
Optimization of the Training Dataset
for Numerical Dispersion Mitigation

Neural Network

Kirill Gadylshin1(B), Vadim Lisitsa1 , Kseniia Gadylshina2,
and Dmitry Vishnevsky1

1 Institute of Petroleum Geology and Geophysics SB RAS,
3 Koptug ave., Novosibirsk 630090, Russia
{GadylshinKG,lisitsavv}@ipgg.sbras.ru

2 Sobolev Institute of Mathematics SB RAS,
4 Koptug ave., Novosibirsk 630090, Russia

Abstract. We present an approach to construct the training dataset for
the numerical dispersion mitigation network (NDM-net). The network is
designed to suppress numerical error in the simulated seismic wavefield.
The training dataset is the wavefield simulated using a fine grid, thus
almost free from the numerical dispersion. Generation of the training
dataset is the most computationally intense part of the algorithm, thus
it is important to reduce the number of seismograms used in the training
dataset to improve the efficiency of the NDM-net. In this work, we intro-
duce the discrepancy between seismograms and construct the dataset, so
that the discrepancy between the dataset and any seismogram is below
the prescribed level.

Keywords: Deep learning · Seismic modelling · Numerical dispersion

1 Introduction

Seismic modeling is widely used to study elastic wave propagation in complex
Earth models. In particular, numerical simulation allows understanding peculiar-
ities of the wavefields in models with small-scale heterogeneities [7], anisotropic
[17], viscoelastic [2], and poroelastic [13] media, in models with complex free-
surface topology [10,19]. However, seismic modeling is a computationally intense
procedure that requires the use of high-performance computations. In particular,
simulation of the wavefield corresponding to one source may take up to several
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thousand core hours, whereas thousands of shot positions should be simulated. A
standard way to reduce the computational error, which is mainly appeared as the
numerical dispersion due to the use of symmetric stencils for approximation, is to
increase the grid step (reduce the number of grid points). However, it leads to a
rapid increase in numerical dispersion. There are various ways to reduce numer-
ical dispersion using a coarse mesh, including dispersion-suppression schemes
[12], use of high order finite element, discontinuous Galerkin, and spectral ele-
ment methods [1,4,9,11,15]. However, it does not necessarily lead to a reduction
of the computational cost of the algorithm, because the number of floating-point
operations per degree of freedom (per grid point) increases with the increase of
the formal order of approximation.

The other approach to deal with the numerical dispersion is a pre- and post-
processing of the emitted and recorded signals [6,14]. However, the numerical
dispersion in the recorded signal depends on the wave’s ray path and can hardly
be formalized. Thus, it may be treated by the Machine Learning methods. In
particular, application of the neural networks to suppress numerical dispersion
at the post-processing stage was suggested in [3,5,18]. In our previous research,
we suggested the approach called the Numerical Dispersion Mitigation network
(NDM-net) which is designed to suppress numerical dispersion in already simu-
lated wavefields, recorded at the free surface. We suggest using the peculiarity of
the seismic modeling problem; which is the simulation of the wavefield for a high
number of right-hand sides (source positions), assuming that the seismograms
corresponding to neighboring sources are similar. In this case, the true solution
(solution computed on a very fine mesh) corresponding to a relatively small num-
ber of source positions can be used as the training dataset. In [3] we illustrated
the applicability of the approach to realistic 2D problems. We used as few as
10% of sources equidistantly distributed. However, we have not tried to study
the effect of the training dataset on the accuracy of the NDM-net results. In
this study, we consider two possible strategies to construct the training dataset.
First, we try the different number of equidistantly distributed sources. Second,
we construct the training datasets preserving maximal differences between all
seismograms and the training dataset.

The remainder of the paper has the following structure. In Sect. 2 we remind
the basic concepts of seismic modeling and NDM-net. In Sect. 3 we provide the
analysis of the seismograms and introduce the measure in the seismograms space.
Different strategies to training dataset construction is presented in Sect. 4.

2 Preliminaries

2.1 Seismic Modelling

Consider a typical statement of seismic modeling problem, where the elastic wave
equation is solved in a half-space for a series of right-hand sides. In a short form,
the problem can be presented as:

L[u] = f(t)δ(x − xs
j), (1)
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where f(t) is the time-dependent right-hand side, either external forces or seismic
moments, δ is the delta-function, xs

j is the location of j-th source. Operator
L represents the linear differential operator corresponding to the elastic wave
equation with appropriate initial and boundary conditions. The solution of the
problem is considered at a free surface, which can be assumed flat for simplicity,
for example, x3 = 0. Thus, the solution of a single problem can be represented
as

u(xs
j ,x

r, t),

where xr is the receiver positions. Note, that the regular acquisition system
follows the source position, which is xr = xr(xs

j). It is convenient to consider an
independent parameter, called offset xo = xs

j −xr(xs
j). This parameter varies in

the same limits for all source positions; thus, two seismogramms can be directly
compared as functions of (xo, t).

If the wavefield is simulated using a numerical method, in this study, we
focus on finite-differences with the fourth-order of approximation in space and
second-order in time [8], it can be written as

Lh[uh] = fh(t)δ(x − xs
j), (2)

where Lh is the finite-difference approximation of the original differential oper-
ator L, fh is the approximation of the right-hand side, and uh is the finite-
difference solution corresponding to the grid with the step h. Due to the conver-
gence of the finite-difference solution to that of the differential problem one gets
the estimate:

‖u(xs
j ,x

o, t) − uh(xs
j ,x

o, t)‖ = εh ≤ C1h
4 + C2τ

2 ≤ Ch2, (3)

we assume that τ ≈ C0h due to the Courant stability criterion. Parameters C0,
C1, C2, and C are constants independent of grid steps.

2.2 NDM-Net

The error estimate (3) means that the finer the grid step the lower the error εh;
which is

εh1 ≤ εh2 if h1 ≤ h2.

However, the reduction of the grid step leads to a significant increase in the com-
putational resources demand and the computational intensity of the algorithm.
We suggested recently [3] using machine learning to map coarse-grid solution to
the fine-grid solution:

N [uh2(x
s
j ,x

o, t)] = ũh2(x
s
j ,x

o, t),

so that
‖ũh2(x

s
j ,x

o, t) − uh1(x
s
j ,x

o, t)‖ ≤ ε21 << εh2
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for all source positions xs
j . If we manage to construct the map, which ensures

that ε21 is small enough, we get

‖ũh2(x
s
j ,x

o, t) − u(xs
j ,x

o, t)‖
≤ ‖ũh2(x

s
j ,x

o, t) − uh1(x
s
j ,x

o, t)‖ + ‖uh1(x
s
j ,x

o, t) − u(xs
j ,x

o, t)‖
≤ ε21 + εh1 < εh2 .

In particular, we use the special case of Convolutional Neural Network (CNN)
- a U-Net [16], however other types of neural networks, for example, generative
adversarial networks (GANs) have also been applied to suppress the numerical
dispersion [5,18]. The main problem in the NDM-net implementation is the
training dataset construction. In our previous study [3] we suggested that due to
low model variability in the horizontal direction, the seismograms corresponding
to neighboring sources are similar. Thus, we may compute a small number of
seismograms corresponding to a small number of sources using a fine enough
grid to use them as the training dataset. However, we provided no quantitative
analysis of the assumption and effect of wavefield similarity on the NDM-net
accuracy.

3 Analysis of Seismogramms

In this section, we provide the study of the seismogram’s similarities in depen-
dence on the distance between the sources. Consider a standards 2D acquisition
system with sources placed in points xs

j , j = 1, ..., Js. In this case, the entire
set of seismograms can be represented as The entire dataset is a union of the
solutions corresponding to all source positions

U =
⋃

j=1,...,Js

u(xs
j ,x

o, t) =
⋃

j=1,...,Js

u(xs
j).

we further omit the variables t and xo assuming that they get the same values for
all seismograms. To compare the seismograms and measure their similarity we
suggest using the repeatable measure - normalized root mean square (NRMS).
The NRMS between two traces at and bt at point t0 using a window size dt is the
RMS of the difference divided by the average RMS of the inputs, and expressed
as a percentage:

NRMS(at, bt, t0) =
200 × RMS(at − bt)
RMS(at) + RMS(bt)

where the RMS is defined as:

RMS(xt) =

√∑t0+dt
t0−dt x2

t

N

and N is the number of samples in the interval [t0 − dt, t0 + dt]. We introduce
the distance d(u(xs

j),u(xs
k)) as an average NRMS between u(xs

j) and u(xs
k)

seismograms.
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Fig. 1. Vanavar model

We constructed the distance matrix for the entire dataset, computed for
the Vanavar model. The model is shown in Fig. 1. The size of the model was
220 km by 2.6 km. The acquisition included 1901 sources with a distance of 100 m.
Similarly, we recorded the wavefield by 512 receivers for each shot with maximal
source-receiver offsets of 6.4 km. The distance between the receivers was 25 m.
The source wavelet was a Ricker pulse with a central frequency 30 Hz. Perfectly
matched layers, including the top layer, were used at all boundaries.

We simulated wavefields using grids with steps 2.5 and 1.25 m. After that,
for each set of seismograms, we computed the distance matrices, the one corre-
sponding to the simulations with the step 2.5 m is presented in Fig. 2. The values
of the distances are low within a narrow band near the main diagonal, which
means that the distance between the seismograms is low if the sources are close
enough, but it grows rapidly until reaching the value of about 100% of NRMS.
To illustrate the relation between the NRMS of two seismograms with respect
to the distance between the sources, we provide plots of several columns of the
distance matrix in Fig. 3. Each line in this plot represents the NRMS-distance
between the given seismogram and all the others. The distance is equal to zero
if the seismogram is compared with itself. If the seismogram is compared with
those corresponding to the nearby sources, the distance grows almost linearly,
from some starting value to a limiting value. After that, the NRMS-distance
is almost independent of the distance between the source position. Thus, for
each source position xs

j exist two numbers k+
j and k−

j and value ej , so that for
all k < k−

j and k > k+
j the following statement holds d(u(xs

j),u(xs
k)) ≈ ej .

However, these values are individual for each source position. To analyze the
boundaries k±

j and error value ej , we study the averaged values of the distance.
For each seismogram, we compute the symmetric distance as:

dj(Δj) =
1
2
(d(u(xs

j),u(xs
j+Δj)) + d(u(xs

j),u(xs
j−Δj)))



300 K. Gadylshin et al.

distance matrix

500 1000 1500

Source number

200

400

600

800

1000

1200

1400

1600

1800

S
ou

rc
e 

nu
m

be
r

0

50

100

150

Fig. 2. Vanavar model. The distance matrix

If j + Δj > Js or j < Δj < 1 we assume that the corresponding distance is
equal to symmetric one. After that we compute the mean and standard deviation
of the with respect to j obtaining the functions of Δj:

Md(Δj) =
1
Js

Js∑

j=1

dj(Δj), (4)

Σd(Δj) =
1
Js

J∑

j=1

s(dj(Δj) − Md(Δj))2. (5)

The plots of Md(Δj), Md(Δj) ± Σd(Δj), and Md(Δj) ± 3Σd(Δj) are presented
in Fig. 4. It illustrates that the discrepancy increases if j < 30, after that the error
stabilizes in average at the value of approximately 120%. The standard deviation
starts from 10% for nearby sources to 20% for long-distance sources. It follows
from the plot, that if we use equidistantly distributed sources to construct the
training dataset we can not use fewer than each thirties, otherwise, we will lose
the representativity of the dataset. This analysis allows restricting the lowest
number of sources that are reasonable to use if equidistantly distributed (in this
particular case it should be more than 3%). On the other hand, it allows us
to choose the seismograms to keep the prescribed discrepancy level within the
training dataset and this level. In particular, it is worth considering discrepancies
between 60 and 90 %.
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Fig. 3. Vanavar model. The distances for 19 seismogramms.

4 Training Dataset Construction Algorithms

Before describing particular algorithms of dataset construction let us introduce
a measure, that characterizes the representativity of a dataset. Assume we have
chosen a dataset

Dt =
⋃

j∈Jt

u(xs
j),

where Jt is a set of training dataset sources indices, so that Jt ⊂ {1, ..., Js}. Thus
the training dataset is also a subset of the entire dataset Dt ⊂ U . Let us define
the distance from a single seismogram to the dataset as

b(xs
k,Dt) = min

j∈Jt

d(u(xs
j),u(xs

k)).

This function indicates the distance from a given seismogram to the closest one
from the training dataset. It is clear that for k ∈ Jt the distance will be zero.
After that, the distance between the datasets can be introduced as

Binf = max
k∈{1,...,Js}

b(xs
k,Dt) = max

k∈{1,...,Js}
min
j∈Jt

d(u(xs
j),u(xs

k)).

In our further considerations we will use both function b(xs
k,Dt) and the distance

between the datasets Binf .
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Fig. 4. Vanavar model. Mean NRMS-distance with respect to distance between the
sources (solid line), dash-dotted lines correspond to Md ± Σd, and dashed lines corre-
spond to Md ± 3Σd.

4.1 Equidistantly Distributed Dataset

The first and the simplest algorithm to construct the training dataset is to take
the seismograms corresponding to the equidistantly distributed sources. In par-
ticular, we considered the datasets composed of 5, 10, and 20% of the entire
seismograms denoting them as D5%, D10%, and D20%, respectively. We con-
structed the functions b(xs

k,Dt) for the three datasets, as presented in Fig. 5.
It is clear, that if a source position belongs to the training dataset the dis-
tance b(xs

k,Dt) is equal to zero, so we excluded these points from the plots.
Note, that functions b(xs

k,D10%) and b(xs
k,D20%) are almost indistinguishable,

whereas variation of b(xs
k,D5%) is much stronger. This means that dataset D5%

may be under-representative providing poor data for NDM-net. On the contrary,
increasing the number of sources in the dataset above 10% does not provide new
valuable information.

We used these three datasets to train the NDM-net to map solution computed
on a grid with the step of 2.5 m to that simulated using grid with the step of
1.25 m. Consequently, we estimate the accuracy of the NDM-net by introducing
the measure

q(xs
j ,Dt) = d(uh1(x

s
j), ũh2(x

s
j)) = d

(
uh1(x

s
j),N

(
uh2(x

s
j)

))
, (6)
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Fig. 5. Distances between the seismograms and the training datasets b(xs
k) for different

datasest of equidistantly distributed source D5%, D10%, and D20%.

where h1 < h2. That is a source-by-source seismogramms comparison (in this
study we simulated the wavefield using the fine mesh for all source positions to
be able to validate the NDM-net action). We computed the mean value of

Mq =
1
Js

Js∑

j=1

q(xs
j ,Dt)

overall source positions. The results mean NRMS between the fine grid solution
and NDM-net action for three considered training datasets are presented in Table
1. Note, that the error is relatively high for the case of D5%, however, the cases
of D10% and D20% provide approximately the same accuracy of the NDM-net
prediction. Thus, the dataset D10% can be considered as an optimal one among
the datasets of equidistantly distributed sources.

Table 1. Datasets of equidistantly distributed sources.

Dataset Number of sources Average NRMS

D5% 283 44.28%

D10% 191 31.91%

D20% 86 29.41%
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4.2 Distance-Preserving Datasets

We assume that the entire dataset computed on a coarse mesh is available.
Thus, we can compute the distances between all seismograms and chose the
source positions to compute the training dataset. We suggest constructing the
training dataset by solving the max-min problem:

max
k∈{1,...,Js}

b(xs
k,Dt) = max

k∈{1,...,Js}
min
j∈Jt

d(u(xs
j),u(xs

k)) ≤ Q,

where Q is the desired error level. We considered several values of Q starting
from 60% to 100% (according to the mean NRMS distances presented in Fig. 11).
We considered five datasets DNRMS

60% , DNRMS
70% ,...,DNRMS

100% , so that DNRMS
m% cor-

respond to the case of

max
k∈{1,...,Js}

b(xs
k,Dt) =≤ m,

In Figs. 8, 9 and 10 we provide the functions b(xs
k,DNRMS

m% ). We kept the sources
that belong to the training dataset to visualize the number of sources in the
dataset. In particular, the distance is equal to zero if the source belongs to the
dataset. For example, the dataset DNRMS

60% contains all sources with numbers from
1500 to 1650.Thismeans that even for the two neighboring sources in this range the
NRMS between the seismograms exceeds 60%. Increasing the level of the accept-
able NRMS one may reduce the number of sources in the training dataset acceler-
ating the NDM-net. However, it may lead to significant accuracy degradation.

Next, we consider the one-to-one NRMS between the coarse- and fine-mesh
solutions q(xs

j ,Dt) as defined by formula (6) for the considered datasets in Fig. 11.
We also considered the averaged values of q(xs

j ,Dt) over the source position. The
results are provided in Table 2. According to the plots in Fig. 11, all datasets pro-
vide similar accuracy in the leftmost part of the model (source numbers up to
800), where the model was relatively simple but original NRMS between fine- and
coarse-mesh solutions was about 70%. The main difference between the datasets
is associated with source numbers 800 to 1500, where the results of NDM-net
applications are different for different datasets. For the source numbers 1500 to
1650, where DNRMS

60% includes all the sources, its accuracy is higher than that
of any other dataset. However, in the simplest part of the model (source num-
bers 1650–1900), all adaptive datasets include very sparse sources distribution,

Table 2. Distance-preserving datasets

Dataset Number of sources Average NRMS

DNRMS
60% 414 30.28%

DNRMS
70% 109 34.69%

DNRMS
80% 56 35.11%

DNRMS
90% 43 35.68%

DNRMS
100% 34 36.26%

D10% 191 31.91%
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Fig. 6. Distances between the seismograms and the training dataset b(xs
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Fig. 7. Distances between the seismograms and the training dataset b(xs
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which leads to an increase of the NRMS after the NDM-net application. On aver-
age, dataset DNRMS

60% provides the highest accuracy of the NDM-net. However, the
number of sources in DNRMS

60% is 414 which is twice as many as in D10%. Dataset
DNRMS

70% includes half of the sources of D10% but it caused a significant increase
of the NRMS. According to the presented results, it is reasonable to construct the
datasets with adaptive NRMS levels (Figs. 6 and 7).
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5 Conclusions

In this study, we consider two possible ways to construct the training datasets
for the Numerical Dispersion Mitigation network or NDM-net. The network was
designed to suppress numerical error in the seismic modeling results. It is con-
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structed to map a noisy solution computed using a coarse mesh to that computed
by a fine mesh. The training dataset is composed of the wavefields corresponding
to a small number of sources from the considered acquisition system. Thus, the
smaller the number of seismograms in the training dataset the more efficient the
approach is. We considered two ways to construct the training datasets. The first
one is based on the equidistantly distributed sources. In this case, the optimal
set of sources to generated the training dataset is 10% of the entire number of
the sources. Reduction of the number of sources leads to rapid error increase.
The use of a denser system of sources requires higher computational time to gen-
erate the training dataset without significant accuracy improvement. The second
way to construct the training dataset is the requirement, that the NRMS-based
distance from the entire dataset and the training dataset does not exceed a pre-
scribed level. In this case, the error can be reduced, however, an extremely dense
source system may be needed, which may significantly increase the number of
source positions in the training dataset. Moreover, due to the variation of the
NRMS distance between the seismograms depending on the source position, it
seems reasonable to consider an adaptive choice of the NRMS-based distance
level to construct the training dataset.
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