
Multiperspective Web Testing Supported
by a Generation Hyper-Heuristic

Juliana Marino Balera(B) and Valdivino Alexandre de Santiago Júnior

Instituto Nacional de Pesquisas Espaciais (INPE),
Av. dos Astronautas 1758, São José dos Campos, SP, Brazil

{juliana.balera,valdivino.santiago}@inpe.br

Abstract. Web interface testing is a sort of system testing level and it
is laborious if accomplished manually, since it is necessary to map each
of the elements that make up the interface with its respective code. Fur-
thermore, this mapping makes test scripts very sensitive to any changes
to the interface’s source code. Approaches for automated web testing
have been proposed but the use of hyper-heuristics, higher-level search
techniques aiming to address the generalization issues of metaheuristics,
for web testing are scarce in the literature. In this article we present
a multi-objective web testing method, MWTest, which automates the
generation of test cases based only on the URL of the web application
and a new proposed generation hyper-heuristic, called GECOMBI. The
GECOMBI hyper-heuristic takes into account combinatorial designs to
generate low-level heuristics to support our goal. Moreover, the imple-
mentation of the MWTest method creates a Selenium test script quickly
and without human interaction, exclusively based on the URL in order
to support the automated execution of test cases too. In our evalua-
tion, we compared GECOMBI to another generation hyper-heuristic,
GEMOITO, and four metaheuristics (NSGA-II, IBEA, MOMBI, NSGA-
III). Results show superior performance of GECOMBI compared to the
other approaches.

Keywords: Web testing · Hyper-heuristics · Combinatorial designs ·
System testing

1 Introduction

Interface testing is an important part of the testing cycle of a web application.
The goal is to identify failures from the externally visible behavior of the appli-
cation [13]. However, this type of test depends on the mapping of each of the
components of the interface to the source code and this is a cumbersome task
if performed manually. Moreover, this mapping makes test scripts very sensi-
tive to any changes to the interface’s source code. Due to the rapid evolution
of software nowadays, including web applications, following practices such as
continuous integration (CI), effective test cases/data generation must resort to

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Gervasi et al. (Eds.): ICCSA 2022 Workshops, LNCS 13381, pp. 447–462, 2022.
https://doi.org/10.1007/978-3-031-10548-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10548-7_33&domain=pdf
https://doi.org/10.1007/978-3-031-10548-7_33

448 J. M. Balera and V. A. de Santiago Júnior

automated approaches to ensure that high quality web systems are produced.
Therefore, manually generating and executing web test cases is not feasible in
this context.

Testing of web applications has naturally been addressed by researchers
where the most common types of testing are functional, security, usability, per-
formance, compatibility, and structural testing [4]. However, one interesting
direction is trying to address different perspectives, e.g., functional and non-
functional, altogether to generate test cases. Hence, several different character-
istics are considered together to generate the test suites (sequences of test cases)

Search-based software testing (SBST) is a subfield of search-based software
engineering (SBSE) which is formed by the combination of software testing and
optimization [6,18,25]. SBST is precisely suitable to deal with the previous multi-
perspective test case generation approach. In SBST, testing a software system
is formulated as an optimization problem and the main reasoning is that test
objectives can be considered as objective functions, and hence optimization algo-
rithms can be used to help in this regard.

As for SBST, metaheuristics such as evolutionary algorithms (EAs) (genetic
algorithm (GA) [23,24]), particle swarm optimization (PSO) [21,30], simulated
annealing (SA) [16] have been employed, indeed dominating the subfield [6].
However, researchers claim that metaheurisitics suffer from the lack of gener-
alization. With the goal of tackling the generalization issue, hyper-heuristics
[14,26] emerged as general-purpose high-level optimization methods controlling
or building (components of) low-level (meta)heuristics (LLHs), and they have
been preferred less than the metaheuristics for SBST [6].

Moreover, to the best of our knowledge, no previous work has used hyper-
heuristics for test case generation for web interface systems following the multi-
perspective point of view we have just mentioned above.

Currently, the most used technology for automating web interface testing is
the Selenium framework. With Selenium, it is possible to automate the execution
of test flows in several programming languages such as Java, Javascript, Ruby
and Python.

In this article we present a Multi-objective Web Testing method, MWTest,
which automates the generation of test cases based only on the URL of the
web application and a new proposed generation hyper-heuristic, called GEn-
eration hyper-heuristic via COMBInatorial designs (GECOMBI)(the code can be
access in [1]). As its name implies, GECOMBI takes into account combinatorial
designs [5] to generate LLHs to support our goal. Within our method, we used
as LLHs four metaheuristics: Indicator-Based Evolutionary Algorithm (IBEA)
[32], Metaheuristic for Many-objective Optimization based on the R2 Indicator
(MOMBI) [17], Nondominated Sorting Genetic Algorithm-II (NSGA-II) [12] and
III (NSGA-III) [11]. Moreover, the implementation of the MWTest method cre-
ates a Selenium test script quickly and without human interaction, exclusively
based on the URL in order to support the automated execution of test cases too.

In our experiment, we then compared GECOMBI to these four meta-
heuristics and one other generation hyper-heuristic: Grammatical Evolution

Multiperspective Web Testing Supported by a Generation Hyper-Heuristic 449

hyper-heuristic for the Multi-objective Integration and Test Order problem
(GEMOITO) [22]. Moreover, case studies come from five different web appli-
cations developed by the Instituto Nacional de Pesquisas Espaciais (INPE).

This article is organized as follows. Section 2 presents some relevant related
studies. The MWTest method and GECOMBI hyper-heuristic are presented
in Sect. 3. Experimental evaluation and results are in Sect. 4. Conclusions and
future directions are in Sect. 5.

2 Related Work

Several approaches have been proposed for web applications testing [4,13]. We
mention here some relevant studies related to ours.

2.1 Web Testing

The study proposed by [29] proposes the A POGEN tool. Using the Page Object
pattern, the tool is able to automatically produce transformed Java page objects
for Selenium WebDriver through a combination of clustering and static analysis.
However, an approach possibly requires intervention, in addition, only the human
elements that have an id are automatically identified.

The work proposed in [28] proposes a tool capable of creating a test specifi-
cation at different levels of abstraction. To implement it, it is necessary to use
the TTCN-3 language, which allows more robust test cases. The approach how-
ever, is dependent on human interaction and considerable knowledge of software
testing techniques to be able to apply it.

The approach proposed in [9] allows non-functional requirements such as
security to be explored in web test cases. However, the tool does not offer the
generation of an automatic test script, and like the approaches mentioned above,
it requires knowledge in software testing for your application.

The approach proposed in [20], like the previous approach, focuses on test
cases based on non-functional requirements, specifically vulnerability. However,
the approach does not support automated test case generation.

All the approaches mentioned above are very promising approaches for this
aspect of software engineering. However, in general, it can be said that they do
not offer full support to the developer who will use them, since it requires knowl-
edge in software testing, or does not support the generation of automated test
case scripts. Furthermore, some of the approaches did not unite the exploration
of functional and non-functional requirements. The approach proposed in this
work, unites all these differential in a single tool: automatic generation and with-
out interaction of a test script and exploration of functional and non-functional
requirements simultaneously.

2.2 Hyper-Heuristics

Hyper-heuristics are high-level optimization methods where the search is per-
formed in the space of heuristics (or heuristics components) instead of being

450 J. M. Balera and V. A. de Santiago Júnior

performed directly in the decision variable space (space of solutions) [14,26].
One domain to classify hyper-heuristics is in accordance with the nature of
the heuristic search space which defines the characteristics of the search space.
In the space of LLHs, there can be selection hyper-heuristics, which are
methodologies designed to select an already existing set of LLHs, and genera-
tion hyper-heuristics, which are methodologies that generate new LLHs from
other preexisting ones.

As recently reported, within SBST, more selection hyper-heuristics have been
used compared to the generation ones [6], even if some authors argue that gen-
eration hyper-heuristics possess more features for greater level of generalization
compared to the selection counterparts [10]. Hence, in this study we also aimed
to realize the performance of a new proposed generation hyper-heuristics for web
testing. However, we present below some studies relying on generation hyper-
heuristics.

The GEMOITO geneation hyper-heuristic was proposed in [22]. GEMOITO
was designed for the solution of the integration and test problems. The approach
makes use of the grammatical evolution (GE) technique, explained in Sect. 3, and
consequently, defines a specific grammar that contemplates several parameter
values common to evolutionary algorithms (EAs).

In [15], authors presented an adaptation of the GEMOITO [22] hyper-
heuristic, as we have just mentioned originally designed for the solution of
integration and test order problems, to solve software production line (SPL)
problems. This adaptation consisted in the change of the values of four param-
eters (mutation probability, crossover probability, mutation operator type, and
crossover operator type) to values more appropriate to the class of target prob-
lems.

The differences between our research and all the previous ones are basically
two. Firstly, no previous work has used a generation hyper-heuristic for test case
generation for web interface systems. Since the claims of higher generalization
capabilities of hyper-heuristics, we felt motivated to follow this direction. Sec-
ondly, the multi-perspective point of view, combining cost, functional, and non-
functional properties (in this case, vulnerability of web applications) together is
another interesting feature of our approach.

3 The MWTest Method

In this section we present our method, MWTest, whose main component is the
GECOMBI generation hyper-heuristic. However, some important definitions are
necessary before going on as shown in the sequence.

Definition 1. Abstract test case: An abstract test case is one whose repre-
sentation does not allow it to be effectively executed against the SUT. Such an
abstract test case serves as a guide for generating the truly executable test case.
Particular, in our case, an abstract test case is a sequence of vertices of the
Event Flow Graph (EFG).

Multiperspective Web Testing Supported by a Generation Hyper-Heuristic 451

Definition 2. Solution as a test suite with variable size: A solution of
a population created by an optimization algorithm is indeed a test suite, i.e. a
sequence of abstract test cases. The number of abstract test cases a solution may
have depends on the number of terminal vertices of the EFG, and which are
present in the solution.

Definition 3. Decision variable as test step: A decision variable is one
element of a solution. The value of the decision variable of a solution identifies
a vertex of the EFG. It is therefore considered a test step of an abstract test case.

From this point onward, unless otherwise noted, we will denote an abstract
test case simply as a test case for simplicity. Basically, our method starts by
handling a web site url which is its input. Hence, the method proposes the auto-
mated generation of an EFG [8] based only on the source code of the web appli-
cation. Considering a set of objective functions (functional and non-functional
properties) and this EFG, GECOMBI generates LLHs which are responsible for
the creation of (abstract) test suites. Finally, the method proposes that one or
more test suites are randomly selected to stimulate the web application.

In order to better explain our method, Fig. 1 shows one instance of the
MWTest method. In other words, this is an actual implementation of our
method, with a set of tools that we developed or adapted. We used this imple-
mentation to accomplish the experiment presented in Sect. 4.

Basically, our method (instance) starts by downloading a website’s source
code from its URL, using a crawler written in Python. This crawler relies on
the BeautifulSoup [3] library. It takes as input the URL of the website being
tested, downloads the source code, and stores it in a text file. This source code
is just the client code, that is, the code downloaded by the browser when the
user accesses the site.

The next step is the generation of the EFG model. For this, there is also
a specialized module that receives as input the text file that contains the code
downloaded in the previous step. From this text, the elements that correspond to
the implementation of some component of the web interface are identified, such
as a text box. After identifying all these components, the EFG model will be
generated, which consists of a directed graph where each of its nodes correspond
to elements of the web interface and the edges are the possible interactions
between them. Nodes that do not have edges that depart from it are terminal
nodes, corresponding to buttons to close or cancel something.

The main module of our approach, the GECOMBI hyper-heuristic. See
detailed explanation of our hyper-heuristic in Sect. 3.1).

The set of LLHs that compose the GECOMBI hyper-heuristic will be exe-
cuted and the product will be a test suite, where each position corresponds to
an interaction with the target web interface. After that, an executable script
will be generated using the Selenium framework. This script can be generated
in different programming languages, depending on the tester’s needs. This script
is generated by the Selenium Generator module. When executing the generated
script, it will simulate a user flow (defined by the test suite sequence) in a “fake”
browser, Webdriver.

452 J. M. Balera and V. A. de Santiago Júnior

Web site

Crawler

EFG Model
Generator

GECOMBI
(LLHs: IBEA,

MOMBI, NSGA-
II, NSGA-III)

Selenium
Generator

WebDriver

url

.html

.dot

suite test case

Fig. 1. An instance of the MWTest method

3.1 The Gecombi Hyper-Heuristic

In the context of generation hyper-heuristics applied to software testing, gram-
matical evolution (GE) [15] stands as the main option. GE is a type of genetic
programming technique capable of generating new heuristics by means of a gram-
mar, which defines the rules of adjustment of values for the configuration param-
eters of a generic EA, such as crossover probability, mutation probability.

However, the use of a grammar will eventually make a search limited since,
regardless of the problem class, the parameters values will always be the same,
which will require an adaptation of the grammar for each type of problem. In
addition, GE allows all possibilities of parameters combinations to be explored
but it does not define a systematic form of searching, which leads to the problem
of the blast of combinations.

The basic idea of the GECOMBI generation hyper-heuristic is that the
parameters of an EA do not act independently of each other, since they operate
in the same population, i.e. the interaction of the effects of each configuration
parameter tends to influence the quality of the solution as a whole. For example,
it is not interesting to have both a very high crossover and mutation probabili-
ties, since this can cause the population change to be so large that each offspring

Multiperspective Web Testing Supported by a Generation Hyper-Heuristic 453

population will be totally different from the previous population, and hence the
algorithm never converges.

Hence, one possible strategy for parameter tuning of an EA would be to
try all interactions of values for these parameters, not considering parameter
interactions that do not make sense. However, this is not achievable with an
exhaustive approach (all combinations) because the number of combinations is
generally very high.

On the other hand, combinatorial designs with constraints allows the evalu-
ation of interactions between the different values of the metaheuristics configu-
ration parameters, since the aim of the technique is to try to “group” all these
interactions into a smaller set, not considering combinations that do not make
sense (e.g. mutation and crossover probabilities simultaneously high). Within
software testing, combinatorial designs are known as combinatorial interaction
testing (CIT), a well-studied strategy to generate test cases/data [5].

The GECOMBI generation hyper-heuristic is split into two parts: generat-
ing LLHs and creating test suites. The generating LLHs phase is described in
Algorithm 1. GECOMBI receives, among other inputs, the EFG related to the
simple/smallest web application and a set of objective functions (Obj in Algo-
rithm 1). Hence, we relied on the T-tuple Reallocation (TTR) [5] CIT algorithm
to generate the t-tuples where each t-tuple is formed by a single value of each
parameter. Here, a t-tuple is also known as a configuration (Ci in Algorithm
1) of an LLH. V P in Algorithm 1 means sets of sets of parameter values. Let us
consider the following elements (sets) of V P : crossover prob val = {0.01, 0.9},
mutation prob val = {0.01, 0.9}, population size val = {100, 1000, 10000}.

Moreover, let the strength (t in Algorithm 1) for TTR be equal to two (pair-
wise interaction). All pairwise interactions are shown in Table 1. Note that lines
1 and 4 (gray) will not be considered (constraints), since they are combinations
of values that are mostly inadequate in the context of EAs. This is done in line
4 (removeConfigs) in Algorithm 1.

The final set of configurations after line 4 is shown in Table 2. Thus, we have
this set of configurations indicated as 〈C1, · · · , Cm〉 in Algorithm 1.

The set of LLHs (LLH; n = |LLH|) is also an input to the GECOMBI’s
generating LLHs phase. From lines 6 to 13 we define how to select the definite
LLHs that will compose GECOMBI. Thus, we execute all LLHs considering all
configurations, Ci, as defined for each LLH, and get the populations Popi, where
0 ≤ i < n. Since TTR’s output can be really large, even if a lower strength is
defined, the parameter β indicates a percentage of the best generated LLHs to be
considered as the ones GECOMBI definitely indicate to create the test suites.
To select the LLHs which will be indeed considered as the final ones, we use
quality indicators (e.g. hypervolume [33] and IGD+ [19]. Hence, the LLHs with
the best values in accordance with these quality indicator are the generated (i.e.
selected) ones. The output of Algorithm 1 is precisely the LLHs generated by
GECOMBI (set L) illustrated in Table 2.

The second phase is to create the test suites as shown in Algorithm 2. The set
L of generated LLHs are input to this procedure as well as the EFG, Obj, and the
population size (pSize). Note that the EFGs now are from any web application

454 J. M. Balera and V. A. de Santiago Júnior

Algorithm 1. GECOMBI: Generating LLHs
input: EFG, Obj, V P, t, LLH, β
output: L

1: Prob ← adaptProblem(EFG, Obj)
2: M ← TTR(V P, t)
3: < C1, C2, ..., Ck >← splitRows(M)
4: < C1, C2, ..., Cm >← removeConfigs(< C1, C2, ..., Cn >)
5: Poph ← ∅
6: i ← 0
7: while i < n do //n = the number of LLHs.
8: for j ∈ Ci do // all configurations for an LLH[i]
9: Popi ← Popi ∪ runLLH(LLH[i], j, P rob)

10: end for
11: i ← i + 1
12: end while
13: L ← generateLLHs(< Pop1, Pop2, · · · , Popn >, β)
14: return L

Table 1. Matrix with all pairwise interactions of parameters

i crossover prob val mutation prob val population size val

1 0.01 0.01

2 0.01 0.9

3 0.9 0.01

4 0.9 0.9

5 0.01 100

6 0.01 1000

7 0.01 10000

8 0.9 100

9 0.9 1000

10 0.9 10000

11 0.01 100

12 0.01 1000

13 0.01 10000

14 0.9 100

15 0.9 1000

16 0.9 10000

and not only the smallest one. The set of test suites (TSs in Algorithm 2)
is indeed the final population due to GECOMBI obtained by generating the
nondominated solutions (procedure generateND), and by the adjustment of
the population size in accordance with pSize (procedure adjustPop).

Multiperspective Web Testing Supported by a Generation Hyper-Heuristic 455

Table 2. Final set of configurations

Config crossover prob val mutation prob val population size val

CONF 1 0.01 0.01 100

CONF 2 0.01 0.9 1000

CONF 3 0.01 0.01 10000

CONF 4 0.9 0.9 100

CONF 5 0.9 0.01 1000

CONF 6 0.9 0.9 10000

Algorithm 2. GECOMBI: Creating Test Suites
input: EFG, Obj, L, pSize
output: TSs

1: Prob ← adaptProblem(EFG, Obj)
2: TSs ← ∅
3: for l ∈ L do
4: TSs ← TSs ∪ runLLH(l, P rob)
5: end for
6: TSs ← generateND(TSs)
7: TSs ← adjustPop(TSs, pSize)
8: return TSs

4 Experimental Design and Evaluation

In this section, we present the design and characteristics of the experiment we
conducted to evaluate our method.

4.1 Objective, Algorithms and Quality Indicators

The objective of this evaluation is to identify which out of six optimisation algo-
rithms is the best regarding test case generation for web applications. We consid-
ered our new proposed generation hyper-heuristic, GECOMBI, the GEMOITO
hyper-heuristic, and the metaheuristics IBEA, MOMBI, NSGA-II, and NSGA-
III. Note that these metaheuristics are used as LLHs of GECOMBI.

Note that each metaheuristic was configured as follows: SBX crossover with
probability 0.0001, Polynomial mutation with probability 0.00125, population
and archive size equal to 20. On the hand, the GEMOITO hyper-heuristic and
GECOMBI had the same sets of values. As for GECOMBI, the parameter set-
tings are shown later in Sect. 4.5.

As quality indicators to evaluate the performance of the algorithms, we used
the hypervolume and IGD+. In our case, we took into the front-normalized values
of these indicators. Note that as higher the (front-normalized) hypervolume value
the better the algorithm, and as lower the (front-normalized) IGD+ value, the
better the approach.

456 J. M. Balera and V. A. de Santiago Júnior

4.2 Research Question and Variables

We want to answer the following research question:

– RQ 1 - Which of the six algorithms is the best regarding each quality indi-
cator?

The independent variables are the optimisation algorithms. The dependent
variables are the values of the quality indicators: hypervolume and IGD+.

4.3 Objective Functions

The objective functions we considered are described below:

– test case consistency: we defined no constraints to the problem instances.
Hence, the algorithms have total flexibility to generate the test cases. But, it is
usually necessary that the sequence of values of the decision variables within
a (abstract) test case is consistent with the sequence of vertices (edges) of the
graph, otherwise an inconsistent test case will be generated. Thus, we want
to maximize the test case consistency. Note that by generating consistent test
cases we are traversing correctly the EFG, and hence this can be seen as a
function related to functional properties;

– length of the test suite: this objective function has as purpose to control
the amount and the position in which the terminal vertices of the EFG appear
in a solution. This is a cost measure where we want to minimize the amount
of test cases in the test suite;

– vulnerability: this objective function is related to the vulnerability of web
interface applications. One of the most well-known attacks is SQL Injection.
In this attack, the text fields present in the interface are exploited, and SQL
commands are inserted into them that can cause some damage to the website’s
database. We want to maximise the number of vulnerabilities in order to
create more suitable test cases. This is a function related to non-functional
properties (vulnerability).

4.4 Case Studies

Case studies are 18 case web interfaces whose source code is based on Javascript
extracted from the web sites from the Instituto Nacional de Pesquisas Espaciais
(INPE).

4.5 Generating LLHS

As for the GENERATING LLHs phase (see Sect. 3.1, Algorithm 1), we con-
sidered the smallest (less number of vertices in the corresponding EFG) web
interface among all the 18 web interfaces. Parameters are described in Table 3.
Altogether, 162 LLHs were generated by GECOMBI, and we set β = 0.06.
Note that since this is a real problem, we created the True Known Pareto Front

Multiperspective Web Testing Supported by a Generation Hyper-Heuristic 457

according to the execution of the LLHs. Hence, GECOMBI suggests the top 10
LLHs/configurations in accordance with the highest hypervolume values.

After identifying the top 10 LLHs, we moved on to the next step where we
were able to compare GECOMBI to the other algorithms. It is very important to
emphasize that the final population due to GECOMBI is adjusted to fit the size
of the population of the metaheuristics run in isolation (see procedure adjustPop
in Algorithm 2). Hence, the final population of GECOMBI is 20.

Table 3. Parameter settings for GECOMBI

Parameters Values

Population size 20, 50

Crossover probability 0.0001, 0.009, 0.005

Mutation probability 0.0001, 0.009, 0.005

Crossover operator TwoPoint, SinglePoint, SBX

Mutation operator Polynomial, Random, CDG

Archive (2,3)*population size

4.6 Results

After the training of GECOMBI and the generation of LLHs in conjunction
with the Pareto Frontier of the problem, the execution phase was started. For
each of the web interface under test an EFG model was generated, and each
of these models was submitted to GECOMBI so that the comparison of the
results obtained was compared with the results of the Pareto Frontier obtained
during the training phase. This goal was achieved by calculating hypervolume
and IGD+ comparators.

After obtaining the data referring to the approach proposed in this work, the
data for the comparison were obtained by submitting the same problem to the
GEMOITO, NSGA-II, NSGA-III, IBEA and MOMBI were also run, configured
according to the literature. The configuration of the native algorithms, we con-
sidered the parameter values for the solution of the Traveling Salesman problem,
also implemented in the jMetal tool. The Traveling Salesman problem is of the
same nature as the problem of generating test cases for web interface, so it was
selected. In these applications, the city concept represents the test case, and the
distance concept represents the cost of the test case.

Tables 4 and 5 bring the results of all 18 GUIs submitted. In all cases, the first
column corresponds to the ID of each case study. The other column is the value
obtained by the algorithm corresponding to the indicator referring to the table
(i.e. hypervolume or IGD). The results obtained by the GEMOITO, NSGA-II,
NSGA-III, IBEA, MOMBI and GECOMBI, although are very similar, in most of
cases the GECOMBI algorithm obtained slightly better results. This is further
evidence of the applicability of GECOMBI to real problems.

458 J. M. Balera and V. A. de Santiago Júnior

Table 4. Hypervolume values

Case study NSGA-II IBEA MOMBI NSGA-III GEMOITO GECOMBI

1 0.268782 0.120026 0.131513 0.257367 0.431783 0.516108

2 0.333638 0.180318 0.196101 0.459991 0.441912 0.527794

3 0.347497 0.193399 0.160884 0.515277 0.521259 0.508557

4 0.341984 0.256996 0.233039 0.593170 0.460526 0.543643

5 0.347971 0.220834 0.221348 0.512301 0.485573 0.528132

6 0.339228 0.203439 0.100345 0.434617 0.468291 0.383098

7 0.194871 0.109718 0.088416 0.297875 0.391903 0.420904

8 0.212474 0.196170 0.088853 0.529682 0.529376 0.530784

9 0.401964 0.193806 0.126963 0.563866 0.456579 0.605975

10 0.241677 0.209873 0.134434 0.523692 0.528122 0.634823

11 0.154823 0.079160 0.070553 0.214052 0.440771 0.358798

12 0.243821 0.158441 0.093224 0.478388 0.517422 0.324694

13 0.308754 0.248139 0.096751 0.532646 0.518316 0.432973

14 0.348418 0.192111 0.135408 0.510069 0.412745 0.428427

15 0.298458 0.173096 0.197651 0.562706 0.498127 0.459960

16 0.256699 0.188478 0.103281 0.437255 0.453236 0.386052

17 0.304820 0.115310 0.143298 0.241853 0.363048 0.488897

18 0.429585 0.264860 0.231269 0.454193 0.461678 0.462882

However, it is important to apply a statistical evaluation to verify if there
is a significant difference between the results obtained by GECOMBI and the
other algorithms compared. For this, we follow the experiment proposed in [7],
for a statistical evaluation to provide greater confidence in results.

For the statistical verification, the values of the hypervolumes and IGD+
indices obtained by each algorithm were analyzed for each case study. Just as in
[7], the first step is to verify the normality of the data. For this purpose, we apply
the Shapiro-Wilk test [27] with significance level α = 0.05. This test shows that
the data is not normally distributed. In this way, the nonparametric Wilcoxon
test (Signed Rank) [2] was applied, with significance level α = 0.05. The results
are presented in Table 6.

According to these results, some p-values are below 0.05, there is difference
between the GECOMBI and other algorithms compered, with the advantage for
the GECOMBI. In other cases, there is no difference between the GECOMBI and
other algorithms compered, which leads to the conclusion that GECOMBI has
the potential to be used as a solution as well as algorithms already established
in the literature.

Just as the studie [31] that propose new hyper-heuristics aimed at solving
problems in the context of Software Testing, use hypervolume as one of the eval-
uation metrics. In all cases, the relational experiments include the comparison of

Multiperspective Web Testing Supported by a Generation Hyper-Heuristic 459

Table 5. IGD+ values

Case study NSGA-II IBEA MOMBI NSGA-III GEMOITO GECOMBI

1 0.190867 0.264044 0.254507 0.196629 0.335454 0.116704

2 0.178105 0.226365 0.223408 0.132267 0.309283 0.108458

3 0.140721 0.194362 0.211330 0.097364 0.265463 0.099995

4 0.193979 0.209409 0.221629 0.091531 0.293613 0.109736

5 0.192311 0.229109 0.235112 0.137427 0.290119 0.116768

6 0.173407 0.242507 0.315417 0.130213 0.291789 0.184460

7 0.267496 0.323623 0.343992 0.277611 0.290227 0.156939

8 0.235092 0.249626 0.321397 0.082650 0.239363 0.120851

9 0.167383 0.236273 0.305631 0.106392 0.307430 0.086991

10 0.211442 0.237703 0.277094 0.088141 0.247280 0.079455

11 0.289887 0.368626 0.386215 0.254050 0.295715 0.173608

12 0.219030 0.272827 0.328390 0.104665 0.248476 0.176153

13 0.179412 0.202748 0.294480 0.096213 0.236766 0.143670

14 0.163677 0.236982 0.269477 0.107956 0.335256 0.141035

15 0.201289 0.245688 0.235549 0.096922 0.255825 0.143700

16 0.192261 0.215661 0.266578 0.112177 0.323162 0.135705

17 0.189252 0.297050 0.256142 0.203925 0.346667 0.114139

18 0.142135 0.186448 0.200636 0.137599 0.287251 0.119112

Table 6. Wilcoxon test

Comparation p-value (Hypervolume) p-value (IGD+)

GECOMBI ↔ GEMOITO 0.4951 7.629e–06

GECOMBI ↔ NSGAIII 0.5798 0.8317

GECOMBI ↔ MOMBI 7.629e–06 7.629e–06

GECOMBI ↔ IBEA 7.629e–06 7.629e–06

GECOMBI ↔ NSGAII 7.629e–06 1.526e–05

the proposed hyper-heuristic with other algorithms in the literature. In the same
way that the experiment for evaluating GECOMBI showed very close results with
the values of the algorithms compared, with the studies cited the same situation
also occurred. This is further evidence that GECOMBI is a scalable solution for
solving real problems.

5 Conclusions

This work proposed a multi-objective web testing method, MWTest, which
automates the generation of test cases based only on the URL of the web

460 J. M. Balera and V. A. de Santiago Júnior

application and a new proposed generation hyper-heuristic, called GECOMBI.
The GECOMBI hyper-heuristic takes into account combinatorial designs to gen-
erate low-level heuristics to support our goal. Preliminary results were obtained
with the preliminary version of GECOMBI based on the execution of 18 GUIs
derived from the real case studys.

Experiments were performed for comparated the NSGA-II, NSGA-III, IBEA,
MOMBI and GEMOITO algorithms, configured based on values obtained in
the literature. The results sought to evaluate the potential to produce good
GECOMBI solutions, as well as other approaches proposed in the literature.
These preliminary results show that the application of GECOMBI to the 18
case studies were slightly better than the results found in the literature.

In addition, to verify that there is a statistically significant difference between
the results obtained by the compared algorithms, a statistical evaluation was
performed. This test showed in some cases, that there is a statistical difference
between the results obtained by GECOMBI and the other algorithms compared.

Based on the results obtained, it is possible to conclude that GECOMBI
has as much potential for solving problems as well as established approaches in
the literature, since the experiments related to the 18 case studies had positive
results. These results obtained are encouraging for GECOMBI to continue to be
exploited. Future work includes the application of GECOMBI to generate test
cases that explore non-functional aspects through the modeling of new objective
functions, e.g. the ones that address usability and security. In addition, we intend
to carry out rigorous experiments involving GECOMBI, comparing it with other
hyper-heuristics, meta-heuristics, and even for many-objective problems.

References

1. Gecombi repository. https://github.com/BaleraJuliana/GECOMBI code.
Accessed 13 July 2019

2. The Wilcoxon signed-rank test. http://www.r-tutor.com/elementary-statistics/
non-parametric-methods/wilcoxon-signed-rank-test. Accessed 13 July 2019

3. (2022). https://www.crummy.com/software/BeautifulSoup/bs4/doc/
4. Al-Ahmad, B., Al-Debei, K.: Survey of testing methods for web applications. Eur.

Int. J. Sci. Technol. 9(12), 1–22 (2020)
5. Balera, J.M., Santiago Júnior, V.A.: An algorithm for combinatorial interaction

testing: definitions and rigorous evaluations. J. Softw. Eng. Res. Dev. 5(1), 10
(2017). https://doi.org/10.1186/s40411-017-0043-z

6. Balera, J.M., Santiago Júnior, V.A.: A systematic mapping addressing
hyper-heuristics within search-based software testing. Inf. Softw. Technol.
114, 176–189 (2019). https://doi.org/10.1016/j.infsof.2019.06.012, http://www.
sciencedirect.com/science/article/pii/S0950584919301430

7. Balera, J.M., Santiago Júnior, V.A.d.: An algorithm for combinatorial interaction
testing: definitions and rigorous evaluations. J. Softw. Eng. Res. Dev. 5(1), 10
(2017). https://doi.org/10.1186/s40411-017-0043-z

8. Banerjee, I., Nguyen, B., Garousi, V., Memon, A.: Graphical user inter-
face (GUI) testing: systematic mapping and repository. Inf. Softw. Technol.
55(10), 1679–1694 (2013). https://doi.org/10.1016/j.infsof.2013.03.004, http://
www.sciencedirect.com/science/article/pii/S0950584913000669

https://github.com/BaleraJuliana/GECOMBI_code
http://www.r-tutor.com/elementary-statistics/non-parametric-methods/wilcoxon-signed-rank-test
http://www.r-tutor.com/elementary-statistics/non-parametric-methods/wilcoxon-signed-rank-test
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://doi.org/10.1186/s40411-017-0043-z
https://doi.org/10.1016/j.infsof.2019.06.012
http://www.sciencedirect.com/science/article/pii/S0950584919301430
http://www.sciencedirect.com/science/article/pii/S0950584919301430
https://doi.org/10.1186/s40411-017-0043-z
https://doi.org/10.1016/j.infsof.2013.03.004
http://www.sciencedirect.com/science/article/pii/S0950584913000669
http://www.sciencedirect.com/science/article/pii/S0950584913000669

Multiperspective Web Testing Supported by a Generation Hyper-Heuristic 461

9. Bozic, J., Wotawa, F.: Planning-based security testing of web applications with
attack grammars. Softw. Qual. J. 28(1), 307–334 (2020). https://doi.org/10.1007/
s11219-019-09469-y

10. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res.
Soc. 64(12), 1695–1724 (2013). https://doi.org/10.1057/jors.2013.71

11. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: Solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://
doi.org/10.1109/TEVC.2013.2281535

12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
https://doi.org/10.1109/4235.996017

13. Di Lucca, G.A., Fasolino, A.R.: Testing web-based applications: the state of the
art and future trends. Inf. Softw. Technol. 48(12), 1172–1186 (2006). https://doi.
org/10.1016/j.infsof.2006.06.006, https://www.sciencedirect.com/science/article/
pii/S0950584906000851

14. Drake, J.H., Kheiri, A., Özcan, E., Burke, E.K.: Recent advances in selection
hyper-heuristics. Eur. J. Oper. Res. 285(2), 405–428 (2020). https://doi.org/
10.1016/j.ejor.2019.07.073, https://www.sciencedirect.com/science/article/pii/
S0377221719306526

15. Filho, H.L.J., Lima, J.A.P., Vergilio, S.R.: Automatic generation of search-based
algorithms applied to the feature testing of software product lines. In: Proceedings
of the 31st Brazilian Symposium on Software Engineering, SBES 2017, pp. 114–
123. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3131151.3131152

16. Garvin, B.J., Cohen, M.B., Dwyer, M.B.: Evaluating improvements to a meta-
heuristic search for constrained interaction testing. Empir. Softw. Eng. 16(1), 61–
102 (2011). https://doi.org/10.1007/s10664-010-9135-7

17. Gómez, R.H., Coello, C.A.C.: MOMBI: a new metaheuristic for many-objective
optimization based on the R2 indicator. In: 2013 IEEE Congress on Evolutionary
Computation, pp. 2488–2495 (2013). https://doi.org/10.1109/CEC.2013.6557868

18. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges for
search based software testing. In: 2015 IEEE 8th International Conference on Soft-
ware Testing, Verification and Validation (ICST), pp. 1–12, April 2015. https://
doi.org/10.1109/ICST.2015.7102580

19. Ishibuchi, H., Masuda, H., Nojima, Y.: A study on performance evaluation abil-
ity of a modified inverted generational distance indicator. In: Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation, pp. 695–
702. GECCO 2015, ACM, New York, NY, USA (2015). https://doi.org/10.1145/
2739480.2754792, http://doi.acm.org/10.1145/2739480.2754792

20. Jan, S., Panichella, A., Arcuri, A., Briand, L.: Search-based multi-vulnerability
testing of xml injections in web applications. Empir. Softw. Eng. 24, 3696–3729
(2019). https://doi.org/10.1007/s10664-019-09707-8

21. Mahmoud, T., Ahmed, B.S.: An efficient strategy for covering array construction
with fuzzy logic-based adaptive swarm optimization for software testing use. Expert
Syst. App. 42(22), 8753–8765 (2015). https://doi.org/10.1016/j.eswa.2015.07.029,
http://www.sciencedirect.com/science/article/pii/S0957417415004893

22. Mariani, T., Guizzo, G., Vergilio, S.R., Pozo, A.T.R.: Grammatical evolution for
the multi-objective integration and test order problem. In: Proceedings of the
Genetic and Evolutionary Computation Conference 2016, pp. 1069–1076. GECCO
2016, Association for Computing Machinery, New York, NY, USA (2016). https://
doi.org/10.1145/2908812.2908816

https://doi.org/10.1007/s11219-019-09469-y
https://doi.org/10.1007/s11219-019-09469-y
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.infsof.2006.06.006
https://doi.org/10.1016/j.infsof.2006.06.006
https://www.sciencedirect.com/science/article/pii/S0950584906000851
https://www.sciencedirect.com/science/article/pii/S0950584906000851
https://doi.org/10.1016/j.ejor.2019.07.073
https://doi.org/10.1016/j.ejor.2019.07.073
https://www.sciencedirect.com/science/article/pii/S0377221719306526
https://www.sciencedirect.com/science/article/pii/S0377221719306526
https://doi.org/10.1145/3131151.3131152
https://doi.org/10.1007/s10664-010-9135-7
https://doi.org/10.1109/CEC.2013.6557868
https://doi.org/10.1109/ICST.2015.7102580
https://doi.org/10.1109/ICST.2015.7102580
https://doi.org/10.1145/2739480.2754792
https://doi.org/10.1145/2739480.2754792
http://doi.acm.org/10.1145/2739480.2754792
https://doi.org/10.1007/s10664-019-09707-8
https://doi.org/10.1016/j.eswa.2015.07.029
http://www.sciencedirect.com/science/article/pii/S0957417415004893
https://doi.org/10.1145/2908812.2908816
https://doi.org/10.1145/2908812.2908816

462 J. M. Balera and V. A. de Santiago Júnior

23. McCaffrey, J.D.: An empirical study of pairwise test set generation using a genetic
algorithm. In: 2010 Seventh International Conference on Information Technology:
New Generations, pp. 992–997, April 2010. https://doi.org/10.1109/ITNG.2010.
93

24. Petke, J., Cohen, M.B., Harman, M., Yoo, S.: Practical combinatorial interaction
testing: empirical findings on efficiency and early fault detection. IEEE Trans.
Softw. Eng. 41(9), 901–924 (2015). https://doi.org/10.1109/TSE.2015.2421279

25. Saeed, A., Ab Hamid, S.H., Mustafa, M.B.: The experimental applications
of search-based techniques for model-based testing: taxonomy and systematic
literature review. Appl. Soft Comput. 49, 1094–1117 (2016). https://doi.org/
10.1016/j.asoc.2016.08.030, https://www.sciencedirect.com/science/article/pii/
S1568494616304240

26. Santiago Júnior, V.A., Özcan, E., Carvalho, V.R.: Hyper-heuristics based on
reinforcement learning, balanced heuristic selection and group decision accep-
tance. Appl. Soft Comput. 97, 106760 (2020). https://doi.org/10.1016/j.asoc.2020.
106760, https://www.sciencedirect.com/science/article/pii/S1568494620306980

27. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete
samples). Biometrika 52(3–4), 591–611 (1965)

28. Stepien, B., Peyton, L., Xiong, P.: Framework testing of web applications using
TTCN-3. STTT 10, 371–381 (2008). https://doi.org/10.1007/s10009-008-0082-1

29. Stocco, A., Leotta, M., Ricca, F., Tonella, P.: APOGEN: automatic page object
generator for web testing. Softw. Qual. J. 25(3), 1007–1039 (2016). https://doi.
org/10.1007/s11219-016-9331-9

30. Wu, H., Nie, C., Kuo, F.C., Leung, H., Colbourn, C.J.: A discrete particle swarm
optimization for covering array generation. IEEE Trans. Evol. Comput. 19(4),
575–591 (2015). https://doi.org/10.1109/TEVC.2014.2362532

31. Zamli, K.Z., Din, F., Kendall, G., Ahmed, B.S.: An experimental study of hyper-
heuristic selection and acceptance mechanism for combinatorial t-way test suite
generation. Inf. Sci. 399, 121–153 (2017). https://doi.org/10.1016/j.ins.2017.03.
007, http://www.sciencedirect.com/science/article/pii/S0020025517305820

32. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) Parallel Problem Solving from Nature - PPSN VIII, pp. 832–842.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9 84

33. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999). https://doi.org/10.1109/4235.797969

https://doi.org/10.1109/ITNG.2010.93
https://doi.org/10.1109/ITNG.2010.93
https://doi.org/10.1109/TSE.2015.2421279
https://doi.org/10.1016/j.asoc.2016.08.030
https://doi.org/10.1016/j.asoc.2016.08.030
https://www.sciencedirect.com/science/article/pii/S1568494616304240
https://www.sciencedirect.com/science/article/pii/S1568494616304240
https://doi.org/10.1016/j.asoc.2020.106760
https://doi.org/10.1016/j.asoc.2020.106760
https://www.sciencedirect.com/science/article/pii/S1568494620306980
https://doi.org/10.1007/s10009-008-0082-1
https://doi.org/10.1007/s11219-016-9331-9
https://doi.org/10.1007/s11219-016-9331-9
https://doi.org/10.1109/TEVC.2014.2362532
https://doi.org/10.1016/j.ins.2017.03.007
https://doi.org/10.1016/j.ins.2017.03.007
http://www.sciencedirect.com/science/article/pii/S0020025517305820
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1109/4235.797969

	Multiperspective Web Testing Supported by a Generation Hyper-Heuristic
	1 Introduction
	2 Related Work
	2.1 Web Testing
	2.2 Hyper-Heuristics

	3 The MWTest Method
	3.1 The Gecombi Hyper-Heuristic

	4 Experimental Design and Evaluation
	4.1 Objective, Algorithms and Quality Indicators
	4.2 Research Question and Variables
	4.3 Objective Functions
	4.4 Case Studies
	4.5 Generating LLHS
	4.6 Results

	5 Conclusions
	References

