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Abstract. Virtual Screening (VS) is a technique aimed at reducing
the time and budget required when working on drug discovery cam-
paigns. The idea consists of applying computational procedures to pre-
filter databases to a subset of potential compounds, to be characterized
experimentally in later phases.

The problem lies in the fact that the current VS methods make sim-
plifications, meaning they are not exhaustive. One particular common
simplification is to consider the molecules as rigid. Such an assumption
greatly reduces the computational complexity of the optimization prob-
lem to be solved, but it may result in poor or inefficient predictions. In
this work, we have extended the features of Optipharm, a recently devel-
oped piece of software, by applying a methodology that considers the
flexibility of the molecules. The new OptiPharm has several strengths
over its previous version. More precisely, (i) it includes a prefilter based
on molecule descriptors, (ii) simulates molecule flexibility by computing
different poses for each rotatable bond, (iii) reduces the search space
dimension, and (iv) introduces circular limits for the angular variables
to enhance searchability. As the results show, these improvements help
OptiPharm to achieve better predictions.

Keywords: Ligand based virtual screening · Molecule’s flexibility ·
Optimization

1 Introduction

Virtual Screening (VS) methods can be divided into structure-based (SBVS) and
ligand-based (LBVS) methods [4,12,14] This work focuses on similarity LBVS
methods [2,16]. In these techniques, the starting point is a source drug whose
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shape, electrostatic potential, or other descriptor is known. This source ligand or
crystal will be the target, and the virtual screening methods try to find the more
similar molecules in an extensive database or chemolibrary. When calculating the
electrostatic similarity between the target and a compound in the database, the
more used methodology in the literature consists of optimizing in terms of shape
by using Rapid Overlay of Chemical Structures (ROCS) [11], selecting a number
N of compounds with the highest shape similarity values, and then evaluate
them in terms of electrostatic similarity. Based on the assumption that a more
realistic description of the compound bioactivity during the optimization pro-
cedure may help to obtain better predictions, a new version of OptiPharm was
implemented in [10], which involves the direct optimization of the electrostatic
similarity. As the results showed, the new methodology provided better predic-
tions in electrostatic potential than the classical ones. In this work, we go a
step forward and propose new improvements in OptiPharm aimed to reach even
better predictions. To do so, we firstly include the flexibility of the molecules in
the optimization procedure.

Protein flexibility is necessary for metabolism, transport, and function bio-
logical effects. Except for simple molecules such as O2, both ligands and recep-
tors are flexible molecules, which means that there is not a single three-
dimensional representation of these molecules, but many. The conformational
richness increases exponentially with the molecule’s size, i.e., the more atoms
(and therefore bonds, angles, and torsions) it possesses, the more degrees of
freedom there are. These degrees of freedom are not additive but multiplicative,
giving rise to many possible conformational states (see Fig. 1).

(a) A molecule of the target DB00331
that has some rotable bonds.

(b) A set of conformation generated
from the rigid DB00331 molecule.

Fig. 1. A rigid molecule (a) can generate different conformations (b). An example for
the DB00331 target from the DrugBank database is shown here. The Target structure
has been painted green for both figures. (Color figure online)

For this reason, most of the studies are based on ligands where flexibility is
considered to assume the protein to be almost rigid or with partial flexibility, so
that they only rotate a maximum of the possible rotatable bonds [1,5,7]. In some
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cases, the solution is to perform the Virtual Screening considering the molecule
as rigid, and then apply a process where the flexibility is studied for the number
of rotatable bonds allowed by the algorithm [5]. This process sometimes consists
of varying in a discrete way each of the angles of the rotatable bonds to find the
best solution. Following any of these methods, the computational time is reduced,
but many solutions keep unexplored. What we propose in this work is a previous
analysis of the molecules. First, many descriptors are calculated, and the most
representatives are selected to compute the difference between the target and
the molecules in the database. Then best molecules are filtered and selected
as flexible molecules and are applied a conformational generation process. This
methodology allows exploring all the conformation of each compound widely but
saves time by discarding uninteresting molecules.

Apart from considering the flexibility of the molecules, the new OptiPharm
incorporates mechanisms of interest that enhance the search and helps to reduce
the computational cost. As the results will show, all these improvements help
provide better predictions in the molecules.

The rest of the paper is organized as follows. Section 2 describes the scoring
function considered in this study and resumes the main ideas of OptiPharm,
focusing on the new procedures and strategies developed. Section 3 summarizes
the computational and scientific context taken into consideration for the exper-
iments. Finally, Sects. 4 and 5 show the main results and conclusions inferred.

2 Methods

2.1 Electrostatic Similarity Scoring Function

The electrostatic similarities are obtained by numerical solution of the Poisson
equation [3], viz:

∇{ε(r)∇φ(r)} = −ρmol(r) (1)

where φ(r) is the electrostatic potential, ε(r) is the dielectric constant, and
ρmol(r) is the molecular charge distribution. Electrostatic similarity between
two compounds is compared by determining EAB :

EAB =
∫

φA(r)φB(r)ΘA(r)ΘB(r)dr ≈ h3
∑
ijk

φA
ijkφ

B
ijkΘ

A
ijkΘ

B
ijk (2)

where Θ is a masking function to ensure potentials interior to the compound are
not considered part of the comparison. The integral appearing in (2) is a volume
integral, computed using a grid-spacing parameter, h.

Notice that the accuracy obtained from (2) depends on the number of atoms
in the two compared molecules. To measure the similarity between compounds,
regardless of the number of atoms that they are composed of and the descriptor
used, the Tanimoto Similarity [6] value is computed as follows:
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TcE =
EAB

EAA + EBB − EAB
(3)

where EAB is the A molecule overlaid onto B molecule. EAA and EBB is the
overlap of the molecules A and B, respectively.

2.2 OptiPharm Algorithm

OptiPharm is a recent software designed explicitly for LBVS problems. It imple-
ments a global evolutionary optimizer capable of calculating the similarity
between two compounds, a target and a query. To do so, it uses different meth-
ods in the optimization process to gradually adjust the position of the query
while the target fixes its position. The interested reader is referred to [9,10] for
an in-depth description of the original algorithm. In this work, we present a new
version of OptiPharm. In the following, we briefly describe the new contributions.

To explore the solution space, OptiPharm works with a user-defined popula-
tion of size M, which applies reproduction, selection, and improvement methods
to each member of the population. A member or solution of this population
represents the rotation and translation of the query molecule. Originally ten
parameters were used to represent this modification, which means to work in a
10-dimensional search space. This paper presents a new version of OptiPharm,
where the search space is reduced to 6 dimensions. The main change consists of
replacing the use of quaternions with a semi-sphere parametrization, which sim-
plifies the definition of the rotation axis. Consequently, searchability is enhanced
due to the reduction of the search space dimension. Nevertheless, not only that,
this new system avoids the repetition of the same rotation axis already explored.

This new mechanism provides improved freedom of exploration. In addition
to reducing input parameters, the new version incorporates some problem knowl-
edge, such as a mechanism to keep the angular variables between 0 and 2π in
a continuous circular. So, if during the search an angle α takes a value greater
than 2π, it is updated to the α−2π value. In the previous version of OptiPharm,
this value was updated to the maximum value of 2π.

2.3 Methodology

Procedure for Rigid Molecules
The process is trivial when working with rigid molecules and will be referred
to throughout this paper under the name Rigid. As explained in the previous
section, OptiPharm allows getting the best overlapping between two molecules,
the target, and the query, to maximize the electrostatic similarity score. Conse-
quently, when this procedure is repeated for each molecule in the database, their
similarity score can be known. After that, the last step sorted the molecules by
their similarity value. This procedure returns the most similar ones of interest
since they can be successful potential drugs because they are the most similar
to the target. Figure 2 shows this process to obtain a ranked list of compounds.
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Fig. 2. Procedure to rank rigid molecules.

Procedure for Molecular Conformations
Working with flexible molecules with some rotational bonds implies modifying
the methodology to obtain the similarity between a target molecule and a query
molecule in the database. Multiple alternative conformers of this molecule are
constructed by modifying the rotatable bonds with various rotation angles. This
procedure simulates the flexibility in the rotatable bonds of a given molecule.
However, the number of molecules in the database grows dramatically, and con-
sequently, so does time.

A solution to this problem is to first discard those not promising com-
pounds in the database and then generate conformations to the remaining
molecules. This process, which we have called Flexible throughout the docu-
ment, is explained in Fig. 3. In this figure, first, the descriptors are calculated for
each molecule in the database. In this work, more than 4,000 different descrip-
tors are obtained. However, many are not relevant or are repetitive, so different
machine learning metrics are applied to discard them. In particular, variance
and correlation are applied, and those descriptors whose values are 0 in most
cases have been removed. This filter reduces the number of descriptors to a more
limited number.

The obtained descriptors are then used to filter the molecules in the database.
As can be seen in Fig. 4, the Euclidean distance between the query molecule and
each of the targets is calculated. Once they are available, the compounds are
ordered from smallest to largest by the distance value, and the best M com-
pounds are selected based on an empirical cutoff value. Finally, several confor-
mations are generated for the selected query compounds and the target.
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Fig. 3. Descriptor selection procedure.

Fig. 4. Molecule filtering process based on Euclidean distance and subsequent genera-
tion of conformations of selected molecules.

After generating multiple conformations for target and query, an optimization
procedure is run using OptiPharm. Figure 5 shows such a procedure using an
example where only three conformations have been generated for both the target
and the query.

As shown in Fig. 5, an extensive comparison is performed, which involves run-
ning nt × nq times OptiPharm algorithm instead of just one for rigid molecules.
In this exhaustive comparison, nt represents the number of conformations of the
target molecule, and nq is the number of conformations of the query molecule.
Once the maximum similarity of each of the comparisons has been calculated,
the algorithm searches for the highest value and provides it as the final similarity
result between the two flexible molecules.

Once the flexible target has been compared with all molecules in the database,
they are ordered based on their conformation computed similarity value.
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Fig. 5. Procedure for obtaining maximum similarity when working with conformations
of molecules.

Consequently, new query compounds with a high similarity value can be
identified while they are not detected when working with rigid molecules.

3 Materials

Hardware. The experiments of this work have been carried out using a cluster
of 8x Bull Sequana X440-A5: 2 AMD EPYC Rome 7642 (48 cores) and 512 GB
of RAM memory and 240 GB SSD.

FDA Database. The database used in this work was obtained from Drugbank,
v.5.0.1 [15]. Specifically, a subset of 1,751 molecules validated by the Food and
Drug Administration (FDA) has been used. The FDA is a federal agency of the
U.S. Department of Health and Human Services responsible for protecting and
promoting public health by controlling, among other things, prescription and
over-the-counter pharmaceutical drugs (medicines). The original database has
been downloaded from https://go.drugbank.com.

Software. The new version of OptiPharm, described in Sect. 2.2 is the optimiza-
tion algorithm used to find the maximum similarity between two compounds. It
has been configurated to consider the hydrogen atoms of each molecule. In addi-
tion, all the heavy atom radii have been set to 1.7Å. Furthermore, all compound
pairs are centered and aligned. Consequently, the molecule centroids have been
located at the coordinates center of the search space. Finally, each molecule has
been aligned so that its longest axis has been oriented at X-axis and the short-
est along the Z-axis. The input parameter set used in OptiPharm have been:

https://go.drugbank.com
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N = 200, 000 function evaluations, M = 5 starting poses, tmax = 5 iterations,
and R = 1 as the smallest possible radius.

Additionally, software OMEGA [8] has been the generator selected to obtain
the conformations of targets and queries in the database. The maximum number
of conformations for a given compound was limited to 500, though the obtained
number was smaller in many compounds due to a small number of rotatable
bonds.

Finally, Dragon (6.0.38) has been used to calculated 4885 descriptors for each
molecule in the database.

4 Results

In this section, we will show the results obtained by the new methodology, and
we will compare them with the ones obtained for the original OptiPharm in [10].
For illustration, we will only depict the outcomes obtained for the molecules
DB00381 and DB00876.

Table 1. Top-10 most similar compounds in electrostatic to the target DB00381.

Rigid F lexible

Query TcE Target con-
formation

Query conformation TcE RkR TcRE

DB00630 0.377 32 DB09237 43 0.762 1406 0.118

DB00409 0.377 32 DB01214 481 0.727 1384 0.121

DB00751 0.374 32 DB00622 175 0.718 999 0.207

DB00933 0.374 32 DB00557 212 0.704 1186 0.178

DB00998 0.370 32 DB00383 159 0.700 398 0.264

DB00334 0.367 32 DB01244 44 0.689 1549 0.105

DB00891 0.359 32 DB00979 23 0.683 517 0.254

DB00611 0.358 32 DB00571 483 0.679 240 0.280

DB00540 0.358 32 DB01359 440 0.666 1268 0.153

DB00647 0.357 32 DB00748 58 0.665 260 0.278

Following our methodology, we first calculate the 4885 descriptors for all
molecules in the database. Subsequently, this group is reduced to 757 by apply-
ing the statistical metrics. With these numbers, it is computed the Euclidean
distance between each molecule and the target. Later, the molecules are shorted
according to that distance in ascending order. Only those molecules ranked
within 10% of the shortest distance were selected. For the 175 molecules that
remain, several conformations are generated. In particular, the sub-database
obtained for each target consists of 47,983 and 38,833 conformations for the tar-
gets DB00381 and DB00876, respectively. In addition, target DB00381 resulted
in 383 conformations, and DB00876 in 154.
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(a) Rigid Target DB00381 (b) Rigid Query DB00630 (c) Rigid overlapping

Fig. 6. Maximum similarity solution for Target DB00381 when working with rigid
molecules. Figures (a) and (b) represent the target and query compounds and their
electrostatic fields. Figure (c) represents the optimal overlapping between the two com-
pounds where TcE is maximum.

(a) Flex. Target DB00381 (b) Flex. Query DB09237 (c) Flexible overlapping

Fig. 7. Maximum similarity solution for Target DB00381 when working with flexi-
ble molecules. Figures (a) and (b) represent the more similar conformations of target
and query compounds and their electrostatic fields. Figure (c) represents the optimal
overlapping between the two compounds where TcE is maximum.

Tables 1 and 2 compare the main results obtained for the methodologies Rigid
and Flexible for Targets DB00381 and DB00876. In particular, they show the 10
queries with the greatest similarity provided for both versions. More precisely, for
Rigid methodology, we provide its name, Query, and the corresponding similar-
ity value TcE . For Flexible, we indicate the pair target-query that has obtained
the best match, i.e. we identify those two molecules by also indicating their corre-
sponding conformation number. This information is depicted in columns Target
conformation and Query conformation. Finally, we show at column TcE the
scoring function value obtained for each match. For the sake of comparison, we
also indicate in column RkR the position that the Query conformation occu-
pies in the list obtained by Rigid, and its corresponding scoring value in column
TcRE .

The results show an improvement in the quality of the solutions. As can
be seen in Table 1, the most similar compound found following the Flexible
methodology (0.762) improves twice the value of the Rigid (0.377). Moreover,
the most similar compounds in the rankings are different, i.e., DB00630 for
the Rigid and DB09237 for the Flexible. Additionally, this result can be seen
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Table 2. Top-10 most similar compounds in electrostatic to the target DB00876.

Rigid F lexible

Query TcE Target Con-
formation

Query conformation TcE RkR TcRE

DB00774 0.532 69 DB00338 126 0.861 1164 0.225

DB00880 0.530 35 DB08897 40 0.861 1577 0.159

DB01153 0.527 18 DB00736 54 0.860 888 0.261

DB00690 0.526 69 DB06766 6 0.835 1403 0.197

DB00897 0.522 120 DB00966 424 0.832 772 0.276

DB00819 0.513 69 DB01129 440 0.829 713 0.285

DB01101 0.512 35 DB04843 72 0.813 1378 0.201

DB00425 0.507 1 DB04880 2 0.800 502 0.321

DB01002 0.505 103 DB00642 47 0.775 704 0.286

DB00809 0.503 35 DB06274 105 0.522 618 0.301

(a) Rigid Target DB00876 (b) Rigid Query DB00774 (c) Rigid overlapping

Fig. 8. Maximum similarity solution for Target DB00876 working with rigid molecules.
Figures (a) and (b) represent the target and query compounds and their electrostatic
fields. Figure (c) represents the optimal overlapping between the two compounds where
TcE is maximum.

graphically in Figs. 6 and 7 where the molecules, their optimal overlapping, and
electrostatic fields are represented using VIDA [13].

If the last two columns of Flexible are analyzed, it is clear that there is no
good overlapping when rigid molecules are used. As seen in the RkR column,
most of the top molecules in Flexible are below the position 1000th in the Rigid
list.

Table 2 shows results along the same line as Table 1. In this study case, the
top solution improves from 0.532 to 0.861 finding different compound as well.
Figures 8 and 9 show graphically the most similar compounds for both methods.

The improvement obtained in the previous results is due to the solu-
tions, including flexibility. However, as we previously stated, this increases
the computational time considerably. However, the time has been ostensibly
reduced thanks to the Flexible methodology employed in this work. The aver-
age time for an optimization process is 29 s for these target molecules in the
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(a) Flex. Target DB00876 (b) Flex. Query DB00338 (c) Flexible overlapping

Fig. 9. Maximum similarity solution for Target DB00876 working with flexible
molecules. Figures (a) and (b) represent the more similar conformations of target and
query compounds and their electrostatic fields. Figure (c) represents the optimal over-
lapping between the two compounds where TcE is maximum.

current hardware. If we focus on the target DB00381 with a database of 38, 833
conformations from the initial 175 molecules, each molecule generated on aver-
age 221 conformations, although the maximum could be 500 for each one). If this
value is extrapolated to the whole database, (1751 ∗ 221 =)386, 971 conforma-
tions could be generated. So, the time saved with the filter applied by discarding
unpromising compounds is 116 days per target, and whether 500 conformations
are generated, 264 computation days would be saved.

5 Conclusions and Future Work

In this work, we have improved the software OptiPharm by considering molecule
flexibility. Apart from that, the new version includes several mechanisms to
reduce the computational effort. In particular, we have reduced the number of
optimization parameters and the range of freedom in some of them. Conse-
quently, the search space decreases, and the number of function evaluations
needed to find the optimal similarity drops. Besides, we have analyzed and
applied descriptors to filter the initial database. We have used statistical metrics
such as variance, correlation, or Euclidean distance.

The results have shown that the new OptiPharm can obtain solutions with
higher scoring values than the original one, meaning that new query compounds
with a high similarity value can be identified. These compounds are not detected
when working with rigid molecules. In addition, the descriptor filter allows to
drastically reduce the run time, saving for the study at hand up to 264 days.

Future work proposes implementing a conformation generation algorithm as
an internal procedure of OptiPharm and including new scoring functions.
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138 S. Puertas-Mart́ın et al.

competitivos (20988/PI/18)” grant; by the University of Almeria throught the “Ayudas
a proyectos de investigación I+D+I en el marco del Programa Operativo FEDER 2014-
20” grant (UAL18-TIC-A020-B). Sav́ıns Puertas Mart́ın is a fellow of the “Margarita
Salas” grant (RR A 2021 21), financed by the European Union (NextGenerationEU).

References

1. Axenopoulos, A., Rafailidis, D., Papadopoulos, G., Houstis, E.N., Daras, P.: Simi-
larity search of flexible 3D molecules combining local and global shape descriptors.
IEEE/ACM Trans. Comput. Biol. Bioinf. 13(5), 954–970 (2016). https://doi.org/
10.1109/TCBB.2015.2498553

2. Bahi, M., Batouche, M.: Deep learning for ligand-based virtual screening in drug
discovery. In: 2018 3rd International Conference on Pattern Analysis and Intelligent
Systems (PAIS), pp. 1–5 (2018). https://doi.org/10.1109/PAIS.2018.8598488
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