P ′′ is still an
alternating path. The first loose arc (x, y) on P ′′ will have x ∈ Z ∩ S. However,
(x, y) is also a loose arc in P and appears later than (u, v), contradicting the choice
of (u, v). Therefore, our second claim is true and hence � > 0.
�

Now, we update the valid label by setting

d(u) ← d(u) + � for u ∈ Z ∩ S,

d(v) ← d(v) − � for v ∈ Z ∩ T .

Lemma 7.1.4 After update, d is still a valid label, Gd still contains M , and Z gets
increased by at least one.

Proof Note that any arc (v, u) with u ∈ S and v ∈ T must belong to M and hence
is tight. We have only the following three cases for every arc:

(a) For a tight arc (u, v) with u ∈ S and v ∈ T , if u ∈ Z ∩ S, then we must have
v ∈ Z ∩ T . Therefore, after update, (u, v) is still tight. If v ∈ Z ∩ T , then we
may not have u ∈ Z, but on (u, v), the valid condition d(u)+ d(v) ≤ c(u, v) is
still held.

(b) For a tight arc (v, u) with u ∈ S and v ∈ T , if u ∈ Z ∩ S, then u �∈ RS and
hence u can be reached from RS only from v, which implies v ∈ Z. Therefore,
(v, u) is still tight. If v ∈ Z ∩ T , then we must have u ∈ Z ∩ S and hence (v, u)

keeps tight.
(c) For a loose arc (u, v) with u ∈ S and v ∈ T , if u and v are both in Z or both

not in Z, then the valid condition is clearly held. If u ∈ Z and v �∈ Z, then by
definition of �, the valid condition is still held for (u, v). If u �∈ Z and v ∈ Z,
then d(u) + d(v) is decreased by � and hence the valid condition is held.

Above argument showed that after update, the label is still valid. Moreover, (b)
also implies that Gd still contains M . (a) and (b) together imply that every node in
Z is still in Z. The definition of � implies that one more node gets in Z.
�

178 7 Primal-Dual Methods and Minimum Cost Flow

By Lemmas 7.1.3 and 7.1.4, if M is not maximum, then the algorithm can
increase either M or Z. Hence, it can finally obtain a maximum M contained in Gd ,
i.e., with minimum cost. A pseudocode of the algorithm is included in Algorithm 22.

Algorithm 22 Hungarian algorithm
Input: A complete bipartite graph G = (S, T ,E) with n = |S| = |T | and edge cost c : E → R+.
Output: A minimum cost perfect matching M .
1: d(u, v) ← 0 for (u, v) ∈ E.
2: M ← ∅. Gd is the empty graph. Z ← ∅.
3: Assign orientation from S to T to every edge in E.
4: while |M| < n do
5: Update Gd .
6: Update Z.
7: if Gd contains an augmenting path P for M then
8: reverse orientation of all arcs in P .
9: Update M .

10: else
11: Compute � = min{c(u, v) − d(u) − d(v) | u ∈ Z ∩ S, v ∈ T \ Z}.
12: Update label d by
13: d(u) ← d(u) + � for u ∈ Z ∩ S and
14: d(v) ← d(v) − � for v ∈ Z ∩ T .
15: end if
16: end while
17: return M

Theorem 7.1.5 Hungarian algorithm produces a minimum cost perfect matching
within O(n4) time.

Proof In each iteration of while-loop, either M is increased by one or Z is increased
by at least one. Between two consecutive ones of increasing M , Z can be increased
at most O(n) times. For each time of increasing Z, computing � may need O(n2)

time. Note that M can be increased at most n times. Therefore, Hungarian algorithm
runs in O(n4) time.
�

Now, we study an example.

Example Consider four workers w1, w2, w3, w4 and four tasks t1, t2, t3, t4. The cost
c(i, j) of worker wi finishing task tj is as shown in the following table:

t1 t2 t3 t4

w1 1 3 2 4
w2 2 1 4 2
w3 1 4 3 3
w4 4 2 1 3

7.1 Hungarian Algorithm 179

Let us start with a little different initiation. For each worker wi , assign d(wi) =
min{c(i, j) | j = 1, 2, 3, 4}. Then for each task tj , assign d(tj) = min{c(i, j) −
d(wi) | i = 1, 2, 3, 4}. Then we obtain

0 0 0 1
1 0 2 1 2
1 1 0 3 0
1 0 3 2 1
1 3 1 0 1

where the most left column consists of d(wi), the top row consists of d(tj), and
the matrix consists of entries c(i, j) − d(wi) − d(tj). Therefore, the entry 0 in the
cost matrix represents the tight edge. Let M be a maximum matching in Gd of tight
edges, consisting of edges represented by 0∗. Mark rows not covered by M , which
form RS . Continue to mark rows and columns according to the following rules:

• If a row is marked, then mark all columns each of which intersects the marked
row with an entry 0.

• If a column is marked, then mark all rows each of which intersects the marked
column with entry 0.

All marked rows and columns form the set Z. Now, consider all entries located in
the intersection of marked rows and unmarked columns. (Each of them is put in a
parenthesis.) Let � be the minimum of them, i.e., � = 1.

0 0 0 1
1 0∗ (2) (1) (2) ∗
1 1 0∗ 3 0
1 0 (3) (2) (1) ∗
1 3 1 0∗ 1

∗

Subtract � from marked rows and all � to marked columns. We obtain the following
matrix with a minimum cost assignment marked 0∗:

−1 0 0 1
2 0∗ (1) (0) (1) ∗
1 2 0∗ 3 0
2 0 (2) (1) (0∗) ∗
1 4 1 0∗ 1

∗

In above computation, we see that assigning a value to d(wi) or d(tj) is equivalent
to adding/subtracting a value on a row or column in cost table. Actually, it is clear

180 7 Primal-Dual Methods and Minimum Cost Flow

that such an operation on cost table will not change optimality of assignment.
Therefore, we may use such operations without mentioning label d at all. This will
induce a local ratio algorithm. Actually, the primal-dual method and the local ratio
method have a very close relationship. A lot of primal-dual algorithms can have
their equivalent local ratio companions and vice versa.

Hungarian algorithm can also be used for solving the following problem:

Problem 7.1.6 (Chinese Postman Problem) Given a graph G = (V ,E) with edge
cost a, find a postman tour to minimize total edge cost where a postman tour is a
cycle passing through every edge at least once.

A cycle is called as a Euler tour if it passes through every edge exactly once. In
graph theory, it has been proved that a connected graph has an Euler tour if and only
if every node has even degree. A node is called as an odd node if its degree is odd.
Note that the number of odd degree for any graph is even. Therefore, we may solve
the Chinese postman problem in the following way:

• Construct a complete graph H on all old nodes and assign the distance between
any two nodes u and v with the shortest distance between u and v in G.

• Find the minimum cost perfect matching M in H .
• Add M to input graph G and the Euler tour in G ∪ M is the optimal solution.

7.2 Label-Correcting

In this section, we introduce the label-correcting algorithm for the shortest path
problem. This is another look of Bellman-Ford algorithm, which allows negative
arc cost and only restriction is no negative cost cycle. The disadvantage is that the
running time is slow. However, it induces a faster algorithm for all-pairs shortest
paths.

Consider a directed network G = (V ,E) with arc cost c : E → R, an origin
node s and a destination node t . The aim of the problem is to find a shortest path
from s to t .

Let us start to introduce the label-correcting algorithm by defining the node label.
A node label d : V → R is said to be valid if it satisfies the following conditions:

(a1) d(s) = 0.
(a2) d(v) ≤ d(u) + c(u, v) for any (u, v) ∈ E and v �= s.

Let d∗(v) denote the cost of the shortest path from s to v. Then the valid node
label has the following properties:

Lemma 7.2.1 For any valid node label d(v), d(v) ≤ d∗(v).

Proof The proof is by induction on the number of arcs on the shortest path from s

to v, denoted by d̂(v). For d̂(v) = 0, we have v = s and hence d(s) = 0 = d∗(s).

7.2 Label-Correcting 181

For d̂(v) = k > 0, consider a shortest path P from s to v. Suppose arc (u, v)

on P . Then d̂(v) = d̂(u) + 1. By induction hypothesis, d(u) ≤ d∗(u). Therefore,
d(v) ≤ d(u) + c(u, v) ≤ d∗(u) + c(u, v) = d∗(v).
�

Lemma 7.2.2 Let d(·) be a valid node label. If d(v) is the cost of some path from s

to v, then d(v) = d∗(v) and vice versa.

Proof By Lemma 7.2.1, d(v) ≤ d∗(v). Since d(v) is the cost of some path from s

to v, we have d∗(v) ≤ d(v). Hence, d(v) = d∗(v).
�
From above two lemmas, we can see easily that the valid label can play a role of

dual solution. We now describe the label-correcting algorithm in Algorithm 23.

Algorithm 23 Label-correcting
Input: A directed network G = (V ,E) with arc cost c, and start node s and destination node t .
Output: A shortest path from s to t .
1: d(s) ← 0; pred(s) ← ∅;
2: d(v) ← ∞ for v ∈ V \ {s};
3: QUEUE Q ← {s};
4: while Q �= do
5: remove a node u from Q

6: if d(u) < nC where C = max{c(u, v) | (u, v) ∈ E} then
7: stop algorithm and output “negative cost cycle exists”
8: end if
9: for each (u, v) ∈ E do

10: if d(v) > d(u) + c(u, v) then
11: d(v) ← d(u) + c(u, v)

12: pred(v) ← u

13: add v to Q

14: end if
15: end for
16: end while
17: return s(t) together with a path (s, u1, . . . , uk, t) where uk = pred(t), uk−1 = pred(uk),

s = pred(u1)

We next analyze this algorithm.

Lemma 7.2.3 During computation of label-correcting algorithm, if d(v) < ∞,
then d(v) is equal to the cost of a path from s to t .

Proof It can be proved by induction on the number of iterations of while-loop.
Initially, d(v) < ∞ implies v = s and hence the lemma holds. In each iteration,
when d(v) is updated at line 11, d(v) = d(u) + c(u, v) and u must be updated in
previous iteration, i.e., d(u) is the cost of a path from s to u. Therefore, in current
iteration, d(v) is updated to the cost of a path from s to v.
�

182 7 Primal-Dual Methods and Minimum Cost Flow

Theorem 7.2.4 If the network G does not contain a negative cost cycle, then the
label-correcting algorithm finds the shortest path from s to t within O(mn) time
where m = |E| and n = |V |.
Proof When the algorithm stops, Q is empty. This means that d(·) will not be
further updated. Hence, d(·) will be a valid label and meanwhile, d(v) is the cost of
a path from s to v for every v ∈ V . By Lemma 7.2.2, d(t) is the cost of the shortest
path from s to t .

Now, we look at the tree consisting of arcs (v, v) for v ∈ V \ {s} at the end of
the algorithm. This tree is constructed with a breadth-first search principal in the
computation. Its depth is at most n − 1 and at each level, the computation checks
each arc at most once at line 10, and hence, totally computational time is O(m).
Therefore, the algorithm has running time O(mn).
�

If we replace the queue Q by a stack in the label-correcting algorithm, then what
happens to the modified algorithm? The shortest path tree would be built up in a
way similar to the depth-first search style. The running time is still O(mn) with a
little harder analysis.

Now, let us explain why this is an algorithm of primal-dual type. As we
mentioned, the valid label plays a dual role. The label that for any v, d(v) is the
cost of a path from s to v plays a primal role. The label-correcting algorithm is
an incremental method on primal side. The incremental direction is guided by dual
feasible conditions.

Next, we present an application of the label-correcting algorithm.
At the end of the label correcting algorithm, it outputs a label d(v) satisfying

d(v) ≤ d(u)+ c(u, v) for every arc (u, v) ∈ E. Define c′(u, v) = c(u, v)+ d(u)−
d(v). Then c′(u, v) ≥ 0 for every arc (u, v) ∈ E. An application is motivated from
the following property:

Lemma 7.2.5 For any pair of nodes x, y ∈ V , a path from x to y is the shortest
one for arc cost c′ if and only if it is the shortest one for arc cost c.

Proof Consider a path P = (x = x0, x1, . . . , xk = y). Then

c′(P) = c′(x0, x1) + c′(x1, x2) + · · · + c′(xk−1, xk)

= c(x0) + d(x1) − d(x0) + c(x1, x2) + d(x2) − d(x1) + · · ·
+c(xk−1, xk) + d(xk) − d(xk−1)

= c(P) + d(y) − d(x).

Therefore, the lemma holds.
�
This lemma suggests to compute all-pairs shortest paths in the following way:

Step 1 Use the label-correcting algorithm to compute a valid label d.
Step 2 Compute all-pairs shortest paths for arc cost c′(u, v) = c(u, v) + d(u) −

d(v) by using Dijkstra algorithm for n − 1 times with Fibonacci heap.

7.3 Minimum Cost Flow 183

Theorem 7.2.6 Above algorithm computes all-pairs shortest paths within O(mn+
n2 log n) time.

Proof Note that Dijkstra algorithm runs in time O(m + n log n) on networks with
nonnegative arc cost.
�

7.3 Minimum Cost Flow

The following is another important optimization problem on network flow:

Problem 7.3.1 (Minimum Cost Flow) Consider a flow network G = (V ,E) with
capacity c(u, v) and cost a(u, v) on each arc (u, v), a source s and a sink t . Given
a flow lower bound
, the problem is to find a flow f with the minimum total cost
cost (f) = ∑

(u,v)∈E a(u, v) ·f (u, v) under constraint that the flow value is at least

, i.e., |f | ≥
.

Both the assignment problem and the shortest path problem can be formulated as
special cases of the minimum cost network problem. We leave such formulations as
exercises.

For simplicity, we first make two assumptions.

Assumption 1
 is the maximum flow value.
Assumption 2 G does not contain both (x, y) and (y, x) for any two nodes x and

y.

In fact, if the minimum cost flow problem has a feasible solution, then
 cannot
be bigger than the maximum flow value. Modify the flow network G by adding an
arc (s′, s) with capacity u(s′, s) =
 and cost a(s′, s) = 0 and using s′ as the new
source node. Then, the problem is reduced to the special case satisfying Assumption
1. With Assumption 1, we will not need to mention
 in later description for the
minimum cost flow problem. In this case, the minimum cost flow is also called the
minimum cost maximum flow.

Problem 7.3.2 (Minimum Cost Maximum Flow) Given a flow network G =
(V ,E) with capacity c(u, v) and cost a(u, v) on each arc (u, v), a source s

and a sink t , find a maximum flow f with the minimum total cost cost (f) =∑
(u,v)∈E a(u, v) · f (u, v).

To make G satisfy Assumption 2, if both arcs (x, y) and (y, x) exist, then we may
add an artificial node z on the middle of (y, x) and set u(y, z) = u(z, x) = u(y, x)

and a(y, z) = a(z, x) = a(y, x)/2.
Why do we make Assumption 2? This is to avoid complication in residual graph.

Recall that the residual graph plays an important role in the study of the maximum
flow. The residual graph will also play an important role in the study of minimum
cost flow. To explain, suppose both arcs (x, y) and (y, x) exist and also suppose
there exists a flow f (x, y) > 0. Then in the residual graph, the flow f (x, y) will

184 7 Primal-Dual Methods and Minimum Cost Flow

induce an arc (y, x) with capacity u(y, x) = f (x, y) and cost a(y, x) = −a(x, y).
This is because, if we make an adjustment to reduce flow f (x, y), then the cost will
be reduced. However, it is equivalent to construct a flow from (y, x) in the residual
graph with cost −a(x, y). This new arc (y, x) may not be able to merge with original
arc (y, x) because they may have different costs. This is a troublemaker in dealing
with the residual graph.

Before design algorithm, let us first establish an optimality condition.

Lemma 7.3.3 (Optimality Condition) A maximum flow f has the minimum cost
if and only if its residual graph Gf does not contain a negative cost cycle.

Proof If Gf contains a negative cost cycle, then the cost can be reduced by adding a
flow along this cycle. Next, assume that Gf for a maximum flow f does not contain
a negative cost cycle. We show that f has the minimum cost. For contradiction,
assume that f does not reach the minimum cost, so that its cost is larger than the
cost of a maximum flow f ′. Note that every flow can be decomposed into disjoint
union of several path flows. This fact implies that f contains a path flow P that
has cost larger than the cost of a path flow P ′ in f ′. Let P̂ be obtained from P

by reversing its direction. Then P̂ ∪ P ′ forms a negative cost cycle, which may be
decomposed into several simple cycles, and one of them must also have negative
cost. This simple cycle must be contained in Gf , a contradiction.
�

This optimality condition suggests an algorithm as shown in Algorithm 24. In
this algorithm, a maximum flow is initially produced, and then use Bellman-Ford
algorithm to find whether a negative cost cycle exists or not. If a negative cost cycle
exists, then send a flow along the negative cost cycle to reduce the cost. The new
residual graph will have at least one arc on the cycle getting flow cancelled. If a
negative cost cycle does not exist, then the optimal solution is found.

Algorithm 24 Cycle cancelling algorithm of Klein
Input: A flow network G = (V ,E) with nonnegative capacity c(u, v) and nonnegative cost a(u, v)

for each arc (u, v), a source s and a sink t .
Output: A minimum cost maximum flow f .
1: Compute a maximum flow f with Admonds–Karp algorithm;
2: while Gf contains a negative cost cycle Q do
3: set δ ← min{c(x, y) | (x, y) ∈ Q} and
4: send a flow f ′ with value δ along cycle Q.
5: Gf ← (Gf)f ′ .
6: f ← f + f ′.
7: end while
8: return f .

Theorem 7.3.4 Suppose every arc has an integral capacity and an integral
cost. Then Algorithm 24 terminates in at most O(mUC) iterations and runs in
O(m2nUC) time where U is an upper bound for arc capacity and C is an upper
bound for arc cost.

7.3 Minimum Cost Flow 185

Proof Note that every flow has cost upper-bounded by mUC. When every arc
capacity is an integer, the maximum flow obtained by Admonds–Karp algorithm
has an integral value at every arc. Since every arc cost is an integer, each iteration
of cycle cancelling reduces the total cost by at least one. Therefore, the algorithm
terminates within at most mUC iterations. Moreover, Admonds–Karp algorithm
runs in O(m2n) time and Bellman-Ford algorithm runs in O(mn) time. Therefore,
the total running time of Algorithm 24 is O(m2nUC).
�

Clearly, the cycle cancelling is a primal algorithm. To introduce the dual solution,
let us define a label on nodes π : V ← R, called the node potential.

Lemma 7.3.5 A maximal flow f has the minimum cost if and only if there exists a
node potential π such that for every arc (x, y) in Gf , a(x, y) ≥ π(x) − π(y).

Proof For sufficiency, consider any cycle (x1, x2, . . . , xk, x1). We have

a(x1, x2) + a(x2, x3) + · · · + a(xk, x1)

≥ [π(x1) − π(x2)] + [π(x2) − π(x3)] + · · · + [π(xk) − π(x1)]
= 0,

that is, no negative cost cycle exists. Therefore, f has the minimum cost.
For necessity, suppose f has the minimum cost. Then Gf has no negative cost

cycle. Therefore, consider a(x, y) as the length of arc (x, y). Using Bellman-Ford
algorithm, we can compute a distance d(x) from source s to node x. Define π = −d.
Then −π(y) ≤ −π(x) + a(x, y) for any arc (x, y) in Gf .
�

The condition in Lemma 7.3.5 is called the dual feasibility. The π plays a role of
dual solution, like the label in Hungarian algorithm. Denote aπ(x, y) = a(x, y) −
π(x) + π(y) which is called a reduced arc cost. Next, we show some properties of
π .

Lemma 7.3.6 Let π be a dual-feasible node potential for residual graph Gf of a
flow f . Consider reduced arc cost aπ(x, y). Let f ′ be obtained from f through an
augmentation on a shortest path from source s to sink t . Denote by d(x) the shortest
distance from s to node x. Then, π ′ = π − d is a dual-feasible node potential for
residual graph Gf ′ .

Proof Since π is dual-feasible for Gf , we have aπ(x, y) = a(x, y)−π(x)+π(y) ≥
0 for every arc (x, y) in Gf . Moreover, since d(x) is the shortest distance from s to
x when we consider reduced arc cost aπ(x, y), we have d(y) ≤ d(x)+aπ(x, y) for
any arc (x, y) in Gf . Therefore, for any arc (x, y) in Gf , a(x, y)−π ′(x)+π ′(y) =
a(x, y) − (π(x) − d(x)) + (π(y) − d(y)) = aπ(x, y) + d(x) − d(y) ≥ 0.

For arc (x, y) on the shortest path from s to t , we have d(y) = d(x) + aπ(x, y).
Thus, aπ ′

(x, y) = 0. Note that in a new arc appearing in Gf ′ can occur only on the
augmenting path in Gf , which is the reverse of an arc on the path. However, since

186 7 Primal-Dual Methods and Minimum Cost Flow

aπ ′
(x, y) = 0 for any arc (x, y) on this path, we have aπ ′

(y, x) = 0 for its reverse
(y, x). Therefore, π ′ is a dual-feasible node potential for Gf ′ .
�

Lemmas 7.3.5 and 7.3.6 suggest an algorithm as shown in Algorithm 25.

Algorithm 25 Successive shortest path algorithm
Input: A flow network G = (V ,E) with nonnegative capacity c(u, v) and nonnegative cost a(u, v)

for each arc (u, v), a source s and a sink t .
Output: A minimum cost maximum flow f .
1: f (x, y) ← 0 for every arc in G.
2: π(x) ← 0 for every node in G.
3: Gf ← G.
4: while Gf contains a shortest path P from s to t with reduced arc cost aπ (x, y) do
5: set δ ← min{c(x, y) | (x, y) ∈ P } and
6: send a flow f ′ with value δ along path P .
7: Gf ← (Gf)f ′ .
8: f ← f + f ′.
9: π ← π − d where d(x) is the distance from s to t with reduced arc cost aπ (x, y).

10: end while
11: return f .

Theorem 7.3.7 Suppose every arc has integer capacity and integer cost. Then
Algorithm 25 terminates in at most O(nU) iterations and runs in O(Umn log n)

time where U is an upper bound for arc capacity.

Proof Note that the maximum flow has value at most O(nU). Each iteration will
increase flow value by at least one. Therefore, there are at most O(nU) iterations.
In each iteration, since aπ(x, y) ≥ 0 for every arc (x, y) in Gf , Dijkstra algorithm
can be employed to find the shortest path and compute d(x) for every node x in
Gf within O((m + n) log n) = O(m log n) time. Updating π will take O(n) time.
Putting all together, the total running time is O(Umn log n).
�

Both the cycle cancelling and the successive shortest path algorithms run not in
polynomial-time.

7.4 Minimum Cost Circulation

In this section, we develop polynomial-time algorithms for the minimum cost
maximum flow problem. Meanwhile, we allow arc cost a(x, y) to take possibly
a negative number. For simplicity, we first reduce the minimum cost maximum flow
to an equivalent problem as follows:

Problem 7.4.1 (Minimum Cost Circulation) Consider a directed network G =
(V ,E) with arc capacity c : E → R+ and cost a : E → R. Find a circulation
f : E → R satisfying the following:

7.4 Minimum Cost Circulation 187

• (Capacity Constraint) f (u, v) ≤ c(u, v) for every (u, v) ∈ E, and
• (Flow Conservation)

∑
(u,v)∈E f (u, v) = ∑

(v,w)∈E f (v,w) for every v ∈ V ,

to minimize
∑

(u,v)∈E f (u, v) · a(u, v).

There are two observations on this problem.

(1) If the cost a(·) is nonnegative, then zero circulation f ≡ 0 is optimal.
(2) Any circulation can be decomposed into cycles. The cost of circulation is the

sum of costs of those cycles.

Lemma 7.4.2 A circulation f is optimal if and only if its residual graph Gf does
not have a negative cost cycle.

Proof For necessity, suppose that Gf has a negative cost cycle. Then, this cycle can
be added to f , resulting in a circulation with cost less than the cost of f .

For sufficiency, suppose that Gf does not have a negative cost cycle. For
contradiction, assume that f is not optimal. Let f ∗ be a minimum cost circulation.
Then f ∗ − f is a circulation of residual graph Gf . Since the cost of f ∗ − f is
negative, its decomposition must contain a negative cost cycle, contradicting to the
assumption on Gf .
�

Lemma 7.4.3 The minimum circulation problem is equivalent to the minimum cost
maximum flow problem with possibly negative arc cost.

Proof To reduce the minimum circulation to the minimum cost maximum flow, add
a source s and sink t on input network G for the minimum circulation problem
without connection to G. Then, the maximum flow value is 0 and the minimum cost
is exactly the minimum cost circulation.

To reduce the minimum cost maximum flow to the minimum circulation,
consider an input network G with source s and sink t for the minimum cost
maximum flow problem. Add an arc (t, s) with cost −(1 + nC) and capacity nU

where C is the maximum arc cost and U is the maximum arc capacity in G. Denote
by G′ the obtained network. Then the maximum flow f in G will be turned into
a circulation f ′ passing (t, s). Note that Gf does not contain any negative cost
cycle. Therefore, G′

f ′ does not contain any negative cost cycle not passing (t, s).
Moreover, Gf does not contain a path from s to t . Therefore, G′

f ′ does not contain
a cycle passing through (t, s). Therefore, the minimum cost circulation in G′ is
equivalent to the minimum cost maximum flow in G.
�

Consider a node potential π(v) for each node v ∈ V . The node potential d(·) is
said to be dual-feasible if π(v) ≤ π(u) + a(u, v) for every arc (u, v) ∈ E. Define
aπ(u, v) = a(u, v) − π(u) + π(v). aπ is called cost reduced by node potential π .

Lemma 7.4.4 Every circulation has the same cost under cost a(·, ·) and reduced
cost aπ(·, ·).

188 7 Primal-Dual Methods and Minimum Cost Flow

Proof Note that every circulation can be decomposed into cycles. When reduced
cost aπ(·, ·) is applied to each cycle, the node potential terms will be cancelled out.

�

Lemma 7.4.5 A circulation f is optimal if and only if there exists a dual-feasible
node potential for its residual graph Gf .

Proof For sufficiency, suppose that Gf has a dual-feasible node potential π . Then
aπ(u, v) ≥ 0 for every arc (u, v) ∈ E. Therefore, Gf does not have negative cost
cycle and hence f is optimal.

For necessity, suppose that f is optimal. Then Gf has no negative cost cycle.
Choose arbitrarily a node s and take the cost a(u, v) as distance of arc (u, v). With
label-correcting, we can compute the distance d(v) from s to node v. This distance
will satisfy d(v) ≤ d(u)+a(u, v), that is, −d is a dual-feasible node potential.
�

Let f be a minimum cost circulation for graph G. Suppose G′ is obtained from
G by adding a unit capacity at an arc (x, y), i.e., arc (x, y) has capacity c(x, y) + 1
in G′. The next lemma illustrates how to obtain a minimum cost circulation f ′ for
G′ from f .

Lemma 7.4.6 If G′
f does not contain a negative cost cycle, then f is a minimum

cost circulation for G′. If G′
f contains a negative cycle, then the arc (x, y) and the

shortest path Pyx from y to x with respect to reduced cost aπ will form a negative
cycle Q. Let f ′ be obtained from f by augmenting along Q. Then f ′ is a minimum
cost circulation for G′.

Proof Consider three cases as follows:

Case 1. Residual graph Gf contains arc (x, y). Then every cycle in G′
f is also

in Gf . Hence G′
f does not contain any negative cost cycle. Therefore, f is a

minimum cost circulation for G′.
Case 2. There is no path from y to x in Gf . In this case, G′

f does not contain a
cycle passing through (x, y). Therefore, G′

f does not have a negative cost cycle.
Hence, f is still a minimum cost circulation for G′.

Case 3. Gf does not contain arc (x, y); however, it contains a path from y to x.
Let Pyx be a shortest path in Gf with respect to reduced cost aπ . Then there are
two subcases.

Subcase 3.1. aπ(x, y) + aπ(Pyx) ≥ 0. Then G′
f does not contain a negative cost

cycle. Thus, f is a minimum cost circulation for G′.
Subcase 3.2. aπ(x, y) + aπ(Pyx) < 0. Then, G′

f contains a negative cycle
consisting of (x, y) and Pyx . Note that Gf does not contain arc (x, y). This
implies that (x, y) has capacity one in G′

f . Send a unit flow q along this negative
cost cycle Q = (x, y) ∪ Pyx . Let f ′ = f + q. Then G′

f ′ = (G′
f)q . Now, we

update node potential π ′ = π − d where d(z) is the shortest distance from y to
z with respect to reduced cost aπ . We claim that π ′ is dual-feasible for G′

f ′ .

In fact, for arc (v,w) not in cycle Q,

7.5 Cost Scaling 189

aπ ′
(v,w) = a(v,w) − π ′(v) + π ′(w) = aπ(v,w) + d(v) − d(w) ≥ 0.

For arc (v,w) on path Pyx ,

aπ ′
(v,w) = aπ(v,w) + d(v) − d(w) = 0,

and hence, aπ ′
(w, v) = 0. In addition,

aπ ′
(y, x) = −a(x, y) − a(Pyx) ≥ 0.

Therefore, π ′ is dual-feasible for Gf ′ . Hence, f ′ is a minimum cost circulation for
G′.
�

Based on Lemma 7.4.6, we may design an algorithm as follows:
Let Gk be obtained from G by giving �c(x, y)/2k� as capacity of each arc (x, y).

Clearly, G0 = G. Let L = �log2(U + 1)� where U is the maximum arc capacity.
Then every arc in GL has capacity 0. Therefore, the minimum cost circulation for
GL is identical to 0.

Let fk is the minimum cost circulation for Gk . Initially, fL = 0. Note that

2�c(x, y)

2k
� ≤ �c(x, y)

2k−1
� ≤ 2�c(x, y)

2k
� + 1.

This means that Gk−1 can be obtained from 2Gk by adding unit capacity at some
arcs, where 2Gk is obtained from Gk by doubling every arc capacity. Clearly, let
2fk be a circulation obtained from fk by doubling value at every arc. Then 2fk is
a minimum cost circulation for 2Gk . By Lemma 7.4.6, fk−1 can be obtained from
2fk through O(m) augmentations.

Above algorithm is called the capacity scaling.

Theorem 7.4.7 The capacity scaling algorithm computes a minimum cost circula-
tion in O(m(m + n log n) log U) time.

Proof The algorithm requires computing minimum cost circulations fL−1, fL−2,
. . . , f0 for GL−1,GL−2, . . . ,G0, respectively. In each iteration for computing fk

from fk−1, we may need to augment O(m) times. In each augmentation, we need
to employ Dijkstra algorithm to find a shortest path in O(m + n log n) time and
spend O(n) time to do augmentation. Therefore, the total running time is O(m(m+
n log n) log U).
�

7.5 Cost Scaling

The scaling technique can also be applied to the arc cost. Let G(k) be obtained from
G by giving sign(a(x, y)) · �|a(x, y)|/2k� as cost of each arc (x, y) where

190 7 Primal-Dual Methods and Minimum Cost Flow

sign(x) =
⎧⎨
⎩

1 if x > 0,

0 if x = 0,

−1 if x < 0.

Clearly, G(0) = G. Let L = �log2(C + 1)� where C is the maximum arc cost.
Then every arc in G(L) has cost 0. Therefore, every circulation for G(L) has the
minimum cost 0. Without loss of generality, we may choose f (L) = 0 as the
minimum cost circulation for G(L). Let 2G(k) denote the network obtained from
G(k) by doubling cost for every arc. Then the minimum cost circulation f (k) for
G(k) is also a minimum cost circulation for 2G(k). Note that G(k) can be obtained
from 2G(k−1) by adding one for some positive arc cost and subtracting one for some
negative arc cost. For adding one on an arc cost, it does not produce a negative cost
cycle. Hence, the minimum cost circulation is unchanged. Next, we study the case
of subtracting one from a negative arc cost.

Consider a network G = (V ,E) and a network G′ which is obtained from G by
decreasing one from the cost of an arc (x, y). Let f be a minimum cost circulation
of G. We describe how to obtain a minimum cost circulation f ′ of G. Consider two
cases.

Case 1. G′
f does not contain a negative cost cycle. Then f ′ = f .

Case 2. G′
f contains a negative cycle Q. Clearly, Q contains arc (x, y). Without

loss of generality, assume that for every arc e ∈ Q, the reduced cost aπ(e) = 0,
and for every arc e in Gf , aπ(e) ≥ 0, where π is a node potential. Let H be a
subgraph of G′

f , consisting of all arcs with reduced cost 0. Add an arc (x′, y)

to H and set capacity c(x′y) = c(x, y). Denote by H ′ the obtained graph. Find
a maximum flow fx′x from x′ to x in H . Merging node x′ into x, the flow fx′x
becomes a circulation fx . We claim that f ′ = f + fx is the minimum cost
circulation for G′.
To show our claim, we update the node potential by setting

π ′(v) =
⎧⎨
⎩

π(v) + 1 if there exists a path from y to v such that for every
arc e on the path aπ(e) = 0,

π(v) otherwise.

In the following, we show that aπ ′
(e) ≥ 0 for e ∈ G′

f ′ .
If (x, y) is in G′

f ′ , then we must have |fx′x | < c(x′, y) = c(x, y). Hence, there
is a cut between y and x in Hfx′x , which implies that π ′(x) = π(x). Moreover, note

that π ′(y) = π(y) + 1. Therefore, the reduced cost of aπ ′
(x, y) = 0 after cost of

(x, y) is reduced by one.
If (u, v) is in G′

f ′ with π ′(u) = π(u) + 1 and π ′(v) = π(v), then we must have

aπ((u, v)) ≥ 1. Hence, aπ ′
((u, v)) ≥ 0.

If (u, v) is in G′
f ′ , but (u, v) is not in G′

f , then we must have aπ((v, u)) = 0 and

π ′(u) = π(u) and hence aπ ′
((u, v)) ≥ 0.

7.6 Strongly Polynomial-Time Algorithm 191

For arc e other than above three possibilities, we have aπ ′
(e) ≥ aπ(e) ≥ 0.

Theorem 7.5.1 The cost scaling algorithm can compute a minimum cost circula-
tion in O(m3n log C) time where C is the largest arc cost.

Proof Note that G(k) can be obtained from 2G(k−1) by adding one for some positive
arc cost and subtracting one for some negative arc cost. For each subtraction, we
may need to compute a maximum flow of subgraph H by Admonds–Karp algorithm
in O(nm2) time. Therefore, total running time is O(nm3 log C).
�

7.6 Strongly Polynomial-Time Algorithm

An algorithm is said to run in strongly polynomial-time if in its computation,

• the number of operations is bounded by a polynomial with respect to the number
of integers in the input, and

• the used space is bounded by a polynomial with respect to the input size.

For example, Admonds–Karp algorithm is a strongly polynomial-time algorithm for
the maximum flow problem. However, the capacity-scaling algorithm in Sect. 7.4
and the cost scaling algorithm in Sect. 7.5 are not of strongly polynomial-time since
their running times depend on log U or log C.

For the minimum cost circulation problem (or the minimum cost flow problem),
is there a strongly polynomial-time algorithm? The answer is yes. In this section,
we introduce one of them.

To do so, let us first study Karp’s algorithm for the minimum mean-cost cycle.
Consider directed graph G = (V ,E) with arc cost a : E → Z. Denote n = |V | and
m = |E|. For each cycle Q = (e1, e2, . . . , ek), define the mean-cost of Q by

μ(Q) = 1

k

k∑
i=1

a(ei).

The minimum cycle mean-cost for G is defined by μ∗ = minQ μ(Q) where Q is
over all cycles.

Without loss of generality, assume that G is strongly connected. In fact, every
cycle is contained in a strongly connected component. To compute μ∗, it is sufficient
to compute the minimum cycle mean-cost for every strongly connected component
and then to take the minimum value from them.

Choose a node s as the start node. Let δk(s, v) denote the cost of a shortest path
from s to v consisting of exactly k arcs. If such a path from s to v does not exist,
then δk(s, v) = ∞. The following results explore the relationship between μ∗ and
δk(s, v):

192 7 Primal-Dual Methods and Minimum Cost Flow

Lemma 7.6.1 Suppose μ∗ = 0. The following holds:

(a) G does not have a negative-cost cycle.
(b) minv∈V max0≤k≤n−1

δn(s,v)−δk(s,v)
n−k

= 0.

Proof

(a) Since μ∗ = 0, μ(Q) ≥ 0 for every cycle.
(b) Let δ(s, v) denote the minimum cost of a path from s to v. Since there is no

negative-cost cycle, we have that for any node v ∈ V , δ(s, v) = δk(s, v) for
some 1 ≤ k ≤ n − 1. Therefore, for any node v ∈ V ,

max
1≤k≤n

(δn(s, v) − δk(s, v)) ≥ 0,

i.e.,

min
v∈V

max
0≤k≤n−1

δn(s, v) − δk(s, v)

n − k
≥ 0.

Next, we show that there exists v ∈ V such that

max
0≤k≤n−1

δn(s, v) − δk(s, v)

n − k
= 0.

Since μ∗ = 0, there exists a cycle Q with μ(Q) = 0. Hence, the cost of Q is
equal to 0. Consider a node u on Q. Then, there exists 1 ≤ k′ ≤ n − 1 such
that δk′(s, u) = δ(s, u). Let v be the node reached from u along Q by passing
through n − k′ arcs. Let x be the total cost of these n − k′ arcs. We claim that
δ(s, v) = δ(s, u) + x. In fact, it is clear that δ(s, v) ≤ δ(s, u) + x. Moreover,
since Q has zero cost, the path from v to u along Q should have cost −x.
Hence, δ(s, u) ≤ δ(s, v) − x. Therefore, δ(s, v) = δ(s, u) + x. It follows that
δ(s, v) = δn(s, v), i.e., there exists 1 ≤ k ≤ n− 1 such that δk(s, v) = δn(s, v).
Therefore,

max
0≤k≤n−1

δn(s, v) − δk(s, v)

n − k
= 0.

�

Lemma 7.6.2

μ∗ = min
v∈V

max
0≤k≤n−1

δn(s, v) − δk(s, v)

n − k
.

Proof Let μ∗(a) denote the μ∗ for arc cost a. For every arc e, define a new arc cost
a′(e) = a(e) − μ∗(a). Then, for every cycle Q, the mean-cost of Q is reduced by

7.6 Strongly Polynomial-Time Algorithm 193

μ∗(a). Hence, μ∗(a′) = μ∗(a) − μ∗(a) = 0. By Lemma 7.6.1(b),

min
v∈V

max
0≤k≤n−1

δn(s, v) − δk(s, v)

n − k
− μ∗(a) = 0.

�
The following algorithm for computing the minimum cycle mean-cost is based

on characterization in Lemma 7.6.2:

Karp’s Algorithm for Minimum Cycle Mean-Cost
input:A strongly connected directed graph G = (V ,E) with arc

cost a : E → R.
output: The minimum cycle mean-cost μ∗.

choose a node s;
δ0(s, s) ← 0;
for u ∈ V \ {s} do

δ0(s, u) ← ∞;
for k ← 1 to n − 1 do

for each node u ∈ V do
δk(s, u) ← ∞;

for k ← 1 to n − 1 do
for each arc (u, v) ∈ E do

if δk−1(s, u) + a(u, v) < δk(s, v)

δk(s, v) ← δk−1(s, u) + a(u, v);
compute μ∗ ← minv∈V max0≤k≤n−1

δn(s,v)−δk(s,v)
n−k

;
return μ∗.

Clearly, this algorithm runs in O(mn) time. Hence, we have the following:

Theorem 7.6.3 Karp’s algorithm computes the minimum cycle mean-cost in
O(mn) time.

A circulation f is ε-optimal if and only if there exists a node potential π such
that for every arc e in G, aπ(e) ≥ −ε. The minimum cycle mean-cost has a close
relationship with the ε-optimality of circulation.

Lemma 7.6.4 f is a ε-optimal circulation if and only if −ε ≤ μ∗(Gf , a) where
μ∗(Gf , a) is the minimum cycle mean-cost of residual graph Gf with respect to
arc cost a.

Proof First, suppose f is ε-optimal. Then, there exists a node potential π such that
for every arc in Gf , aπ(e) ≥ −ε. For every cycle Q in Gf , we have

μ(Q) =
∑

e∈Q a(e)

|Q| =
∑

e∈Q aπ(e)

|Q| ≥ −ε.

Therefore, −ε ≤ μ∗(Gf , a).

194 7 Primal-Dual Methods and Minimum Cost Flow

Conversely, suppose −ε ≤ μ∗(Gf , a). Define a new arc cost a′(e) = a(e) + ε.
With this new cost, μ∗(Gf , a′) = μ∗(Gf , a) + ε ≥ 0. It follows that f is the
minimum cost circulation for this new cost. Therefore, there exists a node potential
π such that for every arc e in Gf , (a′)π (e) ≥ 0, i.e., aπ(e) = (a′)π (e) − ε ≥ −ε.
Therefore, f is ε-optimal.
�

Lemma 7.6.5 If a circulation f is ε-optimal for ε < 1/n, then f is a minimum
cost circulation.

Proof Since f is ε-optimal, there exists a node potential π such that for every arc
in Gf , aπ(e) ≥ −ε > −1/n. Thus, for every cycle Q in Gf ,

∑
e∈Q aπ(e) > −1.

However, all arc costs are integers. Therefore,
∑

e∈Q aπ(e) ≥ 0, i.e., f is optimal.

�

The following algorithm is motivated from above two lemmas:

Strongly Polynomial-Time Algorithm for Minimum Cost Circulation
input: A directed graph G = (V ,E) with arc capacity c : E → R+

and arc cost a : E → R.
output: A minimum cost circulation f .

f ← 0.
μ ← μ∗(Gf , a).
while μ ≥ 1/n do the following steps

Step 1. Compute μ∗(Gf , a).
Step 2. Compute node potential π to witness μ-optimality of f .
Step 3.Repeatedly find a cycle consisting of arcs each with negative

reduced cost and augment along the cycle. Until no such
a cycle exists, go to next step.

Step 4. μ ← μ∗(Gf , a).
end-while
return f .

Next, we show a few results for analysis of the above algorithm.

Lemma 7.6.6 Suppose f ′ is a circulation obtained from f through an iteration of
above algorithm. Then

μ∗(Gf ′ , a) ≥
(

1 − 1

n

)
μ∗(Gf , a).

Proof After iteration, every cycle Q in Gf ′ contains at least one arc with nonnega-
tive reduced cost and hence its cost is at least (|Q| − 1)μ∗(Gf , a). Therefore,

μ(Q) ≥
(

1 − 1

|Q|
)

μ∗(Gf , a) ≥
(

1 − 1

n

)
μ∗(Gf , a).

Hence,

7.6 Strongly Polynomial-Time Algorithm 195

μ∗(Gf ′ , a) ≥
(

1 − 1

n

)
μ∗(Gf , a).

�

Lemma 7.6.7 Let π∗ be the optimal node potential and f ∗ the corresponding
minimum cost circulation. If aπ∗

(e) > nε > 0 for an arc e, then for any ε-optimal
circulation f , f (e) = f ∗(e) ≤ 0.

Proof For contradiction, assume f ∗(e) > 0. Then the reverse ē of e is in Gf ∗ and
aπ∗

(ē) < −nε < 0, contradicting optimality of f ∗.
For contradiction, first assume f (e) > f ∗(e). Consider f ⊕ f ∗, which can be

decomposed into union of cycles. Let Q be the cycle containing arc e. Then for every
arc e′ in Q, f (e′) > f ∗(e′), and hence, e′ is in Gf ∗ with aπ∗

(e′) ≥ 0. Therefore,
a(Q) ≥ aπ∗

(e) > nε. Let Q̄ be the reverse of Q. Then a(Q̄) < −nε. Note that
every arc in Q̄ is in Gf . Since f is ε-optimal, every cycle in Gf has cost at least
−nε, a contradiction.

Next, assume f (e) < f ∗(e). Let ē be the reverse of e. Then f ((̄e)) > f ∗(ē)
and hence ē is in Gf ∗ . It follows that aπ∗

(ē) ≥ 0. Thus, aπ∗
(e) = −aπ∗

(ē) ≥ 0,
contradicting aπ∗

(e) > 0.
�

Corollary 7.6.8 If aπ∗
(e) < −nε < 0 for an arc e, then for any ε-optimal

circulation f , f (e) = f ∗(e) ≥ 0.

Proof Consider the reverse ē of e. Then aπ∗
(ē) > nε. This corollary follows

immediately by applying Lemma 7.6.7 to ē.
�
By Lemma 7.6.7 and its corollary, if |aπ∗

(e)| > nε > 0, then for any ε-optimal
circulation f , f (e) = f ∗(e). Such an arc e is called ε-fixed.

Lemma 7.6.9 Let −nε = μ∗(Gf , a) < 0. Then Gf contains an arc e such that e

is not nε-fixed, but is ε′-fixed for any ε′ < ε.

Proof Consider the minimum mean-cost cycle Q in Gf . Then f is nε-optimal.
Note that another nε-optimal circulation can be obtained from augmenting along Q.
These two nε-optimal circulations have different values at every arc in Q. Therefore,
every arc e in Q is not nε-fixed.

However, since |aπ∗
(Q)| = |a(Q)| = nε × |Q|, Q must contain an arc e such

that |aπ∗ | ≥ nε, i.e., e is ε′-fixed for any ε′ < ε.
�
Now, we are ready to give the running time of above strongly polynomial-time

algorithm.

Theorem 7.6.10 Above algorithm computes a minimum cost circulation in
O(m3n log n) time.

Proof Suppose f ′ is the circulation obtained from f through n ln n iterations. By
Lemma 7.6.6,

196 7 Primal-Dual Methods and Minimum Cost Flow

μ∗(GF ′ , a) ≥ (1 − 1/n)n ln nμ∗(Gf , a) ≥ n · μ∗(Gf , a).

By Lemma 7.6.9, after O(n ln n) iterations, a new arc will be fixed. When all
arcs with positive reduced cost aπ∗

(·) are fixed, obtained circulation f reaches the
minimum cost and hence μ∗(Gf , a) ≥ 0, i.e., the algorithm will be terminated.
Note that each iteration contains O(m) augmentation and each augmentation can be
done in O(m) time. Therefore, total running time is O(m3n log n).
�

Exercises

1. Show that the shortest path problem is a special case of the minimum cost flow
problem.

2. Show that the assignment problem can be formulated as a minimum cost flow
problem.

3. Show that the maximum flow problem is a special case of the minimum cost
flow problem.

4. Suppose that the residual graph Gf of flow f does not contain a negative cost
cycle. Let the flow f ′ be obtained from f through augmentation on a minimum
cost path from s to t in Gf . Show that Gf ′ does not contain a negative cost
cycle.

5. An edge cover C of a graph G = (V ,E) is a subset of edges such that every
vertex is incident to an edge in C. Design a polynomial-time algorithm to find
the minimum edge cover, i.e., an edge cover with minimum cardinality.

6. (König theorem) Show that the minimum size of vertex cover is equal to the
maximum size of matching in bipartite graph.

7. Show that the vertex cover problem in bipartite graphs can be solved in
polynomial-time.

8. A matrix with all entries being 0 or 1 is called a 0-1 matrix. Consider a positive
integer d and a 0-1 matrix M that each row contains exactly two 1s. Please
design an algorithm to find a minimum number of rows to form a submatrix
such that for every d + 1 columns C0, C1, . . . , Cd , there exists a row at which
C0 has entry 1, but all C1, . . . , Cd have entry 0 (such a matrix is called a d-
disjunct matrix).

9. Design a cycle cancelling algorithm for the Chinese postman problem.
10. Design a cycle cancelling algorithm for the minimum spanning tree problem.
11. Consider a graph G = (V ,E) with nonnegative edge distance d(e) for e ∈ E.

There are m source nodes s1, s1, . . . , sm and n sink nodes t1, t2, . . . , tn. Suppose
these sources are required to provide those sink nodes with certain type of
products. Suppose that si is required to provide ai products and tj requires
bj products. Assume

∑m
i=1 ai = ∑n

j=1 bj . The target is to find a transportation
plan to minimize the total cost where on each edge, the cost is the multiplication
of the distance and the amount of products passing through the edge. Show that

Historical Notes 197

a transportation plan is minimum if and only if there is no cycle such that the
total distance of unloaded edges is less than the total distance of loaded edges.

12. Consider m sources s1, s1, . . . , sm and n sinks t1, t2, . . . , tn. These sources
are required to provide those sink nodes with certain type of products. si is
required to provide ai products and tj requires bj products. Assume

∑m
i=1 ai =∑n

j=1 bj . Given a distance table (dij) between sources si and sinks tj , the
target is to find a transportation plan to minimize the total cost where on
each edge, the cost is the multiplication of the distance and the amount of
products passing through the edge. Show that a transportation plan is minimum
if and only if there is no circuit [(i1, j1), (i2, j1), (i2, j2), . . . , (i1, jk)] such
that (i1, j1), (i2, j2), . . . , (ik, jk) are loaded, (i2, j1), (i3, j2), . . . , (i1, jk) are
unloaded, and

∑k
h=1 d(ih, jh) >

∑k
h=1 d(ih, jh−1) (j0 = jk). Here, (i, j) is

said to be loaded if there is at least one product transported from si to tj .
13. An input for the minimum cost circulation problem consists of a network G

with arc capacity c(u, v) and arc cost a(u, v). Suppose π is a dual-feasible
node potential to witness an optimal solution f , i.e., aπ(u, v) ≥ 0 for every arc
(u, v) in Gf . Show that for every arc (u, v) in G, we have the following:

(a) aπ(u, v) < 0 ⇒ f (u, v) = c(u, v).
(b) f (u, v) > 0 ⇒ aπ(u, v) ≤ 0.

14. Show that the cost of a ε-optimal circulation is no more than |E|εU from the
optimal, where |E| is the number of arcs and U is the maximum arc capacity.

15. Consider a strongly connected directed graph G = (V ,E) with arc cost. Let
v ∈ V be a node reaching

min
v∈V

max
0≤k≤n−1

δn(s, v) − δk(s, v)

n − k
.

Then, every cycle on the path from s to v with length n has the minimum mean-
cost where s is the start node.

16. Show that for two different circulations f and f ′, if f (e) > f ′(e) for an arc e,
then e lies in Gf ′ .

17. Show that the strongly polynomial-time algorithm in Sect. 7.6 has running time
also upper-bounded by O(m2n log(nC)) where m is the number of arcs, n is
the number of nodes, and C is the maximum arc cost.

18. Design a primal-dual algorithm for the minimum weight arborescence problem.

Historical Notes

The Hungarian method for the assignment problem was published in 1995 by Harold
Kuhn [267, 268]. He gave the name “Hungarian method” because his work is
based on contributions of two Hungarian mathematicians: Dénes König and Jenö

198 7 Primal-Dual Methods and Minimum Cost Flow

Egerváry. Since then, there are a sequence of research efforts made on this algorithm
[123, 232, 322, 377].

For the shortest path problem and its variations, the label-correcting algorithm
has some advantages, so that it appeared in the literature quite often [27, 190, 234,
369, 439].

Actually, both the assignment problem and the shortest path problem are special
cases of the minimum cost flow problem. The minimum cost flow is a fundamental
problem in the study of network flows. It has many applications. Especially, several
classic network optimization problems, such as the assignment and the shortest path,
can be formulated as its special cases.

Minimum cost maximum flow is studied following up with maximum flow
problem. Similarly, earlier algorithms run in pseudo polynomial-time such as out-
of-kilter algorithm [151], cheapest path augmentation [39], cycle cancelling
[257], cut cancelling [129, 205], minimum mean cancelling [176], and successive
shortest path [125]. Polynomial-time algorithms were found later such as speed-
up successive shortest path, linear programming approach [332], capacity scaling
[123], and cost scaling [177]. Strongly polynomial-time algorithm is obtained much
later by Tardos [373], Goldberg and Tarjin [176, 177], etc. In the study of strongly
polynomial-time algorithm, Karp’s algorithm [238] for the minimum cycle mean
problem [48] plays an important role. Currently, the fastest strong polynomial-
time algorithm has running time is O(|E|2 log2 |V |). This record is also kept by
an algorithm of Orlin [332].

Chapter 8
NP-Hard Problems and Approximation
Algorithms

The biggest difference between time and space is that you can’t
reuse time.

—Merrick Furst

8.1 What Is the Class NP?

The class P consists of all polynomial-time solvable decision problems. What is the
class NP? There are two popular misunderstandings:

(1) NP is the class of problems which are not polynomial-time solvable.
(2) A decision problem belongs to the class NP if its answer can be checked in

polynomial-time.

The misunderstanding (1) comes from incorrect explanation of NP as the brief
name for “not polynomial-time solvable.” Actually, it is polynomial-time solvable,
but in a wide sense of computation, nondeterministic computation, that is, NP is the
class of all nondeterministic polynomial-time solvable decision problems. Thus,
NP is the brief name of “nondeterministic polynomial-time.”

What is nondeterministic computation? Let us explain it starting from computa-
tion model, Turing machine (TM). A TM consists of three parts, a tape, a head, and
a finite control (Fig. 8.1).

The tape has the left end and infinite long in the right direction, which is divided
infinitely into many cells. Each cell can hold a symbol. All symbols possibly on the
tape form an alphabet �, called the alphabet of tape symbols. In �, there is a special
symbol B, called the blank symbol, which means the cell is actually empty. Initially,
an input string is written on the tape. All symbols possibly in the input string form
another alphabet �, called the alphabet of input symbols. Assume that both � and
� are finite and B ∈ � \ �.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_8

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_8&domain=pdf

 7680 61494 a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_8

200 8 NP-Hard Problems and Approximation Algorithms

Fig. 8.1 One-tape Turing
machine

The head can read, erase, and write symbols on the tape. Moreover, it can move to
the left and right. In each move, the head can shift a distance of one cell. Please note
that in classical one-tape TM, the head is not allowed to stay in the place without
moving before the TM halts.

The finite control contains a finite number of states, forming a set Q. The TM’s
computation depends on function δ : Q × � → Q × � × D where D = {R,L}
is the set of possible moving directions and R means moving to the right, while
L means moving to the left. This function δ is called the transaction function. For
example, δ(q, a) = (p, b, L) means that when TM in state q reads symbol a, it will
change state to p, change symbol a to b, and then move to the left (the uppercase
in Fig. 8.2); δ(q, a) = (p, b, R) means that when TM in state q reads symbol a,
it will change state to p, change symbol a to b, and then move to the right (the
lowercase in Fig. 8.2); Initially, on an input x, the TM is in a special state s, called
the initial state, and its head is located at the leftmost cell, which contains the first
symbol of x if x is not empty. The TM stops moving if and only if it enters another
special state h, called the final state. An input x is said to be accepted if on x, the TM
will finally stop. All accepted inputs form a language, which is called the language
accepted by the TM. The language accepted by a TM M is denoted by L(M).

From above description, we see that each TM can be described by the following
parameters: an alphabet � of input symbols, an alphabet � of tape symbols, a finite
set Q of states in finite control, a transition function δ, and an initial state s.

The computation time of an TM M on an input x is the number of moves from
initial state to final state, denoted by T imeM(x). A TM M is said to be polynomial-
time bounded if there exists a polynomial p such that for every input x ∈ L(M),
T imem(x) ≤ p(|x|). So far, what TM we have described is the deterministic TM
(DTM), that is, for each move, there exists at most one transition determined by the
transition function. All languages accepted by polynomial-time bounded DTM form
a class, denoted by P.

There are many variations of the TM, in which the TM has more freedom. For
example, the head is allowed to stay at the same cell during a move, the tape
may have no left end, and multiple tapes exist (Fig. 8.3). However, in terms of

8.1 What Is the Class NP? 201

Fig. 8.2 One move to the right

Fig. 8.3 A multi-tape TM

polynomial-time computability, all of them have been proved to have the same
power. Based on such experiences, one made the following conclusion:

Extended Church-Turing Thesis A function computable in polynomial-time in
any reasonable computational model using a reasonable time complexity measure
is computable by a deterministic TM in polynomial-time.

Extended Church-Turing thesis is a natural law of computation. It is similar
to physics laws, which cannot have a mathematical proof, but is obeyed by the
natural world. By extended Church-Turing thesis, the class P is independent from
computational models. In the statement, “reasonable” is an important word. Are
there unreasonable computational models? The answer is yes. For example, the
nondeterministic Turing machine (NTM) is an important one among them. In an
NTM, for each move, there may exist many possible transitions (Fig. 8.4) and the
NTM can use any one of them. Therefore, transition function δ in an NTM is a
mapping from Q × � to 2Q×�×{R,L}, that is, δ(q, a) is the set of all possible

202 8 NP-Hard Problems and Approximation Algorithms

Fig. 8.4 There are many possible transitions for each move in an NTM

transitions. When the NTM in state q reads symbol a, it can choose any one
transition from δ(q, a) to implement.

It is worth mentioning that for each nondeterministic move of one-tape NTM, the
number of possible transitions is upper-bounded by |Q|× |�|×3 where Q is the set
of states, � is the alphabet of tape symbols, and 3 is an upper bound for the number
of moving choices. |Q| × |�| × 3 is a constant independent from input size |x|.

The computation process of the DTM can be represented by a path, while the
computation process of the NTM has to be represented by a tree. When is an input
x accepted by an NTM? The definition is that as long as there is a path in the
computation tree, leading to the final state, then x is accepted. Suppose that at each
move, we make a guess for choice of possible transitions. This definition means that
if there exists a correct guess which leads to the final state, we will accept the input.
Let us look at an example. Consider the following problem:

Problem 8.1.1 (Hamiltonian Cycle) Given a graph G = (V ,E), does G contain
a Hamiltonian cycle? Here, a Hamiltonian cycle is a cycle passing through each
vertex exactly once.

The following is a nondeterministic algorithm for the Hamiltonian cycle prob-
lem:

input a graph G = (V ,E).
step 1 guess a permutation of all vertices.
step 2 check if guessed permutation gives a Hamiltonian cycle.

if yes, then accept input.

8.1 What Is the Class NP? 203

In step 1, the guess corresponds to nondeterministic moves in the NTM. Note
that in step 2, if the outcome of checking is no, then we cannot give any conclusion,
and hence nondeterministic computation gets stuck. However, a nondeterministic
algorithm is considered to solve a decision problem correctly if there exists a
guessed result leading to correct yes-answer. For example, in above algorithm, if
input graph contains a Hamiltonian cycle, then there exists a guessed permutation
which gives a Hamiltonian cycle and hence gives yes-answer. Therefore, it is a
nondeterministic algorithm which solves the HAMILTONIAN CYCLE problem.

Now, let us recall the second popular misunderstanding of NP mentioned at the
beginning of this section:

(2) A decision problem belongs to the class NP if its answer can be checked in
polynomial-time.

Why (2) is wrong? This is because not only checking step is required to be
polynomial-time computable, but also guessing step is required to be polynomial-
time computable. How do we estimate guessing time? Let us explain this starting
from what is a legal guess. Note that in an NTM, each nondeterministic move can
select a choice of transition from a pool with size upper-bound independent from
input size. Therefore, a legal guess is a guess from a pool with size independent
from input size. For example, in above algorithm, guessing in step 1 is not legal
because the number of permutation of n vertices is n! which depends on input size.

What is the running time of step 1? It is the number of legal guesses spent in
implementation of the guess in step 1. To implement the guess in step 1, we may
encode each vertex into a binary code of length �log2 n�. Then each permutation
of n vertices is encoded into a binary code of length O(n log n). Now, guessing a
permutation can be implemented by O(n log n) legal guesses each of which chooses
either 0 or 1. Therefore, the running time of step 1 is O(n log n).

In many cases, the guessing step is easily implemented by a polynomial number
of legal guesses. However, there are some exceptions; one of them is the following:

Problem 8.1.2 Given an m × n integer matrix A and an n-dimensional integer
vector b, determine whether there exists an m-dimensional integer vector x such
that Ax ≥ b.

In order to prove that Problem 8.1.2 is in NP, we may guess an n-dimensional
integer vector x and check whether x satisfies Ax ≥ b. However, we need to make
sure that guessing can be done in nondeterministic polynomial-time. That is, we
need to show that if the problem has a solution, then there is a solution of polynomial
size. Otherwise, our guess cannot find it. This is not an easy job. We include the
proof into the following three lemmas:

Let α denote the maximum absolute value of elements in A and b. Denote q =
max(m, n).

Lemma 8.1.3 If B is a square submatrix of A, then | det B| ≤ (αq)q .

Proof Let k be the order of B. Then | det B| ≤ k!αk ≤ kkαk ≤ qqαq = (qα)q .
�

204 8 NP-Hard Problems and Approximation Algorithms

Lemma 8.1.4 If rank(A) = r < n, then there exists a nonzero vector z such that
Az = 0 and every component of z is at most (αq)q .

Proof Without loss of generality, assume that the left-upper r × r submatrix B is
nonsingular. Set xr+1 = · · · = xn−1 = 0 and xn = −1. Apply Cramer’s rule to
system of equations

B(x1, · · · , xr)
T = (a1n, · · · , arn)

T

where aij is the element of A on the ith row and the j th column. Then we can obtain
xi = det Bi/ det B where Bi is a submatrix of A. By Lemma 3.1, | det Bi | ≤ (αq)q .
Now, set z1 = det B1, · · · , zr = det Br, zr+1 = · · · = zn−1 = 0, and zn = det B.
Then Az = 0.
�

Lemma 8.1.5 If Ax ≥ b has an integer solution, then it must have an integer
solution whose components of absolute value not exceed 2(αq)2q+1.

Proof Let ai denote the ith row of A and bi the ith component of b. Suppose that
Ax ≥ b has an integer solution. Then we choose a solution x such that the following
set gets the maximum number of elements:

Ax = {ai | bi ≤ aix ≤ bi + (αq)q+1} ∪ {ei | |xi | ≤ (αq)q},

where ei = (0, · · · , 0, 1︸ ︷︷ ︸
i

, 0, · · · , 0). We first prove that the rank of Ax is n. For

otherwise, suppose that the rank of Ax is less than n. Then we can find nonzero
integer vector z such that for any d ∈ Ax , dz = 0 and each component of z does
not exceed (αq)q . Note that ek ∈ Ax implies that kth component zk of z is zero
since 0 = ekz = zk . If zk �= 0, then ek �∈ Ax , so |xk| > (αq)q . Set y = x + z or
x − z such that |yk| < |xk|. Then for every ei ∈ Ax , yi = xi , so ei ∈ Ay , and for
ai ∈ Ax , aiy = aix, so ai ∈ Ay . Thus, Ay contains Ax . Moreover, for ai �∈ Ax ,
aiy ≥ aix−|aiz| ≥ bi + (αq)q+1 −nα(αq)q ≥ bi . Thus, y is an integer solution of
Ax ≥ b. By the maximality of Ax , Ay = Ax . This means that we can decrease the
value of the kth component again. However, it cannot be decreased forever. Finally,
a contradiction would appear. Thus, Ax must have rank n.

Now, choose n linearly independent vectors d1, · · · , dn from Ax . Denote ci =
dix. Then |ci | ≤ α + (αq)q+1. Applying Cramer’s rule to the system of equations
dix = ci , i = 1, 2, · · · , n, we obtain a representation of x through ci’s: xi =
det Di/ det D where D is a square submatrix of (AT , I)T and Di is a square matrix
obtained from D by replacing the ith column by vector (c1, · · · , cn)

T . Note that the
determinant of any submatrix of (AT , I)T equals to the determinant of a submatrix
of A. By Laplace expansion, we obtain that

8.1 What Is the Class NP? 205

|xi | ≤ | det Di |
≤ (αq)q(|c1| + · · · + |cn|)
≤ (αq)qn(α + (αq)q+1)

≤ 2(αq)2q+1.

�

Theorem 8.1.6 Problem 8.1.2 is in NP.

Proof By Lemma 8.1.5, it is enough to guess a solution x whose total size is at
most n log2(2(αq)2q+1) = O(q2(log2 q + log2 α)). Note that the inputs A and b

have total length at least

β =
m∑

i=1

n∑
j=1

log2 |aij | +
n∑

j=1

log2 |bj | ≥ mn + log2 α ≥ q + log2 α.

Hence, Problem 8.1.2 is in NP.
�
The definition of the class NP involves three concepts, nondeterministic compu-

tation, polynomial-time, and decision problems. The first two concepts have been
explained as above. Next, we explain what is the decision problem.

A problem is called a decision problem if its answer is “Yes” or “No.” Each
decision problem corresponds to the set of all inputs which receive yes-answer,
which is a language when each input is encoded into a string. For example, the
Hamiltonian cycle problem and Problem 8.1.2 are decision problems. In case of no
confusion, we sometimes use the same notation to denote a decision problem and
its corresponding language. For example, we may say that a decision problem A has
its characteristic function

χA(x) =
{

1 if x ∈ A,

0 otherwise.

Actually, we mean that the corresponding language of decision problem A has
characteristic function χA.

Usually, combinatorial optimization problems are not decision problems. How-
ever, every combinatorial optimization problem can be transformed into a decision
version. For example, consider the following:

Problem 8.1.7 (Traveling Salesman) Given n cities and a distance table between
n cities, find the shortest Hamiltonian tour where a Hamiltonian tour is a Hamilto-
nian cycle in the complete graph on the n cities.

Its decision version is as follows:

206 8 NP-Hard Problems and Approximation Algorithms

Problem 8.1.8 (Decision Version of Traveling Salesman) Given n cities, a dis-
tance table between n cities, and an integer K > 0, is there a Hamiltonian tour with
total distance at most K?

Clearly, if the traveling salesman problem can be solved in polynomial-time, so is
its decision version. Conversely, if its decision version can be solved in polynomial-
time, then we may solve the traveling salesman problem in the following way within
polynomial-time.

Let us assume that all distances between cities are integers.1 Let dmin and dmax be
the smallest distance and the maximum distance between two cities. Let a = ndmin

and b = ndmax . Set K = �(a + b)/2�. Determine whether there is a tour with
total distance at most K by solving the decision version of the traveling salesman
problem. If the answer is yes, then set b ← K; else set a ← K . Repeat this
process until |b − a| ≤ 1. Then, compute the exact optimal objective function
value of the traveling salesman problem by solving its decision version twice with
K = a and K = b, respectively. In this way, suppose the decision version of
the traveling salesman problem can be solved in polynomial-time p(n). Then the
traveling salesman problem can be solved in polynomial-time O(log(ndmax)p(n)).

Now, we may find that actually, Problem 8.1.2 is closely related to the decision
version of the following integer program:

Problem 8.1.9 (0-1 Integer Program)

max cx

subject to Ax ≥ b

x ∈ {0, 1}n,

where A is an m× n integer matrix, c is an n-dimensional integer row vector, and b

is an m-dimensional integer column vector.

8.2 What Is NP-Completeness?

In 1965, J. Admonds conjectured the following:

Conjecture 8.2.1 The traveling salesman problem does not have a polynomial-time
solution.

In the study of this conjecture, S. Cook introduced the class NP and showed the
first NP-complete problem in 1971.

1 If they are rational numbers, then we can transform them into integers. If some of them are
irrational numbers, then we have to touch the complexity theory of real number computation,
which is out of scope of this book.

8.2 What Is NP-Completeness? 207

A problem is NP-hard if the existence of polynomial-time solution for it
implies the existence of polynomial-time solution for every problem in NP. An
NP-hard problem is NP-complete if it also belongs to the class NP.

To introduce Cook’s result, let us recall some knowledge on Boolean algebra.
A Boolean function is a function whose variable values and function value all

are in {true, f alse}. Here, we would like to denote true by 1 and false by 0. In the
following table, there are two Boolean functions of two variables, conjunction ∧
and disjunction ∨, and a Boolean function of a variable, negation ¬.

x y x ∧ y x ∨ y ¬x

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

For simplicity, we also write x ∧ y = xy, x ∨ y = x + y and ¬x = x̄. The
conjunction and disjunction follow the commutative, associative, and distributive
laws. An interesting and important law about negation is De Morgan’s law, i.e.,

xy = x̄ + ȳ and x + y = x̄ȳ.

The SAT problem is defined as follows:

Problem 8.2.2 (Satisfiability (SAT)) Given a Boolean formula F , is there a
satisfied assignment for F ?

Here, an assignment to variables of F is satisfied if the assignment makes F

equal to 1. A Boolean formula F is satisfiable if there exists a satisfied assignment
for F .

The SAT problem has many applications. For example, the following puzzle can
be formulated into an instance of SAT:

Example 8.2.3 After three men were interviewed, the department Chair said: “We
need Brown and if we need John, then we need David, if and only if we need either
Brown or John and don’t need David.” If this department actually needs more than
one new faculties, which ones were they?

Solution. Let B, J , and D denote respectively Brown, John, and David. What the
Chair said can be written as a Boolean formula:

[B(J̄ + D)][(B + J)D̄] + B(J̄ + D) · (B + J)D̄

= BD̄J̄ + (B̄ + J D̄)(B̄J̄ + D)

= BD̄J̄ + B̄J̄ + B̄D

208 8 NP-Hard Problems and Approximation Algorithms

Fig. 8.5 Polynomial-time
many-one reduction

Since this department actually needs more than one new faculty, there is only one
way to satisfy this Boolean formula, that is, B = 0, D = J = 1. Thus, John and
David will be hired. �

Now, we are ready to state Cook’s result.

Theorem 8.2.4 (Cook Theorem) The SAT problem is NP-complete.

After the first NP-complete problem is discovered, a large number of problems
have been found to be NP-hard or NP-complete. Indeed, there are many tools
passing the NP-hardness from one problem to another problem. We introduce one
of them as follows:

Consider two decision problems A and B. A is said to be polynomial-time
many-one reducible to B, denoted by A ≤p

m B, if there exists a polynomial-time
computable function f mapping from all inputs of A to inputs of B such that A

receives yes-answer on input x if and only if B receives yes-answer on input f (x)

(Fig. 8.5).
For example, we have

Example 8.2.5 The Hamiltonian cycle problem is polynomial-time many-one
reducible to the decision version of the traveling salesman problem.

Proof To construct this reduction, for each input graph G = (V ,E) of the
Hamiltonian cycle problem, we consider V as the set of cities and define a distance
table D by setting

d(u, v) =
{

1 if (u, v) ∈ E

|V | + 1 otherwise.

Moreover, set K = |V |. If G contains a Hamiltonian cycle, this Hamiltonian cycle
would give a tour with total distance |V | = K for the traveling salesman problem on
defined instance. Conversely, if the traveling salesman problem on defined instance
has a Hamiltonian tour with total distance at most K , then this tour cannot contain
an edge (u, v) �∈ E and hence it induces a Hamiltonian cycle in G. Since the
reduction can be constructed in polynomial-time, it is a polynomial-time many-
one reduction from the Hamiltonian cycle problem to the decision version of the
traveling salesman problem.
�

8.2 What Is NP-Completeness? 209

Fig. 8.6 The proof of
Proposition 8.2.6 A

A

B

B

C

C

A

A

B

B
cB

cB
1

0

f

f

f

f

g

g
(a)

(b)

There are two important properties of the polynomial-time many-one reduction
(Fig. 8.6).

Proposition 8.2.6

(a) If A ≤p
m B and B ≤p

m C, then A ≤p
m C.

(b) If A ≤p
m B and B ∈ P , then A ∈ P .

Proof

(a) Let A ≤p
m B via f and B ≤p

m C via g. Then A ≤p
m C via h where

h(x) = g(f (x)). Let f and g be computable in polynomial-times p(n) and
q(n), respectively. Then for any x with |x| = n, |f (x)| ≤ p(n). Hence, h can
be computed in time p(n) + q(p(n))

(b) Let A ≤p
m B via f . f is computable in polynomial-time p(n) and B can

be solved in polynomial-time q(n). Then A can be solved in polynomial-time
p(n) + q(p(n)).
�

Property (a) indicates that ≤p
m is a partial ordering. Property (b) gives us a simple

way to establish the NP-hardness of a decision problem. To show the NP-hardness
of a decision problem B, it suffices to find an NP-complete problem A and prove
A ≤p

m B. In fact, if B ∈ P , then A ∈ P . Since A is NP-complete, every problem in
NP is polynomial-time solvable. Therefore, B is NP-hard.

The SAT problem is the root to establish the NP-hardness of almost all other
problems. However, it is hard to use the SAT problem directly to construct reduction.
Often, we use an NP-complete special case of the SAT problem. To introduce this
special case, let us first explain a special type of Boolean formulas, 3CNF.

A literal is either a Boolean variable or the negation of a Boolean variable. An
elementary sum is a sum of several literals. Consider an elementary sum c and a
Boolean function f . If c = 0 implies f = 0, then c is called a clause of f . A CNF
(conjunctive normal form) is a product of its clauses. A CNF is called a 3CNF if
each clause of the CNF contains exactly three distinct literals about three variables.

210 8 NP-Hard Problems and Approximation Algorithms

Problem 8.2.7 3SAT: Given a 3CNF F , determine whether the F is satisfiable.

Theorem 8.2.8 The 3SAT problem is NP-complete.

Proof Since SAT is in NP, as a special case of SAT, it is easy to see that the 3SAT
problem belongs to NP. Next, we show SAT ≤p

m 3SAT .
First, we show two facts.

(a) w = x + y if and only if p(w, x, y) is satisfiable where

p(w, x, y) = (w̄ + x + y)(w + x̄ + y)(w + x + ȳ)(w + x̄ + ȳ).

(b) w = xy if and only if q(w, x, y) is satisfiable where

q(w, x, y) = p(w̄, x̄, ȳ).

To show (a), we note that w = x + y if and only if w̄x̄ȳ + w(x + y) = 1.
Moreover, we have

w̄x̄ȳ + w(x + y)

= (w̄ + x + y)(x̄ȳ + w)

= (w̄ + x + y)(x̄ + w)(ȳ + w)

= (w̄ + x + y)(w + x̄ + y)(w + x + ȳ)(w + x̄ + ȳ)

= q(w, x, y).

Therefore, (a) holds.
(b) can be derived from (a) by noting that w = xy if and only if w̄ = x̄ + ȳ.
Now, consider a Boolean formula F . F must contain a term xy or x + y where x

and y are two literals. In the former case, replace xy by a new variable w in F and
set F ← q(w, x, y)F . In the latter case, replace x+y by a new variable w in F and
set F ← p(w, x, y)F . Repeat this operation until F becomes a literal z. Let u and v

be two new variables. Finally, set F ← F(z+u+v)(z+ū+v)(z+u+v̄)(z+ū+v̄).
Then the original F is satisfiable if and only if the new F is satisfiable.
�

Starting from the 3SAT problem through polynomial-time many-one reduction,
there are a very large number of combinatorial optimization problems; their decision
versions have been proved to be NP-complete. Moreover, none of them have been
found to have a polynomial-time solution. If one of them has a polynomial-time
solution, so do others. This fact makes one confidently say: An NP-hard problem is
unlikely to have a polynomial-time solution. This “unlikely” can be removed only
if P�=NP is proved, which is a big open problem in the literature.

Since for NP-hard combinatorial optimization problems, they are unlikely to have
polynomial-time exact solution, we have to move our attention from exact solutions
to approximation solutions. How do we design and analyze approximation solution?

8.3 Hamiltonian Cycle 211

Fig. 8.7 Intersection of NP
and co-NP

Those techniques will be studied systematically in the next few chapters. Before
doing so, we would touch a few fundamental NP-complete problems and their
related combinatorial optimization problems with their approximation solutions in
later sections of this chapter.

To end this section, let us mention a rough way to judge whether a problem has
a possible polynomial-time solution or not. Note that in many cases, it is easy to
judge whether a problem belongs to NP or not. For a decision problem A in NP,
if it is hard to find a polynomial-time solution, then we may study its complement
Ā = {x | x �∈ A}. If Ā ∈ NP, then we may need to try hard to find a polynomial-time
solution. If it is hard to show Ā ∈ NP , then we may try to show NP-hardness of
problem A.

Actually, let co-NP denote the class consisting of all complements of decision
problems in NP. Then class P is contained in the intersection of NP and co-NP
(Fig. 8.7). So far, no natural problem has been found to exist in (NP∩co-NP)\P.

In the history, there are two well-known open problems existing in NP∩co-NP,
and they were unknown to have polynomial-time solutions for many years. They are
the primality test and the decision version of linear program. Finally, they both have
been found to have polynomial-time solutions.

8.3 Hamiltonian Cycle

Consider an NP-complete decision problem A and a possible NP-hard decision
problem B. How do we construct a polynomial-time many-one reduction? Every
reader who has no experience would like to know the answer of this question. Of
course, we would not have an efficient method to produce such a reduction. Indeed,
we do not know if such a method exists. However, we may give some idea to follow.

Let us recall how to show a polynomial-time many-one reduction from A to B.

(1) Construct a polynomial-time computable mapping f from all inputs of problem
A to inputs of problem B.

(2) Prove that problem A on input x receives yes-answer if and only if problem B

on input f (x) receives yes-answer.

212 8 NP-Hard Problems and Approximation Algorithms

Since the mapping f has to satisfy (2), the idea is to find the relationship of
output of problem A and output of problem B, that is, find the mapping from
inputs to inputs through the relationship between outputs of two problems. Let
us explain this idea through an example.

Theorem 8.3.1 The Hamiltonian cycle problem is NP-complete.

Proof We already proved previously that the Hamiltonian cycle problem belongs
to NP. Next, we are going to construct a polynomial-time many-one reduction from
the NP-complete 3SAT problem to the Hamiltonian cycle problem.

The input of the 3SAT problem is a 3CNF F and the input of the Hamiltonian
cycle problem is a graph G. We need to find a mapping f such that for any 3CNF F ,
f (F) is a graph such that F is satisfiable if and only if f (F) contains a Hamiltonian
cycle. What can make F satisfiable? It is a satisfied assignment. Therefore, our con-
struction should give a relationship between assignments and Hamiltonian cycles.
Suppose F contains n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. To
do so, we first build a ladder Hi with 4m + 2 levels, corresponding to a variable
xi as shown in Fig. 8.8. In this ladder, there are exactly two Hamiltonian paths
corresponding to two values 0 and 1 for xi . Connect n ladders into a cycle as
shown in Fig. 8.9. Then we obtain a graph H with exactly 2n Hamiltonian cycles
corresponding to 2n assignments of F .

Now, we need to find a way to involve clauses. An idea is to represent each clause
Cj by a point and represent the fact “clause Cj is satisfied under an assignment”
by the fact “point Cj is included in the Hamiltonian cycle corresponding to the
assignment.” To realize this idea, for each literal xi in clause Cj , we connected
point Cj to two endpoints of an edge, between the (4j − 1)th level and the (4j)th
level, on the path corresponding to xi = 1 (Fig. 8.10), and for each x̄i in clause Cj ,
we connected point Cj to two endpoints of an edge on the path corresponding to
xi = 0. This completes our construction for graph f (F) = G.

Fig. 8.8 A ladder Hi

contains exactly two
Hamiltonian paths between
two ends

x1 c1

c2x1

x1

x1

4m+2
levels

8.3 Hamiltonian Cycle 213

Fig. 8.9 Each Hamiltonian cycle of graph H represents an assignment

Fig. 8.10 A point C1 is added

To see this construction meeting our requirement, we first assume F has a
satisfied assignment σ and show that G has a Hamiltonian cycle. To this end, we find
the Hamiltonian cycle C in H corresponding to the satisfied assignment. Note that
each clause Cj contains a literal y = 1 under assignment σ . Thus, Cj is connected
to endpoints of an edge (u, v) on the path corresponding to y = 1. Replacing this
edge (u, v) by two edges (Cj , u) and (Cj , v) would include point Cj into the cycle,
which will become a Hamiltonian cycle of G when all points Cj are included.

Conversely, suppose G has a Hamiltonian cycle C. We claim that in C, each
point Cj must connect to two endpoints of an edge (u, v) in H . If our claim holds,
then replace two edges (Cj , u) and (Cj , v) by edge (u, v). We would obtain a

214 8 NP-Hard Problems and Approximation Algorithms

Hamiltonian cycle of graph H , corresponding an assignment of F , which makes
every clause Cj satisfied.

Now, we show the claim. For contradiction, suppose that cycle C contains its
two edges (Cj , u) and (Cj , v) for some clause Cj such that u and v are located in
different Hi and Hi′ , respectively, with i �= i′. To find a contradiction, we look at
closely the local structure of vertex u as shown in Fig. 8.11. Note that each ladder is
constructed with length longer enough so that every clause Cj has a special location
in ladder Hi and locations for different clauses with at least distance 3 away each
other (see Fig. 8.8). This makes that at vertex u, edges possible in C form a structure
as shown in Fig. 8.11. In this local structure, since cycle C contains vertex w, C must
contain edges (u,w) and (w, z), which implies that (u, u′) and (u, u′′) are not in C.
Note that either (z, z′) or (z, z′′) is not in C. Without loss of generality, assume that
(z, z′′) is not in C. Then edges possible in C form a structure as shown in 8.11.
Since Hamiltonian cycle C contains vertices u′′, w′′, and z′′, C must contain edges
(u′′, u′′′), (u′′, w′′), (w′′, z′′), and (z′′, z′′′). Since C contains vertex w′′′, C must
contain edges (u′′′, w′′′) and (w′′′, z′′′). This means that C must contain the small
cycle (u′′, w′′, z′′, z′′′, w′′′, u′′′). However, a Hamiltonian cycle is a simple cycle
which cannot properly contain a small cycle, a contradiction.
�

Next, we give some examples in each of which the NP-hardness is established
by reductions from the Hamiltonian cycle problem.

Problem 8.3.2 (Hamiltonian Path) Given a graph G = (V ,E), does G contain a
Hamiltonian path? Here, a Hamiltonian path of a graph G is a simple path on which
every vertex appears exactly once.

Theorem 8.3.3 The Hamiltonian path problem is NP-complete.

Proof The Hamiltonian path problem belongs to NP because we can guess a
permutation of all vertices in O(n log n) time and then check, in O(n) time, whether
guessed permutation gives a Hamiltonian path. To show the NP-hardness of the
Hamiltonian path problem, we may modify the proof of Theorem 8.3.1, to construct
a reduction from the 3SAT problem to the Hamiltonian path problem by making
a little change on graph H , which is obtained from connecting all Hi into a path

Fig. 8.11 Local structure
near vertex u

8.3 Hamiltonian Cycle 215

instead of a cycle. However, in the following, we would like to give a simple proof
by reducing the Hamiltonian cycle problem to the Hamiltonian path problem.

We are going to find a polynomial-time computable mapping f from graphs to
graphs such that G contains a Hamiltonian cycle if and only if f (G) contains a
Hamiltonian path. Our analysis starts from how to build a relationship between a
Hamiltonian cycle of G and a Hamiltonian path of f (G). If f (G) = G, then from
a Hamiltonian cycle of G, we can find a Hamiltonian path of f (G) by deleting an
edge; however, from a Hamiltonian path of f (G), we may not be able to find a
Hamiltonian cycle of G. To have “if and only if” relation, we first consider a simple
case that there is an edge (u, v) such that if G contains a Hamiltonian cycle C, then
C must contain edge (u, v). In this special case, we may put two new edges (u, u′)
and (v, v′) at u and v, respectively.

For simplicity of speaking, we may call these two edges as two horns. Now, if G

has the Hamiltonian cycle C, then f (G) has a Hamiltonian path between endpoints
of two horns, u′ and v′. Conversely, if f (G) has a Hamiltonian path, then this
Hamiltonian path must have two endpoints u′ and v′; hence, we can get back C

by deleting two horns and putting back edge (u, v).
Now, we consider the general case that such an edge (u, v) may not exist. Note

that for any vertex u of G, suppose u have k neighbors v1, v2, . . . , vk . Then a
Hamiltonian cycle of G must contain one of edges (u, v1), (u, v2), . . . , (u, vk).
Thus, we may first connect all v1, v2, . . . , vk to a vertex u′ and put two horns (u,w)

and (u′, w′) (Fig. 8.12). This construction would work similarly as above.
�
As a corollary of Theorem 8.3.1, we have

Corollary 8.3.4 The traveling salesman problem is NP-hard.

Proof In Example 8.2.5, a polynomial-time many-one reduction has been con-
structed from the Hamiltonian cycle problem to the traveling salesman problem.

�
The longest path problem is a maximization problem as follows:

Problem 8.3.5 (Longest Path) Given a graph G = (V ,E) with positive edge
length c : E → R+, and two vertices s and t , find a longest simple path between s

and t .

Fig. 8.12 Install two horns at
u and its copy u′

216 8 NP-Hard Problems and Approximation Algorithms

As another corollary of Theorem 8.3.1, we have

Corollary 8.3.6 The longest path problem is NP-hard.

Proof We will construct a polynomial-time many-one reduction from the Hamilto-
nian cycle problem to the decision version of the longest path problem as follows:
Given a graph G = (V ,E) with positive edge length c : E → R+, two vertices s

and t , and an integer K > 0, is there a simple path between s and t with length at
least K?.

Let graph G = (V ,E) be an input of the Hamiltonian cycle problem. Choose a
vertex u ∈ V . We make a copy of u by adding a new vertex u′ and connecting u′ to
all neighbors of u. Add two new edges (u, s) and (u′, t). Obtained graph is denoted
by f (G). Let K = |V | + 2. We show that G contains a Hamiltonian cycle if and
only if f (G) contains a simple path between s and t with length at most K .

First, assume that G contains a Hamiltonian cycle C. Break C at vertex u by
replacing an edge (u, v) with (u′, v). We would obtain a simple path between u

and u′ with length |V |. Extend this path to s and t . We would obtain a simple path
between s and t with length |V | + 2 = K .

Conversely, assume that f (G) contains a simple path between s and t with length
at most K . Then this path contains a simple subpath between u and u′ with length
|V |. Merge u and u′ by replacing edge (u′, v), on the subpath, with edge (u, v).
Then we would obtain a Hamiltonian cycle of G.
�

For NP-hard optimization problems like the traveling salesman problem and
the longest path problem, it is unlikely to have an efficient algorithm to compute
their exact optimal solution. Therefore, one usually study algorithms which produce
approximation solutions for them. Such algorithms are simply called approxima-
tions.

For example, let us study the traveling salesman problem. When the given
distance table satisfies the triangular inequality, that is,

d(a, b) + d(b, c) ≥ d(a, c)

for any three vertices a, b, and c where d(a, b) is the distance between a and b,
there is an easy way to obtain a tour (i.e., a Hamiltonian cycle) with total distance
within twice from the optimal.

To do so, at the first compute a minimum spanning tree in the input graph and
then travel around the minimum spanning tree (see Fig. 8.13). During this trip, a
vertex which appears at the second time can be skipped without increasing the
total distance of the trip due to the triangular inequality. Note that the length of a
minimum spanning tree is smaller than the minimum length of a tour. Moreover, this
trip uses each edge of the minimum spanning tree exactly twice. Thus, the length of
the Hamiltonian cycle obtained from this trip is within twice from the optimal.

Christofides in 1976 introduced an idea to improve above approximation. After
computing the minimum spanning tree, he considers all vertices of odd degree
(called odd vertices) in the tree and computes a minimum perfect matching among

8.3 Hamiltonian Cycle 217

Fig. 8.13 Travel around the
minimum spanning tree

Fig. 8.14 Christofides
approximation

these odd vertices. Because in the union of the minimum spanning tree and the
minimum perfect matching, every vertex has even degree, one can travel along
edges in this union using each edge exactly once. This trip, called Euler tour, can be
modified into a traveling salesman tour (Fig. 8.14), without increasing the length by
the triangular inequality. Thus, an approximation is produced with length bounded
by the length of minimum spanning tree plus the length of the minimum perfect
matching on the set of vertices with odd degree. We claim that each Hamiltonian
cycle (namely, a traveling salesman tour) can be decomposed into a disjoint union of
two parts that each is not smaller than the minimum perfect matchings for vertices
with odd degree. To see this, we first note that the number of vertices with odd
degree is even since the sum of degrees over all vertices in a graph is even. Now,
let x1, x2, · · · , x2k denote all vertices with odd degree in clockwise ordering of
the considered Hamiltonian cycle. Then (x1, x2), (x3, x4), · · · , (x2k−1, x2k) form
a perfect matching for vertices with odd degree and (x2, x3), (x4, x5), · · · , (x2k, x1)

form the other perfect matching. The claim then follows immediately from the
triangular inequality. Thus, the length of the minimum matching is at most half
of the length of the minimum Hamiltonian cycle. Therefore, Christofides gave an
approximation within a factor of 1.5 from the optimal.

From the above example, we see that the ratio of objective function values
between approximation solution and optimal solution is a measure for the perfor-
mance of an approximation.

For a minimization problem, the performance ratio of an approximation algo-
rithm A is defined as follows:

r(A) = sup
I

A(I)

opt (I)

218 8 NP-Hard Problems and Approximation Algorithms

Fig. 8.15 Extremal case for
Christofides approximation

where I is over all possible instances and A(I) and opt(I) are respectively the
objective function values of the approximation produced by algorithm A and the
optimal solution with respect to instance I .

For a maximization problem, the performance ratio of an approximation algo-
rithm A is defined by

r(A) = inf
I

A(I)

opt (I)
.

For example, the performance ratio of Christofides approximation is at most
3/2 as we showed in the above. Actually, the performance ratio of Christofides
approximation is exactly 3/2. To see this, we consider 2n+ 1 points (vertices) with
distances as shown in Fig. 8.15. The minimum spanning tree of these 2n + 1 points
has distance 2n. It has only two odd vertices with distance n(1 + ε). Hence, the
length of Christofides approximation is 2n + n(1 + ε). Moreover, the minimum
tour has length (2n − 1)(1 + ε) + 2. Thus, in this example, A(I)/opt (I) =
(3n + nε)/(2n + 1 + (2n − 1)ε), which is approach to 3/2 as ε goes to 0 and n

goes to infinity.

Theorem 8.3.7 For the traveling salesman problem in metric space, the
Christofides approximation A has the performance ratio r(A) = 3/2.

For simplicity, an approximation A is said to be α-approximation if r(A) ≤ α

for minimization and r(A) ≥ α for maximization, that is, for every input I ,

opt(I) ≤ A(I) ≤ α · opt(I)

for minimization, and

opt(I) ≥ A(I) ≥ α · opt(I)

for maximization. For example, Christofides approximation is a 1.5-approximation,
but not α-approximation of the traveling salesman problem in metric space for any
constant α < 1.5.

Not every problem has a polynomial-time approximation with constant per-
formance ratio. An example is the traveling salesman problem without triangular
inequality condition on distance table. In fact, for contradiction, suppose that its
performance ratio r(A) ≤ K for a constant K . Then we can show that the

8.4 Vertex Cover 219

Hamiltonian cycle problem can be solved in polynomial-time. For any graph G =
(V ,E), define that for any pair of vertices u and v,

d(u, v) =
{

1 if {u, v} ∈ E

K · |V | otherwise

This gives an instance I for the traveling salesman problem. Then, G has a
Hamiltonian cycle if and only if for I , the travel salesman has a tour with length at
most K|V |. The optimal tour has length |V |. Applying approximation algorithm A

to I , we will obtain a tour of length at most K|V |. Thus, G has a Hamiltonian cycle
if and only if approximation algorithm A produces a tour of length at most K|V |.
This means that the Hamiltonian cycle problem can be solved in polynomial-time.
Because the Hamiltonian cycle problem is NP-complete, we obtain a contradiction.
The above argument proved the following:

Theorem 8.3.8 If P �= NP , then no polynomial-time approximation algorithm for
the traveling salesman problem in general case has a constant performance ratio.

For the longest path problem, there exists also a negative result.

Theorem 8.3.9 For any ε > 0, the longest path problem has no polynomial-time
n1−ε-approximation unless P = NP .

8.4 Vertex Cover

A vertex subset C is called a vertex cover if every edge has at least one endpoint in
C. Consider the following problem:

Problem 8.4.1 (Vertex Cover) Given a graph G = (V ,E) and a positive integer
K , is there a vertex cover of size at most K?

The vertex cover problem is the decision version of the minimum vertex cover
problem as follows:

Problem 8.4.2 (Minimum Vertex Cover) Given a graph G = (V ,E), compute a
vertex cover with minimum cardinality.

Theorem 8.4.3 The vertex cover problem is NP-complete.

Proof To show that the vertex cover problem is in NP, we can guess a vertex subset
within O(n log n) time and check whether obtained vertex subset is a vertex cover
or not. Next, we show that the vertex cover problem is NP-hard.

Let F be a 3CNF with m clauses C1, . . . , Cm and n variables x1, . . . , xn. We
construct a graph G(F) of 2n + 3m vertices as follows: For each variable xi , we
give an edge with two endpoints labeled by two literals xi and x̄i . For each clause

220 8 NP-Hard Problems and Approximation Algorithms

Fig. 8.16 G(F)

Cj = x + y + z, we give a triangle j1j2j3 and connect j1 to literal x, j2 to literal
y, and j3 to literal z (Fig. 8.16). Now, we prove that F is satisfiable if and only if
G(F) has a vertex cover of size at most n + 2m.

First, suppose that F is satisfiable. Consider an assignment satisfying F . Let us
construct a vertex cover S as follows: (1) S contains all truth literals; (2) for each
triangle j1j2j3, put two vertices into S such that the remainder jk is adjacent to a
truth literal. Then S is a vertex cover of size exactly n + 2m.

Conversely, suppose that G(F) has a vertex cover S of size at most n+2m. Since
each triangle j1j2j3 must have at least two vertices in S and each edge (xi, x̄i) has
at least one vertex in S, S must contain exactly two vertices in each triangle j1j2j3
and exactly one vertex for each edge (xi, x̄i). Set

xi =
{

1 if xi ∈ S,

0 if x̄i ∈ S.

Then each clause Cj must have a truth literal which is the one adjacent to the jk not
in S. Thus, F is satisfiable.

The above construction is clearly polynomial-time computable. Hence, the 3SAT
problem is polynomial-time many-one reducible to the vertex cover problem.
�

Corollary 8.4.4 The minimum vertex cover problem is NP-hard.

Proof It is NP-hard since its decision version is NP-complete.
�
There are two combinatorial optimization problems closely related to the mini-

mum vertex cover problem.

Problem 8.4.5 (Maximum Independent Set) Given a graph G = (V ,E), find an
independent set with maximum cardinality.

Here, an independent set is a subset of vertices such that no edge exists between
any two vertices in the subset. A subset of vertices is an independent set if and only
if its complement is a vertex cover. In fact, from the definition, every edge has to

8.4 Vertex Cover 221

have at least one endpoint in the complement of an independent set, which means
that the complement of an independent set must be a vertex cover. Conversely, if the
complement of a vertex subset I is a vertex cover, then every edge has an endpoint
not in I and hence I is independent. Furthermore, we see that a vertex subset I is
the maximum independent set if and only if the complement of I is the minimum
vertex cover.

Problem 8.4.6 (Maximum Clique) Given a graph G = (V ,E), find a clique with
maximum size.

Here, a clique is a complete subgraph of input graph G and its size is the number of
vertices in the clique. Let Ḡ be the complementary graph of G, that is, an edge e is
in Ḡ if and only if e is not in G. Then a vertex subset I is induced a clique in G if
and only if I is an independent set in Ḡ. Thus, a subgraph on a vertex subset I is a
maximum clique in G if and only if I is a maximum independent set in Ḡ.

From their relationship, we see clearly the following:

Corollary 8.4.7 Both the maximum independent set problem and the maximum
clique problem are NP-hard.

Next, we study the approximation of the minimum vertex cover problem.

Theorem 8.4.8 The minimum vertex cover problem has a polynomial-time 2-
approximation.

Proof Compute a maximal matching. The set of all endpoints of edges in this
maximal matching form a vertex cover, which is a 2-approximation for the minimum
vertex cover problem since each edge in the matching must have an endpoint in the
minimum vertex cover.
�

The minimum vertex cover problem can be generalized to hypergraphs. This
generalization is called the hitting set problem as follows:

Problem 8.4.9 (Hitting Set) Given a collection C of subsets of a finite set X, find
a minimum subset S of X such that every subset in C contains an element in S. Such
a set S is called a hitting set.

For the maximum independent set problem and the maximum clique problem,
there are negative results on their approximation.

Theorem 8.4.10 For any ε > 0, the maximum independent set problem has no
polynomial-time n1−ε-approximation unless NP = P .

Theorem 8.4.11 For any ε > 0, the maximum clique problem has no polynomial-
time n1−ε-approximation unless NP = P .

222 8 NP-Hard Problems and Approximation Algorithms

8.5 Three-Dimensional Matching

Consider another well-known NP-complete problem.

Problem 8.5.1 (Three-Dimensional Matching (3DM)) Consider three disjoint
sets X, Y , Z each with n elements and 3-sets each consisting of three elements
belonging to X, Y , and Z, respectively. Given a collection C of 3-sets, determine
whether C contains a three-dimensional matching, where a subcollection M of C
is called a three-dimensional matching if M consists of n 3-sets such that each
element of X ∪ Y ∪ Z appears exactly once in 3-sets of M.

Theorem 8.5.2 The 3DM problem is NP-complete.

Proof First, the 3DM problem belongs to NP because we can guess a collection
of n 3-sets within O(n log n) time and check, in O(n + m) time, whether obtained
collection is a three-dimensional matching in given collection C.

Next, we show the NP-hardness of the 3DM problem by constructing a
polynomial-time many-one reduction from the 3SAT problem to the 3DM problem.
Consider an input 3CNF F of the 3SAT problem. Suppose that F contains n

variables x1, . . . , xn and m clauses C1, . . . , Cm. Construct a collection C of 3-sets
as follows:

• For each variable xi , construct 2m 3-sets {xi1, yi1, zi1}, {xi2, yi1, zi2},
{xi2, yi2, zi3}, . . . , {xi1, yim, z2m}. They form a cycle as shown in Fig. 8.17.

• For each clause Cj consisting of variables xi1 , xi2 , xi3 , construct three 3-sets,
{x0j , y0j , zi1k1}, {x0j , y0j , zi2k2}, and {x0j , y0j , zi3k3} where for h = 1, 2, 3,

kh =
{

2j − 1 if Cj contains xih,

2j if Cj contains x̄ih .

Fig. 8.17 Proof of
Theorem 8.5.2

X
Y
Z

x1 x1

x1

x1 x1

x1

c1

x2

x3

= + + x3x2x1c1

8.5 Three-Dimensional Matching 223

• For each 1 ≤ h ≤ m(n − 1), 1 ≤ i ≤ n, 1 ≤ k ≤ 2m, construct 3-set
{xn+1,h, yn+1,h, zik}.

• Collect all above xpq , ypq , and zpq to form sets X, Y , and Z, respectively.

Now, suppose CF has a three-dimensional matching M. Note that each element
appears in M exactly once. For each variable xi , M contains either

Pi = {{xi1, yi1, zi1}, {xi2, yi2, zi3}, . . . , {xim, yim, zi,2m−1}}

or

Qi = {{xi1, yi2, zi2}, {xi2, yi3, zi4}, . . . , {xim, yi1, zi,2m}}

Define

xi =
{

1 if Pi ⊆ M,

0 if Qi ⊆ M.

Then this assignment will satisfy F . In fact, for any clause Cj , in order to have
elements x0j and y0j appear in M, M must contain 3-set {x0j , y0j , zihkh

} for some
h ∈ {1, 2, 3}. This assignment will assign 1 to the hth literal of Cj according to the
construction. Conversely, suppose F has a satisfied assignment. We can construct a
three-dimensional matching M as follows:

• If xi = 1, then put Pi into M. If xi = 0, then put Qi into M.
• If hth literal of clause Cj is equal to 1, then put 3-set {x0j , y0j , zihkh

} into M.
• So far, all elements in X ∪ Y have been covered by 3-sets put in M. However,

there are m(n − 1) elements of Z that are left outside. We now use 3-
sets {xn+1,h, yn+1,h, zik} to play a role of garbage collector. For each zik not
appearing in 3-sets in M, select a pair of xn+1,h and yn+1,h, and then put 3-set
{xn+1,h, yn+1,h, zik} into M.

�
There is a combinatorial optimization problem closely related to the three-

dimensional matching problem.

Problem 8.5.3 (Set Cover) Given a collection C of subsets of a finite set X, find a
minimum set cover A where a set cover A is a subcollection of C such that every
element of X is contained in a subset in A.

Theorem 8.5.4 The set cover problem is NP-hard.

Proof Note that the decision version of the set cover problem is as follows: Given
a collection C of subsets of a finite set X and a positive integer k ≤ |X|, determine
whether there exists a set cover of size at most k.

We construct a polynomial-time many-one reduction from the three-dimensional
matching problem to the decision version of the set cover problem. Let (X, Y,Z, C)

224 8 NP-Hard Problems and Approximation Algorithms

be an instance of the three-dimensional matching problem. Construct an instance
(X, C, k) of the decision version of the set cover problem by setting

X ← X ∪ Y ∪ Z,

C ← C,

k ← |X ∪ Y ∪ Z|.

Clearly, for instance (X, Y,Z, C), a three-dimensional matching exists if and only
if for instance (X, C, k), a set cover of size k exists.
�

For any subcollection A ⊆ C, define

f (A) = | ∪A∈A A|.

The set cover problem has a greedy approximation as follows:

Algorithm 26 Greedy algorithm SC
Input: A finite set X and a collection of subsets of X.
Output: A subcollection A of C.
1: A ← ∅.
2: while f (A) < |X| do
3: choose A ∈ C to maximize f (A ∪ {A})
4: and set A ← A ∪ {A}
5: end while
6: return A.

This approximation can be analyzed as follows:

Lemma 8.5.5 For any two subcollections A ⊂ B and any subset A ⊆ X,

�Af (A) ≥ �Af (B), (8.1)

where �Af (A) = f (A ∪ {A}) − f (A).

Proof Since A ⊂ B, we have

�Af (A) = |A \ ∪S∈AS| ≥ |A \ ∪S∈BS| = �Af (B).

�

Theorem 8.5.6 Greedy algorithm SC is a polynomial-time (1 + ln γ)-
approximation for the set cover problem, where γ is the maximum cardinality
of a subset in input collection C.

Proof Let A1, . . . , Ag be subsets selected in turn by greedy algorithm SC. Denote
Ai = {A1, . . . , Ai}. Let opt be the number of subsets in a minimum set cover.

8.5 Three-Dimensional Matching 225

Let {C1, . . . , Copt } be a minimum set cover. Denote Cj = {C1, . . . , Cj }.
By the greedy rule,

f (Ai+1) − f (Ai) = �Ai+1f (Ai) ≥ �Cj
f (Ai)

for 1 ≤ j ≤ opt . Therefore,

f (Ai+1) − f (Ai) ≥
∑opt

j=1 �Cj
f (Ai)

opt
.

On the other hand,

|X| − f (Ai)

opt
= f (Ai ∪ Copt) − f (Ai)

opt

=
∑opt

j=1 �Cj
f (Ai ∪ Cj−1)

opt
.

By Lemma 8.5.5,

�Cj
f (Ai) ≥ �Cj

f (Ai ∪ Cj−1).

Therefore,

f (Ai+1) − f (Ai) ≥ |X| − f (Ai)

opt
, (8.2)

that is,

|X| − f (Ai+1) ≤ (|X| − f (Ai))

(
1 − 1

opt

)

≤ |X|(1 − 1

opt
)i+1

≤ |X|e−(i+1)/opt .

Choose i such that |X| − f (Ai+1) < opt ≤ |X| − f (Ai). Then

g ≤ i + opt

and

opt ≤ |X|e−i/opt .

Therefore,

226 8 NP-Hard Problems and Approximation Algorithms

g ≤ opt

(
1 + ln

|X|
opt

)
≤ opt(1 + ln γ).

�
The following theorem indicates that above greedy approximation has the best

possible performance ratio for the set cover problem:

Theorem 8.5.7 For ρ < 1, there is no polynomial-time (ρ ln n)-approximation for
the set cover problem unless NP = P where n = |X|.

In the worst case, we may have γ = n. Therefore, this theorem indicates that the
performance of Greedy algorithm is tight in some sense.

The hitting set problem is equivalent to the set cover problem. To see this
equivalence, for each element x ∈ X, define Sx = {C ∈ C | x ∈ C}. Then the
set cover problem on input (X, C) is equivalent to the hitting set problem on input
(C, {Sx | x ∈ X}). In fact, A ⊆ C covers X if and only if A hits every Sx . From this
equivalence, the following is obtained immediately:

Corollary 8.5.8 The hitting set problem is NP-hard and has a greedy (1 +
ln γ)-approximation. Moreover, for any ρ < 1, it has no polynomial-time ρ ln γ -
approximation unless NP=P.

8.6 Partition

The partition problem is defined as follows:

Problem 8.6.1 (Partition) Given n positive integers a1, a2, . . . , an, is there a
partition (N1, N2) of [n] such that

∑
i∈N1

ai = ∑
i∈N2

ai?

To show NP-completeness of this problem, we first study another problem.

Problem 8.6.2 (Subsum) Given n+1 positive integers a1, a2, . . . , an and L where
1 ≤ L ≤ S = ∑n

i=1 ai , is there a subset N1 of [n] such that
∑

i∈N1
ai = L?

Theorem 8.6.3 The subsum problem is NP-complete.

Proof The subsum problem belongs to NP because we can guess a subset N1 of [n]
in O(n) time and check, in polynomial-time, whether

∑
i∈N1

ai = L.
Next, we show 3SAT ≤p

m SUBSUM. Let F be a 3CNF with n variables
x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. For each variable xi , we construct
two positive decimal integers bxi

and bx̄i
, representing two literals xi and x̄i ,

respectively. Each bxi
(bx̄i

) contains m + n digits. Let bxi
[k] (bx̄i

[k]) be the kth
rightmost digit of bxi

(bx̄i
). Set

8.6 Partition 227

bxi
[k] = bx̄i

[k] =
{

1 if k = i,

0 otherwise

for recording the ID of variable xi . To record information on relationship between
literals and clauses, set

bxi
[n + j] =

{
1 if xi appears in clause Cj ,

0 otherwise,

and

bx̄i
[n + j] =

{
1 if x̄i appears in clause Cj ,

0 otherwise.

Finally, define 2m + 1 additional positive integers cj , c
′
j for 1 ≤ j ≤ m and L as

follows:

cj [k] = c′j [k] =
{

1 if k = n + j,

0 otherwise.

L =
m︷ ︸︸ ︷

3 . . . 3

n︷ ︸︸ ︷
1 . . . 1 .

For example, if F = (x1 + x2 + x̄3)(x̄2 + x̄3 + x4), then we would construct the
following 2(m + n) + 1 = 13 positive integers:

bx1 = 010001, bx̄1 = 000001,

bx2 = 010010, bx̄2 = 100010,

bx3 = 000100, bx̄3 = 110100,

bx4 = 101000, bx̄4 = 001000,

c1 = c′1 = 010000, c2 = c′2 = 100000,

L = 331111.

Now, we show that F has a satisfied assignment if and only if A = {bi,j | 1 ≤
n, j = 0, 1} ∪ {cj , c

′
j | 1 ≤ j ≤ m} has a subset A′ such that the sum of all integers

in A′ is equal to L.
First, suppose F has a satisfied assignment σ . For each variable xi , put bxi

into
A′ if xi = 1 under assignment σ and put bx̄i

into A′ if xi = 0 under assignment σ .
For each clause Cj , put both cj and c′j into A′ if Cj contains exactly one satisfied
literal under assignment σ , put only cj into A′ if Cj contains exactly two satisfied
literal under assignment σ , and put neither cj nor c′j into A′ if all three literals in Cj

228 8 NP-Hard Problems and Approximation Algorithms

are satisfied under assignment σ . Clearly, obtained A′ meets the condition that the
sum of all numbers in A′ is equal to L.

Conversely, suppose that there exists a subset A′ of A such that the sum of all
numbers in A is equal to L. Since L[i] = 1 for 1 ≤ i ≤ n, A′ contains exactly one
of bxi

and bx̄i
. Define an assignment σ by setting

xi =
{

1 if bxi
∈ A′,

0 if bx̄i
∈ A′.

We claim that σ is a satisfied assignment for F . In fact, for any clause Cj , since
L[n + j] = 3, there must be a bxi

or bx̄i
in A′ whose the (n + j)th leftmost digit is

1. This means that there is a literal with assignment 1, appearing in Cj , i.e., making
Cj satisfied.
�

Now, we show the NP-completeness of the partition problem.

Theorem 8.6.4 The partition problem is NP-complete.

Proof The partition problem can be seen as the subsum problem in the special case
that L = S/2 where S = a1 + a2 + · · · + an. Therefore, it is in NP. Next, we show
subsum ≤p

m partition.
Consider an instance of the subsum problem, consisting of n+1 positive integers

a1, a2, . . . , an and L where 0 < L ≤ S. Since the partition problem is equivalent
to the subsum problem with 2L = S, we may assume without of generality that
2L �= S. Now, consider an input for the partition problem, consisting of n + 1
positive integers a1, a2, . . . , an and |2L−S|. We will show that there exists a subset
N1 of [n] such that

∑
i∈N1

ai = L if and only if A = {a1, a2, . . . , an, |2L− S|} has
a partition (A1, A2) such that the sum of all numbers in A1 equals the sum of all
numbers in A2. Consider two cases as follows:

Case 1 2L > S. First, suppose there exists a subset N1 of [n] such that
∑

i∈N1
ai =

L. Let A1 = {ai | i ∈ N1} and A2 = A − A1. Then, the sum of all numbers in A2
is equal to

∑
i∈[n]−N1

ai + 2L − S = S − L + 2L − S = L =
∑
i∈N1

ai.

Conversely, suppose A has a partition (A1, A2) such that the sum of all numbers in
A1 equals the sum of all numbers in A2. Without loss of generality, assume 2L−S ∈
A2. Note that the sum of all numbers in A equals S + 2L − S = 2L. Therefore, the
sum of all numbers in A1 equals L.

Case 2 2L < S. Let L′ = S − L and N2 = [n] − N1. Then 2L′ − S > 0 and∑
i∈N1

ai = L if and only if
∑

i∈N2
ai = L′. Therefore, this case can be done in a

way similar to Case 1 by replacing L and N1 with L′ and N2, respectively.

�

8.6 Partition 229

We next study an optimization problem.

Problem 8.6.5 (Knapsack) Suppose you get in a cave and find n items. However,
you have only a knapsack to carry them and this knapsack cannot carry all of them.
The knapsack has a space limit S and the ith item takes space ai and has value ci .
Therefore, you would face a problem of choosing a subset of items, which can be
put in the knapsack, to maximize the total value of chosen items. This problem can
be formulated into the following linear 0-1 programming:

max c1x1 + c2x2 + · · · + cnxn

subject to a1x1 + a2x2 + · · · + anxn ≤ S

x1, x2, . . . , xn ∈ {0, 1}

In this 0-1 linear programming, variable xi is an indicator that xi = 1 if the ith item
is chosen, and xi = 0 if the ith item is not chosen.

Theorem 8.6.6 The knapsack problem is NP-hard.

Proof The decision version of the knapsack problem is as follows: Given positive
integers a1, a2, . . . , an, c1, c2, . . . , cn, S and k, does the following system of
inequalities have 0-1 solution?

c1x1 + c2x2 + · · · + cnxn ≥ k,

a1x1 + a2x2 + · · · + anxn ≤ S.

We construct a polynomial-time many-one reduction from the partition problem to
the decision version of the knapsack problem. Consider an instance of the partition
problem, consisting of positive integers a1, a2, . . . , an. Define an instance of the
decision version of the knapsack problem by setting

ci = ai for 1 ≤ i ≤ n

k = S = �(a1 + a2 + · · · + an)/2�.

Then the partition problem receives yes-answer if and only if the decision version
of knapsack problem receives yes-answer.
�

The knapsack problem has a simple 1/2-approximation (Algorithm 27).
Without loss of generality, assume ai ≤ S for every 1 ≤ i ≤ n. Otherwise, item

i can be removed from our consideration because it cannot be put in the knapsack.
First, sort all items into ordering c1

a1
≥ c2

a2
≥ · · · ≥ cn

an
. Then put items one by one

into knapsack according to this ordering, until no more items can be put in. Suppose
that above process stops at the kth item, that is, either k = n or first k items have
been placed into the knapsack and the (k+ 1)th item cannot be put in. In the former
case, all n items can be put in the knapsack. In the latter case, if

∑k
i=1 ci > ck+1,

230 8 NP-Hard Problems and Approximation Algorithms

Algorithm 27 1/2-approximation for knapsack
Input: n items 1, 2, . . . , n and a knapsack with volume S. Each item i is associated with a positive
volume ai and a positive value ci . Assume ai ≤ S for all i ∈ [n].
Output: A subset A of items with total value cG.
1: sort all items into ordering c1/a1 ≥ c2/a2 ≥ · · · ≥ cn/an;
2: A ← ∅, k ← 1;
3: if

∑n
i=1 ai ≤ S then

4: A ← [n]
5: else
6: while

∑
i∈A ≤ S and k < n do

7: k ← k + 1
8: end while
9: if

∑k1
i=1 ci > ck then

10: A ← [k − 1]
11: else
12: A ← {k}
13: end if
14: end if
15: cG ← ∑

i∈A ci ;
16: return A and cG.

then take the first k items to form a solution; otherwise, take the (k + 1)th item as a
solution.

Theorem 8.6.7 Algorithm 27 produces a 1/2-approximation for the knapsack
problem.

Proof If all items can be put in the knapsack, then this will give a simple optimal
solution. If not, then

∑k
i=1 ci + ck+1 > opt where opt is the objective function

value of an optimal solution. Hence, max(
∑k

i=1 ci, ck+1) ≥ 1/2 · opt .
�
From above 1/2-approximation, we may have the following observation: For an

item selected into the knapsack, two facts are considered:

• The first fact is the ratio ci/ai . The larger ratio means that volume is used for
higher value.

• The second fact is the ci . When putting an item with small ci and bigger ci/ai

into the knapsack may affect the possibility of putting items with bigger ci and
smaller ci/ai , we may select the one with bigger ci .

By properly balancing consideration on these two facts, we can obtain a construction
for (1 + ε)-approximation for any ε > 0 (Algorithm 28).

Denote α = cG · 2ε
1+ε

where cG is the total value of a 1/2-approximation solution
obtained by Algorithm 27. Classify all items into two sets A and B. Let A be the set
of all items each with value ci < α and B the set of all items each with value ci ≥ α.
Suppose |A| = m. Sort all items in A in ordering c1/a1 ≥ c2/a2 ≥ · · · ≥ cm/am.

8.6 Partition 231

Algorithm 28 (1+ε) approximation for knapsack
Input: n items 1, 2, . . . , n, a knapsack with volume S and a positive number ε. Each item i is
associated with a positive volume ai and a positive value ci . Assume ai ≤ S for all i ∈ [n].
Output: A subset Aε of items with total value cε .
1: run Algorithm 27 to obtain cG;
2: α ← cG · 2ε

1+ε
;

3: classify all items into A and B where
4: A ← {i ∈ [n] | ci < α}, B ← {i ∈ [n] | ci ≥ α};
5: sort all items of A into ordering c1/a1 ≥ c2/a2 ≥ · · · ≥ cm/am;
6: Aε ← ∅, k ← 1;
7: B ← {I ⊆ B | |I | ≤ 1 + 1/ε};
8: for each I ∈ B do
9: if

∑
i∈I > S then

10: B ← B \ {I }
11: else
12: S ← S −∑

i∈I ci ;
13: if

∑
i∈A ai > S then

14: while
∑k

i=1 ai ≤ S and k < m do
15: k ← k + 1
16: end while
17: if

∑k1
i=1 ci > ck then

18: A(I) ← [k − 1]
19: else
20: A(I) ← {k}
21: end if
22: else
23: A(I) ← A

24: end if
25: end if
26: c(I) ← ∑

i∈I∪A(I) ci ;
27: end for
28: I ← argmaxI∈Bc(I);
29: Aε ← I ∪ A(I);
30: cε ← c(I);
31: return Aε and cε .

For any subset I of B, with |I | ≤ 1+ 1/ε, if
∑

i∈I ai > S, then define c(I) = 0;
otherwise, select the largest k ≤ m satisfying

∑k
i=1 ai ≤ S − ∑

i∈I ci and define
c(I) = ∑

i∈I ci +∑k
i=1 ci .

Lemma 8.6.8 Let cε = maxI c(I). Then

cε ≥ 1

1 + ε
· opt

where opt is the objective function value of an optimal solution.

Proof Let Ib = B ∩OPT and Ia = A∩OPT where OPT is an optimal solution.
Note that for I ⊆ B with |I | > 1 + 1/ε, we have

232 8 NP-Hard Problems and Approximation Algorithms

∑
i∈I

ai > α · (1 + 1/ε)

= cG · 2ε

1 + ε
· (1 + 1/ε)

≥ opt.

Thus, we must have |Ib| ≤ 1 + 1/ε and hence cε ≥ c(Ib). Moreover, we have

c(Ib) =
∑
i∈Ib

ci +
∑
i∈Ia

ci

≥ opt − α

= opt − cG · 2ε

1 + ε

≥ opt − opt

2
· 2ε

1 + ε

= opt · 1

1 + ε
.

Therefore, cε ≥ opt · 1
1+ε

.
�

Lemma 8.6.9 Algorithm 28 runs in O(n2+1/ε) time.

Proof Note that there are at most n1+1/ε subsets I of B with |I | ≤ 1 + 1/ε. For
each such I , the algorithm runs in O(n) time. Hence, the total time is O(n2+1/ε).

�
An optimization problem is said to have PTAS (polynomial-time approximation

scheme) if for any ε > 0, there is a polynomial-time (1 + ε)-approximation for the
problem. By Lemmas 8.6.8 and 8.6.9, the knapsack problem has a PTAS.

Theorem 8.6.10 Algorithm 28 provides a PTAS for the knapsack problem.

A PTAS is called a FPTAS (fully polynomial-time approximation scheme) if
for any ε > 0, there exists a (1 + ε)-approximation with running time which is a
polynomial with respect to 1/ε and the input size. Actually, the knapsack problem
also has a FPTAS. To show it, let us first study exact solutions for the knapsack
problem.

Let opt(k, S) be the objective function value of an optimal solution of the
following problem:

max c1x1 + c2x2 + · · · + ckxk

subject to a1x1 + a2x2 + · · · + akxk ≤ S

x1, x2, . . . , xk ∈ {0, 1}.

8.6 Partition 233

Then

opt(k, S) = max(opt (k − 1, S), ck + opt(k − 1, S − ak)).

This recursive formula gives a dynamic programming to solve the knapsack problem
within O(nS) time. This is a pseudopolynomial-time algorithm, not a polynomial-
time algorithm because the input size of S is �log2 S�, not S.

To construct a PTAS, we need to design another pseudopolynomial-time algo-
rithm for the knapsack problem.

Let c(i, j) denote a subset of index set {1, . . . , i} such that

(a)
∑

k∈c(i,j) ck = j and
(b)

∑
k∈c(i,j) sk = min{∑k∈I sk | ∑k∈I ck = j, I ⊆ {1, . . . , i}}.

If no index subset satisfies (a), then we say that c(i, j) is undefined, or write
c(i, j) = nil. Clearly, opt = max{j | c(n, j) �= nil and

∑
k∈c(i,j) sk ≤ S}.

Therefore, it suffices to compute all c(i, j). The following algorithm is designed
with this idea.

Initially, compute c(1, j) for j = 0, . . . , csum by setting

c(1, j) :=
⎧⎨
⎩
∅ if j = 0,

{1} if j = c1,

nil otherwise,

where csum = ∑n
i=1 ci .

Next, compute c(i, j) for i ≥ 2 and j = 0, . . . , csum.

for i = 2 to n do
for j = 0 to csum do

case 1 [c(i − 1, j − ci) = nil]
set c(i, j) = c(i − 1, j)

case 2 [c(i − 1, j − ci) �= nil]
and [c(i − 1, j) = nil]
set c(i, j) = c(i − 1, j − ci) ∪ {i}

case 3 [c(i − 1, j − ci) �= nil]
and [c(i − 1, j) �= nil]
if [∑k∈c(i−1,j) sk >

∑
k∈c(i−1,j−ci)

sk + si]
then c(i, j) := c(i − 1, j − ci) ∪ {i}
else c(i, j) := c(i − 1, j);

Finally, set opt = max{j | c(n, j) �= nil and
∑

k∈c(i,j) sk ≤ S}.
This algorithm computes the exact optimal solution for the knapsack problem

with running time O(n3M log(MS)) where M = max1≤k≤n ck , because the
algorithm contains two loops, the outside loop runs in O(n) time, the inside loop
runs in O(nM) time, and the central part runs in O(n log(MS)) time. This is a
pseudopolynomial-time algorithm because the input size of M is log2 M and the
running time is not a polynomial with respect to input size.

234 8 NP-Hard Problems and Approximation Algorithms

Now, we use the second pseudopolynomial-time algorithm to design a FPTAS.
For any ε > 0, choose integer h > 1/ε. Denote c′k = �ckn(h + 1)/M� for

1 ≤ k ≤ n and consider a new instance of the knapsack problem as follows:

max c′1x1 + c′2x2 + · · · + c′nxn

subject to s1x1 + s2x2 + · · · + snxn ≤ S

x1, x2, . . . , xn ∈ {0, 1}.

Apply the second pseudopolynomial-time algorithm to this new problem. The
running time will be O(n4h log(nhS)), a polynomial-time with respect to n, h,
and log S. Suppose xh is an optimal solution of this new problem. Set ch =
c1x

h
1 + · · · + cnx

h
n . We claim that

c∗

ch
≤ 1 + 1

h
,

that is, xh is a (1 + 1/h)-approximation.
To show our claim, let Ih = {k | xh

k = 1} and c∗ = ∑
k∈I∗ ck . Then, we have

ch =
∑
k∈Ih

ckn(h + 1)

M
· M

n(h + 1)

≥
∑
k∈Ih

�ckn(h + 1)

M
� · M

n(h + 1)

= M

n(h + 1)

∑
k∈Ih

c′k

≥ M

n(h + 1)

∑
k∈I∗

c′k

≥ M

n(h + 1)

∑
k∈I∗

(
ckn(h + 1)

M
− 1

)

≥ opt − M

h + 1

≥ opt

(
1 − 1

h + 1

)
.

Theorem 8.6.11 The knapsack problem has FPTAS.

For an application of this result, we study a scheduling problem.

8.6 Partition 235

Problem 8.6.12 (Scheduling P ‖Cmax) Suppose there are m identical machines
and n jobs J1, . . . , Jn. Each job Ji has a processing time ai , which does not allow
preemption, i.e., the processing cannot be cut. All jobs are available at the beginning.
The problem is to find a scheduling to minimize the complete time, called makespan.

Theorem 8.6.13 The scheduling P ‖Cmax problem is NP-hard.

Proof For m = 2, this problem is equivalent to find a partition (N1, N2) for [n]
to minimize max(

∑
i∈N1

ai,
∑

i∈N2
ai). Thus, we can reduce the partition problem

to the decision version of this problem by requiring the makespan not exceed
�(∑n

i=1 ai)/2�.
�
For m = 2, we can also obtain a FPTAS from the FPTAS of the knapsack

problem.
To this end, we consider the following instance of the knapsack problem:

max a1x1 + a2x2 + · · · + anxn

subject to a1x1 + a2 + · · · + anxn ≤ S/2

x1, x2, . . . , xn ∈ {0, 1}

where S = a1 + a2 +· · ·+ an. Note that if optk is the objective function value of an
optimal solution for this knapsack problem, then opts = S − optk is the objective
function value of an optimal solution of above scheduling problem.

Applying the FPTAS to above instance of the knapsack problem, we may obtain
a (1 + ε)-approximation solution x̂. Let N1 = {i | x̂i = 1} and N2 = {i | x̄i = 0}.
Then (N1, N2) is a partition of [n] and moreover, we have

max

⎛
⎝∑

i∈N1

ai,
∑
i∈N2

ai

⎞
⎠ =

∑
i∈N2

ai = S −
∑
i∈N1

ai

and

optk∑
i∈N1

ai

≤ 1 + ε.

Therefore,

S − opts

S −∑
i∈N2

ai

≤ 1 + ε,

that is,

S −
∑
i∈N2

ai ≥ (S − opts)/(1 + ε).

236 8 NP-Hard Problems and Approximation Algorithms

Thus,

∑
i∈N2

ai ≤ εS + opts

1 + ε
≤ ε · 2opts + opts

1 + ε
≤ opts(1 + ε).

Therefore, (N1, N2) is a (1+ε)-approximation solution for the scheduling problem.

8.7 Planar 3SAT

A CNF F is planar if graph G∗(F), defined as follows, is planar.

• The vertex set consists of all variables x1, x2, . . . , xn and all clauses
C1, C2, . . . , Cm.

• The edge set E(G∗(F)) = {(xi, Cj) | xi appears in Cj }.
A CNF F is strongly planar if graph G(F), defined as follows, is planar.

• The vertex set consists of all literals x1, x̄1, x2, x̄2, . . . , xn, x̄n and all clauses
C1, C2, . . . , Cm.

• The edge set E(G∗(F)) = {(xi, x̄i) | i = 1, 2, . . . , m} ∪ {(xi, Cj) | xi ∈
Cj } ∪ {(x̄, Cj) | x̄i ∈ Cj }.
Corresponding two types of planar CNF, there are two problems.

Problem 8.7.1 (Planar 3SAT) Given a planar 3CNF F , determine whether F is
satisfiable.

Problem 8.7.2 (Strongly Planar 3SAT) Given a strongly planar 3CNF F , deter-
mine whether F is satisfiable.

Theorem 8.7.3 The planar 3SAT problem is NP-complete.

Proof The problem is a special case of the 3SAT problem and hence longs to NP.
We next construct a reduction to witness 3SAT ≤p

m planar 3SAT. To do so, consider
a 3CNF F and G∗(F). G∗(F) may contain many cross-points. For each cross-point,
we use a crosser to remove it. As shown in Fig. 8.18, this crosser is constructed with
three ⊕ operations each defined by

x ⊕ y = xȳ + x̄y.

We next show that for each ⊕ operation x ⊕ y = z, there exists a planar 3CNF
Fx⊕y=z such that

x ⊕ y = z ⇔ Fx⊕y=z ∈ SAT

8.7 Planar 3SAT 237

Fig. 8.18 A crosser

Fig. 8.19 CNF c(x, y, z) is
planar

that is, Fx⊕y=z is satisfiable.
Note that a CNF c(x, y, z) = (x + y + z̄)(x̄ + z)((̄y) + z) is planar as shown in

Fig. 8.19. Moreover, we have

x + y = z ⇔ c(x, y, z) ∈ SAT,

x · y = z ⇔ c(x̄, ȳ, z̄) ∈ SAT .

Since

x ⊕ y = (x + y) · ȳ + x̄ · (x + y),

we have

x ⊕ y = z ⇔ F ′
x⊕y=z = c(x, y, u)c(ū, y, v̄)c(x, ū, w̄)c(v,w, z) ∈ SAT .

As shown in Fig. 8.20, F ′
x⊕y=z is planar. F ′

x⊕y=z contains some clauses with two
literals. Each such clause x+y can be replaced by two clauses (x+y+w)(x+y+w̄)

with a new variable w as shown in Fig. 8.21. Then we can obtain a planar 3CNF
Fx⊕y=z such that

x ⊕ y = z ⇐⇒ Fx⊕y=z ∈ SAT .

238 8 NP-Hard Problems and Approximation Algorithms

Fig. 8.20 CNF F ′
x⊕y=z is

planar

Fig. 8.21 A clause of size 2 can be replaced by two clauses of size 3

Finally, look back at the instance 3CNF F of the 3SAT problem at the beginning.
Let F ∗ be the product of F and all 3CNFs for all ⊕ operations appearing in crossers
used for removing cross-points in G∗(F). Then F ∗ is planar and

F ∈ SAT ⇐⇒ F ∗ ∈ SAT .

This completes our reduction from the 3SAT problem to the planar 3SAT problem.

�

Theorem 8.7.4 The strongly planar 3SAT problem is NP-complete.

Proof Clearly, the strongly planar 3SAT problem belongs to NP. Next, we construct
a polynomial-time many-one reduction from the planar 3SAT problem to the
strongly planar 3SAT problem. Consider a planar 3CNF F . In G∗(F), if we replace
each vertex labeled with variable x by an edge with endpoints x and x̄, then some
cross-points will be introduced.

To overcome this trouble, we replace the vertex with label x in G∗(F) by a cycle
G(Fx) (Fig. 8.22) where

Fx = (x + w̄1)(w1 + w̄2) · · · (wk + x̄),

and k is selected in the following way: For each edge (x, Cj), label it with x if
Cj contains lateral X, and x̄ if Cj contains literal x̄. Select k to be the number of

8.7 Planar 3SAT 239

Fig. 8.22 Cycle G(Fx)

Fig. 8.23 Each vertex x is
replaced properly by a cycle
G(Fx)

changes from edge x to x̄ when travel around vertex x. Note that

(x + w̄1)(w1 + w̄2) · · · (wk + x̄) = 1 ⇒ x = w1 = · · · = wk.

Now, each edge (x, Cj) in G∗(F) is properly replaced by an edge (x, Cj) or
(wi, Cj) (Fig. 8.23). We will obtain a planar G(F ′) where F ′ = F · ∏x Fx and
F ′ is a strongly planar CNF. Note that F ′ contains some clauses of size 2. Finally,
we can replace them by clauses of size 3 as shown in Fig. 8.21.
�

As an application, let us consider a problem in planar graphs.

Problem 8.7.5 (Planar Vertex Cover) Given a planar graph G, find a minimum
vertex cover of G.

Theorem 8.7.6 The planar vertex cover problem is NP-hard.

Proof We construct a polynomial-time many-one reduction from the strongly
planar 3SAT problem to the planar vertex cover problem. Let F be a strongly planar
3CNF with n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. Consider
G(F). For each clause Cj , replace vertex Cj properly by a triangle Cj1Cj2Cj3
(Fig. 8.24), and we will obtain a planar graph G′ such that G′ has a vertex cover of
size at most 2m + n if and only if F is satisfiable.
�

The planar vertex cover problem has PTAS. Actually, a lot of combinatorial
optimization problem in planar graph and geometric plan or space have PTAS. We
will discuss them in later chapters.

240 8 NP-Hard Problems and Approximation Algorithms

1x

2x 3x 4x

1x

2x 3x 4x

1c 2c

2x 3x 4x2x 3x 4x

1c

13c

11c 12c
2c

23c 22c

21c

1x 1x

Fig. 8.24 Each vertex Cj is replaced properly by a triangle Cj1Cj2Cj3

8.8 Complexity of Approximation

In previous sections, we studied several NP-hard combinatorial optimization prob-
lems. Based on their approximation solutions, they may be classified into the
following four classes:

1. PTAS, consisting of all combinatorial problems each of which has a PTAS, e.g.,
the knapsack problem and the planar vertex cover problem.

2. APX, consisting of all combinatorial optimization problems each of which has
a polynomial-time O(1)-approximation, e.g., the vertex cover problem and the
Hamiltonian cycle problem with triangular inequality.

3. Log-APX, consisting of all combinatorial optimization problems each of which
has a polynomial-time O(ln n)-approximation for minimization, or (1/O(ln n))-
approximation for maximization, e.g., the set cover problem.

4. Poly-APX, consisting of all combinatorial optimization problems each of which
has a polynomial-time p(n)-approximation for minimization, or (1/p(n))-
approximation for maximization for some polynomial p(n), e.g., the maximum
independent set problem and the longest path problem.

Clearly, PTAS ⊂ APX ⊂ Log-APX ⊂ Poly-APX. Moreover, we have

Theorem 8.8.1 If NP �= P, then PTAS �= APX �= Log-APX �= Poly-APX.

Actually from previous sections, we know that the set cover problem has (1+ ln n)-
approximation and if NP �= P, then it has no polynomial-time O(1)-approximation.
Hence, the set cover problem separates APX and Log-APX. The maximum
independent set problem has a trivial 1/n-approximation by taking a single vertex
as solution and hence it belongs to Poly-APX. Moreover, if NP �= P, then it has
no polynomial-time nε−1-approximation. Hence, the maximum independent set
problem separates Log-APX from Poly-APX. Next, we study a problem which
separates PTAS from APX.

8.8 Complexity of Approximation 241

Problem 8.8.2 (k-Center) Given a set C of n cities with a distance table, find a
subset S of k cities as centers to minimize

max
c∈C

min
s∈S

d(c, s)

where d(c, s) is the distance between c and s.

Theorem 8.8.3 The k-center problem with triangular inequality has a polynomial-
time 2-approximation.

Proof Consider the following algorithm:

Initially, choose arbitrarily a vertex s1 ∈ C and set
S1 ← {s1};
for i = 2 to k do

select si = arcmaxc∈Cd(c, Si−1), and set
Si ← Si−1 ∪ {si};

output Sk .

We will show that this algorithm gives a 2-approximation.
Let S∗ be an optimal solution. Denote

opt = max
c∈C

d(c, S∗).

Classify all cities into k clusters such that each cluster contains a center s∗ ∈ S∗ and
d(c, s∗) ≤ d∗ for every city c in the cluster. Now, we consider two cases.

Case 1 Every cluster contains a member si ∈ Sk . Then for each city c in the cluster
with center s∗, d(c, si) ≤ d(c, s∗) + d(s∗, si) ≤ 2 · opt .

Case 2 There is a cluster containing two members si, sj ∈ Sk with i < j . Suppose
the center of this cluster is s∗. Then for any c ∈ C,

d(c, Sk) ≤ d(c, Sj−1)

≤ d(sj , Sj−1)

≤ d(sj , si)

≤ d(si, s
∗) + d(s∗, sj)

≤ 2 · opt.

�

242 8 NP-Hard Problems and Approximation Algorithms

Fig. 8.25 For each edge
(u, v), add a new vertex xuv

and two edges (xuv, u) and
(xuv, v)

G

u

G�

v

xuv

v

u

A corollary of Theorem 8.8.3 is that the k-center problem belongs to APX.
Before we show that the k-center problem does not belong to PTAS unless NP=P,
let us study another problem.

Problem 8.8.4 (Dominating Set) Given a graph G, find the minimum dominating
set where a dominating set is a subset of vertices such that every vertex is either in
the subset or adjacent to a vertex in the subset.

Lemma 8.8.5 The decision version of the dominating set problem is NP-complete.

Proof Consider an input graph G = (V ,E) of the vertex cover problem. For each
edge (u, v), create a new vertex xuv together with two edges (u, xuv) and (xuv, v)

(Fig. 8.25). Then we obtain a modified graph G′. If G has a vertex cover of size ≤ k,
then the same vertex subset must be a dominating set of G′, also of size ≤ k.

Conversely, if G′ has a dominating set D of size ≤ k, then without loss of
generality, we may assume D ⊆ E. In fact, if xuv ∈ D, then we can replace xuv

by either u or v, which results in a dominating set of the same size. Since D ⊆ E

dominating all xuv in G′, D covers all edges in G.
�
Now, we come back to the k-center problem.

Theorem 8.8.6 For any ε > 0, the k-center problem with triangular inequality
does not have a polynomial-time (2 − ε)-approximation unless NP=P.

Proof Suppose that the k-center problem has a polynomial-time (2 − ε)-
approximation algorithm A. We use algorithm A to construct a polynomial-time
algorithm for the decision version of the dominating set problem.

Consider an instance of the decision version of the dominating set problem,
consisting of a graph G = (V ,E) and a positive integer k. Construct an instance of
the k-center problem by choosing all vertices as cities with distance table defined as
follows:

d(u, v) =
{

1 if (u, v) ∈ E,

|V | + 1 otherwise.

8.8 Complexity of Approximation 243

If G has a dominating set of size at most k, then the k-center problem will have
an optimal solution with opt = 1. Therefore, algorithm A produces a solution
with objective function value at most (2 − ε), actually has to be one. If G does
not have a dominating set of size at most k, then the k-center problem will have
its optimal solution with opt ≥ 2. Hence, algorithm A produces a solution with
objective function value at least two. Therefore, from objective function value of
solution produced by algorithm A, we can determine whether G has a dominating
set of size ≤ k or not. By Lemma 8.8.5, we have NP=P.
�

By Theorems 8.8.3 and 8.8.6, the k-center problem with triangular inequality
separates PTAS and APX.

Actually, APX is a large class which contains many problems not in PTAS if
NP�=P. Those are called APX-complete problems. There are several reductions to
establish the APX-completeness. Let us introduce a popular one, the polynomial-
time L-reduction.

Consider two combinatorial optimization problems � and �. � is said to
be polynomial-time L-reducible to �, written as � ≤p

L �, if there exist two
polynomial-time computable functions h and g, and two positive constants a and
b such that

(L1) h maps from instances x of � to instances h(x) of � such that

opt�(h(x)) ≤ a · opt�(x)

where opt�(x) is the objective function value of an optimal solution for �

on instance x;
(L2) g maps from feasible solutions y of � on instance h(x) to feasible solutions

g(y) of � on instance x such that

|obj�(g(y)) − opt�(x)| ≤ b · |obj�(y) − opt�(h(x))|

where obj�(y) is the objective function value of feasible solution y for �

(Fig. 8.26).

x

Π Γ
h(x)

g(y) y
feasible
solutions
of Π on x

feasible
solutions
of Γ on h(x)

Fig. 8.26 Definition of L-reduction

244 8 NP-Hard Problems and Approximation Algorithms

Fig. 8.27 The proof of
Theorem 8.8.7

x

g'(y) y

feasible
solutions
of Π on x

feasible
solutions
of Γ on h(x)

g(g'(y))

feasible
solutions
of Γ on h'(h(x))

h

≤ ≤p
L

p
L

h'

g

Π Γ Λ

g'

h(x) h' (h(x))

This reduction has the following properties:

Theorem 8.8.7 � ≤p
L �, � ≤p

L � ⇐ � ≤p
L �.

Proof As shown in Fig. 8.27, we have

opt�(h′(h(x))) ≤ a′ · opt�(h(x)) ≤ a′a · opt�(x)

and

|obj�(g(g′(y))) − opt�(x)|
≤ b · |obj�(g′(y)) − opt�(h(x))|
≤ bb′ · |obj�(y) − opt�(h′(h(x)))|.

�

Theorem 8.8.8 If � ≤p
L � and � ∈ PT AS, then � ∈ PT AS.

Proof Consider four cases.
Case 1. Both � and � are minimization problems:

obj�(g(y))

opt�(x)
= 1 + obj�(g(y)) − opt�(x)

opt�(x)

≤ 1 + ab(obj�(y) − opt�(h(x)))

opt�(h(x))
.

If y is a polynomial-time (1 + ε)-approximation for �, then g(y) is a polynomial-
time (1 + abε)-approximation for �.

Case 2. � is a minimization and � is a maximization:

8.8 Complexity of Approximation 245

obj�(g(y))

opt�(x)
= 1 + obj�(g(y)) − opt�(x)

opt�(x)

≤ 1 + ab(opt�(h(x)) − obj�(y))

opt�(h(x))

≤ 1 + ab(opt�(h(x)) − obj�(y))

obj�(y)
.

If y is a polynomial-time (1+ε)−1-approximation for �, then g(y) is a polynomial-
time (1 + abε)-approximation for �.

Case 3 � is a maximization and � is a minimization:

obj�(g(y))

opt�(x)
= 1 − opt�(x) − obj�(g(y))

opt�(x)

≥ 1 − ab(obj�(y) − opt�(h(x)))

opt�(h(x))
.

If y is a polynomial-time (1 + ε)-approximation for �, then g(y) is a polynomial-
time (1 − abε)-approximation for �.

Case 4 Both � and � are maximization:

obj�(g(y))

opt�(x)
= 1 − opt�(x) − obj�(g(y))

opt�(x)

≥ 1 − ab(opt�(h(x)) − obj�(y))

opt�(h(x))

≥ 1 − ab(opt�(h(x)) − obj�(y))

obj�(y)
.

If y is a polynomial-time (1+ε)−1-approximation for �, then g(y) is a polynomial-
time (1 − abε)-approximation for �.
�

Let us look at some examples for APX-complete problems.

Problem 8.8.9 (MAX3SAT-3) Given a 3CNF F that each variable appears in at
most three clauses, find an assignment to maximize the number of satisfied clauses.

Theorem 8.8.10 The MAX3SAT-3 problem is APX-complete.

Let us use this APX-completeness as a root to derive others.

Problem 8.8.11 (MI-b) Given a graph G with vertex-degree upper-bounded by b,
find a maximum independent set.

246 8 NP-Hard Problems and Approximation Algorithms

Fig. 8.28 The proof of
Theorem 8.8.12

Theorem 8.8.12 The MI-4 problem is APX-complete.

Proof First, we show MI-4 ∈ APX. Given a graph G = (V ,E), construct a maximal
independent set by selecting vertices iteratively, and at each iteration, select a vertex
and delete it together with its neighbors until no vertex is left. Clearly, this maximal
independent set contains at least |V |/5 vertices. Therefore, it gives a polynomial-
time 1/5-approximation.

Next, we show MAX3SAT ≤p
L MI-4. Consider an instance 3CNF F of

MAX3SAT, with n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. For
each clause Cj , create a triangle with three vertices Cj1, Cj2, Cj3 labeled by three
literals of Cj , respectively. Then connect every vertex with label xi to every vertex
with label x̄i as shown in Fig. 8.28. This graph is denoted by h(F). For each
independent set y of h(F), we define an assignment g(y) to make every vertex in
the independent set with a true literal. Thus, F has at least |y| clauses satisfied.

To show (L1), we claim that

optMAX3SAT (F) = optMI−4(h(F)).

Suppose x∗ is an optimal assignment. Construct an independent set y∗ by selecting
one vertex with true label in each satisfied clause. Then

optMAX3SAT (F) = |y∗| ≤ optMI−4(h(F)).

Conversely, suppose y∗ is a maximum independent set of h(F). We have F have at
least |y∗| satisfied clauses with assignment g(y∗). Therefore,

optMAX3SAT F ≥ |y∗| = optMI−4(h(F)).

To see (L2), we note that

|optMAX3SAT (F) − objMAX3SAT (g(y))| ≤ |optMI−4(h(F)) − objMI−4(y)|

since objMAX3SAT (g(y)) ≥ objMI−4(y).
�

8.8 Complexity of Approximation 247

Fig. 8.29 Vertex u is
replaced by a path
(u1, v1, u2, v2, u3, v3, u4)

Theorem 8.8.13 The MI-3 problem is APX-complete.

Proof Since MI-4 ∈ APX, so is MI-3. We next show MI-4 ≤p
L MI-3. Consider a

graph G = (V ,E) with vertex degree at most 4. For each vertex u with degree
4, we put a path (u1, v1, u2, v2, u3, v3, u4) as shown in Fig. 8.29. Denote obtained
graph by G′ = h(G). Then (L1) holds since

optMI3(G
′) ≤ |V (G′)| ≤ 7|V (G)| ≤ 28 · optMI−4(G)

where V (G) denotes the vertex set of graph G. To see (L2), note that the
path (u1, v1, u2, v2, u3, v3, u4) has unique maximum independent set Iu =
{u1, u2, u3, u4}. For any independent set I of G′, define g(I) to be obtained from I

by replacing set Iu by vertex u and removing all other vertices not in G. Then g(I)

is an independent set of G. We claim

optMI−4(G) − |g(I)| ≤ optMI−3(G
′) − |I |.

To show it, define I ′ to be obtained from I by {v1, v2, v3} if I contains one of
v1, v2, v3. Clearly, I ′ is still an independent set of G′ and |I | ≤ |I ′| and g(I) =
g(I ′). Then, we have

optM−4(G) − g(I) = optMI−4(G) − g(I ′)

= optMI−3(G
′) − |I ′|

≤ optMI−3(G
′) − |I |.

�

Problem 8.8.14 (VC-b) Given a graph G with vertex degree upper-bounded by b,
find the minimum vertex cover.

Theorem 8.8.15 The VC-3 problem is APX-complete.

Proof Since the vertex cover problem has a polynomial-time 2-approximation, so
does the VC-3 problem. Hence, VC-3 ∈ APX. Next, we show MI-3 ≤p

L VC-3.

248 8 NP-Hard Problems and Approximation Algorithms

For any graph G = (V ,E) with vertex degree at most 3, define h(G) = G. To
see (L1), note that optMI−3 ≥ |V |/4 and |E| ≤ 3|V |/2 = 1.5|V |. Hence,

optV C−3(G) = |V | − optMI−3(G) ≤ |V | − |V |/4 = (3/4)|V | ≤ 3 · optMI−3(G).

Now, for any vertex cover C, define g(C) to be the complement of C. Then we have

optMI−3(G) − |g(C)| = |V | − optV C−3(G) − (|V | − |C|)
= |C| − optV C−3(G).

Therefore, (L2) holds.
�
There are also many problems in Log-APX \ APX, such as various optimization

problems on covering and dominating. The lower bound for their approximation
performance is often established based on Theorem 8.5.7 with a little modification.

Theorem 8.8.16 Theorem 8.5.7 still holds in special case that each input consisting
of a collection C of subsets of a final set X with condition |C| ≤ |X|, that is, in this
case, we still have that for any 0 < ρ < 1, the set cover problem does not have a
polynomial-time (ρ ln n)-approximation unless NP=P where n = |X|.

Here is an example.

Theorem 8.8.17 For any 0 < ρ < 1, the dominating set problem does not have
a polynomial-time (ρ ln n)-approximation unless NP=P where n is the number of
vertices in input graph.

Proof Suppose there exists a polynomial-time (ρ ln n)-approximation for the dom-
inating set problem. Consider instance (X, C) of the set cover problem with |C| ≤
|X|. Construct a bipartite graph G = (C, X,E). For S ∈ C and x ∈ X, there exists
an edge (S, x) ∈ E if and only if x ∈ S. Add two new vertices o and o′ together
with edges (o, o′) and (S, o) for all S ∈ C. Denote this new graph by G′ as shown
in Fig. 8.30.

First, note that

optds(G
′) ≤ optsc(X, C) + 1

where optds(G
′) denotes the size of minimum dominating set of G′ and optsc(G)

denotes the cardinality of minimum set cover on input (X, C). In fact, suppose that
C∗ is a minimum set cover on input (X, C). Then C ∪ {o} is a dominating set of G′.

Next, consider a dominating set D of G′, generated by the polynomial-time
(ρ ln n)-approximation for the dominating set problem. Then, we have |D| ≤
(ρ ln(2|X| + 2))optds(G

′). Construct a set cover S as follows:

Step 1. If D does not contain o, then add o. If D contains a vertex with label
x ∈ X, then replace x by a vertex with label C ∈ C such that x ∈ C.

8.8 Complexity of Approximation 249

We will obtain a dominating set D′ of G′ with size |D′| ≤ |D| + 1 and
without vertex labeled by element in X.

Step 2. Remove o and o′ from D′. We will obtain a set cover S for X with size
|S| ≤ |D|.

Note that

|S| ≤ |D|
≤ (ρ ln(2|X| + 2))optds(G

′)

≤ (ρ ln(2|X| + 2))(1 + optsc(X, C))

= ln(2|X| + 2)

ln |X| · (1 + 1

optsc(X, C)
) · (ρ ln |X|)optsc(X, C).

Select two sufficiently large positive constants α and β such that

ρ′ = ln(2α + 2)

ln α
· (1 + 1

β
) · ρ < 1.

Then for |X| ≥ α and optsc(X, C) ≥ β,

|S| ≤ (ρ′ ln |X|) · optsc(X, C).

For |X| < α or optsc(X, C) < β, an exactly optimal solution can be computed in
polynomial-time. Therefore, there exists a polynomial-time (ρ′ ln n)-approximation
for the set cover problem and hence NP=P by Theorem 8.8.16.
�

Class Poly-APX may also be further divided into several levels.

Polylog-APX, consisting of all combinatorial optimization problems each of
which has a polynomial-time O(lni n)-approximation for minimization, or
(1/O(lni n))-approximation for maximization for some i ≥ 1.

Fig. 8.30 The proof of
Theorem 8.8.17

250 8 NP-Hard Problems and Approximation Algorithms

Sublinear-APX, consisting of all combinatorial optimization problems each of
which has a polynomial-time O(na)-approximation for minimization, or (1/na)-
approximation for maximization for some 0 < a < 1.

Linear-APX, consisting of all combinatorial optimization problems each of
which has a polynomial-time O(n)-approximation for minimization, or (1/n)-
approximation for maximization.

In the literature, we can find the group Steiner tree problem [168, 203] and
the connected set cover problem [442] in Polylog-APX \ Log-APX unless some
complexity class collapses; the directed Steiner tree problem [46] and the densest
k subgraph problem [28] in Sublinear-APX \ Log-APX. However, there are quite
a few problems in Linear-APX \ Sublinear-APX. Especially, we may meet such a
problem in the real world. Next, we give an example in the study of wireless sensors.

Consider a set of wireless sensors lying in a rectangle which is a piece of
boundary area of region of interest. The region is below the rectangle and outside
is above the rectangle. The monitoring area of each sensor is a unit disk, i.e., a disk
with radius of unit length. A point is said to be covered by a sensor if it lies in the
monitoring disk of the sensor. The set of sensors is called a barrier cover if they
can cover a line (not necessarily straight) connecting two vertical edges (Fig. 8.31)
of the rectangle. The barrier cover is used for protecting any intruder coming from
outside. Sensors are powered with batteries and hence lifetime is limited. Assume
that all sensors have unit lifetime. When several disjoint barrier covers are available,
they are often working one by one, so that a security problem is raised.

In Fig. 8.31, a point a lies behind barrier cover B1 and in front of barrier cover B2.
Suppose B2 works first and after B2 stops, B1 starts to work. Then the intruder can
go to point a during the period that B2 works. After B2 stops, the intruder enters the
area of interest without getting monitored by any sensor. Thus, scheduling (B2, B1)

is not secure. The existence of point b in Fig. 8.31 indicates that scheduling (B1, B2)

is not secure neither. Thus, in Fig. 8.31, secure scheduling can contain only one
barrier cover. In general, we have the following problem:

Problem 8.8.18 (Secure Scheduling) Given n disjoint barrier covers B1, B2, . . . ,

Bn, find a longest secure scheduling.

The following gives a necessary and sufficient condition for a secure scheduling:

Fig. 8.31 Sensor barrier
covers

8.8 Complexity of Approximation 251

Lemma 8.8.19 A scheduling (B1, B2, .., Bk) is secure if and only if for any 1 ≤
i ≤ k − 1, there is no point a lying above Bi and below Bi+1.

Proof If such a point a exists, then the scheduling is not secure since the intruder
can walk to point a during Bi works and enters into the area of interest during Bi+1
works. Thus, the condition is necessary.

For sufficiency, suppose the scheduling is not secure. Consider the moment at
which the intruder gets the possibility to enter the area of interest and the location a

where the intruder lies. Let Bi work before this moment. Then a must lie above Bi

and below Bi+1.
�
This lemma indicates that the secure scheduling can be reduced to the longest

path problem in directed graphs in the following way:

• Construct a directed graph G as follows: For each barrier cover Bi , create a node
i. For two barrier covers Bi and Bj , if there exists a point a lying above barrier
cover Bi and below barrier cover Bj , add an arc (i, j).

• Construct the complement Ḡ of graph G, that is, Ḡ and G have the same node
set and an arc in Ḡ if and only if it is not in G.

By Lemma 8.8.19, each secure scheduling of barrier covers a corresponding
simple path in Ḡ, and a secure scheduling is maximum if and only if a corresponding
simple path is the longest one. Actually, the longest path problem can also be
reduced to the secure scheduling problem as shown in the proof of the following
theorem:

Theorem 8.8.20 For any ε > 0, the secure scheduling problem has no polynomial-
time n1−ε-approximation unless NP = P .

Proof Let us reduce the longest path problem in directed graph to the secure
scheduling problem. Consider a directed graph G = (V ,E). Let Ḡ = (V , Ē) be
the complement of G, i.e., Ē = {(i, j) ∈ V × V | (i, j) �∈ E}. Draw a horizontal
line L and for each arc (i, j) ∈ Ē, create a point (i, j) on the line L. All points (i, j)

are apart from each other with distance 6 units (Fig. 8.32). At each point (i, j), add
a disk Sij with center (i, j) and unit radius. Cut line L into a segment L′ to include
all disks between two endpoints. Add more unit disks with centers on the segment
L′ to cover the uncovered part of L′ such that point (i, j) is covered only by Sij . Let
B0 denote the set of sensors with constructed disks as their monitoring areas.

Now, let Bi be obtained from B0 in the following way:

• For any (i, j) ∈ Ē, remove Sij to break B0 into two parts. Add two unit disks S
ij

i1

and S
ij

i2 to connect the two parts, such that point (i, j) lies above them.
• For any (j, i) ∈ Ē, remove Sji to break B0 into two parts. Add two unit disks

S
ij

i1 and S
ij

i2 to connect the two parts, such that point (i, j) lies below them.
• To make all constructed barrier covers disjoint, unremoved disks in B0 will be

made copies and put those copies into Bi (see Fig. 8.32).

252 8 NP-Hard Problems and Approximation Algorithms

Fig. 8.32 Sensor barrier covers

Clearly, G has a simple path (i1, i2, . . . , ik) if and only if there exists a secure
scheduling (Bi1, Bi2 , . . . , Bik). Therefore, our construction gives a reduction from
the longest path problem to the secure scheduling problem. Hence, this theorem can
be obtained from Theorem 8.3.9 for the longest path problem.2
�

Other than the polynomial-time L-reduction, there exist many reductions pre-
serving or amplifying the gap between approximation solutions and optimal solu-
tions. They are very useful tools to establish the inapproximability of a target
problem through transformation from known inapproximability of another problem.
The reader may find more in Chapter 10 of [100].

Exercises

1. For any language A, Kleene closure A∗ = A0 ∪ A1 ∪ A2 ∪ · · · . Solve the
following:

(a) Design a deterministic Turing machine to accept language ∅∗.
(b) Show that if A ∈ P, then A∗ ∈ P.
(c) Show that if A ∈ NP, then A∗ ∈ NP.

2. Given a graph G = (V ,E) with edge weight w : E → R+, assign each
vertex u with a weight xu to satisfy xu + xv ≥ w(u, v) for every edge (u, v) ∈
E, and to minimize

∑
u∈V xu. Find a polynomial-time solution and a faster

2-approximation.
3. Given a graph G = (V ,E) and a positive integer k, find a set C of k vertices to

cover the maximum number of edges. Show the following:

(a) This problem has a polynomial-time (1/2)-approximation.

2 Theorem 8.3.9 states for undirected graphs. The same theorem also holds for directed graphs
since the graph can be seen as special case of directed graphs.

Exercises 253

(b) If this problem has a polynomial-time 1/γ -approximation, then the mini-
mum vertex cover problem has a polynomial-time γ -approximation.

4. Show that the following problems are NP-hard:

(a) Given a directed graph, find the minimum subset of edges such that every
directed cycle contains at least one edge in the subset.

(b) Given a directed graph, find the minimum subset of vertices such that every
directed cycle contains at least one vertex in the subset.

5. Show the NP-completeness of the following problem: Given a sequence
of positive integers a1, a2, . . . , an, determine whether the sequence can be
partitioned into three parts with equal sums.

6. Given a Boolean formula F , determine whether F has at least two satisfying
assignments. Show that this problem is NP-complete.

7. Show NP-hardness of the following problem: Given a graph G and an integer
k > 0, determine whether G has a vertex cover C of size at most k, satisfying
the following conditions:

(a) The subgraph G|C induced by C has no isolated vertex.
(b) Every vertex in C is adjacent to a vertex not in C.

8. Show that all internal nodes of a depth-first search tree form a vertex cover,
which is 2-approximation for the minimum vertex cover problem.

9. Given a directed graph, find an acyclic subgraph containing maximum number
of arcs. Design a polynomial-time 1/2-approximation for this problem.

10. A wheel is a cycle with a center (not on the cycle) which is connected to
every vertex on the cycle. Prove the NP-completeness of the following problem:
Given a graph G, does G have a spanning wheel?

11. Given a 2-connected graph G and a vertex subset A, find the minimum vertex
subset B such that A ∪ B induces a 2-connected subgraph. Show that this
problem is NP-hard.

12. Show that the following problems are NP-hard:

(a) Given a graph G, find a spanning tree with minimum number of leaves.
(b) Given a graph G, find a spanning tree with maximum number of leaves.

13. Given two graphs G1 and G2, show the following:

(a) It is NP-complete to determine whether G1 is isomorphic to a subgraph of
G2 or not.

(b) It is NP-hard to find a subgraph H1 of G1 and a subgraph H2 of G1 such
that H1 is isomorphic to H2 and |E(H1)| = |E(H2)| reaches the maximum
common.

14. Given a collection C of subsets of three elements in a finite set X, show the
following:

(a) It is NP-complete to determine whether there exists a set cover consisting of
disjoint subsets in C.

254 8 NP-Hard Problems and Approximation Algorithms

(b) It is NP-hard to find a minimum set cover, consisting of subsets in C.

15. Given a graph, find the maximum number of vertex-disjoint paths with length
2. Show the following:

(a) This problem is NP-hard.
(b) This problem has a polynomial-time 2-approximation.

16. Design a polynomial-time 2-approximation for the following problem: Given a
graph, find a maximal matching with minimum cardinality.

17. (Maximum 3DM) Given three disjoint sets X, Y , Y with |X| = |Y | = |Z|
and a collection C of 3-sets, each 3-set consisting of exactly one element in X,
one element in Y , and one element in Z, find the maximum number of disjoint
3-sets in C. Show the following:

(a) This problem is NP-hard.
(b) This problem has polynomial-time 3-approximation.
(c) This problem is APX-complete.

18. There are n students who studied at a late night for an exam. The time has
come to order pizzas. Each student has his own list of required toppings (e.g.,
pepperoni, sausage, mushroom, etc.). Everyone wants to eat at least one third
of a pizza, and the topping of the pizza must be in his required list. To save
money, every pizza must have only one topping. Find the minimum number of
pizzas to order in order to make everybody happy. Please answer the following
questions:

(a) Is it an NP-hard problem?
(b) Does it belong to APX?
(c) If everyone wants to eat at least a half of a pizza, is there a change about

the answer for above questions?

19. Show that the following is an NP-hard problem: Given two collections C and D
of subsets of X and a positive integer d, find a subset A with at most d elements
of X to minimize the total number of subsets in C not hit by A and subsets in D
hit by A, i.e., to minimize

|{S ∈ C | S ∩ A = ∅} ∪ {S ∈ D | S ∩ A �= ∅}|.

20. Design a FPTAS for the following problem: Consider n jobs and m identical
machine. Assume that m is a constant. Each job j has a processing time pj and
a weight wj . The processing does not allow preemption. The problem is to find
a scheduling to minimize

∑
j wjCj where Cj is the completion time of job j .

21. Design a FPTAS for the following problem: Consider a directed graph with a
source node s and a sink node t . Each edge e has an associated cost c(e) and
length
(e). Given a length bound L, find a minimum cost path from s to t of
total length at most L.

Exercises 255

22. Show the NP-completeness of the following problem: Given n positive integers
a1, a2, . . . , an, is there a partition (I1, I2) of [n] such that |∑i∈I1

ai −∑
i∈I2

ai | ≤ 2?
23. (Ron Graham’s Approximation for Scheduling P ||Cmax) Show that the follow-

ing algorithm gives a 2-approximation for the scheduling P ||Cmax problem:

• List all jobs. Process them according to the ordering in the list.
• Whenever a machine is available, move the first job from the list to the

machine until the list becomes empty.

24. In the proof of Theorem 8.7.4, if letting k be the degree of vertex x, then the
proof can also work. Please complete the construction of replacing vertex x by
cycle G(Fx).

25. (1-in-3SAT) Given a 3CNF F , is there an assignment such that for each clause
of F , exactly one literal gets value 1? This is called the 1-in-3SAT problem.
Show the following:

(a) The 1-in-3SAT problem is NP-complete.
(b) The planar 1-in-3SAT problem is NP-complete.
(c) The strongly planar 1-in-3SAT is NP-complete.

26. (NAE3SAT) Given a 3CNF F , determine whether there exists an assignment
such that for each clause of F , is there an assignment such that for each clause
of F , not all three literals are equal? This is called the NAE3SAT problem.
Show the following:

(a) The NAE3SAT problem is NP-complete.
(b) The planar NAE3SAT is in P.

27. (Planar 3SAT with Variable Cycle) Given a 3CNF F which has G∗(F) with
property that all variables can be connected into a cycle without crossing, is F

satisfiable?

(a) Show that this problem is NP-complete.
(b) Show that the planar Hamiltonian cycle problem is NP-hard.

28. Show that the planar dominating set problem is NP-hard.
29. Show that the following are APX-complete problems:

(a) (Maximum 1-in-3SAT) Given a 3CNF F , find an assignment to maximize
the number of 1-in-3 clauses, i.e., exactly one literal equal to 1.

(b) (Maximum NAE3SAT) Given a 3CNF F , find an assignment to maximize
the number of NAE clauses, i.e., either one or two literals equal to 1.

30. (Network Steiner Tree) Given a network G = (V ,E) with nonnegative edge
weight, and a subset of nodes, P , find a tree interconnecting all nodes in P ,
with minimum total edge weight. Show that this problem is APX-complete.

31. (Rectilinear Steiner Arborescence) Consider a rectilinear plan with origin O.
Given a finite set of terminals in the first of this plan, find the shortest
arborescence to connect all terminals, that is, the shortest directed tree rooted at

256 8 NP-Hard Problems and Approximation Algorithms

origin O such that for each terminal t , there is a path from O to t and the path
is allowed to go only to the right or upward. Show that this problem is NP-hard.

32. (Connected Vertex Cover) Given a graph G = (V ,E), find a minimum vertex
cover which induces a connected subgraph. Show that this problem has a
polynomial-time 3-approximation.

33. (Weighed Connected Vertex Cover) Given a graph G = (V ,E) with nonnega-
tive vertex weight, find a minimum total weight vertex cover which induces a
connected subgraph. Show the following:

(a) This problem has a polynomial-time O(ln n)-approximation where n =
|V |.

(b) For any 0 < ρ < 1, this problem has no polynomial-time (ρ ln n)-
approximation unless NP=P.

34. (Connected Dominating Set) In a graph G, a subset C is called a connected
dominating set if C is a dominating set and induces a connected subgraph.
Given a graph, find a minimum connected dominating set. Show that for any
0 < ρ < 1, this problem has no polynomial-time (ρ ln n)-approximation unless
NP=P where n is the number of vertices in input graph.

35. Show that the following problem is APX-complete: Given a graph with vertex
degree upper-bounded by a constant b, find a clique of the maximum size.

36. Show that the traveling salesman problem does not belong to Poly-APX if the
distance table is not required to satisfy the triangular inequality.

Historical Notes

The concept of NP-completeness was established by Cook [71] in 1971, and it is
widespread in many areas, especially its ubiquitous existence in combinatorial opti-
mization which was made by Karp [236]. Garey and Johnson [166] accumulated
many examples of NP-complete and NP-hard problems, which is still a very good
reference book in the study on theory of NP-completeness.

The study of approximation algorithms was initiated by Graham [184] in 1966.
The importance of this work was not fully understood until NP-hardness was
established. For efforts at earlier stage in the study of approximation algorithms,
it is worth mentioning the following: Sahni [353] designed PTAS, and Ibarra and
Kim [223] discovered the first FPTAS for the knapsack problem. Christofides
[66] constructed a polynomial-time 3/2-approximation for the traveling salesman
problem with triangle inequality. Until today, no approximation has been found to
have better performance ratio than Christofides approximation.

In the study of approximation, there are two research directions, algorithm design
and inapproximability proof. In the 1970s, while approximation algorithms received
some efforts, inapproximability proofs also got some progress, such as Garey and
John [164], Sahni and Gonzalez [354], and Ko [259]. This progress was speed
up in the 1990s. Papadimitriou and Yannakakis [336] introduced L-reduction and

Historical Notes 257

MAXSNP class. This class is extended to APX by Khanna et al. [242]. Motivated
from the study of MAXSNP-completeness, the PCP theorem and the PCP system
were initiated by Arora et al. [10, 11] and Arora and Safra [13, 14]. With the PCP
system, many results are generated on inapproximability, such as Hastad [206, 207],
Lund and Yannakalis [305], Feige [134], Raz and Safra [347], and Zuckerman
[464, 465].

Recently, techniques developed in above classic results on algorithm designs and
inapproximability proofs have been widely used in the study of wireless sensor
networks and social networks, such as secure scheduling of barrier covers [452]
and influence maximization in various models [302–304].

Chapter 9
Restriction and Steiner Tree

The universe has no restriction. You place restrictions on the
universe with your expectations.

—Deepak Chopra

Restriction is a major technique in design of approximation algorithms. The Steiner
minimum tree is a classic NP-hard combinatorial optimization problem. In the study
of the Steiner minimum tree and its variations, restriction plays an important role.

9.1 Idea of Restriction

As shown in Fig. 9.1, consider problem

min f (x)

subject to x ∈ �

where � is a feasible domain. By restriction, we mean to put some constraints
to feasible solutions so that the feasible domain � is shrunken to a smaller
domain �, on which the minimization of objective function f (x) can be solved
or approximated easily. Then, the optimal or approximate solution of the restricted
problem can be utilized to approximate the original one.

There is a general idea to analyze the performance of approximation which is
designed with restriction techniques. To explain it, suppose min{f (x) | x ∈ �}
can be solved in polynomial-time and y∗ is the optimal solution. We intend to use
y∗ as an approximation solution for min{f (x) | x ∈ �}. Then, the approximation
performance can be obtained in the following way:

• Consider an optimal solution x∗ for min{f (x) | x ∈ �}.
• Modify x∗ to y satisfying the restriction, i.e., y ∈ �.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_9

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_9&domain=pdf

 7680 61494 a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_9

260 9 Restriction and Steiner Tree

Fig. 9.1 Idea of restriction

• Meanwhile, estimate the cost of modification. Suppose this cost is within a factor
of α from the minimum solution, i.e.,

f (y) − f (x∗)
f (x∗)

≤ α.

Then, the performance ratio is 1 + α, i.e.,

f (y∗)
f (x∗)

≤ f (y)

f (x∗)
≤ 1 + f (y) − f (x∗)

f (x∗)
≤ 1 + α.

Let us show an example. Consider the following problem:

Problem 9.1.1 (Minimum Length Rectangular Partition) Given a rectangle
with point-holes inside, partition it into smaller rectangles without hole to minimize
the total length of cuts.

Note that a rectangular partition may not be a guillotine partition (Fig. 9.2).
Actually, this is an NP-hard problem, while the minimum length guillotine partition
problem is polynomial-time solvable by using dynamic programming (Sect. 3.1).

Let P be the optimal solution for the minimum length guillotine partition. We
want to use P as an approximation solution for the minimum length rectangular
partition and analyze its performance as follows:

Theorem 9.1.2 The optimal solution for the minimum length guillotine partition is
2-approximation for the minimum length rectangular partition.

Proof Consider an optimal solution P ∗ for the minimum length rectangular
partition. Let us modify P ∗ into a guillotine partition by adding line segments. Note
that the guillotine partition is constituted by a sequence of guillotine cuts, each of

9.1 Idea of Restriction 261

Fig. 9.2 Rectangular
partition, but not guillotine
partition

Fig. 9.3 Modify a rectangular partition to a guillotine partition

which is on a rectangle. Therefore, the modification is also made sequentially, and
at each step, cut a rectangle into two.

Suppose at current step, we consider rectangle R. If P ∗ contains a line segment
which can be a guillotine cut for R, then apply this cut. Otherwise, we consider the
following two cases:

Case 1 P ∗ contains a vertical segment AB of length at least 0.5a where a is the
length of vertical edge of R (the left side of Fig. 9.3). In this case, extend segment
AB into a guillotine cut. This extension will contain added segments of total length
at most 0.5a, which charges to segment AB.

Case 2 Case 1 does not occur. In this case, we cut R by a horizontal segment CD

at the middle of R. CD must lie between horizontal segments in P ∗, i.e., from
each point on CD, going above and below must meet horizontal segments in P ∗.
Therefore, the total length of horizontal segments above CD and directly facing CD

is equal to the length of CD. So is the total length of horizontal segments below CD

and directly facing CD. We charge 0.5 to those horizontal segments in P ∗. Note that
each horizontal segment in P ∗ can be charged at most twice, one from above and
one from below. Therefore, the total charge is at most one.

From argument in the above two cases, we can see that modifying P ∗ into a
guillotine partition needs to add new cut segments of total length not exceeding the
total length of P ∗. Therefore, the optimal solution for the minimum length guillotine
partition is 2-approximation for the minimum length rectangular partition.
�

262 9 Restriction and Steiner Tree

9.2 Role of Minimum Spanning Tree

The minimum spanning tree plays an important role in design of approximation
solutions for the Steiner minimum tree and its related problems. In this section, we
present a few examples.

Problem 9.2.1 (Network Steiner Minimum Tree) Given a network G = (V ,E)

with edge cost c : E → R+ and a terminal set P ⊆ V , find a minimum cost tree
interconnecting all terminals in P .

For this problem, each feasible solution is a tree interconnecting all terminals,
called a Steiner tree. Its optimal solution is called the Steiner minimum tree. In
a Steiner tree, a node is called a Steiner node if it is not a terminal. If we put a
restriction not to allow the existence of any Steiner node, then the problem becomes
the minimum spanning tree on the network induced by terminals, i.e., a complete
graph on all terminals and each edge (u, v) has length equal to the length of shortest
path between u and v in input network G.

In Chaps. 1 and 4, we already see that the minimum spanning tree can be
computed efficiently. What is the performance ratio of the minimum spanning tree
as an approximation to the Steiner minimum tree? The following is the answer:

Theorem 9.2.2 In network, the minimum spanning tree is 2-approximation for the
Steiner minimum tree.

Proof Consider a Steiner minimum tree T . Construct a Euler tour using each edge
twice. Suppose p1, p2, . . . pn are all terminals lying one by one along the Euler tour.
For every i = 1, 2, . . . , n − 1, connect pi and pi+1 with a shortest path between
them. This results in a spanning tree. This means that the length of such a Euler
tour must be not smaller than the length of minimum spanning tree. Therefore, the
minimum spanning tree is 2-approximation for the Steiner minimum tree.
�

Actually, 2 is tight for the approximation performance ratio of the minimum
spanning tree. To see this, consider a star graph with n edges each of unit length.
Let terminal set consist of all leaves. Then, the distance between any two terminals
is 2 in the star. Therefore, the minimum spanning tree on those terminals has length
2(n − 1). However, the Steiner minimum tree can have the center as a Steiner node
and hence has length n. Therefore, the ratio of lengths of the minimum spanning tree
and the Steiner minimum tree is 2n/(n − 1). As n goes to infinity, this ratio goes to
2. This means that the performance ratio cannot be a constant smaller than 2.

An interesting and early improvement got the performance ratio 2(1 − 1

) where

 is the number of leaves in a Steiner minimum tree. The detail can be found in an
exercise and also in [265].

In many variations of the Steiner minimum tree problems, the minimum (length)
spanning tree is often a good candidate for an approximation solution, even if the
objective function is not about length. This is due to a special property of the
minimum spanning tree as follows:

9.2 Role of Minimum Spanning Tree 263

Lemma 9.2.3 Let T be a spanning tree and T ∗ be a minimum spanning tree. Let
E(T) and E(T ∗) be their edge sets. Then, there is a one-to-one onto mapping f

from E(T ∗) to E(T) such that

c(e) ≤ c(f (e)) for any e ∈ E(T ∗),

where c(e) is the length of edge e.

Proof Let T ′ be a minimum spanning tree produced by Kruskal algorithm, with
edges e′1, e′2, . . . , e′t in ordering c(e′1) ≤ c(e′2) ≤ · · · ≤ c(e′t). Let T be a spanning
tree with edges e1, e2, . . . , et in ordering c(e1) ≤ c(e2) ≤ · · · ≤ c(et). We claim
c(e′i) ≤ c(ei) for all i = 1, 2, . . . , t .

For contradiction, suppose the claim is not true. Let k be the smallest index such
that c(e′k) > c(ek). Denote A = {e′1, . . . , e′k−1} and B = {e1, . . . , ek}. Let G[A]
denote the subgraph of G, induced by edge set A. By the rule in Kruskal algorithm,
for each ei ∈ B, either ei is an edge in T ′[A] or T ′[A] ∪ ei contains a cycle.
Therefore, T ′[A] is a spanning forest of G[A ∪ B]. It implies that every acyclic
subgraph of G[A ∪ B] contains at most k − 1 edges, contradicting the fact that
|B| = k.

Now, let T ∗ be a minimum spanning tree with edges e∗1, e∗2, . . . , e∗t in ordering
c(e∗1), c(e∗2), . . . , c(e∗t). From above proved claim, we know that c(e′i) ≤ c(e∗i)
for all i = 1, 2, . . . , t . Moreover, we have

∑t
i=1 c(e′i) = ∑t

i=1 c(e∗i). Hence,
c(e′i) = c(e∗i) for all i = 1, 2, . . . , t . Now, define f (e∗i) = ei . Then, f meets
the requirement.
�

Next, we study two variations of Steiner tree.

Problem 9.2.4 (Steiner Tree with Minimum Number of Steiner Points (ST-
MSP)) Given n terminals in the Euclidean plane and a positive number R, compute
a Steiner tree interconnecting all terminals with the minimum number of Steiner
points such that every edge has Euclidean length at most R.

The ST-MSP problem has a strong application background in wavelength
division multiplexing (WDM) optical network design. Suppose there are n sites
required to be interconnecting with WDM optical network. Due to the limit of
transmission power, signals can only travel a limited distance R. Therefore, for
distances larger than R, some amplifiers or receivers/transmitters are placed on the
intermediate locations to break the distance into pieces of length at most R.

A Steiner tree as a feasible solution for ST-MSP may contain a Steiner point
with degree two. If all Steiner points have degree two, then this Steiner tree can be
obtained from a spanning tree by putting Steiner points on its edges, which will
be called a steinerized spanning tree (Fig. 9.4). We reserve the term “minimum
spanning tree” for a spanning tree with minimum length. Define the minimum
steinerized spanning tree to be the steinerized spanning tree with minimum number
of Steiner points. The minimum spanning tree and the minimum steinerized
spanning tree have a close relationship.

264 9 Restriction and Steiner Tree

Fig. 9.4 Steinerized
spanning tree

Fig. 9.5 Proof of Theorem 9.2.6

Lemma 9.2.5 By breaking each edge with length longer than R into smaller pieces
of length at most R, the minimum length spanning tree will induce a minimum
steinerized spanning tree.

Proof It follows immediately from Lemma 9.2.3.
�

Theorem 9.2.6 Suppose that for any set of terminals, there always exists a
minimum spanning tree with vertex degree at most D. Then, the minimum steinerized
spanning tree is (D − 1)-approximation for ST-MSP.

Proof Let P be a set of terminals and S∗ an optimal tree on input P for ST-MSP.
Suppose S∗ contains k Steiner points s1, s2, . . . , sk in the ordering of the breadth-
first search starting from a node of S∗. Let N(P) denote the number of Steiner points
in a minimum steinerized spanning tree induced from the minimum length spanning
tree on P . We first show a claim that

N(P ∪ {s1, . . . , si}) ≤ N(P ∪ {s1, . . . , si+1}) + (D − 1). (9.1)

To do so, consider a minimum length spanning tree T for P ∪ {s1, . . . , si+1}, with
degree at most D. Suppose si+1 has adjacent nodes v1, . . . , vd (d ≤ D). Then,
one of the edges (si+1, v1), . . . , (si+1, vd) has length not exceeding R because P ∪
{s1, . . . , si} has distance at most R from si+1 (Fig. 9.5).

Without loss of generality, assume the length of (si+1, v1) is at most R. Delete
edges (si+1, v1), . . . , (si+1, vd), and add d − 1 edges (v1, v2), . . . , (v1, vd). This
results in a spanning tree T ′ on P ∪ {s1, . . . , si}. Since d(v1, vj) ≤ d(v1, si+1) +

9.2 Role of Minimum Spanning Tree 265

d(si+1, vj) ≤ R + d(si+1, vj) where d(x, y) is the Euclidean distance between x

and y, we have that breaking edge d(v1, vj) into pieces of length at most R needs
one more degree-two Steiner point than that breaking (si+1, vj) needs. It follows
that inducing T ′ into a steinerized spanning tree needs d−1 more degree-two Steiner
points than N(P ∪ {s1, .., si}). Thus, this spanning tree T ′ contains at most d − 1
more Steiner points than T . Therefore, by Lemma 9.2.5, (9.1) holds. Hence,

N(P) ≤ N(P ∪ {s1, . . . , sk}) + k(D − 1) = k(D − 1).

�
Note that for any set of terminals in the Euclidean plane, there is a minimum

spanning tree with degree at most 5 (an exercise in Chap. 1). Therefore, we have the
following:

Corollary 9.2.7 The minimum steinerized spanning tree is 4-approximation for ST-
MSP in the Euclidean plane.

Proof It follows immediately from the fact that for any set of terminals in the
Euclidean plane, there is a minimum spanning tree with degree at most 5. We leave
the proof of this fact as an exercise.
�

The following problem is closely related to ST-MSP:

Problem 9.2.8 (Bottleneck Steiner Tree) Given a set P of terminals in the
Euclidean plane and a positive integer k, find a Steiner tree on P with at most k

Steiner nodes, to minimize the length of longest edge.

Consider a spanning tree T on P . The steinerized spanning tree induced by T is
defined to be the tree obtained in the following way:

Optimal Steinerization:
input: A spanning tree T .
output: A steinerized spanning tree T .

for every edge e ∈ T do n(e) ← 0;
for i = 1 to k do

choose e ∈ T to maximize c(e)/n(e)

(remind: c(e) is the length of edge e)
and set n(e) ← n(e) + 1;

for every edge e ∈ T do
cut e evenly with n(e) Steiner points;

return T .

Next, we show two lemmas:

Lemma 9.2.9 Among steinerized spanning tree obtained from T by adding k

Steiner points, optimal Steinerization gives the one with the minimum of longest
edge length.

266 9 Restriction and Steiner Tree

Proof We prove it by induction on k. For k = 0, it is trivial. Next, consider k ≥ 1.
Let e1, e2, . . . , et be all edges of T . Suppose that after adding k Steiner points,

c(e1)

n(e1)
= max

1≤i≤t

c(ei)

n(ei)
.

Denote by Opt(k; e1, . . . , et) the minimum value of longest edge length after
adding k Steiner points on edges e1, . . . , et . We will show that

Opt(k + 1; e1, . . . , et) = max

(
max
2≤i≤t

c(ei)

n(ei)
,

c(e1)

n(e1) + 1

)
. (9.2)

By induction hypothesis,

Opt(k; e1, . . . , et) = c(e1)

n(e1)
.

Note that in the algorithm on input e1, e2, . . . , et , if we ignore the step for adding
points on e1, then the remaining steps are exactly those steps in the algorithm on
input e2, . . . , et . Therefore, by induction hypothesis, we also have

Opt(k − n(e1); e2, . . . , et) = max
2≤i≤t

c(e1)

n(e1)
.

Note that

Opt(k + 1; e1, . . . , et) ≤ max

(
Opt(k − n(e1); e2, . . . , et),

c(e1)

n(e1) + 1

)
.

Thus, to show (9.2), it suffices to prove

Opt(k + 1; e1, . . . , et) ≥ max

(
Opt(k − n(e1); e2, . . . , et),

c(e1)

n(e1) + 1

)
.

For contradiction, suppose

Opt(k + 1; e1, . . . , et) < max

(
Opt(k − n(e1); e2, . . . , et),

c(e1)

n(e1) + 1

)
.

(9.3)
This implies

Opt(k + 1; e1, . . . , et) < Opt(k; e1, . . . , et).

Let n∗(e1) denote the number of Steiner points on e1 in an optimal solution for
Opt(k + 1; e1, . . . , et). By (9.3), we must have n∗(e1) > n(e1) + 1 and

9.2 Role of Minimum Spanning Tree 267

Opt(k + 1 − n∗(e1); e2, . . . , et) < Opt(k; e1, . . . , et).

Note that

c(e1)

n∗(e1) − 1
≤ c(e1)

n(e1) + 1
< Opt(k; e1, . . . , et).

Hence,

max

(
Opt(k + 1 − n∗(e1); e2, . . . , et),

c(e1)

n∗(e1) − 1

)
< Opt(k; e1, . . . , et),

a contradiction.
�

Lemma 9.2.10 Among steinerized spanning trees, the one induced by minimum
spanning tree reaches the minimum of longest edge length.

Proof It follows immediately from Lemma 9.2.3.
�

Theorem 9.2.11 The steinerized spanning tree induced by minimum spanning tree
is a 2-approximation solution for the bottleneck Steiner tree.

Proof Consider an optimal Steiner tree T ∗ for the bottleneck Steiner tree problem.
We want to modify T ∗ into a steinerized spanning tree. Note that every Steiner tree
can be decomposed into full components in each of which all terminals are leaves.
Since this decomposition is on terminals, it suffices to consider each full component.

Let T be a full component with k Steiner points with edge length at most R. We
arbitrarily select a Steiner point s as the root. A path from the root to a leaf is called
a root-leaf path. Its length is the number of edges on the path which is equal to
the number of Steiner points on the path. Let h be the length of a shortest root-leaf
path. We will show by induction on the depth d of T that there exists a steinerized
spanning tree for all terminals with at most k−h degree-two Steiner points and edge
length at most 2R. Here, the depth of T is the length of a longest root-leaf path.

For d = 0, T contains only one terminal, so it is trivial. For d = 1, T contains
only one Steiner point. We can directly connect the terminals without any Steiner
points since, by the triangular inequality, the distance between two terminals is at
most 2R.

Next, we consider d ≥ 2. Suppose s has t sons s1, . . . , st . For each si , there is a
subtree Ti rooted at si with depth ≤ d − 1. Let ki be the number of Steiner points in
Ti and hi the length of a shortest root-leaf path in Ti , from si to a leaf vi (Fig. 9.6).

By induction hypothesis, there exists a steinerized spanning tree Si for all
terminals in Ti with at most ki − hi degree-two Steiner points and edge length
at most 2R. Without loss of generality, assume h1 ≥ h2 ≥ · · · ≥ ht . Connect all
Si for i = 1, . . . , t into a spanning tree S with edges (v1, v2), . . . , (vt−1, vt), and
put hi Steiner points on edge (vi, vi+1). Note that the path between vi and vi+1 in
T contains hi + hi+1 + 2 edges. By triangular inequality, the distance between vi

268 9 Restriction and Steiner Tree

Fig. 9.6 Proof of Theorem 9.2.11

and vi+1 is at most (hi + hi+1 + 2)R ≤ 2(hi + 1)R. Therefore, hi Steiner points
would break (vi, vi+1) into hi + 1 pieces each of length ≤ 2R. Note that S contains
k1 + · · · + kt−1 + kt − ht = k − (ht + 1) Steiner points. Moreover, the path from s

to vt in T contains ht + 1 Steiner points. Hence, h ≤ ht + 1.
�
The minimum spanning tree also has many applications in the study the energy

efficient problems in wireless ad hoc and sensor networks. Those applications are
based on the following property.

Lemma 9.2.12 Let f be a nonnegative monotone nondecreasing function. Then,
the minimum length spanning tree is an optimal solution for the following problem:

min
∑
e∈T

f (c(e))

subject to T is over all spanning trees.

Proof It follows immediately from Lemma 9.2.3.
�
In wireless ad hoc and sensor networks, each wireless node (sensor or device) u

has a communication radius Rc(u). Another wireless node v is able to receive signal
from u if and only if the distance from u to v is at most Rc(u). The communication
radius Rc(u) is determined by energy consumption at node u, i.e., power at u as
follows:

p(u) = cRc(u)α

9.2 Role of Minimum Spanning Tree 269

where c and α are positive constants and usually 2 ≤ α ≤ 6. Arc (u, v) is said to
exist if v is able to receive signals from u. Edge (u, v) is said to exist if v can receive
signals from u and u can also receive signals from v.

Suppose a directed graph G = (V ,E) is obtained from setting up energy power
at every node. Then, denote

p(G) =
∑
u∈V

p(u).

In arborescence, if we reverse the direction of every arc, then we obtain an in-
arborescence.

Lemma 9.2.13 (In-Arborescence Lemma) Suppose G contains an in-arbore-
scence T . Then,

p(G) ≥ p(T)

where

p(T) =
∑
e∈T

c‖e‖α.

Proof In every arborescence T , each arc (u, v) is unique arc going from u.
Therefore, to make (u, v) exist, we need to set up

p = c‖(u, v)‖α.

Therefore,

p(T) =
∑
e∈T

c‖e‖α.

�
Now, we consider the following two problems.

Problem 9.2.14 (Symmetric Topological Control) Given a set of wireless nodes
in the Euclidean plane, set up power at each node to maintain the existence of a
spanning tree interconnecting them and to minimize the total power consumption.

Problem 9.2.15 (Asymmetric Topological Control) Given a set of wireless nodes
in the Euclidean plane, set up power at each node to maintain the existence of a
strongly-connected graph on them and to minimize the total power consumption.

Theorem 9.2.16 The minimum length spanning tree is 2-approximation solution
for the symmetric topological control problem, and also for the asymmetric
topological control problem.

270 9 Restriction and Steiner Tree

Proof Suppose G is the optimal (directed) graph maintained in symmetric or
asymmetric topological control. Then G must contain an in-arborescence. By In-
Arborescence Lemma and Lemma 9.2.3, we have

p(G) ≥ p(T) ≥
∑
e∈T ∗

c‖e‖α

where T is an in-arborescence and T ∗ is a minimum length spanning tree. Note that
to maintain the existence of an edge (u, v), we need power

p(u) + p(v) = 2c‖(u, v)‖α.

Hence, to maintain the existence of T ∗, we need power at most

2 ·
∑
e∈T ∗

c‖e‖α ≤ 2p(G).

�
In the next problem, in-arborescence is not required to exist, but out-arborescence

exists.

Problem 9.2.17 (Min-Energy Broadcasting) Given a set of points S in the
Euclidean plane and a source node s ∈ S, find a broadcasting routing from s

to minimize the total energy consumption of the routing.

Again, a naive approximation is to turn a minimum (Euclidean length) spanning
tree T into a broadcasting routing. Its total energy consumption is

c
∑
e∈T

‖e‖α

where ‖e‖ is the Euclidean length of edge e. To establish the performance ratio
of this approximation induced by the minimum spanning tree, we first prove the
following:

Lemma 9.2.18 Let C be a disk with center x and radius R. Suppose P is a set of
points lying in C and contains x. Then, for minimum spanning tree T on P ,

∑
e∈T

‖e‖α ≤ 8Rα

where α ≥ 2.

Proof Since x ∈ P , every edge of T has length at most R. Let Tr be the subgraph
of T , induced by all edges with length at most r . Let n(T , r) denote the number of
connected components of Tr . Then,

9.2 Role of Minimum Spanning Tree 271

Fig. 9.7 For each connected
component, those disks form
a connected region, and those
regions for different
connected components are
disjoint

∑
e∈T

‖e‖α = α

∫ R

0
(n(T , r) − 1)rα−1dr.

Associate each node u ∈ P with a disk with center u and radius r/2. Then, for
each connected component, those disks form a connected region, and those regions
for different connected components are disjoint (Fig. 9.7). Moreover, since each
such region contains at least one disk with radius r/2, its area is at least π(r/2)2.
Therefore, the boundary of each region has length at least πr . This is because
for surrounding a certain amount area, circle gives the shortest length. Let a(P, r)

denote the total area covered by those disks with radius r/2. Now, we have

a(P,R) =
∫ R

0
d(a(P, r))

≥
∫ R

0
n(T , r)πrd(r/2)

= π

2

∫ R

0
(n(T , r) − 1)rdr + πR2

4

= π

4

∑
e∈T

‖e‖2 + πR2

4
.

Note that a(P,R) is contained by a disk at x with radius 1.5R. Therefore,

π(1.5R)2 ≥ π

4

∑
e∈T

‖e‖2 + πR2

4
.

Hence,

∑
e∈T

‖e‖2 ≤ 8R2.

272 9 Restriction and Steiner Tree

Note that for every e ∈ T , ‖e‖ ≤ R. Hence,

∑
e∈T

(‖e‖/R)α ≤
∑
e∈T

(‖e‖/R)2 ≤ 8.

�

Theorem 9.2.19 The minimum spanning tree induces an 8-approximation for the
min-energy broadcasting problem.

Proof Consider an optimal solution T ∗ for the min-energy broadcasting problem,
i.e., T ∗ is a minimum energy broadcasting routing. For each internal node u of T ∗,
we draw a smallest disk Du to cover all out-arc at u. Let D be the set of such disks
and Ru is the radius of disk Du. Those disks will cover all points in input set S and
the total energy consumption of T ∗ is

∑
Du∈D

cRα
u .

Now, for each disk Du, construct a minimum spanning tree Tu on u and all endpoints
of out-arcs at u (Fig. 9.8). By Lemma 9.2.18,

∑
e∈Tu

‖e‖α ≤ 8 · Rα
u .

Note that ∪Du∈DTu is a spanning tree on all nodes of T ∗. Let T be a minimum length
spanning tree on all nodes of T ∗. However, the energy consumption of broadcasting
routing induced by T is at most

∑
e∈T

c‖e‖α ≤
∑

Du∈D

∑
e∈Tu

c‖e‖α ≤
∑

Du∈D
c · Rα

u ≤ 8p(T ∗).

�

Fig. 9.8 Construct a
minimum spanning tree Tu on
u and all endpoints of
out-arcs at u

9.3 Rectilinear Steiner Minimum Tree 273

Fig. 9.9 This example shows
that constant 6 is tight

Lemma 9.2.18 can be improved by more careful argument, so that the constant 8
is brought down to 6 [3], which is tight (Fig. 9.9).

9.3 Rectilinear Steiner Minimum Tree

In a coordinate plane, distance d(p1, p2) = |x1 − x2| + |y1 − y2| for two points
p1 = (x1, y1) and p2 = (x2, y2) is called the rectilinear distance. The plane
with rectilinear distance is called the rectilinear plane. In this section, we study
the Steiner tree in the rectilinear plane.

Problem 9.3.1 (Rectilinear Steiner Minimum Tree) Given a set P of n points,
called terminals, in the rectilinear plane, find a minimum length tree interconnecting
all terminals in P .

We will design a PTAS for the rectilinear Steiner minimum tree. First, we draw
a minimum square Q including all terminals inside, then divide the square into an
n2 × n2 grid, and move each terminal to the center of the cell which contains the
terminal (Fig. 9.10).

Lemma 9.3.2 If PATs exists for terminals located at centers of cells, so does for
terminals located anywhere.

Proof Let L be the edge length of square Q. Then, all terminals moving to cell
centers spend totally at most n× L

n2 = L
n

. Since Q is the minimum square containing
all terminals, every rectilinear Steiner tree has length at least L. Suppose P ′ be
the set of cell centers receiving moved terminals. Let opt(P) denote the length of
rectilinear Steiner minimum tree for terminal set P . Then, we must have

opt(P ′) ≤ opt(P) + L

n
≤
(

1 + 1

n

)
· opt(P).

Since for P ′, PTAS exists, we have that for any ε > 0, there exists a polynomial-
time approximation solution A for P ′ with length

274 9 Restriction and Steiner Tree

Fig. 9.10 Each terminal
moves to the center of a cell

length(A) ≤ (1 + ε) · opt(P ′).

Connecting each cell center back to terminal in P , we obtain a solution for P with
length at most

length(A) + L

n
≤
[
(1 + ε)

(
1 + 1

n

)
+ 1

n

]
· opt(P).

When n is sufficiently large and ε is sufficiently small, we can make

(1 + ε)

(
1 + 1

n

)
+ 1

n
− 1

smaller than any positive number.
�
By this lemma, we consider all terminals lying at cell centers.
Next, we define a type of partition, (1

3 , 2
3)-partition. Consider a rectangle R lying

in square Q. As shown in Fig. 9.11, a (1
3 , 2

3)-cut is a guillotine cut satisfying the
following conditions:

• Cut line is parallel to shorter edge.
• Cut line is located between 1

3 and 2
3 break points on longer edge.

• Cut line must lie on grid line, i.e., pass through lattice points.

The (1
3 , 2

3)-cut has an important property.

Lemma 9.3.3 Suppose that for rectangle R, the length of shorter edge is at least
one third of the length of longer edge. Then, for every rectangle obtained from a
(1

3 , 2
3)-cut, the length of shorter edge is at least one third of the length of longer

edge.

9.3 Rectilinear Steiner Minimum Tree 275

Fig. 9.11 A
(

1
3 , 2

3

)
-cut

Fig. 9.12 Each(
1
3 , 2

3

)
-partition results in a

binary tree with depth
O(log n)

Proof Trivial.
�
A (1

3 , 2
3)-partition is a sequence of (1

3 , 2
3)-cuts. Each cut divides a rectangle into

two smaller ones so that all obtained rectangles form a binary tree (Fig. 9.12). Since
each cut line is located at a grid line, every obtained rectangle has area at least
L2/n4. Therefore, this binary tree has a depth at most

�log2 n4� + 1 = O(log n).

For each cut segment, we put on m portals such that m portals divide the cut
segment equally (Fig. 9.13). Now, we are ready to describe a restriction as follows:

A rectilinear Steiner tree T is restricted if there exists a (1
3 , 2

3)-partition such that
if a segment of T passes through a cut line, then it passes at a portal (Fig. 9.13).

Lemma 9.3.4 Minimum restricted rectilinear Steiner tree can be computed in time
n262O(m) by dynamic programming.

Proof Each cut has O(n2) choices. It takes O(n2) time to select the best one.
To show the lemma, it suffices to prove that the number of subproblems is
O(n242O(m)). Each subproblem can be determined by the following four facts:

1. Determine a rectangle. (There are O(n8) possibilities.)
2. Determine position of portals at each edge. (There are O(n4) possibilities as

shown in Fig. 9.14.)

276 9 Restriction and Steiner Tree

Fig. 9.13 m portals divide a
cut segment equally

Fig. 9.14 On each rectangle
edge, portal position has
O(n4) possibilities

Fig. 9.15 Using portals are
partition into several parts in
each of which portals is
connected and every terminal
in the rectangle is connected
to some tree containing a
portal

3. Determine the set of using portals. (There are 2O(m) possibilities.)
4. There are 2O(m) possible partitions for using portals such that in each partition,

portals in every part are connected and every terminal in rectangle is connected
to a tree containing at least one portal (Fig. 9.15).

For fact 4, we may need a detail proof as follows: Let N(k) denote the number
of partitions for k using-portals. Then, N(0) = 1 and

N(k) = N(k − 1) + N(k − 2)N(1) + · · · + N(1)N(k − 2) + N(k − 1)

= N(k − 1)N(0) + N(k − 2)N(1) + · · · + N(1)N(k − 2)

+N(0)N(k − 1).

9.3 Rectilinear Steiner Minimum Tree 277

Define

f (x) = N(0) + N(1)x + N(2)x2 + · · · + N(k)xk + · · · .

Then,

xf 2(x) = f (x) − 1.

Therefore,

f (x) = 1 ±√
1 − 4x

2x
.

Since f (0) = 1, we have

f (x) = 1 −√
1 − 4x

2x
= −

∞∑
k=1

(
k

1/2

)
· (−4x)k

2x
.

Thus,

N(k) = −
(

k + 1

1/2

)
· (−4)k+1

2

= 0.5(0.5 − 1)(0.5 − 2) · · · (0.5 − k)

(k + 1)! · (−1)k · 22k+1

= 2O(k).

Finally, note that k ≤ 4m.
�
Let us use the minimum restricted Steiner tree as an approximation solution of

the rectilinear Steiner minimum tree. What is its performance ratio? To analyze,
consider an optimal solution T ∗ lying in Hanan grid. The Hanan grid is constructed
by drawing vertical and horizontal lines through terminals. Hanan’s theorem states
that there exists a rectilinear Steiner minimum tree lying in Hanan grid. (We leave
the proof as an exercise.) This means that T ∗ has no segment lying on any possible
cut line.

We next need to modify T ∗ to satisfy the restriction. First, we select a (1
3 , 2

3)-
partition. The rule is as follows:

• Consider any rectangle R containing a tree-edge segment. If there exists a
possible (1

3 , 2
3)-cut, then select a cut.

• Selected cut should minimize the number of cross-points among all possible
(1

3 , 2
3)-cuts.

Let nR denote the number of cross-points on the cut line selected to cut R. Let

(T ∗

R) denote the total length of segments of T ∗ lying in R. Let a(R) be the length
of longer edge of R. From the rule of selecting cut, we can see immediately that

278 9 Restriction and Steiner Tree

Fig. 9.16 Move each
cross-point to closest portal

nR · a(R)

3
≤
(T ∗

R). (9.4)

Now, we move each cross-point to closest portal as shown in Fig. 9.16. In each
rectangle R in the binary tree resulting from the selected (1

3 , 2
3)-partition, such

moving will increase the total length within

nR · b(R)

m + 1

where b(R) is the length of selected cut, i.e., the length of the shorter edge of R. By
(9.4), we have that moving cross-points increases the total length inside R, upper
bounded by

nR · b(R)

m + 1
≤ 3

m + 1
·
(T ∗

R).

Note that as shown in Fig. 9.12, at each level of the binary tree, all rectangles have
disjoint interiors. Therefore, the sum of
(T ∗

R) for R overall rectangles at each
level is at most
(T ∗), the length of the optimal solution. Since the binary tree has
O(log n) levels, the total increased length in moving cross-points to portals is at
most

3

m + 1
· O(log n) ·
(T ∗). (9.5)

Choose m + 1 = 3·O(log n)
ε

. Then, the totally increased length will be at most

ε ·
(T ∗).

9.4 Connected Dominating Set 279

This means that the minimum restricted rectilinear Steiner tree has performance
ratio 1 + ε when it is considered as an approximation of the rectilinear Steiner
minimum tree. Moreover, for the choice of m in (9.5), we have

2O(m) = nO(1).

Therefore, the minimum restricted Steiner tree can be computed in polynomial-time.
This completes the proof of the following theorem:

Theorem 9.3.5 The rectilinear Steiner minimum tree problem has a PTAS.

9.4 Connected Dominating Set

Consider a graph G = (V ,E). A subset of vertices, C, is called a dominating set
if every vertex is either in C or adjacent to a vertex in C. C is called a connected
dominating set (CDS) if, moreover, the subgraph G[C] induced by C is connected.

CDS has an interesting relationship with spanning tree. In a spanning tree,
deleting all leaves results in a CDS. Conversely, every CDS can induce a spanning
tree by adding leaves. Moreover, a CDS with minimum cardinality induces a
spanning tree with maximum number of leaves.

Suppose there are n points lying in the Euclidean plane. Add an edge between
two points x and y if and only if the distance between them, d(u, v), is at most one.
The graph constructed in this way is called a unit disk graph. In fact, such a graph
can also be induced in the following way: Place a unit disk (i.e., a disk with diameter
1) at each point, and take the point as disk center. Connect two points with an edge
if and only if two disks associated with the two points intersect each other.

In this section, we study the following problem:

Problem 9.4.1 (Minimum CDS in Unit Disk Graphs) Given a connected unit
disk graph G = (V ,E), find a CDS with minimum cardinality.

Our goal is to construct a PTAS for this problem. To do so, we first put input unit
disk graph G into the interior of a square Q = {(x, y) | 0 ≤ x ≤ q, 0 ≤ y ≤ q}.
We next construct a grid covering Q. This grid consists of cells with edge length a,
and its left-bottom corner has coordinates (x, y) (Fig. 9.17). This grid will partition
Q into small areas. Denote this partition by P(x, y).

Next, for each cell e, construct two squares with identical center and edge lengths
a + 2 and a + 2h + 2, respectively, as shown in Fig. 9.18. Let Se and S′

e denote the
interiors of the first square and the second square, respectively. Let us call Se the
central area, S′

e \ e the boundary area, and S′
e \ Se the outer boundary area.

Now, let us construct an approximation solution for the minimum CDS in unit
disk graph G:

280 9 Restriction and Steiner Tree

Fig. 9.17 Partition P(x, y)

Fig. 9.18 Central area,
boundary area, and outer
boundary area of a cell

• For each cell e, the part of G lying in central area of cell may be broken
into several connected components. Let He denote set of those connected
components.

• For each such connected component H , find a minimum subset CH of nodes in
S′

e which dominates nodes in H and induces a connected subgraph (Fig. 9.19).
CH will be called a CDS for H in S′

e.
• Let Ce denote the union of CH for H over He.
• Let Cx,y denote the union of Ce for e over all cells of partition P(x, y).

Let us estimate the running time for computing Cx,y .

9.4 Connected Dominating Set 281

Fig. 9.19 CH dominates
nodes in H , but is connected
in S′

e

Fig. 9.20 Se is partitioned
into �(a + 2)

√
2�2 small

areas

Lemma 9.4.2 Cx,y can be computed in time nO(a2).

Proof Let us first estimate the computation time for Ce. Partition Se into �(a +
2)
√

2�2 small areas which are squares or rectangles with edge or longer-edge
length

√
2/2 (Fig. 9.20). Note that the diameter of each small area is at most one.

If a small area contains a node, then choose one of them which can dominate
others. Therefore, the minimum dominating set for nodes inside Se contains at most
�√2(a + 2)�2 nodes.

In a connected component H , if D is a dominating set, then we can connect D

into a CDS for H by adding at most 2(|D| − 1) nodes. (We leave the proof of this
fact as an exercise.) From this fact, it follows immediately that

|Ce| ≤ 2(�√2(a + 2)�2 − 1) = O(a2).

Denote by ne the number of nodes lying in central area S′
e. Then, by exhausting

search, we can find Ce in n
O(a2)
e .

For a > 2(h + 1), each node can lie in S′
e for at most four cells e. Therefore,∑

e∈P(x,y) ne ≤ 4n where n = |V |. Thus, total time for computing Cx,y is at most

∑
e∈P(x,y)

nO(a2)
e ≤ (4n)O(a2) = nO(a2).

�

282 9 Restriction and Steiner Tree

Fig. 9.21 For contradiction,
suppose H ∩ H ′ = ∅

Lemma 9.4.3 Cx,y is a CDS for G.

Proof It is sufficient to prove the following: Let H be a connected component of
G∩ Se and H ′ a connected component of G∩ Se′ . If H and H ′ are connected, then
CH and CH ′ are connected.

First, we claim that H∩H ′ �= ∅ (Fig. 9.21). For contradiction, suppose H∩H ′ =
∅. Since H and H ′ are connected, there exist nodes u ∈ H and v ∈ H ′ such that
d(u, v) ≤ 1. Then, either u or v lies in the union of inner boundary areas of cells e

and e′, which must belong to H ∩ H ′, a contradiction.
Now, suppose u lies in H ∩H ′. Then, there exist v ∈ CH and w ∈ CH ′ such that

v dominates u and w dominates v. Then, either v or w lies in (Se \ e) ∪ (Se′ \ e′).
Without loss of generality, assume v lies in (Se \ e) ∪ (Se′ \ e′). Then, v must be in
H ′ and hence dominated by CH ′ . Hence, CH and CH ′ are connected.
�

Choose a = m(h+1) and x = y = 0,−(h+1),−2(h+1), . . . ,−(m−1)(h+1).
Then, among m partitions P(x, y), choose the one to have the smallest Cx,y . This
Cx,y is an approximation solution satisfying the following restriction:

Restriction There exists a partition P(x, y) with x = y ∈ {0,−(h +
1), . . . ,−(m − 1)(h + 1)} such that for every cell e and every connected
component H of G ∩ Se, the CDS in S′

e contains connected component
dominating H .

It is important to note that C(x, y) may not be the smallest one satisfying the
restriction. However, C(x, y) is the one to reach the minimum

∑
e∈P(x,y) |Ce|

among all CDS satisfying the restriction for partition P(x, y). Let X = {0,−(h +
1),−2(h + 1), . . . ,−(m − 1)(h + 1)}. Then, |C(x, y)| and

∑
e∈P(x,y) |Ce| for

x = y ∈ X may reach the minimum by different (x, y). However, we have

min
x∈X

|C(x, x)| ≤ min
x∈X

∑
e∈P(x,x)

|Ce|.

Therefore, for analysis of approximation performance, we may consider∑
e∈P(x,x) |Ce| instead of |C(x, x)|.
Let C∗ be a minimum CDS for input graph G. We need to find a partition P(x, x)

such that C∗ be modified into a CDS S′ to satisfy the restriction and

9.4 Connected Dominating Set 283

∑
e∈P(x,x)

|C′
e| ≤ (1 + ε)|C∗|

where C′
e = C′ ∩ S′

e.

Lemma 9.4.4 Suppose h ≥ 2. For any partition P(x, x), C∗ can be modified to a
CDS C′ such that

∑
e∈P(x,x)

|C′
e| ≤ |C∗| + 14 · |Bx |

where Bx is the set of nodes in C∗, lying in boundary area ∪e∈P(x,x)(S
′
e \ e).

Proof Consider a cell e and a connected component H of G ∩ Se. Suppose that
C∗ ∩ S′

e does not have a connected component dominating H . Let us consider those
connected components of C∗ ∩ S′

e, say C1, . . . , Ck , each of which dominates at
least one node in H . Since H is connected, there must exist Ci and Cj such that
their distance is at most three, i.e., adding a most two nodes will connect Ci and Cj .
Therefore, adding totally at most 2(k − 1) nodes will connect all C1, . . . , Ck into
a connected one. Note that h ≥ 2 and all C1, . . . , Ck are connected outside of S′

e

through C∗. Therefore, every Ci must contain a node lying in outer boundary area
S′

e \ Se. We choose the one adjacent to a node in H . We may charge 2 to each such
node in k − 1 of them (Fig. 9.22). Moreover, each such node can be charged at most
five times since each node can be adjacent to at most five connected components of
G ∩ Se.

Finally, every node in boundary area can lie in S′
e for at most four cells e.

Summarize all above, each node in the boundary area can be repeatedly counted
for at most 14 times.
�

Now, we show the result of analysis.

Theorem 9.4.5 There exists a PTAS for the minimum CDS problem in unit disk
graphs.

Fig. 9.22 Charge 2 for nodes
of C∗ lying in S′

e \ Se and
adjacent to H

284 9 Restriction and Steiner Tree

Fig. 9.23 Boundary area can
be covered by horizontal and
vertical strips

Fig. 9.24 Each node appears in horizontal strip once and in vertical strip once

Proof As shown in Fig. 9.23, for each x, the boundary area ∪e∈P(x,x)(S
′
e \ e) can be

covered by horizontal strips and vertical strips. All horizontal strips are disjoint, and
all vertical strips are disjoint for x over X (Fig. 9.24). Therefore, each node appears
in at most one horizontal strip and at most one vertical strip. Therefore, each node
appears in Bx at most twice for x over X. This implies

∑
x∈X

|Bx | ≤ 2|C∗|.

Thus, there exists x ∈ X such that |Bx | ≤ 2/m. Choose m ≥ 38/ε. For this x, we
can modify C∗ into a CDS C′ such that

∑
e∈P(x,x)

|C′
e| ≤ (1 + ε)|C∗|.

This means that the Cx,y in Lemma 9.4.3 is (1 + ε)-approximation.
�

Exercises 285

Exercises

1. (L. Kou, G. Markowsky, and L. Berman [265]) Consider an undirected graph
G = (V ,E) with edge weight d : E → R+. Let P ⊆ V be a set of terminals.
Prove that the following algorithm gives a Steiner tree with performance ratio
2(1 − 1

) for the Steiner minimum tree where
 is the number of leaves in an

optimal tree:

• Construct the complete undirected distance graph G1 = (P,E1, d1) where
for any two nodes u, v ∈ P , d1(u, v) is equal to the shortest distance between
u and v in G.

• Compute a minimum spanning tree T1 of G1.
• Construct subgraph GP of G by replacing each edge in T1 by its correspond-

ing shortest path in G.
• Compute a minimum spanning tree TP of GP .
• Simplify TP by deleting useless edges, so that all leaves are terminals.

2. Show that for every binary tree, there exist edge-disjoint paths from all internal
nodes to leaves.

3. A Steiner tree is called a full tree if every terminal is a leaf in it. Every Steiner
tree can be decomposed at terminal with degree more than one. Obtained full
trees are called full components. A Steiner tree is k-restricted if every full
component contains at most k terminals. Show that for any ε > 0, there exists
a sufficiently large k such that the length of the k-restricted Steiner minimum
tree is within a factor of 1 + ε from the network Steiner minimum tree.

4. Consider a set P of terminals on the rectilinear plane. Draw vertical and
horizontal lines through every terminal. They will form a grid. This is called
Hanan grid. Show that there exists a rectilinear Steiner minimum tree on P ,
lying in Hanan grid.

5. Consider a dominating set D for a connected graph G. Show that D can be
connected into a CDS by adding at most 2(|D| − 1) nodes.

6. (Minimum Diameter Spanning Tree) Given an edge-weighted undirected graph
G = (V ,E,w), design a polynomial-time algorithm to find a spanning tree
with the minimum diameter.

7. (Minimum Diameter Steiner Tree) Given an edge-weighted undirected graph
G = (V ,E,w) and a set P ⊆ V of terminals, find a Steiner tree with the
minimum diameter. Suppose that edge weight w is nonnegative. Show that this
problem is NP-hard, and design a polynomial-time approximation algorithm.

8. (Group Spanning Tree) Consider an edge-weighted undirected graph
G = (V ,E,w). Suppose that w is nonnegative. Given k disjoint groups
V1, V2, . . . , Vk of nodes, find a minimum weight tree spanning all groups, i.e.,
the tree contains at least one node from each group. Please determine whether
this problem is polynomial-time solvable or not.

9. (Group Spanning Forest) Consider an edge-weighted undirected graph
G = (V ,E,w). Suppose that w is nonnegative. Given k disjoint groups

286 9 Restriction and Steiner Tree

V1, V2, . . . , Vk of nodes, find a minimum weight forest spanning all groups,
i.e., the forest contains at least one node from each group such that if every
group is contracted into a node, then the forest becomes a tree. Design a
polynomial-time algorithm for this problem.

10. (Group Steiner Tree) Consider an edge-weighted undirected graph G =
(V ,E,w). Suppose that w is nonnegative. Given k disjoint groups
V1, V2, . . . , Vk of nodes, find a minimum weight Steiner forest interconnecting
all groups, i.e., the forest contains at least one node from each group such that
if every group is contracted into a node, then the forest becomes a tree. Show
that the group Steiner tree is NP-hard and the minimum solution for the group
spanning forest problem is not c-approximation for the group Steiner tree for
any constant c > 0.

11. (Interconnecting High Ways) Given n straight segments in the Euclidean plane,
find a shortest tree interconnecting them. Design a PTAS for this problem.

12. (1-Guillotine Partition) Consider the minimum length rectangular partition
problem. A line cut is called a 1-guillotine cut if it incompletely partitions a
rectangle into two parts such that these two parts contain possibly two windows
connected to each other in two sides of the cut (Fig. 9.25). A 1-guillotine
partition is a rectangular partition which results from a sequence of 1-guillotine
cuts. A guillotine partition must be a 1-guillotine partition. However, a 1-
guillotine partition may not be a guillotine. An example is given in Fig. 9.26.
Please prove the following:

(a) The minimum length 1-guillotine rectangular partition can be computed in
O(n15) time by a dynamic programming where n is the number of holes in
input rectangle.

(b) The minimum length 1-guillotine rectangular partition can be a 2-
approximation for the minimum length rectangular partition.

(Hint: To show (b), consider an optimal rectangular partition P ∗, and we show
that P ∗ can be modified into a 1-guillotine partition by adding some 1-guillotine
cuts. To do so, we introduce two concepts, vertical 1-dark point and horizontal

Fig. 9.25 1-guillotine cut

Exercises 287

Fig. 9.26 An example for
1-guillotine partition which is
to a guillotine partition

Fig. 9.27 A vertical
1-guillotine cut is found such
that its length can be charged
with 0.5 to those vertical
segments of P ∗, which
directly face to horizontal
1-dark point on the cut line

1-dark point. A point in input rectangle x is called a vertical 1-dark point if
going up and going down from x, we will meet horizontal cut segments in P ∗.
Similarly, a point is called a horizontal 1-dark point if going to the left, and
if going to the right from x, we will meet vertical cut segments in P ∗. Show
that one of the following cases occurs: (Case 1). There exists a vertical line on
which the length of segments consisting of vertical 1-dark point is not longer
than the total length of segments consisting of horizontal 1-dark point. (Case
2) There exists a vertical line L in which the length of segments consisting of
vertical 1-dark point is not longer than the total length of segments consisting
of horizontal 1-dark point. In Case 1, a vertical 1-guillotine cut is found such
that its length can be charged to those vertical segments of P ∗, which directly
face to horizontal 1-dark point on line L (Fig. 9.27). Each side can be charged
with 0.5. In Case 2, a horizontal 1-guillotine cut can be found similarly. Finally,
note that every segment of P ∗ can be charged at most twice.)

13. (Variation of 1-Guillotine Partition). In previous problem about 1-guillotine
partition, let us allow two windows lying in the same side or two sides of real
cut segment. Show that (a) and (b) are still true.

14. (m-Guillotine Partition) Consider the minimum length rectangular partition
problem. A line cut is called a m-guillotine cut if it incompletely partitions a

288 9 Restriction and Steiner Tree

rectangle into two parts such that these two parts contain possibly 2m windows
connected to each other. Those windows are located arbitrarily on two sides of
the cut segment. A m-guillotine partition is a rectangular partition which results
from a sequence of m-guillotine cuts. Please prove the following:

(a) The minimum length 1-guillotine rectangular partition can be computed
in O(n10m+5) time by a dynamic programming where n is the number of
holes in input rectangle.

(b) The minimum length 1-guillotine rectangular partition can be a (1 + 1
m

)-
approximation for the minimum length rectangular partition.

15. Using technique of m-guillotine partition, show that the rectilinear Steiner
minimum tree problem has a PTAS.

16. Using technique of m-guillotine partition, show that the following problem has
a PTAS: Given a rectangular polygon with rectangular holes inside (i.e., each
hole is a smaller rectangular polygon), partition it into hole-free rectangles with
the minimum total length of cuts.

17. Explain why the technique of portals is unable to establish a PTAS for the
minimum length rectangular partition problem.

18. Given a unit disk graph G = (V ,E), find a minimum vertex cover. Please
design a PTAS.

19. Given a unit disk graph G = (V ,E), find a minimum connected vertex cover.
Please design a PTAS.

20. (Minimum CDS with Routing Cost Constraint) Consider a unit disk graph
G = (V ,E) and a CDS C. For any two nodes u and v, denote by dC(u, v)

the shortest distance between u and v passing through intermediate nodes in
C and by d(u, v) the shortest distance between u and v in G. Please find a
constant α > 0 and a PTAS for the minimum CDS such that for any two nodes
u and v, dC(u, v) ≤ αd(u, v).

21. Design a PTAS for the minimum CDS problem in unit ball graphs where a
graph is called a unit ball graph if all nodes can be placed in the Euclidean
three-dimensional space such that there exists an edge between two nodes u

and v if and only if the unit ball with center u intersects the unit ball at center v.
22. Could you design a PTAS for the following problems in unit n-dimensional ball

graphs, where a graph is called a unit n-dimensional ball graph if all nodes can
be placed in the Euclidean n-dimensional space such that there exists an edge
between two nodes u and v if and only if the unit n-dimensional ball with center
u intersects the unit n-dimensional ball at center v.

(a) The minimum CDS.
(b) The minimum CDS with routing cost constraint.
(c) The minimum vertex cover.
(d) The minimum connected vertex cover.

Historical Notes 289

Historical Notes

Restriction is an important technique for designing of approximation algorithms
[100], which includes two major developments, (nonadaptive) partition and (adap-
tive) guillotine partition.

Partition is a naive idea. The first theoretical analysis of partition was given
by Karp [237] who gave probabilistic analysis for partition with application in
Euclidean TSP. Komolos and Shing [262] applied this approach to RSMT. The
shafting technique is discovered by Baker [16, 17] and Hochbaum and Maass
[213]. This technique enables us to design PTAS for a family of problems in
covering and packing. Later, partition has been studied extensively to design PTAS
for many problems [25, 51, 220, 229, 315, 386, 396, 448] and also to develop
various variations, such as multilayer partition [127] and partition on tree alignment
[230, 397, 398].

Guillotine partition was initiated in the study of approximation algorithms
for minimum edge length rectangular partition (MELRP). The MELRP was first
proposed by Lingas, Pinter, Rivest, and Shamir in 1982 [291]. They showed that
the MELRP in general is NP-hard, but for hole-free inputs, it can be solved in time
O(n4) where n is the number of vertices in the input rectilinear polygon. Lingas in
1983 [292] gave the first constant-bounded approximation; its performance ratio is
41. Later, this ratio is improved step-by-step by Du [96], Levcopoulos [279], and
Mitchell [317] until PTAS appeared with growth up of guillotine partition [318].

Motivated from a work of Du, Hwang, Shing, and Witbold [102] on the
application of dynamic programming to optimal routing trees, Du, Pan, and Shing in
1986 [104] initiated an idea of guillotine partition on a special case of the MELRP
problem. This special case has the input consisting of a rectangle and some point
holes in its interior, which was first studied by Gonzalez and Zheng [182, 183]. Du,
Hsu, and Xu in 1987 [98] extended the idea of guillotine cuts to the convex partition
problem. In 1996, Mitchell [317, 320] made a key development. He proposed 1-
guillotine partition and later extended to m-guillotine partition [318] which enables
guillotine partition to be used for many geometric optimization problems.

Arora in 1996 [6] proposed another technique for adaptive partition, different
from m-guillotine partition in the sense that there exist some problems on which
m-guillotine partition works, but Arora’s technique does not, and vice versa. Later,
both Arora [7, 8] and Mitchell [319] noted that combination of two techniques can
improve running time. Of course, such combinations can apply only to problems
on which both techniques work, such as rectilinear Steiner minimum tree. On
rectilinear Steiner minimum tree, Rao and Smith [344] gave (1+ ε)-approximation
with running time O(εεn) by using techniques on about spanner and banyan.

Restriction together with partition and guillotine partition has been applied to
many combinatorial optimization problems in planar graphs [9, 12], in geometric
planar [5, 60, 62, 298], in disk graphs [61, 113, 162], in unit ball graphs [447, 448],
and in growth-bounded graphs [417].

290 9 Restriction and Steiner Tree

There are three classic Steiner minimum tree problems, the Euclidean Steiner
minimum tree, the rectilinear Steiner minimum tree, and the network Steiner
minimum tree. The Euclidean Steiner tree is the first one appearing in the literature.
It was initiated by studying Fermat problem [356]: Given three points in the
Euclidean plane, find a point connecting them with shortest total distance. Fermat
problem has two generalizations for more than three given points. One of them
was found by Gauss [356] and unfortunately named Steiner tree by Crourant and
Robbins [75]. The detail story can be found in Schreiber’s article [356].

All three classic Steiner minimum tree problems are NP-hard [148, 163, 165,
166, 236]. Therefore, one has to put a lot of efforts to study approximation solutions.
The minimum spanning tree is the first candidate. Therefore, determination of the
performance ratio of the minimum spanning tree becomes an attractive research
problem. Hwang [221] determined this ratio in the rectilinear plane. However,
for this ratio on the Euclidean Steiner tree, a tortuous story passed a sequence of
publications [67–69, 101, 172, 186, 352].

Does there exist a polynomial-time approximation with worst case performance
ratio better than that of the minimum spanning tree? For the network Steiner
minimum tree, Zelikovsky [437] gave a yes answer. In general, Du, Zhang, and
Feng [106, 107] showed that such approximations exist in all metric space as
long as Steiner minimum tree for a fixed number of points is polynomial-time
computable. Now, much better approximation algorithms have designed. But all
designs include restriction technique. For the network Steiner tree, the k-restricted
Steiner tree is always involved [40, 350], and hence the k-Steiner ratio [33] plays
an important role. For the Euclidean and rectilinear Steiner minimum tree, PTAS
can be constructed with guillotine partition.

The Steiner tree has many applications in the real world. Often, various applica-
tions also generate variations of Steiner tree, such as terminal Steiner trees [94, 289],
Steiner trees with minimum number of Steiner points [288, 310], acyclic directed
Steiner trees [438], bottleneck Steiner trees [394], k-generalized Steiner forest
[159], Steiner networks [173], and selected internal Steiner trees [217]. The
phylogenetic tree alignment can also be considered as a Steiner tree problem with a
given topology in a special metric space [346, 355, 395]. For all of them, restriction
plays an important role in the study of their approximation.

Is there a polynomial-time constant-approximation for weighted dominating
set in unit disk graphs? This open problem was solved by Ambühl, Erlebach,
Mihalák, and Nunkesser [4]. Using partition, they constructed a polynomial-time
72-approximation. Gao, Huang, Zhang, and Wu [160] introduced a new technique,
called the double partition, and improved the ratio to (6 + ε). Following this work,
through a few efforts [77, 128, 462, 463], this ratio is reduced to 4 + ε. Ding
et al. [85] note that above techniques can also be used for the weighted sensor
cover problem in unit disk graphs, which solves a long-standing open problem.
Actually, the unit disk graph is the mathematical formulation of homogeneous
wireless sensor networks. Coverage is an important issue in the study of wireless
sensor networks [58, 59, 201, 300, 301, 421, 423]. In 2005, Cardei et al. [43]
studied a sensor scheduling problem, called the maximum lifetime coverage, and

Historical Notes 291

proposed an open problem on the existence of its constant-approximation. Since the
work gets a large number of citations, the open problem gets very well-recognized
[250, 390, 391, 452]. The success of Ding et al. [85] is based on not only above
double partition technique but also previous efforts [26, 167]. However, their
success moved one’s attention to sensor cover issues with partition techniques
[110, 126, 286, 409, 410, 416, 451].

The map labeling is another interesting problem, which is a platform for partition
to play. The maximum independent set problem in rectangle intersection graphs is
its mathematical formulation [1, 33, 34, 44, 127]. Using partition, PTAS can be
obtained under restriction that the ratio of high and the wide is in certain range
[a, b] for positive constant a and b, 0 < a < b. However, for arbitrary rectangles,
no constant-approximation has been found. The best known approximation has a
performance ratio O(log n) [1, 45, 243, 328].

Chapter 10
Greedy Approximation and Submodular
Optimization

Hell has three gates: lust, anger, and greed.

—Bhagavad Gita

Greedy is an important strategy to design approximation algorithms, especially in
the study of submodular optimization problems. In this chapter, we will explore this
strategy together with important results in submodular optimization.

10.1 What Is the Submodular Function?

Consider the following problem:

Problem 10.1.1 (Maximum Set Coverage) Given a collection C of subsets of a
finite set X and a positive integer k, find k subsets from C to cover the maximum
number of elements in X.

This problem is NP-hard since its decision version is the same as the decision
version of the set cover problem, which is already proved to be NP-complete. This
problem also has a greedy approximation algorithm. To describe algorithm, for any
subcollection A of C, define

μ(A) = | ∪S∈A S|.

This function has a property that for any two subcollections A and B,

μ(A) + μ(B) ≥ μ(A ∪ B) + μ(A ∩ B). (10.1)

In fact, comparing μ(A) + μ(B) with μ(A ∪ B), the difference is the number of
elements appearing in both A and B, i.e.,

|(∪S∈AS) ∩ (∪S∈BS)|.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_10

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_10&domain=pdf

 7680 61494 a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_10

294 10 Greedy Approximation

Note that each element appearing in A∩B must appear in both A and B. Therefore,
we obtain the inequality. The equality sign may not hold since there may exist some
element appearing in a subset S in A and another subset S′ in B. However, S �= S′.

The function μ with inequality (10.1) is called a submodular function. In general,
consider a function f defined over all subsets of a set X, i.e., 2X. f is called a
submodular function if for any two subsets A and B of X,

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B).

f is said to be monotone nondecreasing if for any two subsets A and B of X,

A ⊂ B ⇒ f (A) ≤ f (B).

The submodular function has a lot of properties. The following two are important
ones:

Lemma 10.1.2 For any subset A and element x, denote �xf (A) = f (A ∪ {x}) −
f (A). Then, the following holds:

(a) A set function f : 2X → R is submodular if and only if for any two subsets A

and B with A ⊆ B and for any x ∈ X \ B, �xf (A) ≥ �xf (B).
(b) A set function f : 2X → R is monotone nondecreasing if and only if for any

two subsets A and B with A ⊆ B and for any x ∈ B \A, �xf (A) ≤ �xf (B).

Proof

(a) Suppose f is submodular. Consider two subsets A and B with A ⊂ B and an
element x ∈ X \ B. By modularity, we have

f (A ∪ {x}) + f (B) ≥ f (B ∪ {x}) + f (A)

that is,

�xf (A) ≥ �xf (B). (10.2)

Conversely, suppose inequality (10.2) holds for any two subsets A and B with
A ⊂ B and for any element x ∈ X \ B. Consider any two subsets U and V .
Suppose U \ V = U \ (U ∩ V) = (U ∪ V) \ V = {y1, y2, . . . , yk}. Denote
Yi = {y1, . . . , yi}. Then, we have

f (U) − f (U ∩ V)

= �y1f (U ∩ V) + �y2f ((U ∩ V) ∪ Y1) + · · · + �yk
f ((U ∩ V) ∪ Yk−1)

≥ �y1f (V) + �y2f (V ∪ Y1) + · · · + �yk
f (V ∪ Yk−1)

= f (U ∪ V) − f (V),

that is,

10.1 What Is the Submodular Function? 295

f (U) + f (V) ≥ f (U ∪ V) + f (U ∩ V).

(b) If f is monotone nondecreasing, then for two subsets A and B with A ⊂ B and
x ∈ B \ A,

�xf (A) ≥ 0 = �xf (B). (10.3)

Conversely, suppose that for two subsets A and B with A ⊂ B and x ∈ B \
A, (10.3) holds. Let B \ A = {x1, x2, . . . , xk}. Then

f (B) − f (A)

= (f (A ∪ {x1}) − f (A)) + (f (A ∪ {x1, x2}) − f (A ∪ {x1})) + · · ·
+(f (B) − f (A ∪ {x1, . . . , xk−1}))

≥ 0.

�

Lemma 10.1.3 For any submodular function f ,

f (A ∪ B) − f (B) ≤
∑
x∈A

�xf (B).

Proof Since for x ∈ B, �xf (B) = 0, we may assume A ∩ B = ∅ without loss of
generality. Assume A = {x1, x2, . . . , xk}. Note that

f ((A \ {x1}) ∪ B) + f ({x1} ∪ B) ≥ f (A ∪ B) + f (A).

Therefore,

f (A ∪ B) − f (B) ≤ f ((A \ {x1}) ∪ B) − f (B) + �x1f (B).

Applying this inequality recursively, we obtain the inequality in the statement of the
lemma.
�

The maximum set coverage problem can be formulated as

max μ(A)

subject to |A| ≤ k,

A ⊆ C.

This is an instance of the following submodular maximization problem:

296 10 Greedy Approximation

Algorithm 29 Greedy Algorithm for Submodular Maximization

Input: A polymatroid function f over 2X and a positive integer k.
Output: A set Ak of k elements in X.
1: A0 ← ∅;
2: for i = 1 to k do
3: choose v ∈ X \ Ai−1 to maximize �vf (Ai−1) and
4: Ai ← Ai−1 ∪ {v};
5: end for
6: return Ak .

max f (A) (10.4)

subject to |A| ≤ k,

A ∈ 2X,

where f is a polymatroid function, i.e., monotone nondecreasing submodular
function over 2X with f (∅) = 0.

This problem has a greedy approximation as shown in Algorithm 29 with
performance indicated in Theorem 10.1.4.

Theorem 10.1.4 Let Ak be produced by Algorithm 29. Then, f (Ak) ≥ (1 − e−1) ·
opt where opt is the optimal value of objective function.

Proof Suppose x1, x2, . . . , xk are obtained by the above greedy algorithm. Denote
Ai = {x1, x2, . . . , xi} for i = 1, . . . , k and A0 = ∅. Suppose A∗ = {u1, u2, . . . , uk}
is an optimal solution. Then, for i = 0, 1, . . . , k − 1, we have

f (A∗) ≤ f (A∗ ∪ Ai)

= f (Ai) + �u1f (Ai) + · · · + �uk
f (Ai ∪ {u1, u2, . . . , uk−1})

≤ f (Ai) + �u1f (Ai) + · · · + �uk
f (Ai)

≤ f (Ai) + k · �xi+1f (Ai), (10.5)

where the first inequality is due to the monotonicity of f , the second inequality is
due to the submodularity of f , and the third inequality is due to the greedy rule in
the algorithm.

Denote ai = f (A∗)−f (Ai). Then, it follows from (10.5) that ai ≤ k(ai −ai+1).
Hence,

ai+1 ≤ ai(1 − 1/k) ≤ ai · e−1/k.

Iteratively using this inequality, we have ak ≤ a0e
−1. Note that a0 = f (A∗) −

f (∅) = f (A∗) = opt . Therefore, f (Ak) ≥ (1 − e−1)opt .
�

10.1 What Is the Submodular Function? 297

Theorem 10.1.4 has a lot of applications, especially in the study of social
networks. Let us mention a simpler one.

Problem 10.1.5 (Influence Maximization) Given a directed graph G = (V ,E)

and a positive integer k, find k nodes to maximize the total number of influenced
nodes by selected nodes, where a node u is influenced by another node v if there is
a directed path from v to u.

Theorem 10.1.6 The influence maximization problem is NP-hard.

Proof We reduce the maximum set coverage problem to the influence maximization
problem in the following way: Consider an instance of the maximum set coverage
problem, consisting of a collection C of subsets of a finite set X and a positive integer
k. Construct a bipartite directed graph G = (C, X,E) by connecting from Sj ∈ C to
ui ∈ X if and only if ui ∈ Sj (Fig. 10.1). Then, k subsets in C cover the maximum
number of elements in X if and only if corresponding k nodes in G influence the
maximum number of nodes. This means that the maximum set coverage problem
can be solved by solving the influence maximization problem through the above
reduction. Since the reduction is constructed in polynomial-time and the maximum
set coverage problem is NP-hard, the influence maximization problem is NP-hard.

�
In the above proof, we did not consider decision versions of two optimization

problems and construct a polynomial-time many-one reduction between them.
Instead, we directly built a reduction between two optimization problems. Such
a reduction is called a polynomial-time Turing reduction. Generally speaking, a
problem A is said to be polynomial-time Turing reducible to another problem B

if A can be solved in polynomial-time by using B as an oracle (i.e., a subroutine).

Lemma 10.1.7 For any node set A, let σ(A) denote the total number of nodes
influenced by A. Then, σ(A) is a polymatroid function.

Proof We show that for two node subsets A and B with A ⊂ B and v �∈ A,

�vσ(A) ≥ �vσ(B).

Let I (A) denote the set of nodes influenced by node subset A. Then

Fig. 10.1 Construction of
directed graph G

298 10 Greedy Approximation

Fig. 10.2 σ is a polymatroid
function

�vσ(A) = |I (v) \ I (A)| ⊆ |I (v) \ I (B)| = �vσ(B),

as shown in Fig. 10.2.

�

Theorem 10.1.8 The influence maximization problem has a greedy (1 − 1/e)-
approximation.

Proof It follows immediately from Theorem 10.1.4 and Lemma 10.1.7.
�

10.2 Submodular Set Cover

In submodular optimization, the generalization of the set cover problem has more
applications. This problem is called the submodular set cover problem described as
follows:

Problem 10.2.1 (Submodular Set Cover (Standard Form)) Let f be a polyma-
troid function over 2X where X is a finite set and c be a nonnegative cost function
on X. Consider the minimization problem:

min c(A) =
∑
x∈A

c(x) (10.6)

subject to f (A) = f (X),

A ∈ 2X

This problem has a greedy approximation as shown in Algorithm 30.

Theorem 10.2.2 Greedy Algorithm 30 is an H(γ)-approximation for the minimum
submodular cover problem where

γ = max
x∈X

f ({x})

10.2 Submodular Set Cover 299

Algorithm 30 Greedy Algorithm for Minimum Submodular Set Cover

Input: A polymotroid function f over 2X and a nonnegative cost function c on X.
Output: A subset A of X.
1: A ← ∅;
2: while f (A) < f (X) do
3: choose x ∈ X \ A to maximize �xf (A)/c(x) and
4: A ← A ∪ {x}
5: end while
6: return A.

and

H(γ) =
γ∑

i=1

1

i
.

Proof We claim that the minimum submodular cover problem can be formulated as
the following integer LP:

min
∑
v∈X

c(v)xv (10.7)

s.t.
∑

v∈X−S

�vf (S)xv ≥ �X−Sf (S) for all S ∈ 2X,

xv ∈ {0, 1} for v ∈ X.

To show the claim, we first prove that for any set A ∈ 2X satisfying f (A) =
f (X), its indicator vector 1A is a feasible solution of LP (10.7), where 1A = (xv)v∈X

is defined by

xv =
{

1 if v ∈ A,

0 otherwise.

In fact, for any S ∈ 2X,

∑
v∈X−S

�vf (S)xv =
∑

v∈A\S
�vf (S)

≥ �A\Sf (S)

= f (A) − f (S)

= f (X) − f (S)

= �X−Sf (S),

where the inequality comes from Lemma 10.1.3.

300 10 Greedy Approximation

Next, we show that if x is a feasible solution of LP (10.7), then A = {v | xv = 1}
satisfies f (A) = f (X). In fact, the inequality constraint for S = A is

∑
v∈X−A

�vf (A)xv ≥ �X−Af (A),

that is,

0 ≥ f (X) − f (A).

So, f (A) ≥ f (X). Since f is monotone nondecreasing, we must have f (X) =
f (A).

To sum up, the constraints of (10.7) and (10.6) are the same. We shall use dual-
fitting method to analyze the performance of the greedy algorithm.

The dual LP of the relaxed LP of (10.7) is:

max
∑
S∈2X

�X−Sf (S)yS (10.8)

s.t.
∑

S:v �∈S

�vf (S)yS ≤ c(v) for v ∈ X,

yS ≥ 0 for S ∈ 2X.

Suppose the above greedy algorithm selects x1, . . . , xg in turn. Denote A0 = ∅
and Ak = {x1, . . . , xk} for k = 1, . . . , g. Then, Ag is the output. Denote rk =
�xk

f (Ak−1) and ci = c(xi). Define a set of dual variables

yS =
{

1
H(γ)

(
ck+1
rk+1

− ck

rk

)
if S = Ak, 0 ≤ k ≤ g − 1,

0 otherwise.

where c0/r0 is viewed as 0.
It can be shown that {yS} is a feasible solution to (10.8). By the greedy rule and

the submodularity of f , we have

ck

rk
≤ ck+1

�vk+1f (Ak−1)
≤ ck+1

�vk+1f (Ak)
= ck+1

rk+1
.

Hence, yS ≥ 0 for any S ∈ 2X. Next, consider any v ∈ X, we have

∑
S:v �∈S

�vf (S)yS = 1

H(γ)

kv−1∑
k=0

�vf (Ak)

(
ck+1

rk+1
− ck

rk

)
, (10.9)

10.2 Submodular Set Cover 301

where kv = i if v = xi and kv = g if v �∈ Ag . The summation term in the right-hand
side can be rewritten as

kv−1∑
k=0

�vf (Ak)

(
ck+1

rk+1
− ck

rk

)

=
kv−1∑
k=1

ck

rk
(�vf (Ak−1) − �vf (Ak)) + ckv

rkv

�vf (Akv−1)

=
kv∑

k=1

ck

rk
(�vf (Ak−1) − �vf (Ak)) , (10.10)

where �vf (Akv) = 0 is used in absorbing the second term into the summation. For
any k = 0, 1, . . . , kv − 1, since v �∈ Ak , we have

ck

rk
≤ c(v)

�vf (Ak)

by the greedy rule. Furthermore, by the submodularity of f , we have �vf (Ak−1)−
�vf (Ak) ≥ 0. Hence, (10.10) becomes

kv−1∑
k=0

�vf (Ak)

(
ck+1

rk+1
− ck

rk

)
≤

kv∑
k=1

c(v)
�vf (Ak−1) − �vf (Ak)

�vf (Ak)

≤ c(v)H(�vf (A0)) ≤ c(v)H(γ).

Combining this with (10.9), the constraint of dual LP (10.8) is satisfied.
Since f (Ag) = f (X), it can be calculated that

c(Ag) =
g∑

k=1

ck =
g∑

k=1

ck

rk
�xk

f (Ak−1) =
g∑

k=1

ck

rk
(f (Ak) − f (Ak−1))

=
g−1∑
k=1

f (Ak)

(
ck

rk
− ck+1

rk+1

)
+ cg

rg
f (Ag)

=
g−1∑
k=1

f (Ak)

(
ck

rk
− ck+1

rk+1

)
+

g−1∑
k=1

(
ck+1

rk+1
− ck

rk

)
f (X)

=
g−1∑
k=1

(
ck+1

rk+1
− ck

rk

)
(f (X) − f (Ak))

302 10 Greedy Approximation

= H(γ)

g−1∑
k=1

�X−Ak
f (Ak) · yAk

= H(γ)
∑
S∈2X

�X−Sf (S) · yS

≤ H(γ)opt,

where opt is the optimal value of the integer LP (10.7), which is an upper bound for
the objective value of {yS} in the dual LP (10.8).
�

Now, we present an example.

Problem 10.2.3 (Positively Dominating Set) Given a graph G = (V ,E), find a
minimum positively dominating set where a node v is positively dominated by a node
set A if degA(v) ≥ deg(x). Here, deg(v) is the degree of v in G and degA(v) =
|{u | (u, v) ∈ E, u ∈ A or v ∈ A}|.

For any A ⊆ V , define

g(A) =
∑
v∈V

min(�deg(V)/2�, degA(v)).

We will show that g is a polymatroid function. To do so, we first show two properties
of the polymatroid function.

Lemma 10.2.4 Suppose f is a polymatroid function. Then, for any constant c ≥ 0,
ζ(A) = min(c, f (A)) is a polymatroid function.

Proof Note that for A ⊂ B,

f (A) ≤ f (B) ⇒ min(c, f (A)) ≤ min(c, f (B)),

f (∅) = 0 ⇒ min(c, f (∅)) = 0.

Thus, it suffices to prove the modularity of ζ(A). Consider two node subsets A and
B with A ⊂ B and x �∈ B. We divide the proof into three cases:

Case 1. f (A ∪ {x}) > c.

ζ(A ∪ {x}) − ζ(A) = c − ζ(A)

≥ c − ζ(B)

= ζ(B ∪ {x}) − ζ(B).

Case 2. f (A ∪ {x}) ≤ c and f (B) ≤ c.

10.2 Submodular Set Cover 303

ζ(A ∪ {x}) − ζ(A) = f (A ∪ {x}) − f (A)

≥ f (B ∪ {x}) − f (B)

≥ ζ(B ∪ {x}) − ζ(B).

Case 3. f (A ∪ {x}) ≤ c and f (B) > c.

ζ(A ∪ {x}) − ζ(A) = f (A ∪ {x}) − f (A)

≥ f (B ∪ {x}) − f (B)

≥ c − c

= ζ(B ∪ {x}) − ζ(B).

�

Lemma 10.2.5 If fi for i = 1, 2, . . . , n are polymatroid functions, then f =∑n
i=1 fi is a polymatroid function.

Proof It follows immediately from the following derivations:

fi(∅) = 0 for i = 1, 2, . . . , n ⇒ f (∅) = 0

�xfi(A) ≥ �xfi(B) for i = 1, 2, . . . , n ⇒ �xf (A) ≥ �xf (B).

�

Lemma 10.2.6 g is a polymatroid function.

Proof By Lemmas 10.2.4 and 10.2.5, it is sufficient to prove that hv(A) = degA(v)

with respect to A is a polymatroid function for any fixed v. Clearly, deg∅(v) = 0.
Consider two node subsets A and B with A ⊂ B and node x �∈ A. We divide the
remaining proof into three cases:

Case 1. v ∈ A ∪ {x}.
�xhv(A) = 0 = �xhv(B).

Case 2. v ∈ B \ A.

�xhv(A) ≥ 0 = �xhv(B).

Case 3. v �∈ B ∪ {x}. If (x, v) ∈ E, then

�xhv(A) = 1 = �xhv(B).

If (x, v) �∈ E, then

304 10 Greedy Approximation

�xhv(A) = 0 = �xhv(B).

�
Now, we show that the positively dominating set problem can be formulated in

the following form:

min |A|
subject to g(A) = g(V)

A ∈ 2V .

Lemma 10.2.7 A ⊆ V is a positively dominating set if and only if g(A) = g(X).

Proof A is a positively dominating set if and only if for any v ∈ V , degA(v) ≥
�deg(v)/2� if and only if

g(A) =
∑
v∈V

�deg(v)/2� = g(V).

�
g(A) has an interesting property.

Lemma 10.2.8 If g(A) < g(V), then for any v not positively dominated by A,
g(A ∪ {v}) > g(A).

Proof Since v is not positively dominated by A, we have

degA(v) < �deg(v)/2�.

Therefore,

min(�deg(v)/2�, degA∪{v}(v)) = �deg(v)/2� > min(�deg(v)/2�, degA(v)).

Hence, g(A ∪ {v}) > g(A).
�

Theorem 10.2.9 Greedy Algorithm 30 gives a (1+ ln� 3
2��)-approximation for the

positively domating set problem where � is the maximum node degree.

Proof By Theorem 10.2.2, the performance ratio is determined by

γ = max
v∈V

g({v})

≤ max
v∈V

(
deg(v) + �1

2
deg(v)�

)

= max
v∈V

�3

2
deg(v)�

10.3 Monotone Submodular Maximization 305

≤ �3

2
��.

�
Lemma 10.2.4 indicates how to deal with the following general form of the

submodular set cover problem.

Problem 10.2.10 (Submodular Set Cover (General Form)) Let f be a polyma-
troid function over 2X where X is a finite set and c be a nonnegative cost function
on X. Consider the minimization problem:

min c(A) =
∑
x∈A

c(x) (10.11)

subject to f (A) ≥ d,

A ∈ 2X,

where d is a positive constant.

Define g(A) = min(f (A), d). Then, condition f (A) ≥ d will become g(A) =
g(X), so that this becomes the submodular set cover problem in previous form.

10.3 Monotone Submodular Maximization

In Sect. 10.1, we studied a monotone submodular maximization with size constraint.
The size constraint is a special case of knapsack constraint and also a special
case of matroid constraint. In this section, we study the monotone submodular
maximization with a knapsack constraint or several matroid constraints.

First, we study the following problem:

Problem 10.3.1 Let f be a polymatroid function over 2X:

max f (S) (10.12)

subject to
∑
x∈S

b(x)x ≤ B

S ∈ 2X

where X is the universe set, b(x) is the budget cost of item x, and B is the total
budget.

This problem can also be seen as a generalization of the knapsack problem.
Algorithm 31 is an extension of greedy 1/2-approximation algorithm for the
knapsack problem. Denote b(A) = ∑

x∈A b(x).

306 10 Greedy Approximation

Algorithm 31 ((1 − e−1)/2)-Approximation for Problem 10.3.1

Input: A polymatroid function f on 2X and knapsack constraint coefficients 0 ≤ b(x) ≤ B for
x ∈ X.
Output: A subset A of X and f (A).
1: S ← ∅;
2: if b(X) ≤ B then
3: A ← X

4: else
5: while b(S) ≤ B do
6: choose x ∈ X \ S to maximize �xf (S)

b(x)
7: and set S ← S ∪ {x};
8: end while
9: A ← argmax(f (S \ {x}), f ({x}));

10: end if
11: return A and f (A).

Theorem 10.3.2 Algorithm 31 is ((1−e−1)/2)-approximation for problem (10.12).

Proof Let x1, x2, . . . , xk+1 be generated by the algorithm. Denote Si =
{x1, x2, . . . , xi}. Then

xi+1 = argmaxx∈X\Si

�xf (Si)

b(x)
,

and b(Sk) ≤ B < b(Sk+1). Let S∗ = {y1, y2, . . . , yh} be an optimal solution.
Denote S∗

j = {y1, y2, . . . , yj }. Then

f (S∗) ≤ f (Si ∪ S∗)

= f (Si) + �y1f (Si) + �y2f
(
Si ∪ S∗

1

)+ · · · + �yh
f
(
Si ∪ S∗

h−1

)
≤ f (Si) + �y1f (Si) + �y2f (Si) + · · · + �yh

f (SI)

≤ f (Si) +
h∑

j=1

b(yj)

b(xi+1)
· �xi+1f (Si)

= f (Si) + b(S∗)
b(xi+1)

· (f (Si+1) − f (Si)).

Denote αi = opt − f (Si). Then, we have

αi ≤ b(S∗)
b(xi+1)

· (αi − αi+1).

Hence,

10.3 Monotone Submodular Maximization 307

αi+1 ≤
(

1 − b(xi+1)

b(S∗)

)
αi ≤ αi · e−

b(xi+1)

b(S∗) .

Therefore,

opt − f (Sk+1) = αk+1 ≤ α0 · e−
b(Sk+1)

b(S∗) ≤ opt · e−1.

Hence,

(1 − e−1) · opt ≤ f (Sk+1) = f (Sk+1) + f (∅) ≤ f (Sk) + f ({xk+1}).

Thus,

(1 − e−1)/2 · opt ≤ max(f (Sk), f ({xk+1})).

�
Next, we extend the PTAS for the knapsack problem to an algorithm for

Problem 10.3.1 which has a better performance ratio.

Theorem 10.3.3 Algorithm 32 is a (1 − 1/e)-approximation for Problem 10.3.1.

Proof Suppose optimal solution S∗ = {u1, u2, . . . , uh} in ordering

ui = argmaxu(f ({u1, u2, . . . , ui−1, u}) − f ({u1, u2, . . . , ui−1})).

Algorithm 32 (1 − e−1)-Approximation for Problem 10.3.1

Input: A polymatroid function f on 2X and knapsack constraint coefficients 0 ≤ b(x) ≤ B for
x ∈ X.
Output: A subset A of X and f (A).
1: for every I ⊆ V with |I | ≤ 3 do
2: S ← I ;
3: T ← V \ I ;
4: while T �= ∅ do
5: choose x ∈ T to maximize �xf (S)

b(x)
6: and set T ← T \ {x};
7: if b(S ∪ {x}) ≤ B then
8: S ← S ∪ {x}
9: end if

10: end while
11: S(I) ← S;
12: end for
13: A ← argmaxI f (S(I));
14: return A and f (A).

308 10 Greedy Approximation

Let I = {u1, u2, u3}. Define g(A) = f (A ∪ I) − f (I). Then computation of S(I)

can be seen as a greedy algorithm applying to a polymatroid function g. Suppose
this computation produces S \ I = {v1, v2,, vi}.

If S\I ⊇ S∗\I , then S\I = S∗\I and g(S\I) = g(S∗\I). If there exists vi+1 ∈
(S∗\I)\(S\I), then b(I∪{v1, v2, . . . , vi}) ≤ B, but b(I∪{v1, v2, . . . , vi+1}) > B.
By the proof of Theorem 10.3.2, we will have

g({v1, v2, . . . , vi+1}) ≥ (1 − e−1)g(S∗ \ I).

Thus,

f (I ∪ {v1, v2, . . . , vi+1}) ≥ (1 − e−1)f (S∗) + e−1f (I),

and

f (S(I)) ≥ f (I ∪ {v1, v2, . . . , vi})
≥ (1 − e−1)f (S∗) + e−1f (I) − �vi+1f (I ∪ {v1, v2, . . . , vi}).

Since vi+1 ∈ S∗, we have

�vi+1f (I ∪ {v1, v2, . . . , vi}) ≤ �vi+1f (I)

≤ �vi+1f ({u1, u2})
≤ �u3f ({u1, u2})
≤ �u2({u1})
≤ �u1f (∅) = f ({u1}).

Thus,

�vi+1f (I ∪ {v1, v2, . . . , vi})

≤ 1

3
(�u3f ({u1, u2}) + �u2f ({u1}) + �u1f (∅))

= 1

3
f (I).

Hence,

f (S(I)) ≥ f (I ∪ {v1, v2, . . . , vi})
≥ (1 − e−1)f (S∗) + e−1f (I) − 1

3
f (I)

≥ (1 − e−1)f (S∗).

�

10.3 Monotone Submodular Maximization 309

Clearly, Algorithm 31 runs faster than Algorithm 32 although the performance ratio
is smaller.

Next, we study the monotone submodular maximization with matroid con-
straints.

Problem 10.3.4 Let f be a polymatroid function. Let (X, Ii) be a matroid for every
1 ≤ i ≤ k. Consider the following problem:

max f (A)

subject to A ∈ Ii for every 1 ≤ i ≤ k.

Let I = ∩k
i=1Ii . Then (X, I) is an independent system.

Lemma 10.3.5 Consider an independent system (X, I) which is the intersection of
k matroids (X, I). Suppose A,B ∈ I and I is a maximal independent subset of
A ∪ B, containing B. Then, |A \ I | ≤ k|B \ A|.
Proof For each i, add B \ A to A. We can remove at most |B \ A| elements from
A to keep the independence in matroid (X, Ii). Let Ai be the set of those removed
elements. Then, |Ai | ≤ |B \A| and (B∪A)\Ai are independent in (X, Ii). Clearly,
I ⊇ ∩k

i=1((B ∪ A) \ Ai). Hence,

|A \ I | ≤ | ∪k
i=1 Ai | ≤

k∑
i=1

|Ak| ≤ k|B \ A|.

�
A greedy approximation for Problem 10.3.4 is presented in Algorithm 33.

Theorem 10.3.6 Algorithm 33 gives a 1
k+1 -approximation for Problem 10.3.4.

Proof Suppose in iterations of the algorithm, set A is assigned with A0, A1, . . . , Ag .
Let H0 be an optimal solution and for i = 1, 2, . . . , g, Hi is a maximal independent
set of Hi−1 ∪ Ai . By Lemma 10.3.5,

Algorithm 33 Greedy Approximation for Problem 10.3.4

Input: A polymatroid function f on 2X and k matroids (X, Ii) for 1 ≤ i ≤ k. Let I = ∩k
i=1Ii .

Output: A subset A of X and f (A).
1: A ← ∅;
2: while A is not a maximal independent set in (X, I) do
3: choose x ∈ X \ A to maximize �xf (A)

4: subject to A ∪ {x} ∈ I;
5: A ← A ∪ {x}
6: end while
7: return A and f (A).

310 10 Greedy Approximation

|Hi−1 \ Hi | ≤ k|Ai \ Hi−1| ≤ |Ai \ Ai−1| ≤ k.

Suppose Hi−1 \ Hi = {v1, . . . , vr }. Denote H
j

i−1 = Hi−1 \ {v1, . . . , vj }. Then

f (Ai) − f (Ai−1) ≥ f ({vj } ∪ Ai−1) − f (Ai−1)

= �vj
f (Ai−1)

≥ �vj
f (H

j

i−1 ∪ Ai−1).

Thus,

r(f (Ai) − f (Ai−1)) ≥
r∑

j=1

�vj
f
(
H

j

i−1 ∪ Ai−1

)

= f
(
H 0

i−1 ∪ Ai−1

)
− f

(
Hr

i−1 ∪ Ai−1
)

= f (Hi−1) − f (Hi).

Note that r ≤ k. Thus,

k[f (Ag) − f (A0)] = r

g∑
i=1

[f (Ai) − f (Ai−1)]

≥
g∑

i=1

[f (Hi−1) − f (Hi)]

= f (H0) − f (Hg).

Note that Ag = Hg and f (A0) ≥ 0. Therefore,

(k + 1)f (Ag) ≥ f (H0) = opt.

�
If the objective function f is linear, then the performance ratio 1

k+1 can be

improved to 1
k

. To see this, let us first show a lemma.

Lemma 10.3.7 Consider an independent system (X, I) which is the intersection of
k matroids (X, I). For any subset F of X, let u(F) and v(F) denote the maximal
size and the minimal size of maximal independent set in (X, I), respectively. Then,
u(F)/v(F) ≤ k.

Proof Consider two maximal independent subsets I and J of F . Let Ii ⊇ I be a
maximal independent subset of I ∪ J with respect to (X, Ii). For each e ∈ J \ I , if
e ∈ ∩k

i=1(Ii \ I), then I ∪{e} is independent in (X, I), contradicting the maximality

10.4 Random Greedy 311

of I . Hence, e appears at most k − 1 (I \ Ii)’s. Thus,

k∑
i=1

|Ii | − k|I | =
k∑

i=1

|Ii \ I | ≤ (k − 1)|J \ I | ≤ (k − 1)|J |.

Now, let Ji ⊇ J be a maximal independent subset of I ∪ J with respect to matroid
(X, Ii). Then, |Ji | = |Ii |. Therefore,

|J | ≤
(

k∑
i=1

|Ji | − k|J |
)
+ |J |

≤
(

k∑
i=1

|Ii | − k|J |
)
+ |J |

≤ k|I |.

�

Theorem 10.3.8 Let f be a linear function with nonnegative coefficients. Then,
Algorithm 33 gives a 1

k
-approximation for Problem 10.3.4.

Proof It follows immediately from Lemma 10.3.7 and Theorem 4.2.2 in Chap. 4.

�

A popular matroid constraint is the partition matroid. For example, consider
the influence maximization problem (Problem 10.1.5). Suppose the social network
(input directed graph) is partitioned into several communities. Instead of the total
size constraint, we may ask certain balance for seed distribution, that is, for each
community, set a size constraint. This will form a (partition) matroid constraint.

For the monotone submodular maximization with only one matroid constraint,
there exists a greedy approximation algorithm with performance ratio 1 − e−1,
which is better than 1/2. But this algorithm is different from Algorithm 33. We
will introduce it in the next chapter.

10.4 Random Greedy

Consider the following problem:

Problem 10.4.1 Let f be a nonnegative submodular function on subsets of a finite
set X and k a positive integer:

max f (S)

subject to |S| ≤ k

S ∈ 2X.

312 10 Greedy Approximation

Algorithm 34 Random Greedy Algorithm for Problem 10.4.1

Input: A nonnegative submodular function f on 2X and a positive integer k.
Output: A subset Ak of X with |Ak | ≤ k.
1: A0 ← ∅.
2: for i ← 1 to k do
3: Let Mi ⊆ X \ Ai−1 be a subset of size at most k maximizing

∑
u∈Mi

�uf (Ai−1).
4: Choose each element ui with probability 1/k (mutually exclusive, uniform random) from

Mi and not choose any element with probability 1 − |Mi |/k.
5: if ui is selected then
6: Ai ← Ai−1 ∪ {ui}
7: else
8: Ai ← Ai−1
9: end if

10: end for
11: return Ak .

In this section, we will study a random greedy algorithm for this problem, as
shown in Algorithm 34. This algorithm can be proved not only to have theoretical
guaranteed performance ratio (1−e−1) for monotone nondecreasing function f but
also to have performance ratio 1/e for general f .

Let us first consider the monotone nondecreasing function f .

Theorem 10.4.2 If f is monotone nondecreasing, then random greedy (Algo-
rithm 34) has approximation performance ratio 1 − e−1.

Proof Let us fix all random process until Ai is obtained for 1 ≤ i ≤ k. Let OPT

be an optimal solution and denote opt = f (OPT). Therefore, we have

E[�ui
f (Ai−1)] = 1

k
·
∑
u∈Mi

�uf (Ai−1)

≥ 1

k
·

∑
u∈OPT \Ai−1

�uf (Ai−1)

≥ 1

k
· (f (OPT ∪ Ai−1) − f (Ai−1))

≥ opt − f (Ai−1)

k
.

The first inequality is due to greedy choice of Ai . The second inequality holds
because f is submodular. The third inequality is true because f is monotone
nondecreasing.

Now, we release the randomness of Ai and Ai−1. Then, we have

E[f (Ai)] − E[f (Ai−1)] ≥ opt − E[f (Ai−1)]
k

.

10.4 Random Greedy 313

Therefore,

opt − E[f (Ai)] ≤
(

1 − 1

k

)
(opt − E[f (Ai−1)]).

This implies

opt − E[f (Ai)] ≤
(

1 − 1

k

)i

· (opt − f (A0))

≤
(

1 − 1

k

)i

· opt.

Thus,

E[f (Ak)] ≥
(

1 −
(

1 − 1

k

)k
)
· opt ≥ (1 − e−1) · opt.

�
Next, we consider a submodular function f , not-necessarily monotone nonde-

creasing. First, show two lemmas.

Lemma 10.4.3 Consider a submodular function f on subsets of a finite set X. Let
A(p) be a random subset of A where each element appears with probability at most
p. Then

E[f (A(p))] ≥ (1 − p)f (∅).

Proof Sort element of A in nonincreasing order of probability to appear in A(p),
u1, u2, . . . , uh where h = |A|. Denote pi = Pr[ui ∈ A(p)]. Then, p1 ≥ p2 ≥
· · · ≥ ph.

Let xi be an indicator for event that ui ∈ A(p), i.e.,

xi =
{

1 if ui ∈ A(p),

0 otherwise.

Denote Ai = {u1, u2, . . . , ui}. Then, we have

E[f (A(p))] = E

[
f (∅) +

h∑
i=1

xi · �ui
f (A(p) ∩ Ai−1)

]

≥ E

[
f (∅) +

h∑
i=1

xi · �ui
f (Ai−1)

]

314 10 Greedy Approximation

= f (∅) +
h∑

i=1

E[xi] · �ui
f (Ai−1)

= f (∅) +
h∑

i=1

pi · �ui
f (Ai−1)

= (1 − p1) · f (∅) +
h−1∑
i=1

(pi − pi+1)f (Ai) + ph · f (A)

≥ (1 − p) · f (∅).

�

Lemma 10.4.4 For 0 ≤ i ≤ k,

E[f (OPT ∪ Ai)] ≥
(

1 − 1

k

)i

· opt

where OPT is an optimal solution and opt = f (OPT).

Proof In each iteration i, every element of X \ Ai−1 stays outside of Ai with
probability at least 1− 1/k. Thus, each element is selected to Ai with probability at
most 1 − (1 − 1/k)i . Define g(S) = f (S ∪ OPT). Since f is submodular, so is g.
By Lemma 10.4.3,

E[f (OPT ∪ Ai)] = E[g(Ai)] ≥ (1 − 1/k)i · g(∅) = (1 − 1/k)i · opt.

�
Now, we are ready to show the following:

Theorem 10.4.5 In general, random greedy (Algorithm 34) for Problem 10.4.1 has
approximation performance ratio 1/e.

Proof Let us fix all random process until Ai is obtained for 1 ≤ i ≤ k. Let OPT

be an optimal solution and denote opt = f (OPT). Therefore, we have

E[�ui
f (Ai−1)] = 1

k
·
∑
u∈Mi

�uf (Ai−1)

≥ 1

k
·

∑
u∈OPT \Ai−1

�uf (Ai−1)

≥ 1

k
· (f (OPT ∪ Ai−1) − f (Ai−1))

Exercises 315

The first inequality is due to greedy choice of Ai . The second inequality is true
because f is submodular.

Release randomness of Ai and Ai−1 and take expectation. By Lemma 10.4.4, we
obtain

E[�ui
f (Ai−1)] ≥ 1

k
· (E[f (OPT ∪ Ai−1)] − E[f (Ai−1)])

≥ 1

k
·
((

1 − 1

k

)i−1

· opt − E[f (Ai−1)]
)

.

Thus,

E[f (Ai)] ≥ 1

k
·
(

1 − 1

k

)i−1

· opt +
(

1 − 1

k

)
· E[f (Ai−1)]

≥ 1

k
·
(

1 − 1

k

)i−1

· opt.

Finally, set i = k in the above inequality.

E[f (Ak)] ≥
(

1 − 1

k

)k−1

· opt ≥ e−1 · opt.

�

Exercises

1. Consider a graph G = (V ,E). For any edge subset A ⊆ E, define f (A) to be
the maximum number of edges in A which does not contain a cycle. Show that
f (A) is submodular.

2. Consider a graph G = (V ,E). For any node subset A ⊆ V , define f (A) to be
the number of connected components in subgraph with node set V and edges
each with at least one endpoint in A. Show that |V | − f (A) is submodular.

3. Consider a graph G = (V ,E). For any node subset A, f (A) is defined to be
the number of connected components in the subgraph induced by A. Show that
|V | − f (A) is not submodular.

4. Show that if f and g are submodular and f − g is monotone decreasing, then
min(f, g) is submodular.

5. (Rank Functions of Matroids) Consider a matroid (X, I). For any subset A ⊆
X, define rank function r(A) to be the cardinality of maximum independent
subset of A. Show that r is a polymatroid function with f ({x}) = 1 for all

316 10 Greedy Approximation

x ∈ X. Conversely, suppose r is a polymatroid function with f ({x}) = 1 for
all x ∈ X. Define I = {I | r(I) = |I |}. Show that (X, I) is a matroid.

6. (Matroid Duality) For any matroid M = (X, I), the dual matroid M∗ =
(X, I∗) is defined by

I∗ = {X \ I | I ∈ I}.

Prove that M∗ has the rank function

r∗(S) = |S| − (r(X) − r(X \ S))

where r is the rank function of M.
7. Consider a non-singular matrix. Prove that for any row index subset I , there

exists a column index subset J such that both submatrices, with indices I × J

and Ī × J̄ , respectively, are non-singular.
8. (Cut Functions in Graphs) Consider an undirected graph G = (V ,E). For any

vertex subset U ⊆ V , δ(U) denotes the set of edges each of which has exactly
one endpoint in U . Define f (U) = |δ(U)|. Prove that f is submodular, but
may not be monotone nondecreasing.

9. Suppose f is a submodular function on 2V . Show that for any positive constant
c > 0, min(f (A), c) is also a submodular function.

10. Consider a submodular function f on subsets of a finite set X. Show that f (A∪
B) − f (A) ≤ ∑

x∈B �xf (A).
11. Consider a graph G = (V ,E). For any node set A ⊆ V , let f (A) be the

number of nodes not adjacent to any node in A. Show that f (A) is a monotone
nonincreasing supermodular function. (A set function is supermodular if −f is
submodular.)

12. Show that the following problem has a greedy (1− e−1)-approximation: Given
a collection C of subsets of a finite set X and an integer k > 0, find a subset A

of X with |A| = k to maximize the number of subsets in C hit by A where a
subset S is said to be hit by A if A ∩ S �= ∅.

13. Consider a submodular function f on subsets of a finite set X. Show that
f (A) − f (A ∩ B) ≥ ∑

x∈A\B �xf (A \ {x}).
14. Consider an independent system (X, I). A minimal dependent set is called a

circuit. Let Ai,A2, . . . , Ak be all circuits of this system. Define Ii = {B |
Ai �⊆ B}. Show the following:

(a) For any 1 ≤ i ≤ k, (X, Ii) is a matroid.
(b) I = ∩k

i=1Ii .

15. Let f be a nonnegative submodular function on subsets of a finite set X.
Suppose that S is subset of X such that f (S) ≥ f (S ∪ {x}) for any x ∈ X \ S

and f (S) ≥ f (S \ {x}) for any x ∈ S. Show the following:

(a) If T ⊂ S or T ⊃ S, then f (T) ≤ f (S).
(b) max(f (S), f (X \ S)) ≥ 1

3 · maxA⊆X f (A).

Exercises 317

16. Let f be a nonnegative submodular function on subsets of a finite set X and
(X, I) a matroid. Consider the problem of maximizing f (S) subject to S ∈ I.
A solution S ∈ I is locally maximal if it cannot be improved through any
operation of deletion, addition, and swapping as follows:

Addition : If S ∪ {x} ∈ I, then f (S) ≥ f (S ∪ {x}).
Deletion : For any x ∈ S, f (S) ≥ f (S \ {x}).
Swapping : If d ∈ X \ S and e ∈ S such that (S \ {e}) ∪ {d} ∈ I, then

f (S) ≥ f ((S \ {e}) ∪ {d}).
Show that the following holds:

(a) For a locally maximal solution S and any subset C of X, 2f (S) ≥ f (S ∪
C) + f (S ∩ C).

(b) Let S1 be a locally maximal solution of f on 2X and S2 a locally maximal
solution on 2X\S1 . Then

max(f (S1), f (S2)) ≥ 1

4
· f (C)

where C is the maximum solution of f on 2X.

17. Let f be a nonnegative submodular function on subsets of a finite set X and k

a positive integer. Let D be a set of 2k dummy elements, i.e., for any u ∈ D

and any subset A of X, �uf (A) = 0. Show that Algorithm 35 is equivalent to
Algorithm 34.

18. (Linear Threshold Model) Consider a directed graph G = (V ,E). Every arc
(u, v) has a weight wuv such that for each node v,

∑
u:(u,v)∈E

wuv ≤ 1.

Every node has two states, active and inactive. Before starting a process, every
node is inactive. Initially, for every node v, a threshold θv is selected randomly
from [0, 1] with uniform distribution, and activate at most k nodes, called them

Algorithm 35 Random Greedy Algorithm for Problem 10.4.1

Input: A nonnegative submodular function f on 2X and a positive integer k.
Output: A subset Ak of X with |Ak | ≤ k.
1: X ← X ∪ D.
2: A0 ← ∅.
3: for i ← 1 to k do
4: Let Mi ⊆ X \ Ai−1 be a subset of size k maximizing

∑
u∈Mi

�uf (Ai−1).
5: Choose each element ui uniform randomly from Mi .
6: Ai ← Ai−1 ∪ {ui}
7: end for
8: return Ak ← Ak \ D.

318 10 Greedy Approximation

as seeds. Then, an influence process is carried out step-by-step. In each step,
every inactive node v checks whether

∑
active u:(u,v)∈E

wuv ≥ θv.

If yes, then v is activated. Otherwise, v is kept inactive. The process ends when
no new active node is produced. The influence spread is the expected number of
active nodes at the end of the influence process. Prove that the influence spread
is a monotone nondecreasing submodular function with respect to the seed set.

19. (Independent Cascade Model) Consider a directed graph G = (V ,E). Every
node has two states, active and inactive. Every arc (u, v) has a probability puv

which means that u can influence v successfully with probability puv . Before
starting a process, every node is inactive. Initially, activate at most k nodes,
called them as seeds. Then, an influence process is carried out step-by-step. In
each step, every freshly active node u will activate inactive neighbor through arc
(u, v) with success probability puv where, by a freshly active node, we mean
that a node becomes active at last step. When an inactive node receives influence
from k (k ≥ 2) incoming neighbors, we treat them as k independent events. The
process ends when no new active node is produced. The influence spread is the
expected number of active nodes at the end of the influence process. Prove that
the influence spread is a monotone nondecreasing submodular function with
respect to the seed set.

20. (Mutually Exclusive Cascade Model) Consider a directed graph G = (V ,E).
Every node has two states, active and inactive. Every arc (u, v) has a probability
puv which means that u can influence v successfully with probability puv .
Before starting a process, every node is inactive. Initially, activate at most k

nodes, called them as seeds. Then, an influence process is carried out step-by-
step. In each step, every freshly active node u will activate inactive neighbor
through arc (u, v) with success probability puv where, by a freshly active
node, we mean that a node becomes active at last step. When an inactive
node receives influence from k (k ≥ 2) incoming neighbors, we treat them
as k mutually exclusive events. The process ends when no new active node is
produced. The influence spread is the expected number of active nodes at the
end of the influence process. Prove that the mutually exclusive cascade model
is equivalent to the linear threshold model, that is, in both models, the influence
spread is the same function with respect to the seed set.

21. Let f be a monotone nondecreasing submodular function on 2X. Assume A ⊂
A′ and B ⊆ B ′. Prove that

f (A ∪ B ′) − f (A) ≥ f (A′ ∪ B) − f (A′).

22. (General Threshold Model) Consider a directed graph G = (V ,E). Every node
v has a monotone nondecreasing threshold function fv on subsets of incoming

Exercises 319

neighbors. Every node has two states, active and inactive. Before stating a
process, every node is inactive. Initially, for every node v, a threshold θv is
selected randomly from [0, 1] with uniform distribution, and activate at most k

nodes, called them as seeds. Then, an influence process is carried out step-by-
step. In each step, every inactive node v checks whether

fv({active u | (u, v) ∈ E}) ≥ θv.

If yes, then v is activated. Otherwise, v is kept inactive. The process ends
when no new active node is produced. The influence spread is the expected
number of active nodes at the end of the influence process. Prove that if at
every node v, threshold function fv is monotone nondecreasing submodular,
then the influence spread is a monotone nondecreasing submodular function
with respect to the seed set.

23. Consider a directed graph G = (V ,E) with general threshold information dif-
fusion model. Suppose at every node v, the threshold function fv is monotone
nondecreasing and supermodular. Can you prove that the influence spread is
monotone nondecreasing supermodular. If not, please give a counterexample.

24. In any in-arborescence with deterministic information diffusion model, show
that the influence maximization has a polynomial-time solution.

25. In any in-arborescence with the linear threshold model, show that the influence
maximization (i.e., the maximization of influence spread) has a polynomial-
time solution.

26. In any in-arborescence with the independent cascade model, show that the
influence maximization (i.e., the maximization of influence spread) is NP-hard.

27. Consider an undirected graph G = (V ,E). A dominating set D is called a
weakly CDS if all edges incident to D induce a spanning connected subgraph.
Prove that the minimum weakly CDS has a polynomial-time (1 + ln �)-
approximation where � is the maximum degree of a node.

28. Consider a vertex-weighted undirected graph G = (V ,E,w). Suppose w

is nonnegative. Design a greedy (1 + ln �)-approximation for the minimum
weight connected vertex cover where � is the maximum vertex degree.

29. Consider an undirected graph G = (V ,E). Design a greedy approximation
algorithm for the minimum CDS with performance ratio 2 + ln � where � is
the maximum vertex degree.

30. Consider an undirected graph G = (V ,E). Show that for any ε > 0, there exists
a greedy approximation algorithm for the minimum CDS with performance
ratio (1 + ε)(1 + ln �) where � is the maximum vertex degree.

31. Consider an undirected graph G = (V ,E). For any CDS C and two nodes u

and v, denote by mC(u, v) the minimum number of intermediate nodes on a
path between u and v passing through C. Denote by m(u, v) the number of
intermediate nodes on the shortest path between u and v in G. Design a greedy
(2+ln �)-approximation C for the minimum CDS with constraint that for every
two nodes u and v, mC(u, v) ≤ 7 · m(u, v).

320 10 Greedy Approximation

32. Consider an undirected graph G = (V ,E). Design a greedy algorithm for
maximization of cut function.

33. Consider n subsets A1, A2, . . . , An of a finite set X. There are k submodular
set functions wi : 2X → R+. Design an algorithm to allocate each set Aj to a
function wi to maximize

k∑
i=1

wi(∪j∈Si
Aj)

where Si is the set of indices of subset allocated to wi .

Historical Notes

In recent development of computer technology, such as wireless networks [56, 255],
cloud computing [124, 341], sentiment analysis [19, 226, 290, 323], and machine
learning [414], many nonlinear optimization problems come out with discrete
structure. They form a large group of new problems, which belong to a research area,
nonlinear combinatorial optimization. The nonlinear combinatorial optimization
has been studied for a long time but recently becomes very active. One of the
important fields in this area is the set function optimization. Its development can
be roughly divided into three periods:

The first period is before 2000. The research works came mainly from researchers
in operations research. Those works are mainly on submodular function optimiza-
tion, often with monotone nondecreasing property. In this period, major results
include the following:

• Unconstrained submodular minimization can be solved in polynomial-time [187,
330, 359].

• For constrained monotone nondecreasing submodular maximization, it has (1 −
1/e)-approximation with size constraint [325, 326, 412] or a knapsack constraint
[278, 371].

• For nonlinear-constrained linear optimization, the linear maximization with k

matroid constraints has (1/(k + 1))-approximation [41, 142], and the linear
minimization with submodular cover constraint, called the submodular cover
problem, has (1 + ln γ)-approximation where γ is a number determined by the
submodular function defining the constraint [413].

The second period is from 2007 to 2012, the research activity occurs mainly in
the theoretical computer science. The major results are about nonmonotone submod-
ular optimization, including submodular maximization with knapsack constraints
and matroid constraints [38, 135, 276] and submodular minimization with size
constraint [372]. (Especially, the random greedy algorithm was proposed in [38].)

Historical Notes 321

Most of them were published in theoretical computer science conferences, such as
STOC, FOCS, and SODA, and journals, such as SIAM Journal on Computing.

The third period is starting from 2014. The research is in application-driven. The
main focus is on nonsubmodular optimization.

In the study of submodular optimization, the greedy algorithm plays an important
role. Especially, during the first two periods, the greedy algorithm appears very
often. Actually, many theoretical results on greedy algorithms are built up with
submodularity. Of course, there are some exceptional cases. For example, the
analysis on greedy algorithm for independence systems (Sect. 4.1) does not need
submodularity, which was made by Jenkyns [228] and Korte and Hausmann [263].
Hausmann, Korte, and Jenkyns [208] gave a nice survey for this part of research
works.

The study on set cover and related problems can be seen as a part of research
activity on the submodular set cover since the result from the study either is able
to be generalized to the submodular set cover or can be covered by existing result
on the submodular set cover. For example, Wolsey’s theorem [414] was built up
based on results of D.S. Johnson [231], L. Lovatz [297], Chvátal [70], and Slavik
[370] on set covers. The subset interconnection design was proposed by Du and
Miller (1988) [103]. The analysis on greedy algorithm [20, 114, 340] for it can be
covered by Wolsey’s theorem. About greedy approximation, there is an interesting
long-standing open problem in the study of Superstring [29, 374, 383].

Lund and Yannakakis [305] proved that for any 0 < ρ < 1/4, there is no
polynomial-time approximation algorithm with performance ratio ρ ln n for hitting
set problem unless NP ⊂ DTIME (npoly log n). Feige [134] improved this result
by relaxing ρ to 0 < ρ < 1. Today, the condition that NP ⊂ DTIME (npoly log n)

has been replaced by NP = P [90]. This means that it is unlikely for the set cover
problem to have polynomial-time approximation with a performance ratio better
than ln n.

While theoretical efforts are still to make significant progress [189, 216,
270, 428], more attentions are moved to new subjects with strong application
background.

In the study of wireless ad hoc and sensor networks, a lot of optimization
problems are formulated [84, 87, 245, 247–249, 251, 252, 284, 284, 285, 307,
399, 400, 418, 419, 446, 449]. To obtain approximations with theoretical guaranteed
performance, one made a lot of efforts to establish submodular property [86, 306].
However, not many are successful. Actually, analysis techniques in the study of
submodular optimizations are more useful than established theorem since, very
often, existing theorems cannot apply but analysis approach in proof of theorems
may fly. In particular, this happened in the study of connected dominating sets
(CDS).

The CDS is also called virtual backbone in wireless ad hoc and sensor networks.
It is an attractive subject to formulate optimization problems [84, 109, 161, 246,
281–283, 364, 441, 450, 453, 454]. For those problems, greedy algorithm often
involves in the construction of approximation solution, and analysis of algorithms
becomes an interesting research topic. For example, let us consider minimization

322 10 Greedy Approximation

of cardinality of CDS. The problem can be formulated in the form similar to
submodular set cover problem. However, the function in covering constraint is
not submodular. Thus, we cannot apply Wolsey’s theorem. However, one found
that the function allows a similar analysis to obtain a very nice theoretical bound
[111, 112, 287, 351, 461]. Another way is to go around the problem with two-stage
greedy [191]. For unit disk graphs, although the minimum (size) CDS problem has
a PTAS, the PTAS is designed by using partition, and hence the running time is
quite high. Therefore, one still make efforts in design of faster approximation for
the minimum CDS [253, 314, 420].

In the study of social networks, monotone submodular maximization received a
lot of applications on influence maximization [193, 194, 302–304, 343, 424, 436,
459]. When objective function is changed to the profit, the monotone property is lost,
and we have to deal with nonmonotone submodular maximization [52, 195, 293–
295, 458].

Chapter 11
Relaxation and Rounding

Relax! Life is beautiful.

—David L. Wolper

The relaxation is a powerful technique to design approximation algorithms. It is
similar to restriction, in terms of making a change on feasible domain; however,
in an opposite direction, i.e., instead of shrinking the feasible domain, enlarge it by
relaxing certain constraint. There are various issues about relaxation. In this chapter,
we study some of them.

11.1 The Role of Rounding

As shown in Fig. 11.1, consider problem

min f (x)

subject to x ∈ �

where � is a feasible domain. By relaxation, we mean to remove some constraint on
feasible solutions so that the feasible domain � is enlarged to a new domain �, on
which the minimization of objective function f (x) can be solved or approximated
easily. Then, modify the optimal or approximate solution of the relaxed problem to
obtain an approximation for the original one.

To analyze the approximation performance, suppose min{f (x) | x ∈ �} can be
solved in polynomial-time and x∗ is the optimal solution. We modify x∗ to obtain
an approximation solution xA for min{f (x) | x ∈ �}. Then the performance ratio
is

f (xA)

opt
≤ 1 + f (xA) − opt

opt
≤ 1 + f (xA) − f (x∗)

opt
,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_11

323

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_11&domain=pdf

 7680 61494 a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_11

324 11 Relaxation and Rounding

Fig. 11.1 Idea of relaxation

that is, it depends on the estimation of loss during modification from x∗ to xA.
This is similar to approximation performance analysis for using restriction

technique. In both cases, the analysis is to estimate the value change of objective
function for modifying a solution to satisfy some constraint (or restriction).
However, there is an important difference that for relaxation, this modification is
a step of construction of approximation solution. Therefore, this modification has to
be efficiently computable, which requires more techniques. Hence, we give a special
name, rounding, for this modification.

The rounding is a very important issue in the study of relaxation methods. There
exist various types of rounding in the literature, such as iterated rounding, vector
rounding, randomized rounding, etc. Next, we show two examples:

First, consider the following problem:

Problem 11.1.1 (Weighted Vertex Cover) Given a graph G(V,E) with nonnega-
tive vertex weight, find a minimum total weight vertex cover.

For unweighted vertex cover problem, we constructed 2-approximation with
maximal matching. However, this construction cannot be seen clearly to have an
extension to weighed case. Therefore, we introduce a new one as follows:

The weighted vertex cover problem can be formulated into an integer LP as
follows:

Suppose V = {v1, v2, · · · , vn}. Let xi be an indicator for vertex vi belonging to
the vertex cover or not, i.e.,

xi =
{

1 if vi is in the vertex cover;
0 otherwise.

Let wi be the weight of vertex vi . Then, every vertex cover corresponds to a feasible
solution in the following 0-1 integer LP, and the minimum weight vertex cover
corresponds to the optimal solution of the 0-1 integer LP:

11.1 The Role of Rounding 325

min w1x1 + w2x2 + · · · + wnxn (11.1)

subject to xi + xj ≥ 1 for (vi, vj) ∈ E

xi = 0 or 1 for i = 1, 2, · · · , n.

By relaxing integer constraint xi = 0 or 1 to real number 0 ≤ xi ≤ 1, this integer
LP is turned to an LP, called an LP relaxation:

min w1x1 + w2x2 + · · · + wnxn (11.2)

subject to xi + xj ≥ 1 for (vi, vj) ∈ E

0 ≤ xi ≤ 1 for i = 1, 2, · · · , n.

The optimal solution x∗ of this LP relaxation can be computed efficiently. From x∗,
an approximation solution xA can be obtained through a rounding procedure, called
threshold rounding.
Threshold Rounding

xA
i =

{
1 if x∗

i ≥ 0.5,

0 if x∗
i < 0.5.

Theorem 11.1.2 xA gives a polynomial-time 2-approximation for the weighted
vertex cover problem.

Proof For each (vi, vj) ∈ E, since x∗
i + x∗

j ≥ 1, we have at least one of x∗
i and x∗

j

not smaller than 0.5. Therefore, at least one of xA
i and xA

j equals 1. This guarantees

that xA is a feasible solution of (11.1). Moreover,

n∑
i=1

wix
A
i ≤ 2

n∑
i=1

wix
∗
i

and the optimal solution of (11.1) has objective function value not smaller than∑n
i=1 wix

∗
i .
�

Next, we consider the following problem:

Problem 11.1.3 (MAX-SAT) Given a CNF F , find an assignment to maximize the
number of satisfied clauses.

Suppose F contains m clauses C1, . . . , Cm and n variables x1, . . . , xn. We also
first formulate the MAX-SAT problem into an integer LP:

max z1 + z2 + · · · + zm

326 11 Relaxation and Rounding

subject to
∑

xi∈Cj

yi +
∑

x̄i∈Cj

(1 − yi) ≥ zj for j = 1, 2, . . . , m,

yi ∈ {0, 1} for i = 1, 2, . . . , n,

zj ∈ {0, 1} for j = 1, 2, . . . , m,

where yi = 1 if xi = 1 and yi = 0 if xi = 0. (Note that xi is a Boolean variable, but
yi is a real number variable.)

Its LP relaxation is as follows:

max z1 + z2 + · · · + zm

subject to
∑

xi∈Cj

yi +
∑

x̄i∈Cj

(1 − yi) ≥ zj for j = 1, 2, . . . , m,

0 ≤ yi ≤ 1 for i = 1, 2, . . . , n,

0 ≤ zj ≤ 1 for j = 1, 2, . . . , m.

Let (y∗, z∗) be an optimal solution of above LP. We may do a random rounding as
follows:

Independent Rounding

Set xi = 1 with probability y∗
i independently.

Let us first show an inequality since it will be employed not only once.

Lemma 11.1.4 Let f (z) = 1 − (
1 − z

k

)k
. Then,

f (z) ≥ z(1 − e−1)

for z ∈ [0, 1].
Proof Note that f ′(z) = (1 − z

k
)k−1 ≥ 0 and f ′′(z) = − k−1

k
· (1 − z

k
)k−2 ≤ 0 for

0 ≤ z ≤ 1. Therefore, f (z) is monotone increasing and concave in interval [0, 1]
(Fig. 11.2). Moreover, f (0) = 0. Hence, f (z) ≥ zf (1) for z ∈ [0, 1]. Note that

f (1) = 1 −
(

1 − 1

k

)k

≥ 1 − e−1.

11.1 The Role of Rounding 327

Fig. 11.2 Function f (z)

Thus,

f (z) ≥ z(1 − e−1)

for z ∈ [0, 1].

�

Let Zj be a random variable which indicates whether clause Cj is satisfied.

Lemma 11.1.5 For any clause Cj , its expectation

E[Zj] ≥ z∗j
(

1 − 1

e

)
.

Proof

E[Zj] = 1 −
∏

xi∈Zj

(1 − y∗
i)

∏
x̄i∈Zj

y∗
i

≥ 1 −
(∑

xi∈Zj
(1 − y∗

i) +∑
x̄i∈Zj

y∗
i

k

)k

(k = |Zj |)

≥ 1 −
(

1 −
∑

xi∈Zj
y∗
i +∑

x̄i∈Zj
(1 − y∗

i)

k

)k

.

By Lemma 11.1.4,

E[Zj] ≥ (1 − e−1)

⎛
⎝ ∑

xi∈Zj

y∗
i +

∑
x̄i∈Zj

(1 − y∗
i)

⎞
⎠ = (1 − e−1) · z∗j .

�

Theorem 11.1.6 Denote ZF = Z1 + Z2 + · · · + Zm. Then,

328 11 Relaxation and Rounding

E[ZF] ≥ optmax-sat ·
(

1 − 1

e

)
,

where optmax-sat is the optimal objective function value of the MAX-SAT problem.

Proof By Lemma 11.1.5, we have

E[ZF] = E[Z1] + E[Z2] + · · · + E[Zm]
≥
(

1 − 1

e

) (
z∗1 + z∗2 + · · · + z∗m

)

≥ optlp ·
(

1 − 1

e

)

≥ optmax-sat ·
(

1 − 1

e

)

where optlp is the optimal objective function value of LP relaxation.
�
Note that

E[ZF] = E[ZF | x1 = 1]y∗
1 + E[ZF | x1 = 0](1 − y∗

1).

Therefore, we have

E[ZF |xi=1] = E[ZF | x1 = 1] ≥ optlp ·
(

1 − 1

e

)

or

E[ZF |xi=0] = E[ZF | x1 = 0] ≥ optlp ·
(

1 − 1

e

)
.

In the former case, it means that among assignments with x1 = 1, the expectation
of the number of satisfied clauses not less than optlp · (1 − 1

e
). In the latter case,

it means that among assignments with x1 = 0, the expectation of the number of
satisfied clauses is not less than optlp · (1− 1

e
). Motivated from this observation, we

can find the following way to derandomization procedure:

Derandomization
for i = 1 to n do

if E[ZF | xi = 1] ≥ optlp · (1 − 1
e
)

then xi ← 1 and
F ← F |xi=1

else xi ← 0 and
F ← F |xi=0

end-for.

11.2 Group Set Coverage 329

Theorem 11.1.7 The MAX-SAT problem has a polynomial-time (1 − e−1)-
approximation.

Proof Note that assign xi = 1 (xi = 0) if and only if E[ZF | xi = 1] ≥
(1 − 1/e)optlp (E[ZF | xi = 0] ≥ (1 − 1/e)optlp). This means that there
exists an assignment for remaining variables such that the number of satisfied
clauses is at least (1 − 1/e)optlp. Since this is true also at step i = n, the
assignment obtained from independent rounding would make at least (1−1/e)optlp
(≥ (1 − 1/e)optmax-sat) clauses being true.
�

11.2 Group Set Coverage

A lot of combinatorial optimization problems can be formulated into a 0-1
mathematical programming. A popular technique is to relax 0-1 variables to real
variables, and after obtaining the solution for relaxed mathematical programming,
find an approximation solution for the original 0-1 one with rounding techniques.
This relaxation method seems more powerful than greedy strategy.

In this section, we present an example for which the greedy algorithm can give
an approximation solution with performance ratio 1/2. However, an LP relaxation
algorithm can produce (1 − e−1)-approximation.

Problem 11.2.1 (Group Set Coverage) Given m groups G1, G2, . . . , Gm of subsets
of a finite set X, select at most one subset from each group to maximize the total
number of elements covered by selected subsets.

Theorem 11.2.2 The group set coverage problem is NP -hard.

Proof Consider the maximum set coverage problem: Given a collection C of subsets
of X and an integer k > 0, find k subsets from C to maximize the total number of
elements covered by selected subsets. If we set G1 = · · · = Gm = C and m = k.
Then, the maximum set coverage problem is reduced to the maximum group set
coverage problem. Since the maximum set coverage problem is NP-hard, so is the
maximum group set coverage problem.
�

Let us first study a greedy algorithm as shown in Algorithm 36.

Theorem 11.2.3 Algorithm 36 gives a greedy 1/2-approximation for the group set
coverage problem.

Proof Let subsets S1, S2, . . . , Sg be selected in turn by Algorithm 36. Relabel all
groups such that S1 ∈ G1, S2 ∈ G2, . . . , Sg ∈ Gg .

Let S∗
1′ , S

∗
2′ , . . . , S

∗
k′ be an optimal solution. Assume 1′ < 2′ < · · · < k′ and

S∗
i′ ∈ Gi′ for 1 ≤ i ≤ k. Let us consider two cases:

Case 1. g ≥ k. Note that 1 ≤ 1′, 2 ≤ 2′, . . . , k ≤ k′. Thus, we have

330 11 Relaxation and Rounding

Algorithm 36 Greedy Approximation for Group Set Coverage
Input: m groups G1, G2, . . . , Gm of subsets of a finite set X.
Output: A collection C of subsets of X.
1: C ← ∅;
2: � ← {G1,G2, . . . ,Gm};
3: repeat
4: pick up a group G from which contains the subset S that covers the maximum number of

uncovered elements, mark elements in S as covered, put S into C and delete G from �

5: until there is no uncovered element which can be covered by any subset in a group in �;
6: return C.

|Si \ (S1 ∪ · · · ∪ Si−1)| ≥ |S∗
i′ \ (S1 ∪ · · · ∪ Si−1)|

for 1 ≤ i ≤ k. Therefore,

|S1 ∪ · · · ∪ Sk| = |S1| + |S2 \ S1| + · · · + |Sk \ (S1 ∪ · · · Sk−1)|
≥ |S∗

1′ | + |S∗
2′ \ S1| + · · · + |S∗

k′ \ (S1 ∪ · · · ∪ Sk−1)|
≥ |S∗

1′ \ (S1 ∪ · · · ∪ Sk)| + |S∗
2′ \ (S1 ∪ · · · ∪ Sk)| + · · ·

+|S∗
k′ \ (S1 ∪ · · · ∪ Sk)|

≥ |(S∗
1′ ∪ · · · ∪ S∗

k′ \ (S1 ∪ · · · ∪ Sk)|
≥ |S∗

1′ ∪ · · · ∪ S∗
k′ | − |S1 ∪ · · · ∪ Sk|.

Hence,

|S1 ∪ · · · ∪ Sg| ≥ |S1 ∪ · · · ∪ Sk| ≥ |S∗
1′ ∪ · · · ∪ S∗

k′ |/2.

Case 2. g < k. Select Si arbitrarily from Gi for g + 1 ≤ i ≤ k. Note that

S1 ∪ · · · ∪ Si = S1 ∪ · · · ∪ Sg

for g ≤ i ≤ k. Since i′ > g′ ≥ g for g + 1 ≤ i ≤ k, we have

|Si \ (S1 ∪ · · · ∪ Si−1)| = 0 = |S∗
i \ (S1 ∪ · · · ∪ Si−1)|.

Therefore, we can use the same argument as that in Case 1 to show that

|S1 ∪ · · · ∪ Sg| = |S1 ∪ · · · ∪ Sk| ≥ |S∗
1′ ∪ · · · ∪ S∗

k′ |/2.

�
Next, we present the second approximation algorithm with LP relaxation. First,

we formulate the group set coverage problem into an integer LP as follows: Let xiS

be 0-1 variable which indicates if subset S is selected from group Gi . Let |X| = n

11.2 Group Set Coverage 331

and G = G1 ∪ · · · ∪ Gm. Use yj to indicate whether element j appears in a selected
subset or not. The following is the integer LP for the group set coverage problem:

max
n∑

i=j

yj

s.t. yj ≤
m∑

i=1

∑
S:j∈S∈Gi

xiS ∀j = 1, . . . , n,

∑
S:S∈Gi

xiS ≤ 1 ∀i = 1, . . . , m,

yj ∈ {0, 1} ∀j = 1, . . . , n,

xiS ∈ {0, 1} ∀S ∈ G and i = 1, 2, . . . , m.

Its relaxation is as follows:

max
n∑

i=j

yj

s.t. yj ≤
m∑

i=1

∑
S:j∈S∈Gi

xiS ∀j = 1, . . . , n,

∑
S:S∈Gi

xiS ≤ 1 ∀i = 1, . . . , m,

0 ≤ yj ≤ 1 ∀j = 1, . . . , n,

0 ≤ xiS ≤ 1 ∀S ∈ G and i = 1, 2, . . . , m.

Let (y∗
j , x∗

iS) be an optimal solution of this LP. We do a randomized rounding as
follows:

Mutually Exclusive Rounding: For each group Gi , make a mutually exclusive
selection to choose one subset S with probability x∗

iS and not select any subset with
probability 1−∑

S∈Gi
x∗
iS . Set yj = 1 if element j appears in a selected subset, and

yj = 0, otherwise.
Let (xiS, yj) be a solution obtained from the randomized rounding. We show

properties of this solution.

Lemma 11.2.4 E[yj] ≥ (1 − e−1)y∗
j .

Proof For each i = 1, . . . , n,

Prob[yj = 0] =
m∏

i=1

∏
S:j∈S∈Gi

(
1 − x∗

iS

)

332 11 Relaxation and Rounding

≤
(∑m

i=1
∑

S:j∈S∈Gi
(1 − x∗

iS)

Kj

)Kj

(where Kj = |{(i, S) | j ∈ S ∈ Gi}|)

=
(

1 −
∑m

i=1
∑

S:j∈S∈Gi
x∗
iS

Kj

)Kj

≤
(

1 − y∗
j

Kj

)Kj

.

Hence,

Prob[yi = 1] ≥ 1 −
(

1 − y∗
i

Kj

)Kj

.

By Lemma 11.1.4, we obtain

Prob[yj = 1] ≥ (1 − e−1)y∗
j .

Hence, E[yj] = Prob[yj = 1] ≥ (1 − e−1)y∗
j .
�

Theorem 11.2.5 Let (yj , xiS) be approximation solution obtained by randomized
rounding. Then,

E

⎡
⎣ n∑

j=1

yj

⎤
⎦ ≥ (1 − e−1)opt

where opt is the objective function value of optimal solution for the group set
coverage problem.

Proof By Lemma 11.2.4,

E

[
n∑

i=1

yj

]
=

n∑
i=1

E[yj]

≥ (1 − e−1) ·
n∑

j=1

y∗
j

≥ (1 − e−1) · opt.

�

11.3 Pipage Rounding 333

Algorithm 37 (1 − 1/e)-approximation for group set coverage
input m groups G1, G2, . . . , Gm of subsets of a finite set X.
output a collection C of subsets of X.
1: C ← ∅;
2: Solve LP relaxation to obtain optimal solution (x∗

iS , y∗
j);

3: for i ← 1 to m do
4: make mutually exclusive selection to choose at most one subset S from Gi with probability

x∗
iS ;

5: C ← C ∪ {S}
6: end for
7: return C.

Now, let us summarize the designed algorithm into Algorithm 37.

11.3 Pipage Rounding

In this section, we introduce a rounding technique, called the pipage rounding since
it can be applied to submodular optimization.

Consider the following problem:

Problem 11.3.1 (Maximum Weight Hitting) Given a collection C of subsets of a
finite set X with nonnegative weight function w on C and a positive integer p, find a
subcollection A of X with |A| = p to maximize the total weight of subsets hit by A.

Assume X = {1, 2, . . . , n} and C = {S1, S2, . . . , Sm}. Denote wi = w(Si). Let
xi be a 0-1 variable to indicate whether element i is in subset A. Then, this problem
can be formulated into the following integer LP:

max
m∑

j=1

wjzj (11.3)

s.t.
∑
i∈Sj

xi ≥ zj , j = 1, . . . , m,

n∑
i=1

xi = p

xi ∈ {0, 1}, i = 1, 2, . . . , n

zj ∈ {0, 1}, j = 1, 2, . . . , m.

There are two equivalent formulations as follows:

334 11 Relaxation and Rounding

max L(x) =
m∑

j=1

wj min{1,
∑
i∈Sj

xi} (11.4)

s.t.
n∑

i=1

xi = p

xi ∈ {0, 1}, i = 1, 2, . . . , n

max F(x) =
m∑

j=1

wj(1 −
∏
i∈Sj

(1 − xi)) (11.5)

s.t.
n∑

i=1

xi = p

xi ∈ {0, 1}, i = 1, 2, . . . , n

L(x) and F(x) have the same value when each xi takes value 0 or 1. But when
xi is relaxed to 0 ≤ xi ≤ 1, they may have different values. The following gives a
relationship between them:

Lemma 11.3.2 F(x) ≥ (1 − 1/e)L(x) for 0 ≤ x ≤ 1.

Proof Note that

1 −
∏
i∈Sj

(1 − xi) ≥ 1 −
(∑

i∈Sj
(1 − xi)

k

)k

(k = |Sj |)

≥ 1 −
(

1 −
∑

i∈Sj
xi

k

)k

.

By Lemma 11.1.4, we have

1 −
∏
i∈Sj

(1 − xi) ≥ (1 − e−1)
∑
i∈Sj

xi ≥ min

⎛
⎝1,

∑
i∈Sj

xi

⎞
⎠ .

�
Now, we consider LP relaxation of (11.4):

11.3 Pipage Rounding 335

max L(x) =
m∑

j=1

wj min

⎧⎨
⎩1,

∑
i∈Sj

xi

⎫⎬
⎭ (11.6)

s.t.
n∑

i=1

xi = p

0 ≤ xi ≤ 1, i = 1, 2, . . . , n

It is equivalent to the following LP:

max
m∑

j=1

wjzj (11.7)

s.t.
∑
i∈Sj

xi ≥ zj , j = 1, . . . , m,

n∑
i=1

xi = p

0 ≤ xi ≤ 1, i = 1, 2, . . . , n

0 ≤ zj ≤ 1, j = 1, 2, . . . , m.

Therefore, it is polynomial-time solvable. Let x∗ be an optimal solution of (11.6).
We will use the following rounding to find an integer solution x̄ from x∗:

Pipage Rounding
x ← x∗;
while x has an noninteger component do begin

choose 0 < xk < 1 and 0 < xj < 1 (k �= j);
define x(ε) by setting

xi(ε) =
⎧⎨
⎩

xi if i �= k, j,

xj + ε if i = j,

xk − ε if i = k;
define ε1 = min(xj , 1 − xk) and ε2 = min(1 − xj , xk);
if F(x(−ε1)) ≥ F(x(ε2))

then x ← x(−ε1)

else x ← x(ε2);
end-while;
return x̄ = x.

336 11 Relaxation and Rounding

The existence of xk and xj is due to the fact that when x has a noninteger
component, x has at least two noninteger components since

∑n
i=1 xi = p.

The following is an important property of F(x(ε)):

Lemma 11.3.3 F(x(ε)) is convex with respect to ε.

Proof If Sj contains only one of k and j , then the j th term of F(x(ε)), correspond-
ing to 1−∏

i∈Sj
(1−xi), is linear and hence convex with respect to ε. If Sj contains

both k and j , then the j th term of F(x(ε)), corresponding to 1 −∏
i∈Sj

(1 − xi), is
in the form

g(ε) = 1 − a(b + ε)(c − ε)

where a, b, and c are nonnegative constants with respect to ε. If a = 0, then this
term is a constant 1 and hence convex. For a > 0, since g′′(ε) = a > 0, g(ε) is
convex. Finally, we note that the sum of several convex functions is convex.
�

By Lemma 11.3.3, the value of F(x) is nondecreasing during the pipage rounding
process. Therefore, F(x̄) ≥ F(x∗).

Theorem 11.3.4 The maximum weight hitting problem has polynomial-time an
(1 − e−1)-approximation.

Proof L(x̄) = F(x̄) ≥ F(x∗) ≥ (1 − 1/e)L(x∗) ≥ (1 − e−1) · opt .
�
From above example, we may get a little impression on pipage rounding. Next,

we give a general description.
Consider a bipartite graph G = (U, V,E) and an integer programming with 0-1

variables xe each associated with an edge e and each constraint is in the form

∑
e∈δ(v)

xe ≤ pe

or

∑
e∈δ(v)

xe = pe

or

∑
e∈δ(v)

xe ≥ pe

where δ(v) is the set of all edges incident to v ∈ U ∪ V and pe is a nonnegative
integer. For example, we may consider the following integer programming:

max L(x) (11.8)

11.3 Pipage Rounding 337

s.t.
∑

e∈δ(v)

xe ≤ pv for v ∈ U ∪ V

xe ∈ {0, 1} for e ∈ E.

As shown in Fig. 11.3, suppose L(x) has a company F(x) such that

(A1) L(x) = F(x) for xe ∈ {0, 1}.
(A2) L(x) ≤ cF (x) for 0 ≤ xe ≤ 1.

We also assume the following:

(A3) The relaxation of integer programming (11.8) is equivalent to an LP or is
polynomial-time solvable.

Fig. 11.3 Framework of pipage rounding

338 11 Relaxation and Rounding

Suppose x∗ is an optimal solution of the relaxation of (11.8), i.e.,

max L(x) (11.9)

s.t.
∑

e∈δ(v)

xe ≤ pv for v ∈ U ∪ V

0 ≤ xe ≤ 1 for e ∈ E.

We next explain a pipage rounding procedure to obtain an integer solution x̄ from
x∗.

Initially, set x ← x∗. While x is not an integer solution, we will do the following:

1. Consider the subgraph Hx of G induced by all edges e with 0 < xe < 1. Let
R be a cycle or a maximal path of Hx . Then, R can be decomposed into two
matchings M1 and M2.

2. Define x(ε) by

xe(ε) =
⎧⎨
⎩

xe if e �∈ R,

xe + ε if e ∈ M1,

xe − ε if e ∈ M2.

Define

ε1 = min

(
min
e∈M1

xe, min
e∈M2

(1 − xe)

)

ε2 = min

(
min
e∈M1

(1 − xe), min
e∈M2

xe

)
.

3. If F(x(−ε1)) ≥ F(x(ε2))

then x ← x(−ε1)

else x ← x(−ε2).

Lemma 11.3.5 For ε ∈ [−ε1, ε2], x(ε) is feasible for (11.9).

Proof If R is a cycle, then
∑

e∈δ(v) xe(ε) = ∑
e∈δ(v) xe and hence x(ε) is feasible.

If R is a maximal path, then only for v being an endpoint of R,
∑

e∈δ(v) xe(ε) �=∑
e∈δ(v) xe. Suppose e′ ∈ δ(v) ∩ R. Since R is a maximal path, we have that for

e ∈ δ(v) \ {e′}, xe is an integer. Therefore,

pv −
∑

e∈δ(v)

xe(ε) = pv −
∑

e∈δ(v)\{e′}
xe − xe′(ε) ≥ 1 − xe′(ε) ≥ 0.

�
Assume F(x) is ε-convex, i.e.,

11.4 Continuous Greedy 339

(A4) For any R, F(x(ε)) is convex with respect to ε.

Then by pipage rounding, we would obtain an integer solution x̄ such that
F(x̄) ≥ F(x∗). Therefore,

F(x̄) ≥ F(x∗) ≥ cL(x∗) ≥ c · opt.

For the maximum weight hitting problem, we faced a star (which is a bipartite
graph) G = (U, V,E) where U = {u}, V = {v1, v2, . . . , vn} and E =
{(u, v1), (u, v2), . . . , (u, v2)}. Each variable xi corresponds to an edge (u, vi).
Therefore, in each iteration of pipage rounding, we deal with a maximal path
consisting of two edges.

11.4 Continuous Greedy

Why the pipage rounding can be applied to set function optimization? We may get
some idea from relaxation by expectation for set functions.

Consider a set function f (S) on subsets of a finite set X. Let X = {1, 2, . . . , n}.
For each element i, let xi be an indicator which indicates whether i belongs to subset
S or not, i.e.,

xi =
{

1 if i ∈ S,

0 otherwise.

Then f (S) can also be seen as a function F(x) = f (S) defined on x =
(x1, . . . , xn) ∈ {0, 1}n. Now, we extend F(x) to x ∈ [0, 1]n through expectation
as follows:

For each x ∈ [0, 1]n, let S be a random set that element i belongs to S with
probability xi . Define f (x) to be the expectation of function value of f , that is,

F(x) = ES∼x[f (S)] =
∑
S∈2X

f (S)

(∏
i∈S

xi

)⎛
⎝∏

i �∈S

(1 − xi)

⎞
⎠ .

This is called the multilinear extension of f , which has the following property:

Theorem 11.4.1 Suppose F is the multilinear extension of f . Then,

1. If f is monotone nondecreasing, then F is monotone nondecreasing along any
direction d ≥ 0.

2. If f is submodular, then F is concave along any line d ≥ 0.
3. If f is submodular, then F is convex along line ei − ej (i �= j) where ei has its

ith component equal 1 and others equal 0.

340 11 Relaxation and Rounding

Proof

1. Note that

∂F (x)

∂xi

= F(x1, .., xi−1, 1, xi+1, . . . , xn) − F(x1, .., xi−1, 0, xi+1, . . . , xn)

= E[f (R ∪ {i})] − E[f (R)]

where R is the random subset of X \ {i} such that R contains an element j ∈
X \ {i} with probability xj . If f is monotone nondecreasing, we have

∂F (x)

∂xi

≥ 0.

Now, let x ∈ [0, 1]n and d ∈ [0,+∞)n. Then,

dF(x + αd)

dα
= 〈d,∇F(x + αd)〉 ≥ 0.

Therefore, along direction d, F(x) is monotone nondecreasing.
2. Next, assume f is submodular. Let R be a random subset of X \ {i, j} such that

R contains an element k ∈ X \ {i, j} with probability xk . Then, for i �= j ,

∂2F(x)

∂xi∂xj

= E[f (R ∪ {i, j})] − E[f (R ∪ {i})] − E[f (R ∪ {j})] + E[f (R)]

= E[f (R ∪ {i, j}) − f (R ∪ {i}) − f (R ∪ {j}) + f (R)]
≤ 0.

Moreover,

∂2F(x)

∂x2
i

= 0.

Therefore, for x ∈ [0, 1]n and d ∈ [0,+∞)n,

d2F(x + αd)

dα2 = dT Hf (x + αd)d ≤ 0

where Hf (x + αd) is Hessian matrix of f at point x + αd. It implies that F(x)

is concave along line d.
3. Note that for d = ei − ej , we have

d2F(x + αd)

dα2 = dT Hf (x + αd)d = −2
∂2F(x)

∂xi∂xj

≥ 0.

11.4 Continuous Greedy 341

Therefore, F is convex along ei − ej .

�
Next, we present an application of multilinear extension.
Consider the following problem:

Problem 11.4.2 (Monotone Submodular Maximization with a Matroid Con-
straint)

max f (S)

subject to S ∈ I

where f is a monotone nondecreasing, submodular function on 2X for a finite set X

and I is the family of independent sets of a matroid M = (X, I).

Let F(x) be the multilinear extension of f (S) and P(M) the polytope of matroid
M, i.e.,

P(M) = {x ≥ 0 | ∀S ∈ 2X :
∑
j∈S

≤ rM(S)}

and

rM(S) = max{|I | | I ⊆ S, I ∈ I}.

Problem 11.4.2 can be relaxed into the following:

max F(x) (11.10)

subject to x ∈ P(M)

This relaxation can be solved by a continuous greedy algorithm as follows:

Algorithm 38 Continuous Greedy Algorithm
input F(x) and P(M).
output x(1).
1: Define vmax(x) = argmaxv∈P(M)〈v,∇F(x)〉.
2: x(0) ← 0 ∈ Rn.
3: for t ∈ [0, 1] do
4: x′(t) = vmax(x(t))

5: end for
6: return x(1).

342 11 Relaxation and Rounding

This algorithm contains a step to solve a differential equation. Therefore, it needs
an explanation about implementation. Before doing so, we first analyze it.

Lemma 11.4.3 For any x ∈ Rn, there exists v ∈ P(M) such that 〈v,∇F(x)〉 ≥
opt − F(x), where opt is the objective function value of optimal solution for the
relaxation (11.10).

Proof Let v be an optimal solution of the relaxation (11.10), i.e., F(v) = opt . We
show that 〈v,∇F(x)〉 ≥ F(v) − F(x).

To do so, consider d = (v−x)∨0, where x∨y denotes the coordinate-wise max
of x and y, i.e., (x ∨ y)i = max(xi, yi). Since d ≥ 0, F is concave along direction
d. Thus,

〈d,∇F(x)〉 ≥ F(x + d) − F(x).

Since F is nondecreasing along d and x + d = v ∨ x ≥ v, we have

F(x + d) ≥ F(x).

Moreover, d ≤ v and ∇F(x) ≥ 0 imply

〈d,∇F(x)〉 ≤ 〈v,∇F(x)〉.

Therefore,

〈v,∇F(x)〉 ≥ 〈d,∇F(x)〉 ≥ F(x + d) − F(x) ≥ F(v) − F(x).

�

Theorem 11.4.4 Let F be the multilinear extension of a nondecreasing submodular
function f . Then, x(1) obtained by Algorithm 38 satisfies the following:

1. x(1) ∈ P(M).
2. F(x(1)) ≥ (1 − e−1) · opt , where opt is the value of F at an optimal solution of

the relaxation (11.10).

Proof

1. Note that

x(1) =
∫ 1

0
x′(t)dt =

∫ 1

0
vmax(x(t))dt

= lim
n→∞

1

n

n∑
i=1

vmax

(
x

(
i

n

))
.

11.4 Continuous Greedy 343

Since vmax(x(i
n
)) ∈ P(M) and P(M) are convex and closed, we have x(1) ∈

P(M).
2. Note that

d

dt
F (x(t)) = 〈x′(t),∇F(x(t))〉 = 〈vmax(x(t)),∇F(x(t))〉.

By Lemma 11.4.3, there exists v ∈ P(M) such that

〈v,∇F(x(t))〉 ≥ opt − F(x(t)).

Therefore,

〈vmax(x(t)),∇F(x(t))〉 ≥ opt − F(x(t)).

Thus,

d

dt
F (x(t)) ≥ pt − F(x(t)).

Denote g(t) = F(x(t)). Then, we have

g′(t) + g(t) ≥ opt and g(0) = 0.

Define h(t) = g′(t) + g(t). Solve this differential equation. Then, we obtain

g(t) =
∫ t

0
ex−1h(x)dx.

Hence,

F(x(1)) = g(1) ≥ opt ·
∫ 1

0
xx−1dx = opt · (1 − e−1).

�
Now, let us discuss issues about implementation:

(1) How to compute F(x) and ∇F(x)? Note that in the definition of F(x), the sum
is over all subsets of X, i.e., it has 2|X| terms. Therefore, computing F(x) for a
single x may take exponential time.
To overcome this trouble, we may note its representation through expectation
F(x) = ES∼x[f (S)]. This representation suggests a computation with random
sampling. By Chernoff bound, we can obtain

344 11 Relaxation and Rounding

∣∣∣∣∣
1

t

t∑
i=1

f (Si) − F(x)

∣∣∣∣∣ ≤ ε · f (X)

with probability at least 1 − etε2/4, where S1, . . . , St are random subsets based
on element selection probability x. Therefore, if t = O(1

ε2), then with a
constant probability, we can compute an approximation of F(x) within εF (X)

error.
Similarly, the sampling method can be employed for computing ∇F(x) since

∂F (x)

∂xi

= E[f (R ∪ {i})] − E[f (R)].

(2) How to compute vmax(x) = argmaxv∈P(M)〈v,∇F(x)〉? It looks like a trouble,
but not a real trouble. This is a linear programming. Why it looks like a trouble?
This is because P(M) is not described by a constant number of constraints.
From matroid theory, we see several ways to represent P(M). However, in
general, everyone involves a large number of constraints. For example, there
are exponential number of inequalities in the following representation:

P(M) = {x ≥ 0 | ∀S ∈ 2X :
∑
j∈S

≤ rM(S)}.

Why it is not a real trouble? The reason is that P(M) is the convex hull of 1I

for I ∈ I where

(1I)i =
{

1 if i ∈ I,

0 otherwise.

Since optimal solution of linear programming can be found in vertices, vmax(x)

can be a solution of max{〈1I ,∇F(x)〉 | I ∈ I}. This can be solved by a greedy
algorithm since ∇F(x) ≥ 0.

(3) How to solve differential equation x′(t) = vmax(x(t)) numerically? Algo-
rithm 39 shows a simple numerical computational solution.

Using Algorithm 39 to solve differential equation, we can obtain the following:

Lemma 11.4.5 x(1) ∈ P(M) and

F(x(1)) ≥
(

1 −
(

1 − 1

n

)n)
· opt − c

n

for some constant c.

Proof Note that

11.4 Continuous Greedy 345

Algorithm 39 Solving the differential equation
input F(x) and vmax(x).
output x(1).
1: α ← 1

n
.

2: x(0) ← 0 ∈ Rn.
3: for t ← 1 to n do
4: v ← vmax(x((t − 1)α))

5: x(tα) ← x((t − 1)α) + αv

6: end for
7: return x(1).

x(1) = 1

n

n−1∑
t=0

vmax

(
x

(
t

n

))
,

that is, x(1) is a convex combination of points in P(M). Therefore, x(1) ∈ P(M).
Next, we employ Taylor expansion on F(x((t + 1)α)) = F(x(tα) + α ·

vmax(x(tα))). For some constant c, we have

F(x((t + 1)α)) ≥ F(x(tα)) + α · 〈vmax(x(tα)),∇F(x(tα))〉 − cα2

≥ F(x(tα)) + α[opt − F(x(tα))] − cα2

= (1 − α)F (x(tα)) + α · opt − cα2.

The second inequality is due to Lemma 11.4.3. Exchanging two sides and adding
opt , we obtain

opt − F(x((t + 1)α)) ≤ (1 − α)(opt − F(x(tα))) + cα2

≤ (1 − α)t+1(opt − F(x(0))) + cα2(t + 1)

= (1 − α)t+1 · opt + cα2(t + 1)

since F(x(0)) = 0. Setting t + 1 = n, we have

F(x(1)) ≥ (1 − (1 − α)n) · opt − c

n
.

�

Theorem 11.4.6 Set n = O(1/ε) in the continuous greedy algorithm. Then, we
can obtain

F(x(1)) ≥ (1 − e−1) · opt − ε.

Proof It follows immediately from Lemma 11.4.5.
�

346 11 Relaxation and Rounding

(4) How to round x(1) into an integer solution? By Theorem 11.4.1, F is convex
along line ei −ej . Therefore, we can apply pipage rounding to obtain an integer
solution x̂ such that F(x̂) ≥ F(x(1)).

�

Exercises

1. A collection of subset groups G1, G2, . . . , Gm is called a group set cover if there
exists a selection, which selects one subset Si from each group Gi , such that
every element is covered by ∪m

i=1Si . Clearly, the group set cover is an extension
of the set cover since the set cover can be seen as a special case that each group
contains only one subset. Show the following problem is NP-complete: Given
a collection of subset groups G1, G2, . . . , Gm, determine whether this collection
is a group set cover or not.

2. Consider n jobs and m machines. The ith machine time tij to process the j th
job. Using LP relaxation, please construct a 2-approximation for scheduling all
jobs on machines to minimize the makespan, i.e., the maximum processing time
over all machines.

3. (Minimum Two-Satisfiability) Given a 2CNF F , determine whether F is
satisfiable. If the answer is yes, then please design a 2-approximation for the
minimum number of true variable in a satisfying assignment.

4. (Maximum 1-in-3 SAT) Given a 3CNF F , find an assignment to maximize the
number of 1-in-3 clauses, i.e., there exists exactly one true literal in each such
clause. Can you find a polynomial-time constant approximation?

5. (Maximum Not-All SAT) Given a 3CNF F , find an assignment to maximize the
number of “not-all” clauses, i.e., in each such clause, there exist a true literal
and a false literal. Can you find a polynomial-time constant approximation?

6. Using LP relaxation, design a (1 − e−1)-approximation for a polymatroid
function maximization with a size constraint and a partition matroid constraint.

7. (Matroid Polytope) Show that for a matroid M = (X, I), the matroid polytope
P(M) = conv({xI | I ∈ I}) can be described by

P(M) = {x ∈ RX+ | for every S ⊆ X, x(S) ≤ rM(S)}

where rM is the rank function of M.
8. (Matroid Base Polytope) Consider a matroid M = (X, I). Show that the

matroid base polytope

Pbase(M) = conv({xB | B is a base of M})

can be described by

Historical Notes 347

Pbase(M) =
{
x ∈ RX+ | for all S, x(S) ≤ r(S), x(X) = r(X)

}
.

9. (Forest Polytope) Show that the forest polytope of a graph G = (V ,E) can be
given by

Pf orest (G) =
{
x ∈ RE+ | ∀W ⊆ V, x(E[W]) ≤ |W | − 1

}

where E[W] is the set of edges in subgraph induced by W .
10. (Spanning Tree Polytope) Show that the spanning tree polytope of a graph G =

(V ,E) can be described by

Pspanning−tree(G) =
{
x ∈ RE+ | ∀W ⊂ V, x(E[W]) ≤ |W | − 1, x(E) = |V | − 1

}

where E[W] is the set of edges in subgraph induced by W .
11. Consider a three-regular undirected graph G = (V ,E) and

P = conv({χF | F ⊆ E is a collection of vertex-disjoint cycles in V }).

Please give the description of P in linear inequalities.
12. Consider a matroid base polytope P . Show that [χB, χC] is an edge of P if and

only if B and C are bases such that |B ⊕ C| = 2.
13. (Lovász Extension) For a set function f : 2X → R, its Lovász extension is

defined by

∀x ∈ [0, 1]X, f L(x) = E[f ({i | xi ≥ θ})]

where θ is uniformly random in [0, 1]. Prove that f is submodular if and only
if f L is convex.

14. Consider an undirected graph G = (V ,E). We intend to orient every edge
such that each node has at most k incoming edges. Prove that this orientation is
possible if and only if |E[W]| ≤ k|W | for every subset W of V , where E[W]
is the edge set of subgraph induced by W .

15. Design a continuous greedy approximation algorithm for submodular maxi-
mization with a knapsack constraint.

16. Design a continuous greedy approximation algorithm for submodular maxi-
mization with k matroid constraints.

Historical Notes

Analysis of approximation algorithms with linear programming can be found as
early as the 1970s. Lovasz [297], Chvatal [70], and Wolsey [411] are pioneer

348 11 Relaxation and Rounding

works. Meanwhile, design of approximation algorithms with LP relaxation was
also started for the vertex cover problem. A detail survey about it can be found
in Hochbaum [212].

Bellare, Goldreich, and Sudan [23] showed that the vertex cover problem has no
polynomial-time ρ-approximation for ρ < 16/15 unless NP = P . However, so far,
no polynomial-time ρ-approximation for a constant ρ < 2 has been obtained for the
vertex cover problem.

The maximum satisfiability problem has no PTAS unless NP=P. Its approxima-
tion has been studied extensively in [174, 231, 432].

The pipage rounding was proposed by Ageev and Sviridenko [2]. Gandhi et
al. [155] applied this technique to dependent rounding. With pipage rounding,
Calinescu et al. [42] studied the maximization of monotone submodular function
subject to matroid constraint. In this work, continuous greedy also plays an
important role. The continuous greedy is a quite interesting algorithm proposed by
Vondrák [388]. The technique is extended to deal with nonmonotone submodular
maximization by Feldman et al. [139]. A local search algorithm is discovered to
deal with submodular maximization with a matroid constraint in [141], and they
obtained the same performance ratio.

There are various rounding techniques in the literature. For examples, the
dependent rounding was initiated in [31], and the vector rounding was proposed
by Betsman et al. in an earlier version of [31]. Its generalization, the geometric
rounding, can be found in [169, 170]. The iterated rounding was proposed by Jain
[227] and improved by Gabow et al. [152, 153]. It has received a lot of applications
[51, 64, 143, 312].

The 2-approximation for the minimum two-satisfiability problem in exercises
was designed by D. Gusfield and L. Pitt [202], and the 2-approximation for the
scheduling in UPM was given by Lenstra, Shmoys and Tados [277].

Chapter 12
Nonsubmodular Optimization

True optimization is the revolutionary contribution of modern
research to decision processes.

—George Dantzig
We must develop knowledge optimization initiatives to leverage
our key learnings.

—Scott Adams

In the real world, there are many set function optimization problems with objective
function and/or constraint which is neither submodular nor supermodular. Usually,
it is hard to study their approximation solutions. In this chapter, we summarize
existing efforts in the literature.

12.1 An Example

The rumor is an important research subject in the study of social networks since its
spread can make a lot of negative effects. For example, a rumor on earthquake will
cause people’s panic, and a rumor on a political leader’s health will cause a shaking
of stock market. Therefore, there exist many publications in the literature, which
proposed many methods to block the spread of rumor. In this section, we introduce
one of them, blocking the rumor by cutting at nodes.

Consider a social network represented by a directed graph G = (V ,E) with
the independent cascade (IC) model for information diffusion. In this model, every
node has two states, active and inactive. When active, it means a node is getting
influenced. In the current case that we are studying, the spread of the rumor, an
active node means a node gets a negative influence, i.e., influenced by the rumor.

In the IC model, the information diffusion process consists of discrete steps. In
the initial step, a subset of nodes, called seeds, are activated. In the spread of the
rumor, seeds are rumor sources. In each subsequent step, every newly active node

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8_12

349

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10596-8_12&domain=pdf

 7680 61494 a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8_12

350 12 Nonsubmodular Optimization

tries to influence its inactive out-neighbors where a node is called a newly active
node if it just becomes active in the last step. Suppose u is a newly active node and
v is an inactive out-neighbor of u. Then, v gets influenced from u, i.e., v becomes
active with the probability puv which is given with the model. When an inactive
node v receives more than one newly active nodes’ influence, we assume that all
newly active in-neighbors influence v independently. The process ends if no node
becomes active in the current step.

Now, consider a situation that a rumor is spreading in a social network G by
following the rule of the IC model. There may exist one or more rumor sources. Due
to budget limit, there are only k monitors available for screening out the rumor and
blocking the rumor passing through the monitor. We meet the following problem:

Problem 12.1.1 (Blocking Rumor by Node Cuts) Given a set of rumor sources,
how to allocate k monitors to maximize the expectation of the number of blocked
nodes?

Let S denote the set of rumor sources spreading the same rumor and IG(S) the
set of active nodes in G, influenced by the information spread from S. Define

σG(S) = E[IG(S)],

the expected number of nodes in IG(S). Then, the expectation of the number of
blocked nodes is

τ(C) = σG(S) − σG\C(G) (12.1)

where C is the set of monitors. The problem of blocking rumor by node cuts can be
expressed as

max
C:|C|≤k

τ (C).

First, we show the NP-hardness of this problem.

Theorem 12.1.2 The problem of blocking rumor by node cuts is NP-hard.

Proof Let us construct a polynomial-time Turing reduction from the well-known
NP-hard knapsack problem to the problem of blocking rumor by node cuts.

The knapsack problem can be expressed as follows:

max c1x1 + c2x2 + · · · + cnxn

subject to b1x1 + b2x2 + · · · + bnxn ≤ B

where c1, c2, . . . , cn, b1, b2, . . . , bn, B are positive integers and bi ≤ B for i =
1, 2, . . . , n. For this instance of the knapsack problem, we construct a social network
G as follows: First, create a rumor source node r . Then, for each i, construct a clique
Ci consisting of ci+bi nodes uij for 1 ≤ j ≤ ci+bi and also add bi arcs (r, uij) for

12.1 An Example 351

Fig. 12.1 Construction of
graph G

Fig. 12.2 Two
counterexamples

j = 1, . . . , bi where all Ci are disjoint (Fig. 12.1). In every arc (x, y), set pxy = 1.
Thus, if we intend to block the rumor to influence Ci , then we must allocate at
least bi monitors at nodes uij for 1 ≤ j ≤ bi . Clearly, the knapsack problem has a
feasible solution with objective function value at least c if and only if B monitors
can be allocated into the constructed social network to protect at least B + c nodes
from the rumor influence.
�

Recall that a set function f : 2X → R is submodular if for any two sets A ⊂ B

and any element x �∈ B, �xf (A) ≥ �xf (B) where �zf (A) = f (A∪{x})−f (A).

Proposition 12.1.3 The function τ(·) defined in (12.1) is not submodular.

Proof Consider a social network as shown in Fig. 12.2(a). It has four nodes r , u1,
u2, and v and two paths (r, u1, v) and (r, u2, v). For every arc (u, v), assign puv = 1.
r is the unique rumor source. Then, �u1τ(∅) = 1 and �u1τ({u2}) = 2. Therefore,
�u1τ(∅) < �p1τ({p2}), contradicting the definition of submodularity.
�

A set function f : 2X → R is supermodular if −f is submodular, that is, for
any two sets A ⊂ B and any element x �∈ B, �xf (A) ≤ �xf (B).

Proposition 12.1.4 The function τ(·) defined in (12.1) is not supermodular.

Proof Consider a social network as shown in Fig. 12.2(b). It has four nodes r , u1,
u2, and v and a path (r, u1, u2, v). For every arc (u, v), assign puv = 1. r is the

352 12 Nonsubmodular Optimization

unique rumor source. Then, �u1τ(∅) = 3 and �u1τ({u2}) = 1. Hence, �u1(∅) >

�u1τ({u2}), contradicting the definition of supermodularity.
�
How to study a maximization problem for nonsubmodular and nonsupermodular

functions? We introduce some approaches in this chapter.

12.2 Properties of Set Functions

At the first, we study some fundamental properties of set functions.

Theorem 12.2.1 (First DS Decomposition) Every set function f : 2X → R can
be expressed as the difference of two monotone nondecreasing submodular functions
g and h, i.e., f = g − h, where X is a finite set.

Proof Define ζ(f) = minA⊂B⊆X,x∈X\A{�xf (A)−�xf (B)}. Note that ζ(f) ≥ 0
if and only if f is monotone nondecreasing and submodular. Consider set function
p(A) = √|A|. Then ζ(p) > 0 since

min
A⊂B⊆X,x∈B\A{�xp(A) − �xp(B)} = min

A⊂B⊆X,x∈B\A{�xp(A)}

= min
A⊂X

{√|A| + 1 −√|A|
}

≥ √|X| + 1 −√|X|
> 0,

and

min
A⊂B⊂X,x∈X\B{�xp(A) − �xp(B)}

= min
A⊂B⊂X

{(√|A| + 1 −√|A|
)
−
(√|B| + 1 −√|B|

)}

= min
A⊂X

{(√|A| + 1 −√|A|
)
−
(√|A| + 2 −√|A| + 1

)}

≥ 2
√|X| + 1 −√|X| −√|X| + 2

> 0,

since
√

n is a strictly concave function. If ζ(f) ≥ 0, then f is monotone
nondecreasing and submodular, and hence f = f − 0 is a trivial decomposition
meeting the requirement.

Now, assume ζ(f) < 0. Define set functions h = 2 · −ζ(f)
ζ(p)

· p and g = f + h.

Then, ζ(h) = 2· −ζ(f)
ζ(p)

·ζ(p) = −2ζ(f) > 0 and ζ(g) = ζ(f)+ζ(h) = −ζ(f) > 0.

�

12.2 Properties of Set Functions 353

Theorem 12.2.2 (Second DS Decomposition) Every set function f : 2X → R can
be decomposed into the difference of two monotone nondecreasing supermodular
functions g and h, i.e., f = g − h.

Proof Define η(f) = minA⊂B⊂X,x∈X\B{�xf (B)−�xf (A)}. Note that η(f) ≥ 0
if and only if f is supermodular. Define τ(f) = minA⊂B⊆X{f (B) − f (A)}.
Then τ(f) ≥ 0 if and only if f is monotone nondecreasing. Therefore,
min(η(f), τ (f)) ≥ 0 if and only if f is a monotone nondecreasing supermodular
function.

Consider set function q(A) = |A|2. Then,

η(q) = min
A⊂B⊂X,x∈X\B{�xq(B) − �xq(A)}

= min
A⊂B⊂X

{((|B| + 1)2 − |B|2) − ((|A| + 1)2 − |A|2)}
= min

A⊂B⊂X
{2(|B| − |A|)}

≥ 2 > 0

and

τ(q) = min
A⊂B⊆X

{q(B) − q(A)}

= min
A⊂B⊆X

(|B|2 − |A|2)

≥ min
A⊂X

{(|A| + 1)2 − |A|2}
≥ 1 > 0.

If min{η(f), τ (f)} ≥ 0, then f = f − 0 is a trivial required decomposition. Now,
assume min{η(f), τ (f)} < 0. Define set functions h = 2 · −min{η(f),τ (f)}

min{η(q),τ (q)} · q and
g = f + h. Then,

η(h) = 2 · −min{η(f), τ (f)}
min{η(q), τ (q)} · η(q) ≥ −2 · min{η(f), τ (f)} > 0

and

τ(h) = 2 · −min{η(f), τ (f)}
min{η(q), τ (q)} · τ(q) ≥ −2 · min{η(f), τ (f)} > 0.

Therefore,

η(g) = η(f) + η(h) ≥ η(f) − 2 · min{η(f), τ (f)} ≥ −min{η(f), τ (f)} > 0

354 12 Nonsubmodular Optimization

and

τ(g) = τ(f) + τ(h) ≥ τ(f) − 2 · min{η(f), τ (f)} ≥ −min{η(f), τ (f)} > 0.

�
In the real world, the DS decomposition sometime exists quite naturally. For

example, consider viral marketing in social networks with the independent cascade
model for information diffusion. To advertise a product, initially, the company has
to distribute some free samples or discount coupons to potential buyers. They form
seed set S for the marketing. Let I (S) be the set of active nodes at the end of
information diffusion process. Then, E[|I (S)|] is the expectation of the number
of active nodes, i.e., expected number of customers who will adopt the product.
Suppose the price of the product is c. The profit received by the company is

c · E[|I (S)|] − d · |S|

where d is the cost of each free sample or discount lost on each seed. It can be
proved that both terms are monotone nondecreasing and submodular.

For each specific set function, one is always able to find a DS decomposition in
some way. However, no efficient approach has been found to do so. Therefore, there
exists an important open problem here.

Open Problem 1 Is there an efficient algorithm to produce a DS decomposition for
any given set function?

A set function m over 2X is a modular function if for any two sets A and B,
m(A) + m(B) = m(A ∪ B) + m(A ∩ B). The following lemma indicates that the
modular function is similar to a linear set function.

Lemma 12.2.3 For any modular function m : 2X → R,

m(A) = m(∅) +
∑
x∈A

(m(x) − m(∅))

for any set A ⊆ X.

Proof This lemma can be proved by induction on |A|. For |A| = 1, it is trivial. For
|A| ≥ 2, suppose y ∈ A. Then,

m(y) + m(A \ y) = m(A) + m(∅).

12.2 Properties of Set Functions 355

Therefore,

m(A) = m(A \ y) + (m(y) − m(∅))

= m(∅) +
∑

x∈A\y
(m(x) − m(∅)) + (m(y) − m(∅))

= m(∅) +
∑
x∈A

(m(x) − m(∅)).

�

Theorem 12.2.4 (Decomposition of Submodular Function [76]) Every submod-
ular function f can be expressed as f = p + m where p is a polymatroid function
(i.e., a monotone nondecreasing submodular function with p(∅) = 0) and m is a
modular function.

Proof Define m(A) = f (∅) −∑
x∈A �xf (X \ x) and p = f − m. Then, m is a

modular function. Hence, p is a submodular function. Moreover, p(∅) = f (∅) −
m(∅) = 0 and for any set A and x ∈ X\A, �xp(A) = �xf (A)−�xf (X\x) ≥ 0,
i.e., p is monotone nondecreasing. Therefore, p is a polymatroid function.
�

Next, we show an interesting result, sandwich theorem.

Theorem 12.2.5 (Sandwich Theorem) For any set function f : 2X → R and any
set Y ⊆ X, there are two modular functions mu : 2X → R and ml : 2X → R such
that mu ≥ f ≥ ml and mu(Y) = f (Y) = ml(Y).

This theorem states a surprising property of the set function. Why? Note that the
modular function is similar to linear function. Theorem 12.2.5 contains two different
modular functions passing through the same set and one is always smaller than or
equal to the other. This phenomenon cannot occur for continuous linear functions.
A continuous linear function with n variables can be expressed as an n-dimensional
plane in the (n+1)-dimensional space. A pair of different n-dimensional planes with
a point in common cannot have a coordinate along which one is always smaller than
or equal to the other. Therefore, this theorem states a special property of the set
function.

To prove the sandwich theorem, we first show two lemmas:

Lemma 12.2.6 For any submodular function f : 2X → R and any set Y ⊆ X,
there exists a modular function mu : 2X → R such that mu ≥ f and mu(Y) =
f (Y).

Proof Define

mu(A) = f (Y) +
∑

j∈A\Y
�jf (∅) −

∑
j∈Y\A

�jf (Y \ j).

Clearly, ml is modular and mu(Y) = f (Y). Next, we show that ml ≥ f .

356 12 Nonsubmodular Optimization

Assume A \ Y = {j1, . . . , jk}. Then,

f (A) − f (A ∩ Y) = �j1f (A ∩ Y) + �j2f ((A ∩ Y) ∪ {j1})
+ · · · + �jk

f ((A ∩ Y) ∪ {j1, . . . , jk−1})
≤

∑
j∈A\Y

�jf (A ∩ Y).

Assume Y \ A = {i1, .., ik}. Then,

f (Y) − f (A ∩ Y) = �i1f (A ∩ Y) + �i2f ((A ∩ Y) ∪ {i1})
+ · · · + �ikf ((A ∩ Y) ∪ {i1, . . . , ik−1})

≥
∑

j∈A\Y
�jf (Y \ j).

Therefore,

f (A) ≤ f (Y) +
∑

j∈A\Y
�jf (A ∩ Y) −

∑
j∈A\Y

�jf (Y \ j)

≤ f (Y) +
∑

j∈A\Y
�jf (∅) −

∑
j∈A\Y

�jf (Y \ j)

= mu(A).

�

Lemma 12.2.7 For any submodular function f : 2X → R and any set Y ⊆ X,
there exists a modular function ml : 2X → R such that f ≥ ml and f (Y) = ml(Y).

Proof Put all elements of X into an ordering X = {x1, x2, . . . , xn} such that Y =
{x1, x2, . . . , x|Y |}. Denote Si = {x1, x2, . . . , xi}. Define ml(∅) = f (∅) and for ∅ �=
A ⊆ X, define

ml(A) = f (∅) +
∑
xi∈A

(f (Si) − f (Si−1)).

Clearly, ml is modular and

ml(Y) = f (∅) +
∑
xi∈Y

(f (Si) − f (Si−1)) = f (Y).

Moreover, for any set A ⊆ X with A �= ∅, suppose A = {xi1 , xi2 , . . . , xik }, and then
we have

12.3 Parameterized Methods 357

ml(A) = f (∅) + (f (Si1) − f (Si1−1)) + (f (Si2) − f (Si2−1))

+ · · · + (f (Sik) − f (Sik−1))

≤ f (∅) + (f ({xi1}) − f (∅)) + (f ({xi1, xi2}) − f ({x1}))
+ · · · + (f (A) − f ({xi1 , . . . xik−1}))

= f (A).

�
Now, we are ready to prove Theorem 12.2.5.

Proof (Theorem 12.2.5). By Theorem 12.2.1, there exist submodular functions g

and h such that f = g − h. By Lemmas 12.2.6 and 12.2.7, there exist modular
functions mgu,mgl,mhu,mhl such that

mgu ≥ g ≥ mgl, mgu(Y) = g(Y) = mgl(Y),

and

mhu ≥ g ≥ mhl, mhu(Y) = h(Y) = mhl(Y).

Set mu = mgu − mhl and ml = mgl − mhu. Then,

mu ≥ f ≥ ml

and

mu(Y) = g(Y) − h(Y) = f (Y) = g(Y) − h(Y) = ml(Y).

�

12.3 Parameterized Methods

To deal with nonsubmodular optimization, one intends to measure how far the
function differs from the submodularity. Motivated from this intension, several
parameters are introduced, and theoretical results for submodular optimization
are extended to nonsubmodular optimization, usually with parameter involving in
performance analysis. Let us give two examples in the following:

Consider a set function f : 2X → R. The supermodular degree of an element
u ∈ X by a function f is defined to be |D+(u)| where

D+
f (u) = {v ∈ X | ∃A ⊆ X : �uf (A ∪ {v}) > �uf (A)}.

358 12 Nonsubmodular Optimization

The supermodular degree of function f is defined by

D+
f = max

u∈X
|D+(u)|.

When only function f is studied on submodular degree, we may simply write D+ =
D+

f .
With the supermodular degree, a nice theoretical result can be established.
Consider the monotone nonsubmodular maximization with matroid constraints

as follows:

Problem 12.3.1 (Monotone Nonsubmodular Maximization) Let f be a nonneg-
ative and monotone nondecreasing function over 2X where X is a finite set. Let
(X, Ci) be a matroid for i = 1, 2, . . . , k. Consider the following problem:

max f (A)

subject to A ∈ Ci for i = 1, 2, . . . , k,

Algorithm 40 is an extension of a greedy algorithm for submodular maximization
with matroid constraints.

Theorem 12.3.2 Greedy Algorithm 40 produces a 1
k(D++1)+1 -approximation solu-

tion for the maximization of monotone nondecreasing nonnegative set function with
k matroid constraints (Problem 12.3.1).

Proof Let S0, S1, . . . , Sg be produced by Greedy Algorithm 40. Let H0 be an
optimal solution. For 1 ≤ i ≤ g, let Hi be a maximal independent set of Hi−1 ∪ Si ,
containing Si . By Lemma 9.3.5,

|Hi−1 \ Hi | ≤ k|Si \ Hi−1| ≤ k|Si \ Si−1| ≤ k(D+ + 1).

Suppose Hi−1 \ Hi = {v1, . . . , vr }. Denote H
j

i−1 = Hi−1 \ {v1, . . . , vj }. Then,

Algorithm 40 Greedy Approximation for Problem 12.3.1

Input: a nonnegative monotone set function f on 2X and k matroids (X, Ci) for 1 ≤ i ≤ k. Let
C = ∩k

i=1Ci .
Output: A subset Si of X.
1: S0 ← ∅;
2: i ← 0;
3: while Si is not a maximal independent set do
4: i ← i + 1;
5: choose ui ∈ X \ Si−1 and Di−1 ∈ D+(ui) to maximize
6: f (Di ∪ {ui} ∪ Si−1) − f (Si−1) subject to Di ∪ {ui} ∪ Si−1 ∈ C;
7: set Si ← Di ∪ {ui} ∪ Si−1;
8: end while
9: return Si .

12.3 Parameterized Methods 359

f ((D+(vj) ∩ H
j

i−1) ∪ {vj } ∪ Si−1) − f (Si−1)

= �vj
f ((D+(vj) ∩ H

j

i−1) ∪ Si−1) + f ((D+(vj) ∩ H
j

i−1) ∪ Si−1) − f (Si−1)

≥ �vj
f ((D+(vj) ∩ H

j

i−1) ∪ Si−1)

≥ �vj
f (H

j

i−1 ∪ Si−1).

Since
((

D+(vj) ∩ H
j

i−1

)
\ Si−1

)
∪ {vj } ∪ Si−1 =

(
D+(vj) ∩ H

j

i−1

)
∪ {vj } ∪ Si−1

and (vj , (D+(vj)∩H
j

i−1)\Si−1) is a candidate pair for the ith step of the algorithm,
we have

f (Si) − f (Si−1)

≥ f
(((

D+(vj) ∩ H
j

i−1

)
\ Si−1

)
∪ {vj } ∪ Si−1

)
− f (Si−1)

= f
((

D+(vj) ∩ H
j

i−1

)
∪ {vj } ∪ Si−1

)
− f (Si−1)

≥ �vj
f
((

D+(vj) ∩ H
j

i−1

)
∪ Si−1

)

≥ �vj
f
(
H

j

i−1 ∪ Si−1

)
.

Thus,

r(f (Si) − f (Si−1)) ≥
r∑

j=1

�vj
f
(
H

j

i−1 ∪ Si−1

)

= f
(
H 0

i−1 ∪ Si−1

)
− f

(
Hr

i−1 ∪ Si−1
)

= f (Hi−1) − f (Hi).

Note that r ≤ k(D+ + 1). Thus,

k(D+ + 1)[f (Si) − f (S0)] ≥ r

g∑
i=1

[f (Si) − f (Si−1)]

≥
g∑

i=1

[f (Hi−1) − f (Hi)]

= f (H0) − f (Hi).

Since Sg = Hg , f (H0) = opt , and f (S0) ≥ 0, we finally have

360 12 Nonsubmodular Optimization

(k(D+ + 1) + 1)f (Sg) ≥ opt.

�
The supermodular degree has been successfully applied to a few optimization

problems, such as committee member selection.
We next introduce another parameter, curvature. There are several definitions

about curvature in the literature. What we will study is one of them.
By the first DS decomposition theorem, every set function is the difference of two

monotone nondecreasing submodular functions g and h, i.e., g − h. Therefore, the
minimization of such a set function can be worked out through solving a sequence
of problems min{g−c | h ≥ c} for a sequence of discrete constants c. Note that each
monotone nondecreasing submodular function can be represented by the sum of a
polymatroid function and a constant. Thus, min{g − c | h ≥ c} can be transformed
into the following form:

Problem 12.3.3 (Submodular Set Cover with Submodular Objective) Let g and
f be polymatroid functions over 2X for a finite set X:

min g(A)

subject to f (A) = f (X)

This problem has Algorithm 41 which can be analyzed as follows:
Define the curvature of g by

χ(g) = min
A⊆X

∑
x∈A g({x})
g(A)

.

Then, the following holds:

Theorem 12.3.4 Greedy Algorithm 41 produces an approximation solution with
performance ratio at most χ(g)H(γ) where

Algorithm 41 Greedy Approximation for Problem 12.3.3
Input: two polymatroid functions g and f .
Output: A subset S of X.
1: S ← ∅;
2: while f (S) < f (X) do
3: choose x to maximize �xf (S)

�xg(S)

4: and set S ← S ∪ {x};
5: end while
6: return S.

12.3 Parameterized Methods 361

γ = max
x∈X

f ({x})

and H(γ) = ∑γ

i=1 1/i.

Proof Define

c(A) =
∑
x∈A

g(x).

Then, Algorithm 41 is exactly the greedy algorithm for the submodular set cover
(standard form) problem. Let S be the set obtained by the algorithm. Then,

c(S) ≤ H(γ) · c(OPTc)

where OPTc is an optimal solution with respect to objective function c. Let OPTg

be an optimal solution with respect to objective function g. Then,

g(S) ≤
∑
x∈S

g(x) = c(S)

and

c(OPTc) ≤ c(OPTg) ≤
∑

x∈OPTg

g(x) ≤ χ(g) · g(OPTg).

Therefore,

g(S) ≤ γH(γ) · g(OPTg).

�
Problem 12.3.3 is also closely related to the generalized hitting set problem as

follows:

Problem 12.3.5 (Generalized Hitting Set) Given m nonempty collections
C1, C2, . . . , Cm of subsets of a finite set X, find the minimum subset A of X such that
every Ci has a member S ⊆ A.

Let C = ∪m
i=1Ci . For every subcollection A ⊆ C, define

g(A) = | ∪A∈A A|

and

f (A) = |{Ci | A ∩ Ci �= ∅, 1 ≤ i ≤ m}|.

362 12 Nonsubmodular Optimization

It is not hard to prove the following:

Lemma 12.3.6 Both g and f are polymatroid functions.

Moreover, we have

Theorem 12.3.7 The generalized hitting set problem is equivalent to the following:

min g(A) (12.2)

subject to f (A) = f (C),

A ⊆ C.

This equivalence means that A is a minimum solution of problem (12.2) if and only
if ∪A∈AA is the minimum solution of the generalized hitting set problem.

Proof Suppose A is the minimum solution of problem (12.2). For contradiction,
suppose ∪A∈AA is not a minimum generalized hitting set. Consider a minimum
generalized hitting set D. Then, |D| < | ∪A∈A A|. For each Cuv , let Cuv be a subset
of D, contained in Cuv . Denote

CD = {Cuv | u, v ∈ V with d(u, v) = 2}.

Then, h(CD) = h(C) and g(CD) ≤ |D| < g(A), a contradiction.
Conversely, suppose ∪A∈AA is a minimum generalized hitting set. For contra-

diction, suppose A is not a minimum solution for above problem of submodular
minimization with submodular cover constraint. Consider a minimum solution B
for it. Then, g(B) < g(A). By above argument, ∪B∈BB is a generalized hitting set
such that

| ∪B∈B B| = g(B) < g(A) = | ∪A∈A A|,

a contradiction.
�
Now, we present an application. Consider a wireless sensor network. Each sensor

has a communication disk and a sensing disk with itself as common center. If sensor
s1 lies in the communication disk of s2, then s1 can receive message from s2. When
all sensors have the same size of communication disks and the same size of sensing
disks, they are said to be homogeneous. In a homogeneous wireless sensor system,
the communication network is an undirected graph, in which a virtual backbone is
a connected dominating set, that is, it is a node subset such that every node is either
in the subset or adjacent to the subset. Construction of the virtual backbone is an
important issue in the study of wireless sensor networks.

12.3 Parameterized Methods 363

Fig. 12.3 Proof of
Lemma 12.3.9

Let G = (V ,E) be a homogeneous wireless sensor network and D a subset
of nodes. For each pair of nodes u and v, let d(u, v) denote the shortest distance
between u and v in G, i.e., the minimum number of edges on a path between u and
v and dD(u, v) the shortest distance between u and v in the subgraph induced by
D∪{u, v}. Motivated from reducing routing cost and improving load balancing, the
following problem has been studied in the literature:

Problem 12.3.8 (Routing-cost Constrained CDS) Given a homogeneous wireless
sensor network G = (V ,E), find a minimum connected dominating set D such that

dD(u, v) ≤ αd(u, v),∀u, v ∈ V, (12.3)

where α is a constant.

Condition (12.3) can be simplified as follows:

Lemma 12.3.9 To satisfy condition (12.3), it is sufficient to satisfy

dD(u, v) ≤ α + 1,∀u, v ∈ V with d(u, v) = 2. (12.4)

Proof Actually, (dD(u, v) − 1) ≤ α(d(u, v) − 1) for d(u, v) ≥ 2 if and only
if condition (12.4) holds. We need only to show the backward direction. Suppose
d(u, v) = k. Then, there exists a shortest path (u, u1, u2, . . . , uk−1, v) in G.
By condition (12.4), there exist node paths (u,w1, . . . , wβ1 , u2), (wβ1 , wβ1+1,
. . . , wβ2 , u3), . . . , (wβk−2 , wβk−2+1, . . . , wβk−1 , v) (Fig. 12.3) such that β1 ≤ α,
β2 ≤ 2α, . . . , βk−1 ≤ (k − 1)α, and all wi for 1 ≤ i ≤ βk−1 lie in D. Thus,

dD(u, v) ≤ βk−1 + 1 ≤ α(k − 1) + 1 ≤ αk.

�

Lemma 12.3.10 Suppose D contains a maximal independent set I . If for any two
nodes x and y in I with distance at most four, dD(x, y) ≤ α, then for any two nodes
u and v with distance two, dD(u, v) ≤ α + 2.

364 12 Nonsubmodular Optimization

Proof For any node u, if U ∈ I , then set u′ = u; otherwise, set u′ ∈ I is adjacent
to u. For any two nodes u and v with distance two, we then have that u′ and v′ in I

with distance at most four. Hence,

dD(u, v) ≤ dD(u′v′) + 2 ≤ α + 2.

�
Motivated from this lemma, we divide the construction into two stages.
In the first stage, we construct a maximal independent set I . It is worth

mentioning a well-known conjecture about the maximal independent set.

Conjecture 12.3.11 Let α(G) be the size of the maximum independent set in graph
G and γc(G) the size of the minimum connected dominating set in graph G. Then,
for any unit disk graph G (i.e., the graph structure of any homogeneous wireless
sensor network),

α(G) ≤ 3 · γc(G) + 3.

This conjecture is still open. The best proved result (see [115]) is

α(G) ≤ 3.399 · γc(G) + 4.874.

Since |I | ≤ α(G) and γc(G) are lower bound for optαcds , the minimum size of
routing-cost constrained connected dominating set with parameter α, we have

|I | ≤ 3.399 · optαcds + 4.874.

In the second stage, for every pair of nodes u and v in I with distance at most four,
let Cuv denote the collections of node subsets each of which is the set of intermediate
nodes on a path between u and v with distance at most α (α ≥ 4). Let D be a
node set hitting every Cuv . Then, D would satisfy constraint (12.4) and hence (12.3)
holds. This would imply that D is a connected dominating set. Thus, the routing-
cost constrained CDS problem is equivalent to the generalized hitting set problem
with input collections Cuv .

Now, we proved that in this example, χ(g) and γ are bounded by constants:

Lemma 12.3.12

γ ≤ 25

and

χ(g) ≤ 420.

12.3 Parameterized Methods 365

Proof Note that each node is adjacent to at most five nodes in an independent set.
Thus, there exist at most 25 paths with length 2, sharing the same intermediate nodes
with endpoints in I . Therefore, γ = maxS∈C f ({S}) ≤ 25.

To estimate χ(g), we first note that there are at most π(d+0.5)2

π ·0.52 = (2d + 1)2

independent nodes within distance d from any node.
Suppose u is an intermediate node of a path between x and y in I with at most

distance 4. There are two cases:

Case 1. Both x and y are within a distance 2 from u. The number of possible pairs
{x, y} is at most 25(25 − 1)/2 = 300.

Case 2. One of x and y has distance one from u and the other has distance three
from u. The number of possible pairs {x, y} in this case is at most 5×(72−52) =
5 × 24 = 120.
Putting two cases together, we obtain χ(g) ≤ 420.

�

Theorem 12.3.13 For any connected unit disk graph G, a connected dominating
set D can be constructed, in polynomial-time, to satisfy

|D| ≤ (420 · H(25) + 3.399)opt4cds + 4.874

and

dD(u, v) ≤ 5 · d(u, v).

Proof Let A be obtained by the greedy algorithm hitting all Cuv for all pairs of nodes
u, v in a maximal independent set I with d(u, v) ≤ 4. Then, by Lemma 12.3.12,

|A| ≤ 420 · H(25) · opt4cds .

Set D = I ∪ A. Then, we have

|D| ≤ (420 · H(25) + 3.399)opt4cds + 4.874

Moreover, by Lemma 12.3.10, we have that for any two nodes u and v with distance
two

dD(u, v) ≤ 6.

By Lemma 12.3.9, we obtain that for any two nodes u and v,

dD(u, v) ≤ 5 · d(u, v).

�

366 12 Nonsubmodular Optimization

In most of nonsubmodular optimization problems, the parameterized method
cannot be used successfully due to the lack of significant bound for parameters. For
example, the supermodular degree or curvature as above goes to infinity. Therefore,
one has to look for more approaches.

12.4 Sandwich Method

The sandwich method has been used quite often for solving nonsubmodular
optimization problems in the literature. It runs as follows:

Suppose we face a problem maxA∈� f (A) where � is a collection of subsets of
2X and X is a finite set.

Sandwich Method :

• Input a set function f : 2X → R.
• Initially, find two submodular functions u and l such that u(A) ≥ f (A) ≥ l(A)

for A ∈ �. Then, carry out the following operations:

– Compute an α-approximation solution Su for maxA∈� u(A) and a β-
approximation solution Sl for maxA∈� l(A).

– Compute a feasible solution So for maxA∈� f (A).
– Set S = argmax(f (Su), f (So), f (Sl)).

• Output S.

The performance ratio of this algorithm is data-dependent as follows: Hence, this
algorithm is also called a data-dependent approximation algorithm.

Theorem 12.4.1 The solution S produced by the sandwich method satisfies the
following:

f (S) ≥ max

{
f (Su)

u(Su)
· α,

optl

optf
· β

}
· optf ,

where optf (optl) is the objective function value of the minimum solution for
maxA∈� f (A) (maxA∈� l(A)).

Proof Since Su is a α-approximation solution for maxA∈� u(A), we have

f (Su) = f (Su)

u(Su)
· u(Su)

≥ f (Su)

u(Su)
· α · optu

≥ f (Su)

u(Su)
· α · u(OPTf)

12.4 Sandwich Method 367

≥ f (Su)

u(Su)
· α · optf ,

where OPTf is an optimal solution for minA∈� f (A). Since Sl is an β-
approximation solution for maxA∈� l(A), we have

f (Sl) ≥ l(Sl) ≥ β · optl = β · optl

optf
· optf .

Therefore, the theorem holds.
�
Next, we follow this approach to give a data-dependent approximation for the

problem of blocking rumor by cut.
Define

α1(C) =
∑
c∈C

τ({c})

and

α2(C) =
∑

c,c′∈C:c �=c′
τ({c, c′}).

Clearly, α1 is modular, that is, for any two subsets A ⊂ B and any element x �∈ B,

�xα1(A) = �xα1(B).

However, we have

Lemma 12.4.2 α2 is supermodular.

Proof By definition of α2, we have that for any two subsets A ⊂ B and any element
x �∈ B,

�xα2(A) =
∑
y∈A

τ({x, y}) ≤ �xα2(B) =
∑
y∈B

τ({x, y}).

Therefore, α2 is supermodular.
�
By the inclusive-exclusive formula, we have

Lemma 12.4.3 For any set C,

α1(C) ≥ τ(C) ≥ α1(C) − α2(C).

Since α1 is modular, max{α1(C) | |C| ≤ k} can be solved in polynomial-time.
Define β = α1 − α2. Then, by Lemma 12.4.2, β is a nonnegative submodular

368 12 Nonsubmodular Optimization

function. There exists a 1/e-approximation algorithm in Section 10.4. Now, we can
describe a data-dependent approximation algorithm as follows:

Data-Dependent Approximation
Compute an optimal solution Cα1 for max{α1(C) | |C| ≤ k}.
Compute 1/e-approximation Cβ for max{β(C) | |C| ≤ k}.
Compute a feasible solution Cτ for max{τ(C) | |C| ≤ k}.
Choose Cdata = argmax(τ (Cα1), τ (Cβ), τ (Cτ)).

By Theorem 12.4.1, this solution Cdata has the following performance:

Theorem 12.4.4

τ(Cdata) ≥ max

(
τ(Cα1)

optα1

,
1

e
· optβ

optτ

)
· optτ

where optτ (optα1 , and optβ) is the objective function value of an optimal solution
for problem max{τ(C) | |C| ≤ k} (problem max{α1(C) | |C| ≤ k}, and problem
max{β(C) | |C| ≤ k} respectively).

Note that τ is monotone nondecreasing, i.e., for A ⊂ B, τ(A) ≤ τ(B).
Therefore, Cτ can be obtained by the following greedy algorithm:

Greedy Algorithm
C0 ← ∅;
for i = 1 to k do

x = argmaxx∈V \Ci−1
(τ (Ci−1 ∪ {x}) − τ(Ci−1)) and

Ci ← Ci−1 ∪ {x};
end-for
return Cτ = Ck .

From theoretical point of view, the sandwich method is always applicable since
we have the following:

Theorem 12.4.5 For any set function f on 2X, there exist two monotone nonde-
creasing submodular functions u and l such that u(A) ≥ f (A) ≥ l(A) for every
A ∈ 2X.

Proof By the first DS decomposition theorem, there exist two monotone nonde-
creasing submodular functions g and h such that f = g − h. Note that for every
A ∈ 2X, h(∅) ≤ h(A) ≤ h(X). Set u(A) = g(A) − h(∅) and l(A) = g(A) − h(X)

for any A ∈ 2X. Then, u and l meet our requirement.
�
However, in practice, it is often quite hard to find such an upper-bound u and a

lower-bound l which are easily computable since the DS decomposition exists but
is unknown to be efficiently computable. Therefore, more efforts are required to
construct them for specific real-world problems.

12.5 Algorithm Ending at Local Optimal Solution 369

12.5 Algorithm Ending at Local Optimal Solution

For nonsubmodular optimization, there also exists a class of algorithms which end
at local optimal solutions. What is the local optimal solution? For set function
optimization, there exist several definitions in the literature. However, they have
a property in common, that is, all of them are necessary conditions for optimality.
In this section, we introduce two of them together with two algorithms which end at
these two types of local optimal solutions, respectively.

Here are two necessary conditions for minimality:

1. Let f be a set function on 2X. Suppose A is a minimum solution of f in 2X.
Then, f (A) ≤ f (A \ {x}) and f (A) ≤ f (A ∪ {x}) for any x ∈ X.

2. Let f = g − h be a set function and g and h submodular functions on subsets of
X. If set A is a minimum solution for minY⊆X f (Y), then ∂h(A) ⊆ ∂g(A).

Condition 1 is obvious. Condition 2 needs a little explanation. First, let us explain
what is the notation ∂h(A). ∂h(A) is the subgradient of function h at set A, defined
as

∂h(A) = {c ∈ RX | h(Y) ≥ h(A) + 〈c, Y − A〉}.

Actually, for a submodular set function h : 2X → R, the subgradient at set A

consists of all linear functions c : X → R satisfying h(Y) ≥ h(A) + c(Y) − c(A)

where c(Y) = ∑
y∈Y c(y). Each linear function c can also be seen as a vector in

RX, i.e., a vector c with components labeled by elements in X. The characteristic
vector of each subset Y of X is a vector in {0, 1}X such that the component with
label x ∈ X is equal to 1 if and only if x ∈ Y . Here, for simplicity of notation, we
use the same notation Y to represent the set Y and its characteristic vector.

To see Condition 2, note that since A is a minimum solution for

min
Y⊆X

f (Y),

we have f (A) ≤ f (Y) and hence g(Y) − g(A) ≥ h(Y) − h(A) for any Y ⊆ X.
Therefore, for any c ∈ ∂h(A), g(Y) − g(A) ≥ h(Y) − h(A) ≥ c(Y) − c(A). This
means that ∂h(A) ⊆ ∂g(A).

Condition 2 implies Condition 1. To see this, we first introduce two lemmas:

Lemma 12.5.1 Suppose A satisfies condition 2. Then, for any Y ∈ U , f (A) ≤
f (Y) where

U = {Y | ∂h(Y) ∩ ∂g(A) �= ∅}.

Proof Choose c ∈ ∂h(Y) ∩ ∂g(A). Then,

h(A) ≥ h(Y) + (c(A) − c(Y)) and g(Y) ≥ g(A) + (c(Y) − c(A)).

370 12 Nonsubmodular Optimization

Hence, h(Y)−h(A) ≤ c(Y)−c(A) ≤ g(Y)−g(A). Therefore, f (Y) ≥ f (A).
�

Lemma 12.5.2 (Fujishige [150]) A point c ∈ RX is an extreme point of
∂f (A) if and only if there is a permutation σ for elements in X, i.e., X =
{σ(1), σ (2), . . . , σ (|X|)}, such that A = {σ(1), σ (2), . . . , σ (|A|)} and c({σ(i)}) =
f (Si) − f (Si−1) for 1 ≤ i ≤ |X| where S0 = ∅ and Si = {σ(1), σ (2), . . . , σ (i)}.

Theorem 12.5.3 Condition 2 implies Condition 1.

Proof For any x ∈ A, consider permutation X = {σ(1), σ (2), . . . , σ (|X|)} such
that A = {σ(1), σ (2), . . . , σ (|A|)} and σ(|A|) = x. Define linear function c

by c({σ(i)}) = h(Si) − h(Si−1) for 1 ≤ i ≤ |X| where S0 = ∅ and Si =
{σ(1), σ (2), . . . , σ (i)}. Then, c ∈ ∂h(A \ {x}) ∩ ∂h. Since ∂h(A) ⊆ ∂g(A), we
have c ∈ ∂h(A \ {x}) ∩ ∂g(A). By Lemma 12.5.1, f (A) ≤ f (A \ {x}).

Similarly, we can show that for any x ∈ X \ A, f (A) ≤ f (A ∪ {x}).
�
Now, let us study the submodular-supermodular algorithm.
As shown in Algorithm 42, the algorithm mainly uses the first DS decomposition.
Given a set function f : 2X → R, initially assume that f = g − h is already

known for two submodular functions g and h. Start from an arbitrary set A. At
each iteration, replace h by a lower-bound modular function mhl such that h(A) =
mhl(A). Then, compute a minimum solution A+ for minY∈2X [g(Y) − mhl(Y)].
This is possible since the unconstrained submodular minimization can be solved
in polynomial-time. Note that f (A) = g(A) − mhl(A). Thus, we must have
f (A+) ≤ f (A). If f (A+) < f (A), then set A ← A+, and a new iteration will
start; otherwise, algorithm stops.

In above iteration, an important remark should be made on the lower-bound
modular function mhl . Actually, for each permutation σ of X such that A =
{σ(1), . . . , σ (|A|)}, we can construct a modular function mσ

hl such that h(A) =

Algorithm 42 Submodular-Supermodular Algorithm for Minimization

Input: a set function f : 2X → R and its DS decomposition f = g − h where g and h are
submodular functions.
Output: A subset A of X.
1: choose a set A ⊆ X;
2: while f (A+) < f (A) do
3: A ← A+;
4: for σ ∈ �A do
5: compute a lower-bound modular function mσ

hl for h;
6: compute a minimum solution A+

σ for minY∈2X [g(Y) − mσ
hl(Y)];

7: end for
8: σ ← argminσ∈�A

f (A+
σ);

9: A+ ← A+
σ

10: end while
11: return A.

12.6 Global Approximation of Local Optimality 371

mσ
hl(A) and, moreover, h(Si) = mσ

hl(Si) for any Si = {σ(1), . . . , σ (i)}. Let
θ = max(|A|, |X| − |A|). Let �A be a collection of θ permutations σ of X such
that σ(|A|) goes over all elements of A and σ(|A| + 1) goes over all elements
of X \ A, that is, for any element x ∈ A, there exists σ ∈ �A such that
A \ {x} = {σ(1), . . . , σ |A| − 1} and for any x ∈ X \ A, there exists σ ∈ �A

such that A ∪ {x} = {σ(1), . . . , σ (|A| + 1)}. Now, let A+
σ denote the minimum

solution for minY∈2X [g(Y) − mσ
hl(Y)]. Set

σ+ = argminσ∈�A
f (A+

σ)

and

A+ = A+
σ+ .

Then, we will have

f (A+) ≤ f (A \ {x}) for any x ∈ A

and

f (A+) ≤ f (A ∪ {x}) for any x ∈ X \ A.

Therefore, for Algorithm 42, we have

Theorem 12.5.4 Algorithm 42 always ends at a local minimum solution satisfying
Condition 1.

12.6 Global Approximation of Local Optimality

Sometimes, an algorithm may not be able to stop at a local optimal solution, and
instead, it stops at a local approximately optimal solution. For example, consider
the following problem:

max f (A)

subject to |A| ≤ k

A ∈ 2X

where f is a set function over 2X for a finite set X. Algorithm 43 is the submodular-
supermodular algorithm for this problem.

372 12 Nonsubmodular Optimization

Algorithm 43 Submodular-Supermodular Algorithm for Maximization

Input: a set function f : 2X → R and its DS decomposition f = g − h where g and h are
submodular functions.
Output: A subset A of X.
1: choose a set A ⊆ X;
2: while f (A+) > f (A) do
3: A ← A+;
4: for σ ∈ �A do
5: compute a lower-bound modular function mσ

hl for h;
6: compute a (1 − e−1)-approximation solution A+

σ for maxY :|Y |≤k[g(Y) − mσ
hl(Y)];

7: end for
8: σ ← argmaxσ∈�A

f (A+
σ);

9: A+ ← A+
σ

10: end while
11: return A.

Theorem 12.6.1 Algorithm 43 stops at a solution A satisfying condition that for
any x ∈ A, f (A) ≥ (1 − e−1) · f (A \ {x}) and for any x ∈ X \ A, f (A) ≥
(1 − e−1) · f (A ∪ {x}).
Proof In each iteration, A+ satisfies that for any x ∈ A, f (A+) ≥ (1−e−1) ·f (A\
{x}) and for any x ∈ X \ A, f (A+) ≥ (1 − e−1) · f (A ∪ {x}). When the algorithm
stops, we have f (A) ≥ f (A+). Therefore, A has the property.
�

Since the algorithm always stops at a local approximately optimal solution, we
may call it as a global optimal approximation or G-L approximation for a brief
name. There is a more important reason for us to pay attention on G-L approxima-
tion, that is, the submodular-supermodular is unlikely to run in polynomial-time.
Actually, computing a local minimum solution satisfying Condition 1 is PLS
(Polynomial Local Search)-complete, which is unlikely to run in polynomial-time.
In order to obtain a polynomial-time algorithm, we have to modify the submodular-
supermodular algorithm while accepting the G-L approximation solution.

Let us call A as a G-L ρ-approximation for minimization of set function f :
2X → R if for any x ∈ A, f (A) ≤ (1+ε)·f (A\{x}) and for any x ∈ X\A, f (A) ≤
(1 + ε) · f (A ∪ {x}). Now, we modify the submodular-supermodular algorithm for
minimization as shown in Algorithm 44, and obtain the following:

Theorem 12.6.2 Let f be a nonnegative function. Then, Algorithm 44 ends at G-
L (1 + ε)-approximation within O(1

ε
ln ζ) iterations where ζ is the ratio of the

maximum value and the minimum value of f .

Proof In each iteration, we have that for any x ∈ A, f (A+) ≤ f (A \ {x}) and
for any x ∈ X \ A, f (A+) ≤ f (A ∪ {x}). When the algorithm stops, f (A) ≤
(1 + ε) · f (A+). Hence, for any x ∈ A, f (A) ≤ (1 + ε) · f (A \ {x}) and for any
x ∈ X \ A, f (A) ≤ (1 + ε) · f (A ∪ {x}).

Before algorithm stops, in each iteration, we have f (A+) · (1 + ε) < f (A). Let
k satisfy opt · (1 + ε)k = f (A) for initial set A and optimal value opt . Then, the

12.7 Large-Scale System 373

Algorithm 44 Submodular-Supermodular Algorithm for Minimization

Input: a set function f : 2X → R and its DS decomposition f = g − h where g and h are
submodular functions.
Output: A subset A of X.
1: choose a set A ⊆ X;
2: while f (A+) · (1 + ε) < f (A) do
3: A ← A+;
4: for σ ∈ �A do
5: compute a lower-bound modular function mσ

hl for h;
6: compute a minimum solution A+

σ for minY∈2X [g(Y) − mσ
hl(Y)];

7: end for
8: σ ← argminσ∈�A

f (A+
σ);

9: A+ ← A+
σ

10: end while
11: return A.

algorithm must stop within �k� iterations. Note that e < (1+ε)1+1/ε and 1+1/ε <

2/ε for ε < 1. Thus, ekε/2 < f (A)/opt . Hence, kε < 2 ln(f (A)/opt) ≤ 2 ln ζ .

�

12.7 Large-Scale System

Current technology developments and economic activities produce a huge amount of
data, which raise a lot of large-scale combinatorial optimization problems. In order
to give efficient solution for them, many techniques are generated, which form an
important research direction. In this section, we give a brief introduction to let the
reader get a taste on its importance in practice and theory.

LP is one of the most frequently applied tools for solving real-world optimization
problems. It was initiated by its large amount of applications in economics and
industries. At its initial stage, one has developed techniques to deal with large-
scale LP. In fact, one of indicators for research progress on LP is the capability
for solving large-scale LP. Currently, commercial LP codes can solve LP with about
6000 constraints.

In the large-scale LP, an important property is the sparsity of coefficient matrix.
There are certain structures that reappear frequently. For example, in the following
applications, zero and nonzero coefficients in constraints are appeared in a pattern
as shown in Fig. 12.4. This structure is called the primal block angular.

Multicommodity Flow Consider a flow network G = (V ,E), where each arc
(i, j) ∈ E has capacity c(i, j). There are K types of commodities. Let ak

ij denote

the per-unit cost for moving a type k commodity from node i to node j . Let bk
i

denote the required net commodity of type k at node i. bk
i > 0 means that node i is

a source for type k commodity and bk
i < 0 means that node i is a receiver for type

374 12 Nonsubmodular Optimization

Fig. 12.4 Primal block
angular

k commodity. The problem is to determine xk
ij , the amount of type k commodity

moving from node i to node j , to meet required net commodities at every node, and
to minimize the total cost, which can be formulated as an LP problem as follows:

min
∑

(i,j)∈E

a1
ij x

1
j +

∑
(i,j)∈E

a2
ij x

2
ij + · · · +

∑
(i,j)∈E

aK
ij xK

ij

subject to x1
ij + x2

ij + · · · + xK
ij ≤ c(i, j) for all (i, j) ∈ E⎛

⎝∑
j

xk
ij −

∑
h

xk
hi

⎞
⎠ = bk

i for all i ∈ V and 1 ≤ k ≤ K

xk
ij ≥ 0 for all i, j, k.

Job Assignment There are K groups, J jobs, and I types of resources. For each
resource i, availability is bi . For each job j , if group k completes job j , then
consumption of resource i is ai

ik . The cost for group k working on job j is cjk .
The problem is to find an assignment for distributing J jobs to K groups, under
availability of every resource, to minimize the total cost. Let xjk be an indicator for
assigning job j to group k. Then, this problem can be formulated as a 0-1 integer
LP as follows:

min
K∑

k=1

J∑
j=1

cjkxjk

subject to
K∑

k=1

J∑
j=1

ai
jk ≤ bi for1 ≤ i ≤ I

12.7 Large-Scale System 375

K∑
k=1

xjk = 1 for 1 ≤ j ≤ J

xjk ∈ {0, 1} for all 1 ≤ j ≤ J, 1 ≤ k ≤ K.

LP-relaxation of this formulation will be an LP with primal block angular structure.
There is a well-known approach to deal with large-scale LP with primal block

angular structure, which is Dantzig-Wolfe decomposition [81].
An important recent technology development is the big data, including graph data

consisting of a class of social data generated from the online social network, such
as Facebook, LinkedIn, and ResearchGate. The widespread use of them leads to
an increasing interest in discovering important, useful, and efficient techniques for
optimizations about social data, with applications across many domains, including
public safety, environment management, election, and viral marketing. The large-
scale graph data also has an important sparse property, and the edge sparsity also
has in some special certain pattern. Let us mention one of them.

Airline is an important tool for traveling. A lot of readers may have experience to
search for a cheaper air ticket from one airport to another airport. This task actually
is a shortest path problem on a large-scale social network, the airline network.

Let each air-flight be represented by a directed edge connecting two airports
(Fig. 12.5). The edge weight is the price to take this flight. Each airport is
represented by two sets, a set of flight start points and a set of flight endpoints.
If there is a possibility to transfer from a flight to another flight at an airport, then
at this airport, put an edge from the endpoint of the first flight to the start point of
the second flight, and also put edge weight to be the transfer cost (Fig. 12.5). At
each airport, create one virtual start point with virtual edges connecting it to all start
points of flights, and also create one virtual endpoint with virtual edges connecting
all endpoints of flights to it. All virtual edges have zero weight (Fig. 12.5). Now, the
cheapest ticket from an airport to another airport is equivalent to the shortest path

Fig. 12.5 Each flight is represented by a directed edge. Each airport contains a set of ending
points and a set of starting points. Each edge between them represents a possible transfer from one
air-flight to another one. Add a virtual starting point and a virtual ending point in each airport

376 12 Nonsubmodular Optimization

from the virtual start point of the former airport to the virtual endpoint of the latter
airport.

For each airline, its flight map is a power law graph, that is, the number of nodes
with degree k is �α · k−β� where α and β are positive constants. Therefore, the fast
algorithm should be developed on power law graphs for the shortest path problem.
A successful solution can make a big social benefit.

For more complicated problems, such as nonsubmodular optimizations, in more
complicated large-scale background, one of the successful algorithms developed
recently is optimization from samples.

There are different models for optimization from samples. In different models,
the same problems may have different computational complexity. In the following,
let us show an example.

First, we consider a model proposed by Balkanski et al. [18].

Definition 12.7.1 (Optimization from Samples) Consider a family F of set func-
tions over 2L where L is the ground set. M ⊆ 2L is a constraint over distribution D
on 2L. F is said to be α-optimizable from samples in M if there exists an algorithm
satisfying that for any parameter δ > 0 and sufficiently large L, there exists an
integer t0 ∈ poly(|L|, 1/δ) such that for all t ≥ t0 and for any set of samples
{Si, f (Si)}ti=1 with f ∈ F and Si selected i.i.d. from D, the algorithm takes samples
{Si, f (Si)}ti=1 as the input and returns S ∈ M satisfying that

PrS1,...,St∼D[E[f (S)] ≥ α · max
T ∈M

f (T)] ≥ 1 − δ,

where the expectation is taken over the randomness of the algorithm. (Note that the
algorithm runs not necessarily in polynomial-time.)

With this model, a negative result is obtained as follows:

Theorem 12.7.2 The maximum set coverage problem (Problem 10.1.1) cannot
be approximated within a ratio better than 2�(

√
log |N |) using polynomially many

samples selected i.i.d. from any distribution D.

Next, we consider another model proposed by Chen et al. [54].

Definition 12.7.3 (Coverage Function) Consider a bipartite graph G =
(L,R,E). For every node u ∈ L ∪ R, denote by NG(u) the set of all neighbors of
u. For any subset S ⊆ L ∪ R, denote NG(S) = ∪u∈SNG(u). The coverage function
fG : 2L → R+ is defined by

fg(S) = |NG(S)|

for S ⊆ L.

Definition 12.7.4 (Optimization from Structured Samples) Consider a family
F of coverage functions on bipartite graphs G = (L,R,E). F is said to be

Exercises 377

α-optimizable in constraint M ⊆ 2L over distribution D on 2L, if there exists
an algorithm satisfying that for any δ > 0 and sufficiently large L, there exists
t0 ∈ poly(|L|, |R|, 1/δ) such that for all t ≥ t0 and for any sample set
{Si,NG(Si)}tt=1 with fG ∈ F and Si selected i.i.d. from D, the algorithm takes
samples {Si,NG(Si)}tt=1 as the input and return S ∈ M satisfying that

PrS1,...,St∼D[E[fG(S)] ≥ α · max
T ∈M

fG(T)] ≥ 1 − δ,

where the expectation is taken over the randomness of the algorithm. (Note that the
algorithm runs not necessarily in polynomial-time.)

With this model, a positive result is obtained as follows:

Theorem 12.7.5 Suppose that the distribution D on 2L satisfies the following three
assumptions:

(a1) Feasibility For any sample S ∼ D, |S| ≤ k.
(a2) Polynomial bounded For any u ∈ L,

pu = PrS∼D[u ∈ S] ≥ 1/|L|c

for some constant c.
(a3) Negative correlation Over distribution D, the random variables Xu = 1u∈S

are “negatively correlated.”

Let A be an α-approximation algorithm for the maximum set coverage problem.
Then, under the model of optimization from structured samples, coverage functions
are α

2 -optimizable in the cardinality constraint M = {S ⊆ L | |S| ≤ k} over D
for k ≤ |L|. Moreover, the algorithm in the model will use a polynomial number of
arithmetic operations and one call of algorithm A.

Furthermore, Chen et al. [55] extended their work to network inference
and social influence maximization. In this research direction, there are a lot of
unexplored topics which need one’s efforts. Hence, it seems quite attractive.

Exercises

1. Consider a set function f : 2X → R. f is strictly increasing if for any two
subsets A ⊂ B, f (A) < f (B). f is strictly submodular if for any two subsets
A ⊂ B and any element x ∈ X \ B, �xf (A) > �xf (B). Show that every
set function can be decomposed into a difference of two strictly increasing and
strictly submodular functions.

2. A set function f on 2X is strictly supermodular if −f is strictly submodular.
Show that every set function can be decomposed into a difference of two strictly
increasing and strictly supermodular functions.

378 12 Nonsubmodular Optimization

3. Give a counterexample to show that not every set function can be decomposed
into the sum of a monotone nondecreasing submodular function and a mono-
tone nondecreasing supermodular function.

4. Show that for any monotone nondecreasing submodular function f : 2X → R

and any Y ⊆ X, there exist a pair of monotone nondecreasing modular
functions u, l : 2X → R such that u(Y) = f (Y) = l(Y) and u(S) ≥ f (S) ≥
l(S) for any S ⊆ X.

5. Let C = {A | |A| ≤ k}. Then, (X, C) is a matroid. This means that the size
constraint is a specific matroid constraint. With this constraint, the monotone
nonsubmodular maximization has a better approximation solution. Consider
the following maximization problem and a greedy algorithm as shown in
Algorithm 45:

max f (A)

subject to |A| ≤ k,

where f : 2X → R is nonnegative and monotone nondecreasing.
Prove that this algorithm produces a better approximation, that is, Greedy

Algorithm 45 produces a (1 − e−1/(D++1))-approximation solution for max-
imization of monotone nondecreasing nonnegative set function with a size
constraint.

6. (Activity Profit Maximization [401]) Consider a social network G = (V ,E)

with independent cascade information diffusion model (see the definition in
Exercise 19 in Chapter 10). For a seed set S, the influence process will end at
a set I (S) of active nodes. Suppose that two active nodes u and v will join an
activity, which produces a profit A(u, v). Thus, the activity profit of I (S) is

Algorithm 45 Greedy Approximation

Input: a nonnegative monotone set function f on 2X and a positive integer k.
Output: A subset S of X.
1: S ← ∅;
2: for d = 1 to D+, v ∈ X and C with |C| = k mod (d + 1) do
3: i ← 0;
4: while |Si | < k do
5: i ← i + 1;
6: choose ui ∈ X \ Si−1 and Di ⊆ D+(ui) to maximize
7: f (Di ∪ {ui} ∪ Si−1) − f (Si−1) subject to
8: |DI ∪ {ui} ∪ Si−1| ≤ k and |Di | ≤ d

9: set Si ← Di ∪ {ui} ∪ Si−1;
10: end while
11: S ← argmax(f (S), f (Si));
12: end for
13: return S.

Exercises 379

∑
u,v∈I (S)

A(u, v).

We are interested in the following problem:

max profit(S) = E[
∑

u,v∈I (S)

A(u, v)]

subject to |S| ≤ k

where k is a given positive integer. Please prove that profit(S) is neither
submodular nor supermodular. Furthermore, give a solution by using the
sandwich method.

7. (Positive Influence Maximization) Consider a directed graph G = (V ,E). The
positive influence process is defined as follows: Every node has two states,
active and inactive. Before process, every node is inactive. Initially, select at
most k nodes (called seeds) and activate them. In each subsequent step, every
inactive node v checks whether the number of active incoming neighbors is not
less than the number of inactive incoming neighbors. If yes, then v becomes
active. The process will end if no new inactive node becomes active. The
influence spread is the number of active nodes at the end of process. Prove that
the influence spread is neither submodular or supermodular as a set function
with respect to seed set.

8. Algorithm 46 is the modular-modular algorithm for minA∈2X f (A). Show that
it ends at a local optimal solution satisfying Condition 1.

9. Based on the sandwich theorem, we can design Algorithm 47 for
minA∈2X f (A). Show that this algorithm always ends at a local minimum
solution satisfying Condition 1.

Algorithm 46 Modular-Modular Algorithm

Input: a set function f : 2X → R and its DS decomposition f = g − h where g and h are
submodular functions.
Output: A subset A of X.
1: choose a set A ⊆ X;
2: while f (A+) < f (A) do
3: A ← A+;
4: for σ ∈ �A do
5: compute a lower-bound modular function mσ

gl for g;
6: compute a lower-bound modular function mσ

hl for h;
7: compute a minimum solution A+

σ for minY∈2X [mσ
gl(Y) − mσ

hl(Y)];
8: end for
9: σ ← argminσ∈�A

f (A+
σ);

10: A+ ← A+
σ

11: end while
12: return A.

380 12 Nonsubmodular Optimization

Algorithm 47 Iterated sandwich method
Input: a set function f : 2X → R and its DS decomposition f = g − h where g and h are
submodular functions.
Output: A subset A of X.
1: choose a set A ⊆ X;
2: while f (A+) < f (A) do
3: A ← A+;
4: for σ ∈ �A do
5: compute upper and lower-bound modular functions mgu and mσ

gl for g, respectively;
6: compute upper and lower-bound modular functions mhu and mσ

hl for h, respectively;
7: compute a minimum solution A+

u for minY∈2X [mgu(Y) − mσ
hl(Y)];

8: compute a minimum solution A+
l for minY∈2X [mσ

gl(Y) − mhu(Y)];
9: compute a minimum solution A+

0 for minY∈2X [mσ
gl(Y) − mσ

hl(Y)];
10: A+

σ ← min(f (A+
u), f (A+

l), f (A+
0));

11: end for
12: σ ← argminσ∈�A

f (A+
σ);

13: A+ ← A+
σ

14: end while
15: return A.

10. Please modify Algorithm 43 into one which runs in polynomial-time and a G-L
performance ratio not far from (1 − e−1).

Historical Notes

As online social networks (OSN) grow rapidly, the influence-driven information
technology and influence-based research subjects have been studied extensively in
the literature. One of the subjects is the negative influence, rumor. There already
exist many research publications on rumor blocking in the literature [57, 130–133,
196, 197, 199, 381, 382, 392, 426, 429, 455]. They are employing various methods.
For example, Fan et al. [130, 133] consider community structure of social networks
and try to limit the spread of rumor within a community. Tong et al. [381] and Chen
et al. [57] formulate the rumor blocking into a noncooperative game model. Above
works are built on an assumption that one can get immune from rumor by receiving
a positive influence which is sent by protectors. Hence, the placement of protectors
is the main task, which becomes an attractive set function optimization problem.

Other methods do not depend on such an assumption. Instead, they may assume
that there are monitors which can screen out the rumor from information flow, that
is, they can cut the spread of rumor at some nodes or edges [154]. Therefore, the
placement of those monitors is the main task, which becomes an interesting set
function optimization problem.

For set function optimization, there are many beautiful results on submodular
optimizations indicated in Chaps. 10 and 11. However, in recent development of

Historical Notes 381

computer technology, many nonsubmodular optimization problems are raised, such
as group influence [457], community detection [444], content spread maximization
[19], target activation maximization [431, 443], text-mining [430], sentimental
analysis [91–93], cloud computing [124], machine learning [414], and viral
marketing in social networks [198–200, 327, 342, 456, 460], and misinformation
blocking [378]. Therefore, the study of nonsubmodular optimization becomes a hot
research direction.

There are four classes of approaches to deal with nonsubmodular optimization
problems. The first class consists of efforts along the traditional line. Since the
nonsubmodular optimization is, in nature, hard to deal with, one cannot find
an efficient algorithm with satisfied guaranteed performance. In this class, the
algorithm is often analyzed with some artificial parameter, such as the supermodular
degree [136–138] or curvature [15, 108, 225, 389], with which some beautiful
results on the approximation performance ratio may be established. However, those
parameters are usually hard to be estimated, and in many specific problems, they do
not have a significant value.

Due to above, one may give up the approximation performance ratio and
establish other standards to evaluate the performance of algorithms. The second
class of algorithms are designed based on this point. It consists of data-dependent
approximation algorithms, which are evaluated by a new type of performance ratio.
Those algorithms are also called sandwich methods [53, 299, 401, 456]. The
performance ratio is data-dependent, which does not give clear information about
algorithm performance.

The third class consists of algorithms ending at local optimal solutions. They are
usually based on the DS decomposition of the set functions [224, 309, 324, 415].
One of the disadvantages of those algorithms is that they are unlikely running in
polynomial-time.

The fourth class consists of algorithms which produce approximation solution
within a factor of certain bound from a local optimal solution [156–158]. This is a
new research direction which has a good potential.

Bibliography

1. P.K. Agarwal, M. van Kreveld, S. Suri: Label placement by maximum independent set in
rectangles, Comput. Geom. Theory Appl., 11(118): 209–218 (1998).

2. A.A. Ageev and M. Svirdenko: Pipage rounding: a new method of constructing algorithms
with proven performance guarantee, Journal of Combinatorial Optimization, 8: 307–328
(2004).

3. C. Ambühl: An optimal bound for the MST algorithm to compute energy efficient broadcast
trees in wireless networks, Proceedings, 32nd International Colloquium on Automata,
Languages and Programming, Springer LNCS 3580: 1139–1150 (2005).

4. C. Ambühl, T. Erlebach, M. Mihalák and M. Nunkesser: Constant-approximation for
minimum-weight (connected) dominating sets in unit disk graphs, Proceedings, 9th Inter-
national Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX
2006), Springer LNCS 4110: 3–14 (2006).

5. E.M. Arkin, J.S.B. Mitchell and G. Narasimhan: Resource-constructed geometric network
optimization, Proceedings, 14th Annual Symposium on Computational Geometry, Minneapo-
lis, pp.307–316, 1998.

6. S. Arora: Polynomial-time approximation schemes for Euclidean TSP and other geometric
problems, Proceedings, 37th IEEE Symp. on Foundations of Computer Science, pp. 2–12,
1996.

7. S. Arora: Nearly linear time approximation schemes for Euclidean TSP and other geometric
problems, Proceedings, 38th IEEE Symp. on Foundations of Computer Science, pp. 554–563,
1997.

8. S. Arora: Polynomial-time approximation schemes for Euclidean TSP and other geometric
problems, Journal of ACM, 45: 753–782 (1998).

9. S. Arora, M. Grigni, D. Karger, P. Klein and A. Woloszyn: Polynomial time approximation
scheme for Weighted Planar Graph TSP, Proceedings, 9th ACM-SIAM Symposium on Discrete
Algorithms, pp. 33–41, 1998.

10. S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy: Proof verification and hardness of
approximation problems, Proceedings, 33rd IEEE Symposium on Foundations of Computer
Science, pp. 14–23, 1992.

11. S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy: Proof verification and hardness
of approximation problems, Journal of the ACM, 45: 753–782 (1998).

12. S. Arora, P. Raghavan and S. Rao: Polynomial Time Approximation Schemes for Euclidean k-
medians and related problems, Proceedings, 30th ACM Symposium on Theory of Computing,
pp. 106–113, 1998.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al., Introduction to Combinatorial Optimization, Springer Optimization
and Its Applications 196, https://doi.org/10.1007/978-3-031-10596-8

383

 7680 61494 a 7680 61494 a

https://doi.org/10.1007/978-3-031-10596-8

384 Bibliography

13. S. Arora and S. Safra: Probabilistic checking of proofs: A new characterization of NP,
Proceedings, 33rd IEEE Symposium on Foundations of Computer Science, pp. 2–13, 1992.

14. S. Arora and S. Safra: Probabilistic checking of proofs: A new characterization of NP, J.
Assoc. Comput. Mach., 45: 70–122 (1998).

15. Wenruo Bai, Jeffrey A. Bilmes: Greed is still good: maximizing monotone submodu-
lar+supermodular (BP) functions, Proceedings, ICML, 314–323, 2018.

16. B.S. Baker: Approximation algorithms for NP-complete problems on planar graphs, Proceed-
ings, 24th FOCS, pp. 265–273, 1983.

17. B.S. Baker: Approximation algorithms for NP-complete problems on planar graphs, Journal
of ACM, 41(1): 153–180 (1994).

18. E. Balkanski, A. Rubinstein and Y. Singer: The limitations of optimization from samples,
Proceedings, 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
Montreal, QC, Canada, June 19–23, pp. 1016–1027, 2017.

19. Anton Barhan and Andrey Shakhomirov: Methods for sentiment analysis of Twitter Mes-
sages, Proceedings, 12th Conference of Fruct Association, pp. 216–222, 2012.

20. J. Bar-LLan, G. Kortsarz and D. Prleg: Generalized submodular cover problem and applica-
tions, Theoretical Computer Science, 250: 179–200 (2001).

21. D. Bayer and J.C. Lagarias: The non-linear geometry of linear programming, I. Affine and
projective scaling trajectories, II. Legendre transform coordinates, III. Central trajectories,
Preprints, AT&T Bell Laboratories (Murray Hill, NJ, 1986).

22. E.M. Beale: Cycling in dual simplex algorithm, Navel Research Logistics Quarterly 2: 269–
276 (1955).

23. M. Bellare, O. Goldreich and M. Sudan: Free bits and nonapproximability, Proceedings, 36th
FOCS, pp.422–431, 1995.

24. R. Bellman: On a routing problem, Quarterly of Applied Mathematics, 16: 87–90 (1958).
25. P. Berman, B. Basgupta, S. Muthukrishnan, S. Ramaswami: Efficient approximation algo-

rithms for tiling and packing problem with rectangles, J. Algorithms, 41: 178–189 (2001).
26. P. Berman, G. Calinescu, C. Shah, A. Zelikovsky: Efficient energy management in sensor

networks, in Ad Hoc and Sensor Networks, Wireless Networks and Mobile Computing, vol. 2,
ed. by Y. Xiao, Y. Pan (Nova Science Publishers, Hauppauge, 2005).

27. D.P. Bertsekas: A simple and fast label correcting algorithm for shortest paths, Networks,
23(8): 703–709 (1993).

28. Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige: Aravindan vijayaraghavan:
detecting high log-densities – an O(n1/4) approximation for densest k-subgraph, Proceed-
ings, 42nd ACM International Symposium on Theory of Computing, ACM, New York, pp.
201–210, 2010.

29. Arim Blum, Tao Jiang, Ming Li, John Tromp and M. Yannakakis: Linear approximation of
shortest superstrings, Journal of ACM, 41(4): 630–647 (1994).

30. Otakar Boruvka on Minimum Spanning Tree Problem (translation of both 1926 papers,
comments, history) (2000) Jaroslav Nesetril, Eva Milková, Helena Nesetrilová. (Section 7
gives his algorithm, which looks like a cross between Prim’s and Kruskal’s.)

31. Dimitris Bertsimas, Chung-Piaw Teo, Rakesh Vohra: On dependent randomized rounding
algorithms, Oper. Res. Lett. 24(3): 105–114 (1999).

32. Robert G. Bland: New finite pivoting rules for the simplex method, Mathematics of Opera-
tions Research 2 (2): 103–107 (1977).

33. Al Borchers and Ding-Zhu Du: The k-Steiner ratio in graphs, Proceedings, 27th ACM
Symposium on Theory of Computing, pp. 641–649, 1995.

34. Al Borchers and Ding-Zhu Du: The k-Steiner ratio in graphs, SIAM J. Comput., 26(3): 857–
869 (1997).

35. Al Borchers and Prosenjit Gupta: Extending the Quadrangle Inequality to Speed-Up Dynamic
Programming. Inf. Process. Lett., 49(6): 287–290 (1994).

36. O. Boruvka: On a minimal problem, Prace Morask’e Pridovedeké Spolecnosti, 3: 37–58
(1926).

Bibliography 385

37. Thomas S. Brylawski: A decomposition for combinatorial geometries, Transactions of the
American Mathematical Society, 171: 235–282 (1972).

38. Niv Buchbinder, Moran Feldmany, Joseph (Seffi) Naorz, Roy Schwartz: Submodular Max-
imization with cardinality constraints, Proceedings, 25th annual ACM-SIAM symposium on
Discrete algorithms, pp. 1433–1452, 2014.

39. R.G. Busacker, P.G. Gowen: A procedure for determining a family of minimum cost network
flow patterns, Operations Research Office Technical Report 15, John Hopkins University,
Baltimore; 1961.

40. J. Byrka, F. Grandoni, T. Rothvoss, L. Sanita: An improved LP-based approximation for
Steiner tree, Proceedings, 42nd ACM Symposium on Theory of Computing, pp. 583–592, June
5–8, 2010.

41. G. Calinescu, C. Chekuri, M. Pál and J. Vondrák: Maximizing a submodular set function
subject to a matroid constraint, SIAM J. Comp., 40(6): 1740–1766 (2011).

42. Gruia Calinescu, Chandra Chekuri, Martin Pai, Jan Vondrak: Maximizing a submodular set
function subject to a matroid constraint, Proceedings, IPCO, pp. 182–196, 2007.

43. Mihaela Cardei, My T. Thai, Yingshu Li, Weili Wu: Energy-efficient target coverage in
wireless sensor networks, Proceedings, INFOCOM, pp. 1976–1984, 2005.

44. T.M. Chan: Polynomial-time approximation schemes for picking and piercing fat objects, J.
Algorithms, 46: 178–189 (2003).

45. T.M. Chan: A note on maximum independent sets in rectangle intersection graphs, Informa-
tion Processing Letters, 89: 19–23 (2004).

46. M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha and M. Li: Approximation
algorithms for directed Steiner problems, Journal of Algorithms, 33: 73–91 (1999).

47. A. Charnes: Optimality and degeneracy in linear programming, Econometrica, 2: 160–170
(1952).

48. Mmanu Chaturvedi, Ross M. McConnell: A note on finding minimum mean cycle. Inf.
Process. Lett., 127: 21–22 (2017).

49. Bernard Chazelle: A minimum spanning tree algorithm with inverse-Ackermann type com-
plexity, Journal of the Association for Computing Machinery, 47 (6): 1028–1047 (2000).

50. Bernard Chazelle: The soft heap: an approximate priority queue with optimal error rate,
Journal of the Association for Computing Machinery, 47 (6): 1012–1027 (2000).

51. Jing-Chao Chen: Iterative rounding for the closest string problem, CoRR abs/0705.0561:
(2007).

52. Tiantian Chen, Bin Liu, Wenjing Liu, Qizhi Fang, Jing Yuan, Weili Wu: A random algorithm
for profit maximization in online social networks, Theor. Comput. Sci., 803: 36–47 (2020)

53. Wei Chen, Tian Lin, Zihan Tan, Mingfei Zhao, Xuren Zhou: Robus influence maximization,
Proceedings, KDD, San Francisco, CA, USA, pp. 795–804, 2016,

54. Wei Chen, Xiaoming Sun, Jialin Zhang, Zhijie Zhang: Optimization from structured samples
for coverage functions, Proceedings, ICML, pp. 1715–1724, 2020.

55. Wei Chen, Xiaoming Sun, Jialin Zhang, Zhijie Zhang: Network Inference and Influence
Maximization from Samples, Proceedings, ICML, pp. 1707–1716, 2021.

56. W.T. Chen and N.F. Huang: The Strongly connection problem on multihop packet radio
networks, IEEE Transactions on Communications, 37(3): 293–295 (1989).

57. Xin Chen, Qingqin Nong, Yan Feng, Yongchang Cao, Suning Gong, Qizhi Fang, Ker-I Ko:
Centralized and decentralized rumor blocking problems, J. Comb. Optim., 34(1): 314–329
(2017).

58. Maggie Xiaoyan Cheng, Lu Ruan, Weili Wu: Achieving minimum coverage breach under
bandwidth constraints in wireless sensor networks, Proceedings, INFOCOM, pp. 2638–2645,
2005.

59. Maggie Xiaoyan Cheng, Lu Ruan, Weili Wu: Coverage breach problems in bandwidth-
constrained sensor networks, ACM Trans. Sens. Networks, 3(2): 12 (2007)

60. X. Cheng, B. DasGupta and B. Lu: A polynomial time approximation scheme for the
symmetric rectilinear Steiner arborescence problem, Journal of Global Optimization, 21(4):
385–396 (2001).

386 Bibliography

61. Xiuzhen Cheng, Xiao Huang, Deying Li, Weili Wu, Ding-Zhu Du: A polynomial-time
approximation scheme for the minimum-connected dominating set in ad hoc wireless
networks, Networks, 42(4): 202–208 (2003).

62. X. Cheng, J.-M. Kim, and B. Lu: A polynomial time approximation scheme for the problem
of interconnecting highways, Journal of Combinatorial Optimization, 5: 327–343, (2001).

63. D. Cheriton and R.E. Tarjan: Finding minimum spanning trees, SIAM J. Comput., 5: 724–742
(1976).

64. J. Cheriy, S. Vempala: A. Vetta: Network design via iterative rounding of setpair relaxations,
Combinatorica, 26(3): 255–275 (2006).

65. G. Choquet: Etude de certains réseaux de routes, C R Acad Sci Paris, 205: 310–313 (1938).
66. N. Christofides: Worst-case analysis of a new heuristic for the travelling salesman problem,

Technical Report, Graduate School of Industrial Administration, Carnegie-Mellon University,
Pittsburgh, PA, 1976.

67. F.R.K. Chung and E.N. Gilbert: Steiner trees for the regular simplex, Bull. Inst. Math. Acad.
Sinica, 4: 313–325 (1976).

68. F.R.K. Chung and R.L. Graham: A new bound for euclidean Steiner minimum trees, Ann.
N.Y. Acad. Sci., 440: 328–346 (1985).

69. F.R.K. Chung and F.K. Hwang: A lower bound for the Steiner tree problem, SIAM
J.Appl.Math., 34: 27–36 (1978).

70. V. Chvátal: A greedy heuristic for the set-covering problem, Mathematics of Operations
Research, 4(3): 233–235 (1979).

71. S.A. Cook: The complexity of theorem-proving procedures, Proceedings, 3rd ACM Sympo-
sium on Theory of Computing, pp. 151–158, 1971.

72. William J. Cook, William H. Cunningham, William R. Pulleyblank, Alexander Schrijver:
Combinatorial Optimization, (Wiley, 1997).

73. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to
Algorithms, (3rd ed.), (MIT Press, 2009).

74. Henry H. Crapo, Gian-Cario Rota: On the Foundations of Combinatorial Theory: Combina-
torial Geometries, (Cambridge, Mass.: M.I.T. Press, 1970).

75. R. Crourant and H. Robbins, What Is Mathematics?, (Oxford Univ. Press, New York, 1941).
76. W. H. Cunningham: Decomposition of submodular functions, Combinatorica, 3(1): 53–68

(1983).
77. D. Dai and C. Yu: A (5 + ε)-approximation algorithm for minimum weighted dominating set

in unit disk graph, Theoretical Computer Science, 410: 756–765 (2009).
78. G.B. Dantzig: Application of the simplex method to a transportation problem, in: Activity

Analysis of Production and Allocation, (Cowles Commission Monograph 13), T.C. Koopmans
(ed.), John-Wiley, New York, pp. 359–373, 1951.

79. G.B. Dantzig: Maximization of a linear function of variables subject to linear inequalities,
Chap. XXI of Activity Analysis of Production and Allocation, (Cowles Commission Mono-
graph 13), T.C. Koopmans (ed.), John-Wiley, New York, 1951, pp. 339–347.

80. G.B. Dantzig: A. Orden, P. Wolfe: Note on linear programming, Pacific J. Math, 5: 183–195
(1955).

81. G.B. Dantzig and P. Wolfe: Decomposition principle for linear programs, Operations
Research, 8: 101–111 (1960).

82. Robert B. Dial: Algorithm 360: Shortest-Path Forest with Topological Ordering [H], Com-
munications of the ACM, 12 (11): 632–633 (1969).

83. E.W. Dijkstra: A note on two problems in connexion with graphs, Numerische Mathematik,
1: 269–271 (1959).

84. Ling Ding, Xiaofeng Gao, Weili Wu, Wonjun Lee, Xu Zhu, Ding-Zhu Du: Distributed
construction of connected dominating sets with minimum routing cost in wireless networks,
Proceedings, ICDCS, pp. 448–457, 2010.

85. Ling Ding, Weili Wu, James Willson, Lidong Wu, Zaixin Lu, Wonjun Lee: Constant-
approximation for target coverage problem in wireless sensor networks, Proceedings,
INFOCOM, pp. 1584–1592, 2012.

Bibliography 387

86. Xingjian Ding, Jianxiong Guo, Deying Li, Weili Wu: Optimal wireless charger placement
with individual energy requirement, Theor. Comput. Sci., 857: 16–28 (2021).

87. Xingjian Ding, Jianxiong Guo, Yongcai Wang, Deying Li, Weili Wu: Task-driven charger
placement and power allocation for wireless sensor networks, Ad Hoc Networks, 119: 102556
(2021).

88. E.A. Dinic: Algorithm for solution of a problem of maximum flow in a network with power
estimation, Soviet Mathematics - Doklady, 11: 1277–1280 (1970).

89. Yefim Dinitz: Dinitz’ algorithm: the original version and Even’s version, in Oded Goldreich,
Arnold L. Rosenberg, Alan L. Selman (eds.), Theoretical Computer Science: Essays in
Memory of Shimon Even. (Springer, 2006): pp. 218–240, 2006.

90. I. Dinur, D. Steurer: Analytical approach to parallel repetition, Proceedings, 46th Annual
ACM Symposium on Theory of Computing, pp. 624–633, 2014.

91. Luobing Dong, Qiumin Guo, Weili Wu: Speech corpora subset selection based on time-
continuous utterances features, J. Comb. Optim., 37(4): 1237–1248 (2019).

92. Luobing Dong, Qiumin Guo, Weili Wu, Meghana N. Satpute: A semantic relatedness pre-
served subset extraction method for language corpora based on pseudo-Boolean optimization,
Theor. Comput. Sci., 836: 65–75 (2020).

93. Luobing Dong, Meghana N. Satpute, Weili Wu, Ding-Zhu Du: Two-phase multidocument
summarization through content-attention-based subtopic detection, IEEE Trans. Comput. Soc.
Syst., 8(6): 1379–1392 (2021).

94. D.E. Drake and S. Hougardy, On approximation algorithms for the terminal Steiner tree
problem, Information Processing Letters, 89: 15–18 (2004).

95. Stuart Dreyfus: Richard Bellman on the birth of dynamic programming, Operations Research,
50(1): 48–51 (2002).

96. Ding-Zhu Du: On heuristics for minimum length rectangular partitions, Technical Report,
Math. Sci. Res. Inst., Univ. California, Berkeley, 1986.

97. Ding-Zhu Du, R.L. Graham, P.M. Pardalos, Peng-Jun Wan, Weili Wu and W. Zhao: Analysis
of greedy approximations with nonsubmodular potential functions, Proceedings, 19th ACM-
SIAM Symposiun on Discrete Algorithms (SODA), pp. 167–175, 2008.

98. Ding-Zhu Du, D. Frank Hsu, and K.-J. Xu: Bounds on guillotine ratio, Congressus Numeran-
tium, 58: 313–318 (1987).

99. Ding-Zhu Du and Ker-I Ko: Theory of Computational Complexity (2nd Ed), (John Wiley,
New York, NY, 2014).

100. Ding-Zhu Du, Ker-I Ko, Xiaodong Hu: Design and Analysis of Approximation Algorithms,
(Springer, 2012).

101. Ding-Zhu Du and Frank K. Hwang: The Steiner ratio conjecture of Gilbert-Pollak is true,
Proceedings of National Academy of Sciences, 87: 9464–9466 (1990).

102. Ding-Zhu Du, Frank K. Hwang, M.T. Shing and T. Witbold: Optimal routing trees, IEEE
Transactions on Circuits, 35: 1335–1337 (1988).

103. Ding-Zhu Du, Zevi Miller: Matroids and subset interconnection design, SIAM J. Discrete
Math., 1(4): 416–424 (1988).

104. Ding-Zhu Du, L.Q. Pan, and M.-T. Shing: Minimum edge length guillotine rectangular
partition, Technical Report 0241886, Math. Sci. Res. Inst., Univ. California, Berkeley, 1986.

105. Ding-Zhu Du, Panos M. Pardalos, Weili Wu: Mathematical Theory of Optimization,
(Springer, 2010).

106. Ding-Zhu Du, Yan-Jun Zhang: On heuristics for minimum length rectilinear partitions,
Algorithmica, 5: 111–128 (1990).

107. Ding-Zhu Du, Yanjun Zhang and Qing Feng: On better heuristic for euclidean Steiner
minimum trees, Proceedings, 32nd FOCS, pp. 431–439, 1991.

108. Hongjie Du, Weili Wu, Wonjun Lee, Qinghai Liu, Zhao Zhang, Ding-Zhu Du: On minimum
submodular cover with submodular cost, J. Global Optimization, 50(2): 229–234 (2011).

109. Hongjie Du, Weili Wu, Shan Shan, Donghyun Kim, Wonjun Lee: Constructing weakly
connected dominating set for secure clustering in distributed sensor network, J. Comb. Optim.,
23(2): 301–307 (2012).

388 Bibliography

110. Hongwei Du, Panos M. Pardalos, Weili Wu, Lidong Wu: Maximum lifetime connected
coverage with two active-phase sensors, J. Glob. Optim., 56(2): 559–568 (2013).

111. Hongwei Du, Weili Wu, Qiang Ye, Deying Li, Wonjun Lee, Xuepeng Xu: CDS-based virtual
backbone construction with guaranteed routing cost in wireless sensor networks, IEEE Trans.
Parallel Distributed Syst., 24(4): 652–661 (2013).

112. Hongwei Du, Qiang Ye, Weili Wu, Wonjun Lee, Deying Li, Ding-Zhu Du, Stephen Howard:
Constant approximation for virtual backbone construction with guaranteed routing cost in
wireless sensor networks, Proceedings, INFOCOM, pp. 1737–1744, 2011.

113. Hongwei Du, Qiang Ye, Jiaofei Zhong, Yuexuan Wang, Wonjun Lee, Haesun Park:
Polynomial-time approximation scheme for minimum connected dominating set under
routing cost constraint in wireless sensor networks, Theor. Comput. Sci., 447: 38–43 (2012).

114. Xiufeng Du, Weili Wu, Dean F. Kelley: Approximations for subset interconnection designs,
Theoretical Computer Science, 207(1): 171–180 (1998).

115. Yingfan L. Du, Hongmin W. Du: A new bound on maximum independent set and minimum
connected dominating set in unit disk graphs, J. Comb. Optim., 30(4): 1173–1179 (2015).

116. J. Edmonds: Maximum matching and a polyhedron with 0, 1-vertices, Journal of Research
National Bureau of Section B, 69: 125–130 (1965).

117. J. Edmonds: Minimum partition of a matroid into independent subsets, Journal of Research
National Bureau of Section B, 69: 67–72 (1965).

118. J. Edmonds: Paths, trees and flowers, Canadian Journal of Mathematics, 17: 449–467 (1965).
119. J. Edmonds: Optimum branchings, Journal of Research National Bureau of Section B, 71:

233–240 (1967).
120. J. Edmonds: Submodular functions, matroids, and certain polyhedrons, in: Combinatorial

Structure and Their Applications (R. Guy, H. Hanani, N. Sauer, J. Schönheim, eds.) Gordon
and Breach, New York, pp. 69–87, 1970.

121. J. Edmonds: Edge-disjoint branchings, in Combinatorial Algorithms (R. Rustin, ed.) Algo-
rithmics Press, New York, pp. 91–96, 1973.

122. J. Edmonds, E.L. Johnson: Matching, Euler Tours, and the Chinese Postman, Math. Pro-
gramm., 5 : 88–124 (1973).

123. J. Edmonds, R. Karp: Theoretical improvements in algorithmic efficiency for network flow
problems, Journal of the ACM, 19(2): 248–264 (1972).

124. J. Edmonds, K. Pruhs: Scalably scheduling processes with arbitrary speedup curves, ACM
Trans. Algorithms, 8(3): 28 (2012).

125. M.A. Engquist: A successive shortest path algorithm for the assignment problem, Research
Report, Center for Cybernetic Studies (CCS) 375, University of Texas, Austin; 1980.

126. T. Erlebach, T. Grant, F. Kammer: Maximising lifetime for fault tolerant target coverage in
sensor networks, Sustain. Comput. Inform. Syst., 1: 213–225 (2011).

127. T. Erlebach, K. Jansen and E. Seidel: Polynomial-time approximation schemes for geometric
graphs, Proceedings, 12th SODA, pp. 671–679, 2001.

128. T. Erlebach, M. Mihal: A (4 + ε)-approximation for the minimum-weight dominating set
problem in unit disk graphs, Proceedings, WAOA, pp. 135-1, 2009.

129. Thomas R. Ervolina, S. Thomas McCormick: Two strongly polynomial cut cancelling
algorithms for minimum cost network flow, Discrete Applied Mathematics, 4: 133–165
(1993).

130. Lidan Fan, Weili Wu: Rumor blocking, Encyclopedia of Algorithms, pp. 1887–1892, 2016.
131. Lidan Fan, Weili Wu, Kai Xing, Wonjun Lee: Precautionary rumor containment via trustwor-

thy people in social networks, Discrete Math., Alg. and Appl., 8(1): 1650004:1-1650004:18
(2016).

132. Lidan Fan, Weili Wu, Xuming Zhai, Kai Xing, Wonjun Lee, Ding-Zhu Du: Maximizing rumor
containment in social networks with constrained time, Social Netw. Analys. Mining, 4(1): 214
(2014).

133. Lidan Fan, Zaixin Lu, Weili Wu, Bhavani M. Thuraisingham, Huan Ma, Yuanjun Bi: Least
Cost Rumor Blocking in Social Networks, Proceedings, ICDCS, pp. 540–549, 2013.

134. Uriel Feige: A threshold of ln n for approximating set cover, J. ACM, 45(4): 634–652 (1998).

Bibliography 389

135. U. Feige, V. Mirrokni and J. Vondrák: Maximizing nonmonotone submodular functions,
Proceedings, 48th IEEE Foundations of Computer Science, pp. 461–471, 2007.

136. U. Feige and R. Izsak: Welfare maximization and the supermodular degree, Proceedings,
ACM ITCS, pp. 247–256, 2013.

137. Moran Feldman, Rani Izsak: Building a good team: Secretary problems and the supermodular
degree, Proceedings, 28th SODA, pp. 1651–1670, 2017.

138. M. Feldman and R. Izsak: Constrained monotone function maximization and the supermodu-
lar degree, Proceedings, 18th RANDOM / 17th APPROX, pp. 160–175, 2014.

139. Moran Feldman, Joseph Naor, Roy Schwartz: A unified continuous greedy algorithm for
submodular maximization, Proceedings, 52nd FOCS, pp. 570–579, 2011.

140. David E. Ferguson: Fibonaccian searching, Communications of the ACM, 3 (12): 648 (1960).
141. Yuval Filmus and Justin Ward: A tight combinatorial algorithm for submodular maximization

subject to a matroid constraint, Proceedings, 53rd FOCS, pp. 659–668, 2012.
142. M. L. Fisher, G. L. Nemhauser and L. A. Wolsey: An analysis of approximations for

maximizing submodular set functions – C II. In Polyhedral Combinatorics, volume 8 of
Mathematical Programming Study, pages 73–87. North-Holland Publishing Company, 1978.

143. Lisa Fleischer, Kamal Jain, David P. Williamson, An iterative rounding 2-approximation
algorithm for the element connectivity problem, Proceedings, 42nd Annual IEEE Symposium
on Foundations of Computer Science, 2001.

144. Robert W. Floyd: Algorithm 97: Shortest Path, Communications of the ACM, 5(6): 345 (1962).
145. L.R. Ford, D.R. Fulkerson: Maximal flow through a network, Canadian Journal of

Mathematics, 8: 399–404 (1956).
146. L.R. Ford, D.R. Fulkerson: Solving the transportation problem, Manamental Science, 3: 24–

32 (1956-57).
147. L.R. Ford, D.R. Fulkerson: A simple algorithm for finding maximal network flow and an

application to Hitchcock problem, Canadian Journal of Mathematics, 9: 210–218 (1957).
148. L.R. Foulds and R.L. Graham: The Steiner problem in Phylogeny is NP-complete, Advanced

Applied Mathematics, 3: 43–49 (1982).
149. M.L. Fredman, R.E. Tarjan: Fibonacci heaps and their uses in improved network optimization

algorithms, Journal of the Association for Computing Machinery, 34: 596–615 (1987).
150. S. Fujishige: Submodular Functions and Optimization, Annals of Discrete Mathematics,

volume 58. (Elsevier Science, 2005).
151. D.R. Fulkerson: An out-of-kilter method for minimal cost flow problems, Journal of the

Society for Industrial and Applied Mathematics, 9(1):18–27 (1961).
152. Harold N. Gabow, Suzanne Gallagher: Iterated rounding algorithms for the smallest k-edge

connected spanning subgraph, Proceedings, 19th SODA, pp. 550–559, 2008.
153. Harold N. Gabow, Michel X. Goemans, Evá Tardos, David P. Williamson: Approximating

the smallest k-edge connected spanning subgraph by LP-rounding, Networks, 53(4): 345–357
(2009).

154. Ling Gai, Hongwei Du, Lidong Wu, Junlei Zhu, Yuehua Bu: Blocking rumor by cut, J. Comb.
Optim., 36(2): 392–399 (2018).

155. Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, Aravind Srinivasan: Dependent
rounding and its applications to approximation algorithms, J. ACM, 53(3): 324–360 (2006).

156. Chuangen Gao, Hai Du, Weili Wu, Hua Wang: Viral marketing of online game by DS
decomposition in social networks, Theor. Comput. Sci., 803: 10–21 (2020).

157. Chuangen Gao, Shuyang Gu, Ruiqi Yang, Jiguo Yu, Weili Wu, Dachuan Xu: Interaction-
aware influence maximization and iterated sandwich method, Theor. Comput. Sci., 821: 23–33
(2020)

158. Chuangen Gao, Shuyang Gu, Ruiqi Yang, Jiguo Yu, Weili Wu, Dachuan Xu: Interaction-
aware influence maximization and iterated sandwich method, Proceedings, AAIM, pp. 129–
141, 2019.

159. Jiawen Gao, Suogang Gao, Wen Liu, Weili Wu, Ding-Zhu Du, Bo Hou: An approximation
algorithm for the k-generalized Steiner forest problem, Optim. Lett., 15(4): 1475–1483
(2021).

390 Bibliography

160. Xiaofeng Gao, Yaochun Huang, Zhao Zhang and Weili Wu: (6 + ε)-approximation for
minimum weight dominating set in unit disk graphs, Proceedings, COCOON, pp. 551–557.
2008.

161. Xiaofeng Gao, Wei Wang, Zhao Zhang, Shiwei Zhu, Weili Wu: A PTAS for minimum d-hop
connected dominating set in growth-bounded graphs, Optim. Lett., 4(3): 321–333 (2010).

162. Xiaofeng Gao, Weili Wu, Xuefei Zhang, Xianyue Li: A constant-factor approximation for
d-hop connected dominating sets in unit disk graph, Int. J. Sens. Networks, 12(3): 125–136
(2012).

163. M.R. Garey, R.L. Graham and D.S. Johnson, The complexity of computing Steiner minimal
trees, SIAM J. Appl. Math., 32: 835–859 (1977).

164. M.R. Garey and D.S. Johnson: The complexity of near-optimal graph coloring, J. Assoc.
Comput. Mach., 23: 43–49 (1976).

165. M.R. Garey and D.S. Johnson, The rectilinear Steiner tree is NP-complete, SIAM J. Appl.
Math., 32: 826–834 (1977).

166. M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theory of NP-
Completeness, (W. H. Freeman and Company, New York, 1979).

167. N. Garg, J. Köemann: Faster and simpler algorithms for multicommodity flows and other
fractional packing problems, Proceedings, 39th Annual Symposium on the Foundations of
Computer Science, pp. 300–309, 1998.

168. N. Garg, G. Konjevod, R. Ravi, A polylogarithmic approximation algorithm for the group
Steiner tree problem, Proceedings, 9th SODA, vol. 95, p. 253, 1998.

169. Dongdong Ge, Yinyu Ye, Jiawei Zhang: The fixed-hub single allocation problem: a geometric
rounding approach, working paper, 2007.

170. Dongdong Ge, Simai Hey, Zizhuo Wang, Yinyu Ye, Shuzhong Zhang: Geometric rounding:
a dependent rounding scheme for allocation problems, working paper, 2008.

171. A.M.H. Gerards: A short proof of Tutte’s characterization of totally unimodular matrices,
Linear Algebra and Its Applications, 114/115: 207–212 (1989).

172. E.N. Gilbert and H.O. Pollak: Steiner minimal trees, SIAM J. Appl. Math., 16: 1–29 (1968).
173. M. X. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos and D. P. Williamson:

Approximation algorithms for network design problems, Proceedings, 5th SODA, pp. 223–
232, 1994.

174. M.X. Goemans and D.P. Williamson: New 3
4 -approximation algorithms for the maximum

satisfiability problem, SIAM Journal on Discrete Mathematics, 7: 656–666 (1994).
175. A.V. Goldberg, S. Rao: Beyond the flow decomposition barrier, Journal of the ACM, 45(5):

783 (1998).
176. Andrew V. Goldberg, Robert E. Tarjan: Finding minimum-cost circulations by canceling

negative cycles, Journal of the ACM, 36 (4): 873–886 (1989).
177. Andrew V. Goldberg, Robert E. Tarjan: Finding minimum-cost circulations by successive

approximation. Math. Oper. Res., 15(3): 430–466 (1990).
178. A.V. Goldberg, R.E. Tarjan: A new approach to the maximum-flow problem, Journal of the

ACM, 35(4): 921 (1988).
179. C. C. Gonzaga: Polynomial affine algorithms for linear programming, Mathematical Pro-

gramming, 49: 7–21 (1990).
180. C. Gonzaga: An algorithm for solving linear programming problems in O(n3L) operations,

in: N. Megiddo, ed., Progress in Mathematical Programming: Interior-Point and Related
Methods, pp. 1–28, Springer, New York, 1988.

181. C. Gonzaga: Conical projection algorithms for linear programming, Mathematical Program-
ming, 43: 151–173 (1989).

182. T. Gonzalez, S.Q. Zheng: Bounds for partitioning rectilinear polygons, Proc. 1st Symp. on
Computational Geometry, pp. 281–287, 1985.

183. T. Gonzalez, S.Q. Zheng: Improved bounds for rectangular and guillotine partitions, Journal
of Symbolic Computation 7: 591–610 (1989).

184. R.L. Graham: Bounds on multiprocessing timing anomalies, Bell System Tech. J., 45: 1563–
1581 (1966).

Bibliography 391

185. R. L. Graham, Pavol Hell: On the history of the minimum spanning tree problem, Annals of
the History of Computing, 7(1): 43–57 (1985).

186. R.L. Graham and F.K. Hwang: Remarks on Steiner minimal trees, Bull. Inst. Math. Acad.
Sinica, 4: 177–182 (1976).

187. M. Grötschel, L. Lovász and A. Schrijver: Geometric Algorithms and Combinatorial Opti-
mization (2nd edition), (Springer-Verlag, 1988).

188. Shuyang Gu, Chuangen Gao, Ruiqi Yang, Weili Wu, Hua Wang, Dachuan Xu: A general
method of active friending in different diffusion models in social networks, Soc. Netw. Anal.
Min., 10(1): 41 (2020).

189. Shuyang Gu, Ganquan Shi, Weili Wu, Changhong Lu: A fast double greedy algorithm for non-
monotone DR-submodular function maximization, Discret. Math. Algorithms Appl., 12(1):
2050007:1-2050007:11 (2020).

190. F. Guerriero, R. Musmanno: Label correcting methods to solve multicriteria shortest path
problems, Journal of Optimization Theory and Applications, 111(3): 589–613 (2001).

191. S. Guha, S. Khuller: Approximation algorithms for connected dominating sets, Algorithmca,
20(4): 374–387 (1998).

192. Leonidas J. Guibas, Jorge Stolfi: On computing all north-east nearest neighbors in the L1
metric, Inf. Process. Lett., 17(4): 219–223 (1983).

193. Jianxiong Guo, Weili Wu: Adaptive influence maximization: If influential node unwilling to
be the seed, ACM Trans. Knowl. Discov. Data, 15(5): 84:1-84:23 (2021).

194. Jianxiong Guo, Weili Wu: Influence maximization: Seeding based on community structure,
ACM Trans. Knowl. Discov. Data, 14(6): 66:1-66:22 (2020)

195. Jianxiong Guo, Weili Wu: Continuous profit maximization: A study of unconstrained Dr-
submodular maximization, IEEE Trans. Comput. Soc. Syst., 8(3): 768–779 (2021).

196. Jianxiong Guo, Tiantian Chen, Weili Wu: A multi-feature diffusion model: rumor blocking in
social networks, IEEE/ACM Trans. Netw., 29(1): 386–397 (2021).

197. Jianxiong Guo, Yi Li, Weili Wu: Targeted protection maximization in social networks. IEEE
Trans. Netw. Sci. Eng., 7(3): 1645–1655 (2020).

198. Jianxiong Guo, Weili Wu: Discount advertisement in social platform: algorithm and robust
analysis, Soc. Netw. Anal. Min., 10(1): 57 (2020).

199. Jianxiong Guo, Weili Wu: Viral marketing with complementary products, in Nonlinear
Combinatorial Optimization (edited by Du, Pardalos, Zhang), Springer, pp. 309–315, 2019.

200. Jianxiong Guo, Weili Wu: A novel scene of viral marketing for complementary products,
IEEE Trans. Comput. Soc. Syst., 6(4): 797–808 (2019).

201. Ling Guo, Deying Li, Yongcai Wang, Zhao Zhang, Guangmo Tong, Weili Wu, Ding-Zhu Du:
Maximisation of the number of β-view covered targets in visual sensor networks, Int. J. Sens.
Networks, 29(4): 226–241 (2019)

202. D. Gusfield and L. Pitt, A bounded approximation for the minimum cost 2-sat problem,
Algorithmica, 8: 103–117 (1992).

203. E. Halperin, R. Krauthgamer: Polylogarithmic inapproximability, Proceedings, 35th ACM
Symposium on Theory of Computing, pp. 585–594, 2003.

204. T.E. Harris, F.S. Ross: Fundamentals of a Method for Evaluating Rail Net Capacities,
Research Memorandum, 1955.

205. Refael Hassin: The minimum cost flow problem: A unifying approach to existing algorithms
and a new tree search algorithm, Mathematical Programming, 25: 228–239 (1983).

206. J. Hastad: Clique is hard to approximate within n to the power 1−ε, Acta Math., 182: 105–142
(1999).

207. J. Hastad: Some optimal inapproximability results, J. Assoc. Comput. Mach., 48: 798–859
(2001).

208. D. Hausmann, B. Korte, T.A. Jenkyns: Worst case analysis of greedy type algorithms for
independence systems, Mathematical Programming Study, 12: 120–131 (1980).

209. M.T. Heideman, D. H. Johnson and C. S. Burrus: Gauss and the history of the fast Fourier
transform, IEEE ASSP Magazine, 1(4): 14–21 (1984).

392 Bibliography

210. “Sir Antony Hoare”. Computer History Museum. Archived from the original on 3 April 2015.
Retrieved 22 April 2015.

211. C. A. R. Hoare: Algorithm 64: Quicksort, Comm. ACM., 4(7): 321 (1961).
212. D.S. Hochbaum: Approximating covering and packing problems: set cover, vertex cover,

independent set, and related problems, in D.S. Hochbaum (ed.) Approximation Algorithms
for NP-Hard Problems, PWS Publishing Company, Boston, pp. 94–143, 1997.

213. D.S. Hochbaum and W. Maass, Approximation schemes for covering and packing problems
in image processing and VLSI, J.ACM, 32: 130–136 (1985).

214. A.J. Hoffman: Some recent applications of the theory of linear inequalities to extremal
combinatorial analysis, in Combinatorial Analysis (Yew York, 1958; R. Bellman, M. Hall,
Jr, eds.), American Mathematical Society, Providence, Rhode Islands, pp. 113–127, 1960.

215. J.E. Hopcroft, R.M. Karp: An n5/2 algorithm for maximum matchings in bipartite graphs,
SIAM Journal on Computing, 2 (4): 225–231 (1973).

216. Chenfei Hou, Suogang Gao, Wen Liu, Weili Wu, Ding-Zhu Du, Bo Hou: An approximation
algorithm for the submodular multicut problem in trees with linear penalties, Optim. Lett.,
15(4): 1105–1112 (2021).

217. S.Y. Hsieh and S.-C. Yang: Approximating the selected-internal Steiner tree, Theoretical
Computer Science, 38: 288–291 (2007).

218. Luogen Hua: Exploratory of Optimal Selection, (Science Publisher, 1971).
219. Yaochun Huang, Xiaofeng Gao, Zhao Zhang, Weili Wu: A better constant-factor approxima-

tion for weighted dominating set in unit disk graph, J. Comb. Optim., 18(2): 179–194 (2009).
220. H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz, and R.E.

Stearns: Efficient approximations and approximation schemes for geometric problems,
Journal of Algorithms, 26(2): 238–274 (1998).

221. F.K. Hwang, On Steiner minimal trees with rectilinear distance, SIAM J. Appl. Math., 30:
104–114 (1972).

222. F.K. Hwang, An O(n log n) algorithm for rectilinear minimal spanning trees, J. ACM, 26:
177–182 (1979).

223. O.H. Ibarra and C.E. Kim: Fast approximation algorithms for the knapsack and sum of subset
proble, J. Assoc. Comput. Mach., 22: 463–468 (1975).

224. R. Iyer and J. Bilmes: Algorithms for approximate minimization of the difference between
submodular functions, Proceedings, 28th UAI, pp. 407–417, 2012.

225. R. Iyer and J. Bilmes: Submodular optimization subject to submodular cover and submodular
knapsack constraints, Proceedings, Advances of NIPS, 2013.

226. Rishabh K. Iyer, Stefanie Jegelka, Jeff A. Bilmes: Fast Semidifferential-based Submodular
Function Optimization, Proceedings, ICML, (3): 855–863 (2013).

227. K. Jain: A factor 2 approximation algorithm for the generalized Steiner network problem,
Combinatorica, 21: 39–60 (2001).

228. Thomas A Jenkyns: The efficacy of the “greedy” algorithm, Congressus Numerantium, no 17:
341–350 (1976).

229. T. Jiang and L. Wang, An approximation scheme for some Steiner tree problems in the plane,
Lecture Notes in Computer Science, Vol 834: 414–427 (1994).

230. T. Jiang, E.B. Lawler and L. Wang: Aligning sequences via an evolutionary tree: complexity
and algorithms, Proceedings, 26th STOC, 1994.

231. D.S. Johnson: Approximation algorithms for combinatorial problems, Journal of Computer
and System Sciences, 9: 256–278 (1974).

232. R. Jonker, A. Volgenant: A shortest augmenting path algorithm for dense and sparse linear
assignment problems, Computing, 38(4): 325–340 (1987).

233. L.V. Kantorovich: A new method of solving some classes of extremal problems, Doklady
Akad Sci SSSR, 28: 211–214 (1940).

234. A. Karczmarz, J. Lacki: Simple label-correcting algorithms for partially dynamic approximate
shortest paths in directed graphs, Proceedings, Symposium on Simplicity in Algorithms,
Society for Industrial and Applied Mathematics, pp. 106–120, 2020.

Bibliography 393

235. N. Karmakkar: A new polynomial-time algorithm for linear programming, Proceedings, 16th
Annual ACM Symposium on the Theory of Computing, pp. 302–311, 1984.

236. R.M. Karp: Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations, (E.E. Miller and J.W. Thatcher eds.), Plenum Press, New York, pp. 85–103, 1972.

237. R.M. Karp: Probabilistic analysis of partitioning algorithms for the traveling salesman
problem in the plane, Mathematics of Operations Research, 2(3): 209–224 (1977).

238. R. M. Karp: A characterization of the minimum cycle mean in a digraph, Discrete Mathemat-
ics, 23(3): 309–311 (1978).

239. L. Kou, G. Markowsky and L. Berman, A fast algorithm for Steiner trees, Acta Informatics,
15: 141–145 (1981).

240. J.A. Kelner, Y.T. Lee, L. Orecchia, A. Sidford: An almost-linear-time algorithm for approx-
imate max flow in undirected graphs, and its multicommodity generalizations, Proceedings,
25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 217–226, 2014.

241. L.G. Khachiyan: A polynomial algorithm for linear programming, Doklad. Akad. Nauk. USSR
Sec., 244: 1093–1096 (1979).

242. S. Khanna, R. Motwani, M. Sudan and U. Vazirani: On syntactic versus computational views
of approximability, SIAM J. Comput., 28: 164–191 (1999).

243. S. Khanna, S. Muthukrishnan and M. Paterson: On approximating rectangle tiling and
packing, Proceedings, 9th ACM-SIAM Symp. on Discrete Algorithms, pp. 384–393, 1998.

244. J. Kiefer: Sequential minimax search for a maximum, Proceedings of the American Mathe-
matical Society, 4(3): 502–506 (1953).

245. Donghyun Kim, Baraki H. Abay, R. N. Uma, Weili Wu, Wei Wang, Alade O. Tokuta:
Minimizing data collection latency in wireless sensor network with multiple mobile elements,
Proceedings, INFOCOM, pp. 504–512, 2012.

246. Donghyun Kim, Xianyue Li, Feng Zou, Zhao Zhang, Weili Wu: Recyclable connected
dominating set for large scale dynamic wireless networks, Proceedings, WASA, pp. 560–569,
2008.

247. Donghyun Kim, Wei Wang, Ling Ding, Jihwan Lim, Heekuck Oh, Weili Wu: Minimum
average routing path clustering problem in multi-hop 2-D underwater sensor networks, Optim.
Lett., 4(3): 383–392 (2010).

248. Donghyun Kim, Wei Wang, Deying Li, Joonglyul Lee, Weili Wu, Alade O. Tokuta: A joint
optimization of data ferry trajectories and communication powers of ground sensors for long-
term environmental monitoring, J. Comb. Optim., 31(4): 1550–1568 (2016).

249. Donghyun Kim, Wei Wang, Nassim Sohaee, Changcun Ma, Weili Wu, Wonjun Lee, Ding-Zhu
Du: Minimum data-latency-bound k-sink placement problem in wireless sensor networks,
IEEE/ACM Trans. Netw., 19(5): 1344–1353 (2011).

250. Donghyun Kim, Wei Wang, Junggab Son, Weili Wu, Wonjun Lee, Alade O. Tokuta:
Maximum lifetime combined barrier-coverage of weak static sensors and strong mobile
sensors, IEEE Trans. Mob. Comput., 16(7): 1956–1966 (2017).

251. Donghyun Kim, Wei Wang, Weili Wu, Deying Li, Changcun Ma, Nassim Sohaee, Wonjun
Lee, Yuexuan Wang, Ding-Zhu Du: On bounding node-to-sink latency in wireless sensor
networks with multiple sinks, Int. J. Sens. Networks, 13(1): 13–29 (2013).

252. Donghyun Kim, R. N. Uma, Baraki H. Abay, Weili Wu, Wei Wang, Alade O. Tokuta:
Minimum latency multiple data MULE trajectory planning in wireless sensor networks, IEEE
Trans. Mob. Comput., 13(4): 838–851 (2014).

253. Donghyun Kim, Zhao Zhang, Xianyue Li, Wei Wang, Weili Wu, Ding-Zhu Du: A better
approximation algorithm for computing connected dominating sets in unit ball graphs, IEEE
Trans. Mob. Comput., 9(8): 1108–1118 (2010).

254. Robert Kingan, Sandra Kingan: A software system for matroids, Graphs and Discovery,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 287–296,
2005.

255. L.M. Kirousis, E. Kranakis, D. Krizanc and A. Pelc: Power consumption in packer radio
networks, Theoretical Computer Science, 243: 289–305 (2000).

394 Bibliography

256. L.V. Klee and G.J. Minty: How good is the simplex algorithm, in O. Shisha (ed.) Inequalities
3, (Academic, New York, 1972).

257. Morton Klein: A primal method for minimal cost flows with applications to the assignment
and transportation problems, Management Science, 14 (3): 205–220 (1967).

258. Donald E. Knuth: The Art of Computer Programming: Volume 3, Sorting and Searching,
second edition, (Addison-Wesley, 1998).

259. Ker-I Ko: Computational Complexity of Real Functions and Polynomial Time Approximation,
Ph.D. Thesis, Ohio State University, Columbus, Ohio, 1979.

260. Ker-I Ko: Computational Complexity of Real Functions, (Birkhauser Boston, Boston, MA,
1991).

261. M. Kojima, S. Mizuno and A. Yoshise: A primal-dual interior point method for linear pro-
gramming, in: Progress in Mathematical Programming: Interior-Point and Related Methods
(N. Megiddo, ed.), pp. 29–48, (Springer, New York, 1988).

262. J. Komolos and M.T. Shing: Probabilistic partitioning algorithms for the rectilinear Steiner
tree problem, Networks, 15: 413–423 (1985).

263. Bernhard Korte, Dirk Hausmann: An analysis of the greedy heuristic for independence
systems, Ann. Discrete Math., 2: 65–74 (1978).

264. B. Korte, J. Vygen: Combinatorial Optimization, (Springer, 2002).
265. L. Kou, G. Markowsky and L. Berman: A Fast Algorithm for Steiner Trees, Acta Informatica,

15: 141–145 (1981).
266. J.B. Kruskal: On the shortest spanning subtree of a graph and the traveling salesman problem,

Proc. Amer. Math. Sot., 7: 48–50 (1956).
267. H.W. Kuhn: The Hungarian method for the assignment problem, Naval Research Logistics

Quarterly, 2: 83–97 (1955).
268. H.W. Kuhn: Variants of the Hungarian method for assignment problems, Naval Research

Logistics Quarterly, 3: 253–258 (1956).
269. M.K. Kwan: Graphic Programming Using Odd or Even Points, Chinese Math., 1: 273–277

(1962).
270. Lei Lai, Qiufen Ni, Changhong Lu, Chuanhe Huang, Weili Wu: Monotone submodular

maximization over the bounded integer lattice with cardinality constraints, Discret. Math.
Algorithms Appl., 11(6): 1950075:1-1950075:14 (2019).

271. T. Lappas, E. Terzi, D. Gunopulos and H. Mannila: Finding effectors in social networks,
Proceedings, 16th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), pp.
1059–1068, 2010.

272. Eugene Lawler: Combinatorial Optimization: Networks and Matroids, (Dover, 2001).
273. D.T. Lee: Two-dimensional Voronoi diagrams in the Lp metric, J. ACM, 27: 604–618 (1980).
274. D.T. Lee and C.K. Wang: Voronoi diagrams in L, (L,) metrics with 2-dimensional storage

applications, SIAM J. Comput., 9: 200–211 (1980).
275. Jon Lee: A First Course in Combinatorial Optimization, (Cambridge University Press, 2004).
276. J. Lee, V. Mirrokni, V. Nagarajan and M. Sviridenko: Nonmonotone submodular maximiza-

tion under matroid and knapsack constraints, Proceedings, 41th ACM Symposium on Theory
of Computing, pp. 323–332, 2009.

277. J.K. Lenstra, D.B. Shmoys and E. Tardos: Approximation algorithms for scheduling unrelated
parallel machines, Mathematical Programming, 46: 259–271 (1990).

278. Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen,
and Natalie Glance: Cost-effective outbreak detection in networks, Proceedings, 13th ACM
SIGKDD international conference on Knowledge discovery and data mining (KDD), New
York, ACM, pp. 420–429, 2007.

279. C. Levcopoulos: Fast heuristics for minimum length rectangular partitions of polygons,
Proceedings, 2nd Symp. on Computational Geometry, pp. 100–108, 1986.

280. Anany V. Levitin: Introduction to the Design and Analysis of Algorithms, (Addison Wesley,
2002).

281. Deying Li, Hongwei Du, Peng-Jun Wan, Xiaofeng Gao, Zhao Zhang, Weili Wu: Construction
of strongly connected dominating sets in asymmetric multihop wireless networks, Theor.
Comput. Sci., 410(8-10): 661–669 (2009).

Bibliography 395

282. Deying Li, Hongwei Du, Peng-Jun Wan, Xiaofeng Gao, Zhao Zhang, Weili Wu: Minimum
power strongly connected dominating sets in wireless networks, Proceedings, ICWN, pp. 447–
451, 2008.

283. Deying Li, Donghyun Kim, Qinghua Zhu, Lin Liu, Weili Wu: Minimum total communication
power connected dominating set in wireless networks, Proceedings, WASA, pp. 132–141,
2012.

284. Deying Li, Qinghua Zhu, Hongwei Du, Weili Wu, Hong Chen, Wenping Chen: Conflict-
free many-to-one data aggregation scheduling in multi-channel multi-hop wireless sensor
networks, Proceedings, ICC, pp. 1–5, 2011.

285. Guanfeng Li, Hui Ling, Taieb Znati, Weili Wu: A Robust on-Demand Path-Key Establishment
Framework via Random Key Predistribution for Wireless Sensor Networks, EURASIP J.
Wirel. Commun. Netw., 2006: 091304 (2006).

286. J. Li, Y. Jin, A PTAS for the weighted unit disk cover problem, in Automata, Languages, and
Programming, Proceedings, ICALP, pp. 898–909, 2015.

287. Xianyue Li, Xiaofeng Gao, Weili Wu: A Better Theoretical Bound to Approximate Connected
Dominating Set in Unit Disk Graph. WASA 2008: 162–175.

288. G.-H. Lin and G. Xue: Steiner tree problem with minimum number of Steiner points and
bounded edge-length, Information Processing Letters, 69: 53–57 (1999).

289. G.-H. Lin and G. Xue: On the terminal Steiner tree problem, Information Processing Letters,
84: 103–107 (2002).

290. H. Lin and J. Bilmes: Optimal selection of limited vocabulary speech corpora, In Interspeech,
2011.

291. A. Lingas, R.Y. Pinter, R.L. Rivest and A. Shamir: Minimum edge length partitioning of
rectilinear polygons, Proceedings, 20th Allerton Conf. on Comm. Control and Compt., pp.
53–63, Illinos, 1982.

292. A. Lingas: Heuristics for minimum edge length rectangular partitions of rectilinear figures,
Proceedings, 6th GI-Conference, pp. 199–210, Dortmund, Springer-Verlag, 1983.

293. Bin Liu, Xiao Li, Huijuan Wang, Qizhi Fang, Junyu Dong, Weili Wu: Profit Maximization
problem with coupons in social networks, Theor. Comput. Sci., 803: 22–35 (2020).

294. Bin Liu, Xiao Li, Huijuan Wang, Qizhi Fang, Junyu Dong, Weili Wu: Profit maximization
problem with coupons in social networks, Proceedings, AAIM, pp. 49–61, 2018.

295. Bin Liu, Yuxia Yan, Qizhi Fang, Junyu Dong, Weili Wu, Huijuan Wang: Maximizing profit
of multiple adoptions in social networks with a martingale approach, J. Comb. Optim., 38(1):
1–20. (2019).

296. Siwen Liu, Hongmin W. Du: Constant-approximation for minimum weight partial sensor
cover, Discret. Math. Algorithms Appl., 13(4): 2150047:1-2150047:8 (2021).

297. L. Lovász: On the ratio of optimal integral and fractional covers, Discrete Mathematics, vol
13 (1975) 383–390.

298. B. Lu, L. Ruan: Polynomial time approximation scheme for the rectilinear Steiner arbores-
cence problem, Journal of Combinatorial Optimization, 4: 357–363 (2000).

299. Wei Lu, Wei Chen, Laks V.S. Lakshmanan: From competition to complementarity: compara-
tive influence diffusion and maximization, Proceedings, the VLDB Endowsment, 9(2): 60–71
(2015).

300. Zaixin Lu, Travis Pitchford, Wei Li, Weili Wu: On the maximum directional target coverage
problem in wireless sensor networks, Proceedings, MSN, pp. 74–79, 2014.

301. Zaixin Lu, Weili Wu, Wei Wayne Li: Target coverage maximisation for directional sensor
networks, Int. J. Sens. Networks, 24(4): 253–263 (2017).

302. Zaixin Lu, Wei Zhang, Weili Wu, Joonmo Kim, Bin Fu: The complexity of influence
maximization problem in the deterministic linear threshold model, J. Comb. Optim., 24(3):
374–378 (2012).

303. Zaixin Lu, Wei Zhang, Weili Wu, Bin Fu, Ding-Zhu Du: Approximation and inapproximation
for the influence maximization problem in social networks under deterministic linear
threshold model, ICDCS Workshops, pp. 160–165, 2011.

396 Bibliography

304. Zaixin Lu, Zhao Zhang, Weili Wu: Solution of Bharathi-Kempe-Salek conjecture for influ-
ence maximization on arborescence, J. Comb. Optim., 33(2): 803–808 (2017).

305. C. Lund, M. Yanakakis: On the hardness of approximating minimization problems, J. ACM,
41(5): 960–981 (1994).

306. Chuanwen Luo, Wenping Chen, Deying Li, Yongcai Wang, Hongwei Du, Lidong Wu, Weili
Wu: Optimizing flight trajectory of UAV for efficient data collection in wireless sensor
networks, Theor. Comput. Sci., 853: 25–42 (2021).

307. Chuanwen Luo, Lidong Wu, Wenping Chen, Yongcai Wang, Deying Li, Weili Wu: Trajectory
optimization of UAV for efficient data collection from wireless sensor networks, Proceedings,
AAIM, pp. 223–235, 2019.

308. Saunders Mac Lane: Some interpretations of abstract linear dependence in terms of projective
geometry, American Journal of Mathematics, 58 (1): 236–240 (1936).

309. Takanori Maehara, Kazuo Murota: A framework of discrete DC programming by discrete
convex analysis, Math. Program., 152(1-2): 435–466 (2015).

310. I. Mandoiu and A. Zelikovsky: A note on the MST heuristic for bounded edge-length Steiner
trees with minimum number of Steiner points, Information Processing Letters, 75(4): 165–
167 (2000).

311. N. Megiddo and M. Shub: Boundary behaviour of interior point algorithms in linear
programming, Research Report RJ 5319, IBM Thomas J. Watson Research Center (Yorktown
Heights, NY, 1986).

312. V. Melkonian and E. Tardos: Algorithms for a network design problem with crossing
supermodular demands, Networks, 43: 256–265 (2004).

313. S. Micali, V.V. Vazirani: An O(
√|V | · |E|) algorithm for finding maximum matching in

general graphs, Proc. 21st IEEE Symp. Foundations of Computer Science, pp. 17–27 (1980).
314. Manki Min, Hongwei Du, Xiaohua Jia, Christina Xiao Huang, Scott C.-H. Huang, Weili Wu:

Improving Construction for Connected Dominating Set with Steiner Tree in Wireless Sensor
Networks, J. Glob. Optim., 35(1): 111–119 (2006).

315. M. Min, S.C.-H. Huang, J. Liu, E. Shragowitz, W. Wu, Y. Zhao and Y. Zhao, An
approximation scheme for the rectilinear Steiner minimum tree in presence of obstructions,
Novel Approaches to Hard Discrete Optimization, Fields Institute Communications Series,
American Math. Society, vol 37: 155–163 (2003).

316. George J. Minty: On the axiomatic foundations of the theories of directed linear graphs,
electrical networks and network-programming, Journal of Mathematics and Mechanics, 15:
485–520 (1966).

317. J.S.B. Mitchell: Guillotine subdivisions approximate polygonal subdivisions: A simple new
method for the geometric k-MST problem. Proceedings, 7th ACM-SIAM Symposium on
Discrete Algorithms, pp. 402–408, 1996.

318. J.S.B. Mitchell: Guillotine subdivisions approximate polygonal subdivisions: Part II - A
simple polynomial-time approximation scheme for geometric k-MST, TSP, and related
problem, SIAM J. Comput., 28: 1298–1307 (1999).

319. J.S.B. Mitchell: Guillotine subdivisions approximate polygonal subdivisions: Part III - Faster
polynomial-time approximation scheme for geometric network optimization, Proceedings,
9th Canadian Conference on Computational Geometry, pp. 229–232, 1997.

320. J.S.B. Mitchell, A. Blum, P. Chalasani, S. Vempala: A constant-factor approximation
algorithm for the geometric k-MST problem in the plane, SIAM J. Comput., 28: 771–781
(1999).

321. R.C. Monteiro and I. Adler: An O(n3L) primal-dual interior point algorithm for linear
programming, Manuscript, Department of Industrial Engineering and Operations Research,
University of California (Berkeley, CA, 1987).

322. J. Munkres: Algorithms for the assignment and transportation problems, Journal of the
Society for Industrial and Applied Mathematics, 5(1): 32–38 (1957).

323. K. Nagano, Y. Kawahara and K. Aihara: Size-constrained submodular minimization through
minimum norm base, Proceedings, 28th International Conference on Machine Learning,
Bellevue, WA, USA, 2011.

Bibliography 397

324. M. Narasimhan and J. Bilmes: A submodular-supermodular procedure with applications to
discriminative structure learning, Proceedings, UAI, 2005.

325. George L. Nemhauser and L.E. Trotter: Vertex packings: structural properties and algorithms,
Math. Program., 8: 232 (1975).

326. George L. Nemhauser, Laurence A. Wolsey and Marshall L. Fisher: An analysis of approx-
imations for maximizing submodular set functions - I, Mathematical Programming, 14(1):
265–294 (1978).

327. Qiufen Ni, Smita Ghosh, Chuanhe Huang, Weili Wu, Rong Jin: Discount allocation for cost
minimization in online social networks, J. Comb. Optim., 41(1): 213–233 (2021).

328. F. Nielsen, Fast stabbing of boxes in high dimensions, Theoret. Comput. Sci., 246: 53–72
(2000).

329. Hirokazu Nishimura, Susumu Kuroda (eds.): A lost mathematician, Takeo Nakasawa. The
forgotten father of matroid theory, (Basel: Birkhäuser Verlag, 2009).

330. J. B. Orlin: A faster strongly polynomial time algorithm for submodular function minimiza-
tion, Mathematical Programming, 118: 237–251 (2009).

331. J.B. Orlin: Max flows in O(nm) time, or better, Proceedings, 45th annual ACM symposium on
Symposium on theory of computing (STOC ’13), pp. 765–774, 2013.

332. James B. Orlin: A polynomial time primal network simplex algorithm for minimum cost
flows, Mathematical Programming, 78(2): 109–129 (1997).

333. K. J. Overholt: Efficiency of the Fibonacci search method, BIT Numerical Mathematics,
13(1): 92–96 (1973).

334. James Oxley: Matroid Theory, (Oxford: Oxford University Press, 1992).
335. Christos H. Papadimitriou, Kenneth Steiglitz: Combinatorial Optimization : Algorithms and

Complexity, (Dover, July, 1998).
336. C. Papadimitriou and M. Yannakakis: Optimization, approximations, and complexity classes,

Proceedings, 20th ACM Symposium on Theory of Computing, pp. 229–234, 1988.
337. Panos M. Pardalos, Ding-Zhu Du, Ronald L. Graham (ed.): Handbook of Combinatorial

Optimization, (Springer, 2013).
338. C-M. Pintea: Advances in Bio-inspired Computing for Combinatorial Optimization Problem,

Intelligent Systems Reference Library, (Springer, 2014).
339. R. C. Prim: Shortest connecting networks and some generahzattons, Bell Syst Tech J, 36:

1389–1401 (1957).
340. Erich Prisner: Two algorithms for the subset interconnection design problem, Networks,

22(4): 385–395 (1992).
341. Kirk Pruhs: Speed Scaling, Encyclopedia of Algorithms, pp. 2045–2047, 2016.
342. Guoyao Rao, Yongcai Wang, Wenping Chen, Deying Li, Weili Wu: Maximize the probability

of union-influenced in social networks, Proceedings, COCOA, pp. 288–301, 2021.
343. Guoyao Rao, Yongcai Wang, Wenping Chen, Deying Li, Weili Wu: Matching influence

maximization in social networks, Theor. Comput. Sci., 857: 71–86 (2021).
344. S.B. Rao, W.D. Smith: Approximating geometrical graphs via “spanners” and “banyans”,

Proceedings, ACM STOC’98, pp. 540–550, 1998.
345. S K. Rao, P. Sadayappan, F.K. Hwang and P.W. Shor: The rectilinear Steiner arborescence

problem, Algorithmica, 7(2-3): 277–288 (1992).
346. R. Ravi and J. D. Kececioglu, Approximation methods for sequence alignment under a fixed

evolutionary tree, Proceedings, 6th Symp. on Combinatorial Parrern Matching. Springer
LNCS, 937: 330–339 (1995).

347. R. Raz and S. Safra: A sub-constant error-probability low-degree test, and a subconstant error-
probability PCP characterization of NP, Proceedings, 28th ACM Symposium on Theory of
Computing, pp. 474–484, 1997.

348. András Recski: Matroid Theory and its Applications in Electric Network Theory and in
Statics, Algorithms and Combinatorics, vol. 6, (Berlin and Budapest: Springer-Verlag and
Akademiai Kiado, 1989).

349. J. Renegar: A polynomial-time algorithm based on Newton’s method for linear programming,
Mathematical Programming, 40: 59–94 (1988).

398 Bibliography

350. G. Robin and A. Zelikovsky, Improved Steiner trees approximation in graphs, Proceedings,
11th SIAM-ACM Symposium on Discrete Algorithms (SODA), San Francisco, CA, pp. 770–
779, January 2000.

351. Lu Ruan, Hongwei Du, Xiaohua Jia, Weili Wu, Yingshu Li, Ker-I Ko: A greedy approxima-
tion for minimum connected dominating sets, Theor. Comput. Sci., 329(1-3): 325–330 (2004).

352. J.H. Rubinstein and D.A. Thomas, The Steiner ratio conjecture for six points, J. Combinatoria
Theory, Ser.A, 58: 54–77 (1991).

353. S. Sahni: Approximate algorithms for the 0/1 knapsack problem, J. Assoc. Comput. Mach.,
22: 115–124 (1975).

354. S. Sahni and T. Gonzalez: P-complete approximation algorithms, J. Assoc. Comput. Mach.,
23: 555–565 (1976).

355. D. Sankoff: Minimal mutation trees of sequences, SIAM J. Appl. Math., 28: 35–42 (1975).
356. P. Schreiber: On the history of the so-called Steiner weber problem, Wiss. Z. Ernst-Moritz-

Arndt-Univ. Greifswald, Math.-nat.wiss. Reihe, 35(3): (1986).
357. A. Schrijver: Theory of Linear and Integer Programming, (Wiley, Chichester, 1986).
358. Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and

Combinatorics. 24. (Springer, 2003).
359. A. Schrijver: A combinatorial algorithm minimizing submodular func- tions in strong

polynomial time, J. Combinatorial Theory (B), 80: 346–355 (2000).
360. A. Schrijver: On the history of the transportation and maximum flow problems, Mathematical

Programming, 91(3): 437–445 (2002).
361. A. Schrijver: On the history of the shortest path problem, Documenta Math, Extra Volume

ISMP: 155–167 (2012).
362. H. H. Seward: “Internal Sorting by Floating Digital Sort”, Information sorting in the

application of electronic digital computers to business operations (PDF), Master’s thesis,
Report R-232, Massachusetts Institute of Technology, Digital Computer Laboratory, pp. 25–
28, 1954.

363. M. I. Shamos and D. Hoey: Closest point problems, Proceedings, 16th Annual Symp
Foundations of Computer Science, pp 151–162, 1975.

364. Shan Shan, Weili Wu, Wei Wang, Hongjie Du, Xiaofeng Gao, Ailian Jiang: Constructing
minimum interference connected dominating set for multi-channel multi-radio multi-hop
wireless network, Int. J. Sens. Networks, 11(2): 100–108 (2012).

365. J. Sherman: Nearly maximum flows in nearly linear time, Proceedings, 54th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 263–269, 2013.

366. Alfonso Shimbel: Structural parameters of communication networks, Bulletin of Mathemati-
cal Biophysics, 15(4): 501–507 (1953).

367. Gerard Sierksma, Yori Zwols: Linear and Integer Optimization: Theory and Practice, (CRC
Press, 2015).

368. Gerard Sierksma, Diptesh Ghosh: Networks in Action; Text and Computer Exercises in
Network Optimization, (Springer, 2010).

369. A.J. Skriver, K.A. Andersen: A label correcting approach for solving bicriterion shortest-path
problems, Computers & Operations Research, 27(6): 507–524 (2000).

370. Petr Slavik: A tight analysis of the greedy algorithm for set cover, Journal of Algorithms,
25(2): 237–254 (1997).

371. M. Sviridenko: A note on maximizing a submodular set function subject to knapsack
constraint, Operations Research Letters, 32: 41–43 (2004).

372. Z. Svitkina and L. Fleischer: Submodular approximation: Sampling-based algorithms and
lower bounds, SIAM Journal on Computing, 40(6): 1715–1737 (2011).

373. E. Tardos: A strongly polynomial minimum cost circulation algorithm, Combinatorica, 5(3):
247–255 (1985).

374. J. Tarhio, E. Ukkonen: A greedy approximation algorithm for constructing shortest common
superstrings, Theoretical Computer Science, 57(1): 131–145 (1988).

375. M. Todd and B. Burrell: An extension of Karmarkar’s algorithm for linear programming using
dual variables, Algorithmica, 1: 409–424 (1986).

Bibliography 399

376. M.J. Todd and Y. Ye: A centered projective algorithm for linear programming, Technical
Report 763, School of Operations Research and Industrial Engineering, Cornell University
(Ithaca, NY, 1987).

377. N. Tomizawa: On some techniques useful for solution of transportation network problems,
Networks, 1(2): 173–194 (1971).

378. Guangmo Amo Tong, Ding-Zhu Du, Weili Wu: On misinformation containment in online
social networks, Proceedings, NeurIPS, pp. 339–349, 2018.

379. Guangmo Amo Tong, Shasha Li, Weili Wu, Ding-Zhu Du: Effector detection in social
networks, IEEE Trans. Comput. Soc. Syst., 3(4): 151–163 (2016).

380. Guangmo Tong, Ruiqi Wang, Xiang Li, Weili Wu, Ding-Zhu Du: An approximation algorithm
for active friending in online social networks, Proceedings, ICDCS, pp. 1264–1274, 2019

381. Guangmo Amo Tong, Weili Wu, Ding-Zhu Du: Distributed Rumor Blocking in Social
Networks: A Game Theoretical Analysis, IEEE Transactions on Computational Social
Systems, 5(2): 468–480 (2018).

382. Guangmo Amo Tong, Weili Wu, Ling Guo, Deying Li, Cong Liu, Bin Liu, Ding-Zhu Du: An
efficient randomized algorithm for rumor blocking in online social networks, Proceedings,
INFOCOM, pp. 1–9, 2017.

383. J.S. Turner: Approximation algorithms for the shortest common superstring problem, Infor-
mation and Computation, 83(1): 1–20 (1989).

384. W.T. Tutte: Introduction to the theory of matroids, Modern Analytic and Computational
Methods in Science and Mathematics, vol. 37, (New York: American Elsevier Publishing
Company, 1971).

385. Pravin M. Vaidya: An algorithm for linear programming which requires O(((m+n)n2+(m+
n)1.5n)L) arithmetic operations, Mathematical Programming, 47: 175–201 (1990).

386. S.A. Vavasis: Automatic domain partitioning in tree dimensions, SIAM J. Sci. Stat. Comput.,
12(4): 950–970 (1991).

387. Vijay V. Vazirani: Approximation Algorithms, (Berlin: Springer, 2003).
388. Jan Vondrák: Optimal approximation for the submodular welfare problem in the value oracle

model, Proceedings, STOC, pp. 67–74, 2008.
389. Peng-Jun Wan, Ding-Zhu Du, Panos M. Pardalos, Weili Wu: Greedy approximations for

minimum submodular cover with submodular cost. Comp. Opt. and Appl., 45(2): 463–474
(2010).

390. Chen Wang, My T. Thai, Yingshu Li, Feng Wang, Weili Wu: Minimum coverage breach
and maximum network lifetime in wireless sensor networks, Proceedings, GLOBECOM, pp.
1118–1123, 2007.

391. Chen Wang, My T. Thai, Yingshu Li, Feng Wang, Weili Wu: Optimization scheme for sensor
coverage scheduling with bandwidth constraints, Optim. Lett., 3(1): 63–75 (2009)

392. Ailian Wang, Weili Wu, Junjie Chen: Social network rumors spread model based on cellular
automata, Proceedings, MSN, pp. 236–242, 2014.

393. Ailian Wang, Weili Wu, Lei Cui: On Bharathi-Kempe-Salek conjecture for influence maxi-
mization on arborescence, J. Comb. Optim., 31(4): 1678–1684 (2016).

394. L. Wang and D.-Z. Du: Approximations for bottleneck Steiner trees, Algorithmica, 32: 554–
561 (2002).

395. L. Wang and D. Gusfield: Improved approximation algorithms for tree alignment, Proceed-
ings, 7th Symp. on Combinatorial Parrern Matching. Springer LNCS, 1075: 220–233 (1996).

396. L. Wang and T. Jiang: An approximation scheme for some Steiner tree problems in the plane,
Networks, 28: 187–193 (1996).

397. L. Wang, T. Jiang and D. Gusfield: A more efficient approximation scheme for tree alignment,
Proceedings, 1st annual international conference on computational biology, pp. 310–319,
1997.

398. L. Wang, T. Jiang and E.L. Lawler: Approximation algorithms for tree alignment with a given
phylogeny, Algorithmica, 16: 302–315 (1996).

399. Wei Wang, Donghyun Kim, Nassim Sohaee, Changcun Ma, Weili Wu: A PTAS for minimum
d-hop underwater sink placement problem in 2-d underwater sensor networks, Discret. Math.
Algorithms Appl., 1(2): 283–290 (2009).

400 Bibliography

400. Wei Wang, Donghyun Kim, James Willson, Bhavani M. Thuraisingham, Weili Wu: A better
approximation for minimum average routing path clustering problem in 2-d underwater
sensor networks, Discret. Math. Algorithms Appl., 1(2): 175–192 (2009).

401. Zhefeng Wang, Yu Yang, Jian Pei and Enhong Chen, Activity maximization by effective
information diffusion in social networks, IEEE Transactions on Knowledge and Data
Engineering, 29(11): 2374–2387 (2017).

402. Stephen Warshall: A theorem on Boolean matrices, Journal of the ACM, 9(1): 11–12 (1962).
403. D.J.A. Welsh: Matroid Theory, L.M.S. Monographs, vol. 8, (Academic Press, 1976).
404. Neil White (ed.): Theory of Matroids, Encyclopedia of Mathematics and its Applications, vol.

26, (Cambridge: Cambridge University Press, 1986).
405. Neil White (ed.): Combinatorial geometries, Encyclopedia of Mathematics and its Applica-

tions, vol. 29, (Cambridge: Cambridge University Press, 1987).
406. Hassler Whitney: On the abstract properties of linear dependence, American Journal of

Mathematics, 57(3): 509–533 (1935).
407. Chr. Wiener, Ueber eine Aufgabe aus der Geometria situs, Mathematik Annalen, 6: 29–30

(1873).
408. David P. Williamson, David B. Shmoys: The Design of Approximation Algorithms, (Cam-

bridge University Press, 2011).
409. James Willson, Weili Wu, Lidong Wu, Ling Ding, Ding-Zhu Du: New approximation for

maximum lifetime coverage, Optimization, 63(6): 839–847 (2014).
410. James Willson, Zhao Zhang, Weili Wu, Ding-Zhu Du: Fault-tolerant coverage with maximum

lifetime in wireless sensor networks, Proceedings, INFOCOM, pp. 1364–1372, 2015.
411. Laurence A. Wolsey: Heuristic analysis, linear programming and branch and bound, Mathe-

matical Programming Study 13: 121–134 (1980).
412. Laurence A. Wolsey: Maximizing real-valued submodular function: primal and dual heuris-

tics for location problems, Math. of Operations Research 7: 410–425 (1982).
413. Laurence A. Wolsey: An analysis of the greedy algorithm for the submodular set covering

problem, Combinatorica, 2(4): 385–393 (1982).
414. Baoyuan Wu, Siwei Lyu, Bernard Ghanem: Constrained submodular minimization for

missing labels and class imbalance in multi-label learning, Proceedings, AAAI, pp. 2229–
2236, 2016.

415. Chenchen Wu, Yishui Wang, Zaixin Lu, P.M. Pardalos, Dachuan Xu, Zhao Zhang, Ding-
Zhu Du: Solving the degree-concentrated fault-tolerant spanning subgraph problem by DC
programming, Math. Program., 169(1): 255–275 (2018).

416. Lidong Wu, Hongwei Du, Weili Wu, Deying Li, Jing Lv, Wonjun Lee: Approximations for
minimum connected sensor cover, Proceedings, INFOCOM, pp. 1187–1194, 2013.

417. Lidong Wu, Hongwei Du, Weili Wu, Yuqing Zhu, Ailian Wang, Wonjun Lee: PTAS for
routing-cost constrained minimum connected dominating set in growth bounded graphs, J.
Comb. Optim., 30(1): 18–26 (2015).

418. Lidong Wu, Huijuan Wang, Weili Wu: Connected set-cover and group Steiner tree, Encyclo-
pedia of Algorithms, pp. 430–432, 2016.

419. Weili Wu, Xiuzhen Cheng, Min Ding, Kai Xing, Fang Liu, Ping Deng: Localized outlying
and boundary data detection in sensor networks, IEEE Trans. Knowl. Data Eng., 19(8): 1145–
1157 (2007).

420. Weili Wu, Hongwei Du, Xiaohua Jia, Yingshu Li, Scott C.-H. Huang: Minimum connected
dominating sets and maximal independent sets in unit disk graphs, Theor. Comput. Sci., 352(1-
3): 1–7 (2006).

421. Weili Wu, Zhao Zhang, Chuangen Gao, Hai Du, Hua Wang, Ding-Zhu Du: Quality of barrier
cover with wireless sensors, Int. J. Sens. Networks, 29(4): 242–251 (2019).

422. Weili Wu, Zha Zhang, Wonjun Lee, Ding-Zhu Du: Optimal Coverage in Wireless Sensor
Networks, (Springer, 2020).

423. Biaofei Xu, Yuqing Zhu, Deying Li, Donghyun Kim, Weili Wu: Minimum (k, ω)-angle barrier
coverage in wireless camera sensor networks, Int. J. Sens. Networks, 21(3): 179–188 (2016).

Bibliography 401

424. Wen Xu, Zaixin Lu, Weili Wu, Zhiming Chen: A novel approach to online social influence
maximization, Soc. Netw. Anal. Min., 4(1): 153 (2014).

425. Wen Xu, Weili Wu: Optimal Social Influence, (Springer, 2020).
426. Ruidong Yan, Deying Li, Weili Wu, Ding-Zhu Du, Yongcai Wang: Minimizing influence of

rumors by blockers on social networks: algorithms and analysis, IEEE Trans. Netw. Sci. Eng.,
7(3): 1067–1078 (2020).

427. D-N Yang, H-J Hung, W-C Lee, W Chen: Maximizing acceptance probability for active
friending in online social networks, Proceedings, 19th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pp. 713–721, 2013.

428. Ruiqi Yang, Shuyang Gu, Chuangen Gao, Weili Wu, Hua Wang, Dachuan Xu: A constrained
two-stage submodular maximization, Theor. Comput. Sci., 853: 57–64 (2021).

429. Ruidong Yan, Yi Li, Weili Wu, Deying Li, Yongcai Wang: Rumor blocking through online
link deletion on social networks, ACM Trans. Knowl. Discov. Data, 13(2): 16:1-16:26 (2019).

430. Wenguo Yang, Jianmin Ma, Yi Li, Ruidong Yan, Jing Yuan, Weili Wu, Deying Li: Marginal
gains to maximize content spread in social networks, IEEE Trans. Comput. Soc. Syst., 6(3):
479–490 (2019).

431. Wenguo Yang, Jing Yuan, Weili Wu, Jianmin Ma, Ding-Zhu Du: Maximizing Activity Profit
in Social Networks, IEEE Trans. Comput. Soc. Syst., 6(1): 117–126 (2019).

432. M. Yannakakis: On the approximation of maximum satisfiability, Journal of Algorithms, 3:
475–502 (1994).

433. A.C. Yao: On constructing minimum spanning trees in k-dimensional spaces and related
problems, SIAM J. Comput., 11: 721–736 (1982).

434. F.F. Yao: Efficient dynamic programming using quadrangle inequalities, Proceedings, 12th
Ann. ACM Symp. on Theory of Computing, pp. 429–435, 1980.

435. Jing Yuan, Weili Wu, Yi Li, Ding-Zhu Du: Active friending in online social networks,
Proceedings, BDCAT, pp. 139–148, 2017

436. Jing Yuan, Weili Wu, Wen Xu: Approximation for influence maximization, Handbook of
Approximation Algorithms and Metaheuristics, (2) 2018.

437. A. Zelikovsky, The 11/6-approximation algorithm for the Steiner problem on networks,
Algorithmica, 9: 463–470 (1993).

438. A. Zelikovsky, A series of approximation algorithms for the acyclic airected Steiner tree
Problem, Algorithmica, 18: 99–110 (1997).

439. F.B. Zhan, C.E. Noon: A comparison between label-setting and label-correcting algorithms
for computing one-to-one shortest paths, Journal of Geographic information and decision
analysis, 4(2): 1–11 (2000).

440. Jianzhong Zhang, Shaoji Xu: Linear Programming, (Schiece Press, 1987).
441. Ning Zhang, Incheol Shin, Feng Zou, Weili Wu, My T. Thai: Trade-off scheme for fault

tolerant connected dominating sets on size and diameter, Proceedings, FOWANC, pp. 1–8,
2008.

442. Wei Zhang, Weili Wu, Wonjun Lee, Ding-Zhu Du: Complexity and approximation of the
connected set-cover problem, J. Glob. Optim., 53(3): 563–572 (2012).

443. Yapu Zhang, Jianxiong Guo, Wenguo Yang, Weili Wu: Targeted Activation Probability
Maximization Problem in Online Social Networks, IEEE Trans. Netw. Sci. Eng., 8(1): 294–
304 (2021).

444. Yapu Zhang, Jianxiong Guo, Wenguo Yang, Weili Wu: Mixed-case community detection
problem in social networks: Algorithms and analysis, Theor. Comput. Sci., 854: 94–104
(2021)

445. Yapu Zhang, Wenguo Yang, Weili Wu, Yi Li: Effector detection problem in social networks,
IEEE Trans. Comput. Soc. Syst., 7(5): 1200–1209 (2020).

446. Zhao Zhang, Xiaofeng Gao, Weili Wu: Algorithms for connected set cover problem and fault-
tolerant connected set cover problem, Theor. Comput. Sci., 410(8-10): 812–817 (2009).

447. Zhao Zhang, Xiaofeng Gao, Weili Wu, Ding-Zhu Du: PTAS for minimum connected
dominating set in unit ball graph, Proceedings, WASA, pp. 154–161, 2008.

402 Bibliography

448. Zhao Zhang, Xiaofeng Gao, Weili Wu, Ding-Zhu Du: A PTAS for minimum connected
dominating set in 3-dimensional Wireless sensor networks. J. Glob. Optim., 45(3): 451–458
(2009).

449. Zhao Zhang, Xiaofeng Gao, Xuefei Zhang, Weili Wu, Hui Xiong: Three approximation
algorithms for energy-efficient query dissemination in sensor database system, Proceedings,
DEXA, pp. 807–821, 2009.

450. Zhao Zhang, Joonglyul Lee, Weili Wu, Ding-Zhu Du: Approximation for minimum strongly
connected dominating and absorbing set with routing-cost constraint in disk digraphs, Optim.
Lett., 10(7): 1393–1401 (2016).

451. Zhao Zhang, James Willson, Zaixin Lu, Weili Wu, Xuding Zhu, Ding-Zhu Du: Approximat-
ing maximum lifetime k-coverage through minimizing weighted k-cover in homogeneous
wireless sensor networks, IEEE/ACM Trans. Netw., 24(6): 3620–3633 (2016).

452. Zhao Zhang, Weili Wu, Jing Yuan, Ding-Zhu Du: Breach-free sleep-wakeup scheduling for
barrier coverage with heterogeneous wireless sensors, IEEE/ACM Trans. Netw., 26(5): 2404–
2413 (2018).

453. Zhao Zhang, Weili Wu, Lidong Wu, Yanjie Li, Zongqing Chen: Strongly connected dominat-
ing and absorbing set in directed disk graph, Int. J. Sens. Networks, 19(2): 69–77 (2015).

454. Jiao Zhou, Zhao Zhang, Weili Wu, Kai Xing: A greedy algorithm for the fault-tolerant
connected dominating set in a general graph, J. Comb. Optim., 28(1): 310–319 (2014).

455. Jianming Zhu, Smita Ghosh, Weili Wu: Robust rumor blocking problem with uncertain rumor
sources in social networks, World Wide Web, 24(1): 229–247 (2021)

456. Jianming Zhu, Smita Ghosh, Weili Wu: Group influence maximization problem in social
networks, IEEE Trans. Comput. Soc. Syst., 6(6): 1156–1164 (2019).

457. Jianming Zhu, Junlei Zhu, Smita Ghosh, Weili Wu and Jing Yuan: Social influence max-
imization in hypergraph in social networks, IEEE Transactions on Network Science and
Engineering, 6(4): 801–811 (2019).

458. Yuqing Zhu, Deying Li, Ruidong Yan, Weili Wu, Yuanjun Bi: Maximizing the influence and
profit in social networks, IEEE Trans. Comput. Soc. Syst., 4(3): 54–64 (2017).

459. Yuqing Zhu, Weili Wu, Yuanjun Bi, Lidong Wu, Yiwei Jiang, Wen Xu: Better approximation
algorithms for influence maximization in online social networks, J. Comb. Optim., 30(1): 97–
108 (2015).

460. Yuqing Zhu, Zaixin Lu, Yuanjun Bi, Weili Wu, Yiwei Jiang, Deying Li: Influence and profit:
Two sides of the coin, Proceedings, ICDM, pp. 1301–1306, 2013.

461. Feng Zou, Xianyue Li, Donghyun Kim, Weili Wu: Construction of minimum cnnected
dominating set in 3-dimensional wireless network, Proceedings, WASA, pp. 134–140, 2008.

462. Feng Zou, Xianyue Li, Donghyun Kim and Weil Wu: Two constant approximation algorithms
for node-weighted Steiner tree in unit disk graphs, Proceedings, COCOA, pp. 278–285, 2008.

463. Feng Zou, Yuexuan Wang, XiaoHua Xu, Xianyue Li, Hongwei Du, Peng-Jun Wan, Weili
Wu: New approximations for minimum-weighted dominating sets and minimum-weighted
connected dominating sets on unit disk graphs, Theor. Comput. Sci., 412(3): 198–208 (2011).

464. D. Zuckerman: Linear degree extractors and the inapproximability of max clique and
chromatic number, Proceedings, 38th ACM Symposium on Theory of Computing, pp. 681–
690, 2006.

465. D. Zuckerman: Linear degree extractors and the inapproximability of Max Clique and
Chromatic Number, Theory Comput., 3: 103–128 (2007).

	Preface
	Contents
	1 Introduction
	1.1 What Is Combinatorial Optimization?
	1.2 Optimal and Approximation Solutions
	1.3 Preprocessing
	1.4 Running Time
	1.5 Data Structure
	Exercises
	Historical Notes

	2 Divide-and-Conquer
	2.1 Algorithms with Self-Reducibility
	2.2 Rectilinear Minimum Spanning Tree
	2.3 Fibonacci Search
	2.4 Heap
	2.5 Counting Sort
	2.6 More Examples
	Exercises
	Historical Notes

	3 Dynamic Programming and Shortest Path
	3.1 Dynamic Programming
	3.2 Shortest Path
	3.3 Dijkstra Algorithm
	3.4 Priority Queue
	3.5 Bellman-Ford Algorithm
	3.6 All Pairs Shortest Paths
	Exercises
	Historical Notes

	4 Greedy Algorithm and Spanning Tree
	4.1 Greedy Algorithms
	4.2 Matroid
	4.3 Minimum Spanning Tree
	4.4 Local Ratio Method
	Exercises
	Historical Notes

	5 Incremental Method and Maximum Network Flow
	5.1 Maximum Flow
	5.2 Edmonds-Karp Algorithm
	5.3 Applications
	5.4 Matching
	5.5 Dinitz Algorithm
	5.6 Goldberg-Tarjan Algorithm
	Exercises
	Historical Notes

	6 Linear Programming
	6.1 Simplex Algorithm
	6.2 Lexicographical Ordering
	6.3 Bland's Rule
	6.4 Initial Feasible Basis
	6.5 Duality
	6.6 Primal-Dual Algorithm
	6.7 Interior Point Algorithm
	6.8 Polyhedral Techniques
	Exercises
	Historical Notes

	7 Primal-Dual Methods and Minimum Cost Flow
	7.1 Hungarian Algorithm
	7.2 Label-Correcting
	7.3 Minimum Cost Flow
	7.4 Minimum Cost Circulation
	7.5 Cost Scaling
	7.6 Strongly Polynomial-Time Algorithm
	Exercises
	Historical Notes

	8 NP-Hard Problems and Approximation Algorithms
	8.1 What Is the Class NP?
	8.2 What Is NP-Completeness?
	8.3 Hamiltonian Cycle
	8.4 Vertex Cover
	8.5 Three-Dimensional Matching
	8.6 Partition
	8.7 Planar 3SAT
	8.8 Complexity of Approximation
	Exercises
	Historical Notes

	9 Restriction and Steiner Tree
	9.1 Idea of Restriction
	9.2 Role of Minimum Spanning Tree
	9.3 Rectilinear Steiner Minimum Tree
	9.4 Connected Dominating Set
	Exercises
	Historical Notes

	10 Greedy Approximation and Submodular Optimization
	10.1 What Is the Submodular Function?
	10.2 Submodular Set Cover
	10.3 Monotone Submodular Maximization
	10.4 Random Greedy
	Exercises
	Historical Notes

	11 Relaxation and Rounding
	11.1 The Role of Rounding
	11.2 Group Set Coverage
	11.3 Pipage Rounding
	11.4 Continuous Greedy
	Exercises
	Historical Notes

	12 Nonsubmodular Optimization
	12.1 An Example
	12.2 Properties of Set Functions
	12.3 Parameterized Methods
	12.4 Sandwich Method
	12.5 Algorithm Ending at Local Optimal Solution
	12.6 Global Approximation of Local Optimality
	12.7 Large-Scale System
	Exercises
	Historical Notes

	Bibliography

