
Empirical Analysis of Data Sampling-Based
Ensemble Methods in Software Defect Prediction

Abdullateef O. Balogun1,2(B), Babajide J. Odejide1, Amos O. Bajeh1,
Zubair O. Alanamu3, Fatima E. Usman-Hamza1, Hammid O. Adeleke1,

Modinat A. Mabayoje1, and Shakirat R. Yusuff4

1 Department of Computer Science, University of Ilorin, Ilorin PMB 1515, Nigeria
{balogun.ao1,bajehamos,usman-hamzah.fe,

mabayoje.ma}@unilorin.edu.ng
2 Department of Computer and Information Sciences, Universiti Teknologi PETRONAS,

Bandar Seri Iskandar, 32610 Perak, Malaysia
abdullateef_16005851@utp.edu.my

3 Computer Services and Information Technology (COMSIT), University of
Ilorin, Ilorin PMB 1515, Nigeria

alanamu.zo@unilorin.edu.ng
4 Department of Computer Science, Kwara State University, Malesse, Kwara State, Nigeria

Abstract. This research work investigates the deployment of data sampling and
ensemble techniques in alleviating the class imbalance problem in software defect
prediction (SDP). Specifically, the effect of data sampling techniques on the per-
formance of ensemble methods is investigated. The experiments were conducted
using software defect datasets from the NASA software archives. Five data sam-
pling methods (over-sampling techniques (SMOTE, ADASYN, and ROS), and
undersampling techniques (RUS and NearMiss) were combined with bagging and
boosting ensemble methods based on Naïve Bayes (NB) and Decision Tree (DT)
classifier. Predictive performances of developed models were assessed based on
the area under the curve (AUC), andMatthew’s correlation coefficient (MCC) val-
ues. From the experimental findings, it was observed that the implementation of
data samplingmethods further enhanced the predictive performances of the experi-
mented ensemblemethods. Specifically,BoostedDTon theROS-balanced datasets
recorded the highest average AUC (0.995), and MCC (0.918) values respectively.
Aside NearMiss method, which worked best with the Bagging ensemble method,
other studied data sampling methods worked well with the Boosting ensemble
technique. Also, some of the developed models particularly BoostedDT showed
better prediction performance over existing SDP models. As a result, combining
data sampling techniques with ensemble methods may not only improve SDP
model prediction performance but also provide a plausible solution to the latent
class imbalance issue in SDP processes.

Keywords: Data sampling · Ensemble methods · Class imbalance · Software
defect prediction

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Gervasi et al. (Eds.): ICCSA 2022 Workshops, LNCS 13381, pp. 363–379, 2022.
https://doi.org/10.1007/978-3-031-10548-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10548-7_27&domain=pdf
https://doi.org/10.1007/978-3-031-10548-7_27


364 A. O. Balogun et al.

1 Introduction

The idea behind software defect prediction (SDP) is to deploy machine learning (ML)
methods to predict software defects based on historical information such as bug reports
and source code edit logs generated from the software development process [1]. SDP
can help development teams use available resources more wisely in the software devel-
opment process by concentrating on flawed or defect-prone modules or components
before software product release [1, 2]. To anticipate defective modules in software sys-
tems, Data from software features which include source code complexity (Line of Code
(LOC), McCabe, and Halstead), software development history, software cohesion, and
coupling are used to build SDP models [3–5]. These software features are quantitatively
measured to assess the degree of reliability and dependability of software systems [3].

SDP models can be developed using either supervised or unsupervised ML
approaches [6–9]. The objective is to develop an SDP model that predicts defects in
software systems with perfect certainty and accuracy. Nonetheless, the effectiveness of
SDP models is reliant on the characteristics of the software datasets deployed. Particu-
larly, the software attributes utilized to develop SDP models impact their efficacy [1, 2,
10]. By default, software attributes are muddled and skewed, which can be regarded as
a class imbalance problem.

A class imbalance occurs in SDP if there is a disproportionality of class labels, hav-
ing the non-defective and defective cases as majority and minority labels respectively. In
addition, the class imbalance is a dormant issue that happens spontaneously in software
attributes and impairs the prediction performance of deployed prediction algorithms.
Addressing class imbalance as a data quality problem has piqued the interest of experts,
as several kinds of research and techniques have been presented to handle the imbalance
issue [7, 11, 12]. Based on previous research, SDP models developed using imbalanced
datasets provide unreliable findings because the resulting SDPmodels produce poor per-
formance. In other words, SDP models developed on imbalanced datasets preferentially
identify the majority instances over the minority. However, it is crucial to re-affirm that
correctly predicting the minority instances (in this case defective labels) is imperative,
since neglecting the defective labels may be deleterious. Consequently, in the context
of SDP, several researchers have adopted methodologies such as data sampling, cost-
sensitive learning, and ensemble methods to address the problem of class imbalance [7,
11, 13]. Independently, these strategies have a positive influence on deployed predic-
tion algorithms in SDP processes; nonetheless, the development of novel approaches to
addressing the class imbalance in SDP is still ongoing research. The data sampling app-
roach that increases and decreases the proportion of minority instances (over-sampling)
and majority instances (under-sampling) respectively has been reported to overcome the
class imbalance problem [14, 15]. Furthermore, the class imbalance has been shown to
have negligible or no effect on ensemble techniques [7, 16]. In response to the foregoing
reports, this research work proposes a hybrid of data sampling and ensemble approaches
to overcome the class imbalance problem in SDP.

Data sampling approaches, especially data oversampling, have been proven in studies
to have a positive influence onMLalgorithms [17, 18].However, as demonstrated in [19],
they still suffer fromexcessive volatility and instability. To alleviate the large variance and
instability of data sampling methods, ensemble methods such as boosting and bagging



Empirical Analysis of Data Sampling-Based Ensemble Methods 365

may be used [20]. The objective of this study is to conduct an empirical evaluation of the
prediction performance data sampling-based ensemble methods. Specifically, models
based on ensembled (Bagging and Boosting) Naïve Bayes (NB) and Decision Tree (DT)
classifiers are deployed on newly generated datasets based on Random Over-Sampling
(ROS), Synthetic Minority Over-Sampling Technique (SMOTE), Adaptive Synthetic
(ADASYN), Random Under-Sampling (RUS), and Near Miss data sampling methods.
Software defect datasets from the NASA repository are deployed in this study.

Summarily, the contribution of this study is as follows:

i. Validate the effectiveness of ensemble methods over the conventional ML classifiers
on data-sampled datasets in SDP.

ii. Compare the effectiveness of experimented data sampling methods on studied
ensemble (bagging and boosting) methods.

The remainder of this research is structured as follows: Sect. 2 outlines the associ-
ated works that have been completed in this respect. Section 3 discusses the notion of
imbalanced learning, and Sect. 4 presents the experimental data and analyses. Section 5
concludes this research work.

2 Related Works

This section investigates and analyses relevant developed SDP models based on ML
methods and current solutions to the class imbalanced problem.

SDP is a method for detecting defects in software systems early on. It determines
the characteristics of single code components to detect whether parts of it are prone to
defects [7] or to forecast the number of defects in each component or module [2]. Experts
have used a variety of ways to create SDP models based on static code metrics. NB [21],
DT [14], artificial neural networks (ANNs) [22], support vector machines (SVM) [23],
k-nearest neighbour (KNN) [24], and logistic regression (LR) [21] are just a few of the
classical classifiers that have been used directly to develop SDP models. Nonetheless,
these classifiers ignore the skewness and other inherent data quality problems in software
defect datasets that could affect the effectiveness of SDPmodels [10]. For instance, SVM
andKNN tend to overlook theminority class labels as they seek tomaximise the accuracy
values [25]. [26] reported that software defect datasets are very susceptible to the class
imbalance problem, which is an example of the data quality problem.

Class imbalance is a latent anomaly of software defect data that consists of a small
number of defective instances and a big number of non-defective instances [27]. NASA
dataset PC1 exemplifies this, with just 6.59% of cases belonging to the defective class
label. Since most classifiers aim to build classifiers that maximize overall prediction
accuracy, this feature has a significant influence on both model training and predictive
performance. Therefore, suchmodels often neglect the valuedminority (defective) class.

A considerable amount of study has been recommended to address the issue of class
imbalance. [28] presented an overview of approaches for decreasing the detrimental
impact of imbalance on prediction performance. [29] investigated whether various clas-
sifiers detect the same problems. To do this, they used NASA datasets to conduct a



366 A. O. Balogun et al.

sensitivity analysis and evaluate the outcomes of RF, NB, RPart, and SVM. They con-
cluded that certain flaws are more consistent in defect prediction than others and that
each classifier identifies a distinct set of defects.

[30] addressed two procedures, undersampling and oversampling and then asserted
that both data sampling approaches were successful. Furthermore, it was discovered that
the adoption of advanced sampling procedures did not give any discernible improvement
in addressing the class imbalance issue. Similarly, [31] observed that the RUS approach
typically outperformsmore complicated undersampling algorithms. In addition to under-
sampling procedures, oversamplingmethods are prominently deployed to solve the class
imbalance issue. Aside from ROS with replacement, numerous more sophisticated data
sampling techniques have been created. [15] proposed a unique oversampling approach
termed the SMOTE, in which new minority samples are generated based on feature
space similarities between existing minority cases. [32] used the borderline-SMOTE to
oversample minority class samples close to the borderline. Both [18] and [13] found
that oversampling outperforms undersampling. It can be noted that the aforementioned
research on data sampling techniques is not conducted on software defect issues, and
there is limited literature on evaluating data sampling methods for SDP. In [33], Tomek-
Link, an undersampling technique was combined with Random Undersampling (RUS)
and Synthetic Minority Oversampling SMOTE). It was reported that this combination
showed an improvement in performance than other experimented methods.

Cost-Sensitive Learning is another technique that has been investigated by
researchers. [34] evaluated data sampling techniques and MetaCost learning and there
concluded that the sampling methods with replacement are effective for imbalanced
learning. However, this method is still vague and needs to be more thoroughly inves-
tigated because assigning a cost penalty is not generic, it rather is dependent on some
factors such as the dataset used, and the level of misclassification [35].

More recently, ensemble methods have been explored by researchers [7, 11, 16]. [36]
suggested an ensemble technique for SDP based on object-oriented (OO) modules and
compared the proposed method to some existing ML methods. They reported that the
proposed method performed better than the studied ML methods. Furthermore, ensem-
ble techniques have been also combined with resampling methods, which is known as
the hybrid approach. [11] proposed a hybrid-SMOTE ensemble technique in what they
simply referred to as <SMOTE + classifier>. In their experiment, they first resampled
the dataset using SMOTE, and then the process of the ensemble was done using RF,
AdaBoost, and Bagging. They observed that the suggested approach could effectively
enhance the prediction accuracy of studied SDP models. [19] also researched this area,
although their work was not in the domain of SDP, they demonstrated the effective-
ness of ensembling resampled data over a single base classifier. They conducted their
experiments using both simulated and real-world datasets.

3 Methodology

This section outlines and describes the data sampling techniques, prediction algorithms,
ensemble methods, defect datasets examined, performance measures, and experimental
strategy employed in this research work.



Empirical Analysis of Data Sampling-Based Ensemble Methods 367

3.1 Data Sampling Method

In this study, five (5) data sampling approaches (SMOTE, ADASYN, ROS, RUS, and
NearMiss) are studied. Data sampling techniques are broadly classified into two types:
oversampling methods and undersampling methods [15]. The oversampling method’s
fundamental idea is to balance the dataset by raising or increasing the amount or fre-
quency of minority class instances to an equal number of classes as majority class
instances. In contrast, in undersampling approaches, the majority class instances are
downsampled or lowered to the same number or frequency as the minority class occur-
rences. ROS, SMOTE, and ADASYN are instances of oversampling methods, while
RUS and NearMiss are examples of undersampling methods. The samples to replicate
in ROS are selected at random. This duplication of minority class instances often leads
to overfitting and a poor predictionmodel. In SMOTE, however, the samples are selected
using a (K-Nearest Neighbour) k-NN. The Euclidean distance between a feature vector
and its nearest neighbour is used to generate a new vector [15]. ADASYN is an oversam-
pling strategy based on k-NN that produces data adaptively based on density distribution
[18]. RUS is an undersampling approach that removes examples of the majority class at
random until both sets of instances are equal. Although some information may be lost
in this process, it increases computation speed and power. NearMiss is another under-
sampling technique, but instead of randomly selecting samples to eliminate, it uses the
k-NN approach [13].

3.2 Prediction Algorithms

In this study, NB and DT algorithms are used as prediction algorithms. NB is a
probability-based classifier that is predicated on the Bayes theorem and the presump-
tion that every pair of features is independent of one another [37]. DT is a type of
non-parametric classifier whose goal is to create a model that predicts the value of a
pre-determined instance using simple decision rules derived from data variables. The
classifiers were chosen to bring heterogeneity into the prediction models and are based
on their relative use and performance in previous SDP research. Table 1 gives a summary
of the chosen models and their parameter values as employed in this research work.

Table 1. Selected prediction algorithms with parameter settings

Prediction algorithms Parameter settings

DT ConfidenceFactor = 0.25; MinObj = 2

NB NumDecimalPlaces = 2; UseKernelEstimator = True

3.3 Ensemble Methods

This study investigated boosting and bootstrap aggregating (Bagging) ensemble meth-
ods. Ensemble methods generally combine multiple weak classifiers into a single strong
and robust model to improve the effectiveness and stability of the model [26]. To learn



368 A. O. Balogun et al.

the re-weighted training data, the boosting ensemble method utilizes a weak classifier in
sequence. Finally, it uses a majority vote mechanism for its final judgement, including
all weak hypotheses created by the weak classifiers into the final hypothesis [14]. In
other words, boosting use weighted averages to transform weak classifiers into stronger
classifiers, with each model choosing which qualities the next iteration focuses on. In
the case of the Bagging ensemble, a bagging ensemble’s baseline classifiers learn from
a given dataset by extracting multiple samples from the original dataset. The classifiers’
output is collected at prediction time. Consequently, the aggregation technique ensures
that each classifier’s variance isminimizedwhile its bias is not raised. In layman’s words,
the bagging approach randomly resamples the original datasets, trains several base clas-
sifiers using the resampled subsets, and then creates a prediction based on the predictions
of the many base learners [36]. Summarily, Table 2 depicts the investigated ensemble
techniques and their parameters as they were used throughout the experimental phase
of this research work.

Table 2. Experimented Ensemble Methods with parameter settings

Ensemble methods Parameter settings

Bagging Classifier = {NB, DT}, bagSizePercent = 100; numIteration = 10; seed
= 1; calcOutOfBag = False; batchSize = 100

Boosting Classifier = {NB, DT}, weightThreshold = 100; numIteration = 10; seed
= 1; useResampling = True; batchSize = 100

3.4 Software Defect Datasets

The software defect datasets utilized in this researchworkwere gathered from theNASA
repository. In this research work, the [4] version of the NASA corpus was employed.
The NASA datasets contain software features obtained from static code analysis centred
on source code size and complexity [38–40]. Table 3 contains details of the datasets
analysed as well as their corresponding imbalance ratios.

Table 3. Description of studied defect datasets

Datasets Number of
instances

Number of defective
instances

Number of defective
instances

Imbalance ratio
(IR)

KC3 194 36 158 4

PC1 679 55 624 11

MW1 250 25 225 9



Empirical Analysis of Data Sampling-Based Ensemble Methods 369

3.5 Evaluation Measures

According to available research, choosing performance evaluation criteria is crucial
in SDP [41, 42]. This is because the datasets used to train and test the SDP models
are unbalanced. Relying just on prediction accuracy values may not be sufficient. For
example, in [1], an experiment was conducted to test the biasness of measurements such
as Accuracy, F-Measure, and Area Under a ROC Curve (AUC). They concluded that
Matthews Correlation Coefficient (MCC) is a more trustworthy statistic since it includes
all confusion measures, as opposed to others that exclude the True Negative (TN). In
this study, the prediction performances of the developed SDP models were evaluated
using AUC, and MCC values. These chosen assessment measures have been used often
and are reliable [1, 16, 21].

AUC = 1 + TPR − FPR

2
(1)

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP) ∗ (TP + FN ) ∗ (TN + FP) ∗ (TN + FN )

(2)

3.6 Experimental Procedure

This section discusses the experimental procedure employed in this research work as
shown in Fig. 1.

The procedure is designed to experimentally investigate and evaluate the efficacy
of the data sampling-based ensemble methods in SDP. Particularly, the original defect
datasets and the newly generated datasets based on studied data samplingmethods (ROS,
SMOTE, ADASYN, RUS, and NearMiss) are deployed on ensembled NB and DT clas-
sifiers. That is, each of the studied data sampling methods is used to resolve the inherent
class imbalance present in the defect datasets by balancing the number of the major-
ity and minority class variables respectively, hence new datasets. The balancing of the
original datasets is based on conclusions presented in previous research [21, 43]. The
SDP models are created and tested using the K-fold (k = 10) Cross-Validation (CV)
technique. The preference for the k-fold technique is based on its ability to develop pre-
diction models while minimizing the influence of the class imbalance problem [27, 44].
Furthermore, the K-fold technique enables every variable to be deployed iteratively for
the training and testing process. The investigated classifiers (NB and DT) and ensemble
techniques (Boosting and Bagging) were chosen based on their application and perfor-
mance in previous research [11, 36]. Table 1 (Sect. 3.3) andTable 2 (Sect. 3.4) indicate the
parameter values for the classifiers and ensemble methods investigated in this research
work. Following that, the prediction performances of the resulting models are evaluated
using the chosen evaluation measures (AUC and MCC values). In addition, the predic-
tion performances of the created model are compared to each other to determine the
influence of data sampling techniques on the prediction models (NB and DT) and the
effectiveness of the examined data sampling methods. Conclusively, the effectiveness of
the created models is correlated with existing SDP models. The essence of the compari-
son is to validate the effectiveness of data sampling-based ensemble approaches in SDP



370 A. O. Balogun et al.

procedures. The Python-Scikit ML library was utilized to develop the data sampling
techniques, while the WEKAML platform was used to construct the prediction models.
These two ML resources are often employed in SDP and ML activities.

Fig. 1. Experimental framework

4 Results and Discussion

This section displays and analyses the results of evaluating the various constructed SDP
models. It is crucial to show how the data sampling approach affects the effectiveness of
SDPmodels. Furthermore, the performance of the studied data sampling-based ensemble
models is one of the most important aspects of this study. As a result, the findings for
investigated data sampling approaches, ensemble methods, and software defect datasets
will be provided to reflect these impacts.

Table 4 and Table 5 display the AUC values of experimented predictionmodels using
original and balanced NASA defect datasets.

From Table 4, NB and DT models developed using the balanced NASA datasets had
better AUC values than when original NASA datasets are used. Models based on the
studied datasets recorded significant increments in their respective AUC values except
in the case of the RUS-balanced KC3 dataset. NB and DT models trained with SMOTE
(NB: +9.52%; DT: +24.65%), ADASYN (NB: +8.16%; DT: +29.71%), ROS (NB:
+4.23%; DT: +36.75%) and NearMiss (NB: +22.21%; DT: +39.36%)-balanced KC3
datasets had increments in AUC values when compared with the NB and DT models
developed with the original KC3 dataset. On PC1 dataset, NB and DTmodels developed



Empirical Analysis of Data Sampling-Based Ensemble Methods 371

Table 4. AUC values of NB and DT models on original and balanced datasets

NB DT

KC3 SMOTE 0.725 0.814

ADASYN 0.716 0.847

ROS 0.690 0.893

RUS 0.584 0.595

NearMiss 0.809 0.910

No Sampling 0.662 0.653

PC1 SMOTE 0.831 0.919

ADASYN 0.829 0.929

ROS 0.818 0.964

RUS 0.826 0.653

NearMiss 0.858 0.840

No Sampling 0.790 0.598

MW1 SMOTE 0.803 0.888

ADASYN 0.812 0.875

ROS 0.767 0.942

RUS 0.734 0.588

NearMiss 0.862 0.803

No Sampling 0.314 0.503

with SMOTE (NB:+5.19%;DT: +53.68%), ADASYN (NB: +4.94%; DT:+ 55.35%),
ROS (NB: +3.54%; DT: +61.20%), RUS (NB: +4.56; DT: + 9.20%) and NearMiss
(NB: +8.61%; DT: +40.47%)-balanced PC1 datasets had enhanced AUC values when
compared with the NB and DT models. Also, a similar occurrence was observed in the
MWI dataset. NB and DT models trained with the balanced MW1 dataset had superior
AUC values than when the original MW1 dataset is deployed in most cases. NB models
developed with SMOTE, ADASYN, ROS, NM, and RUS-balanced MW1 datasets had
more than a+100% increment in AUC values while DTmodels developed with SMOTE
(+76.54%), ADASYN (+73.96%), ROS (+87.28%), NearMiss (+59.64%), and RUS
(+16.89%) had a significant increment in AUC values. These results proved that the
experimented data sampling methods can enhance the performance of NB and DT in the
presence of class imbalance.

Based on this observation, the performance of ensembled NB and DTmodels trained
with balanced and original NASA datasets are further analyzed. Table 6 presents the
AUC values of Ensemble NB and DT models on original and balanced NASA datasets.
Specifically, ensembled NB models developed with SMOTE (BaggedNB: +5.93%;
BoostedNB: +27.08%), ADASYN (BaggedNB: +7.42%; BoostedNB: +23.38%),
ROS (BaggedNB: +5.64%; BoostedNB: +16.46%) and NearMiss (BaggedNB: +



372 A. O. Balogun et al.

24.04%; BoostedNB: +16.92%)-balanced KC3 datasets had increments in AUC values
when compared with the ensemble NB model developed with the original KC3 dataset.
A similar occurrence was observed with ensemble DT models developed with SMOTE
(BaggedDT: +16.62%; BoostedDT: +30.06%), ADASYN (BaggedDT: +19.87%;
BoostedDT: +33.15%), ROS (BaggedDT: +25.71%; BoostedDT: +39.88%) and
NearMiss (BaggedDT: +14.68%; BoostedDT: +22.19%)-balanced KC3 datasets and
original KC3 dataset. In the case of the RUS-balanced KC3 dataset, ensembled NB and
DT models had poor AUC values that are lower than other experimented models.

Table 5. AUC values of ensemble NB and DT models on original and balanced datasets

BaggedNB BaggedDT BoostedNB BoostedDT

KC3 SMOTE 0.714 0.898 0.826 0.926

ADASYN 0.724 0.923 0.802 0.948

ROS 0.712 0.968 0.757 0.996

RUS 0.591 0.546 0.545 0.584

NearMiss 0.836 0.883 0.760 0.870

No sampling 0.674 0.77 0.650 0.712

PC1 SMOTE 0.826 0.981 0.852 0.985

ADASYN 0.829 0.988 0.821 0.991

ROS 0.817 0.998 0.884 0.999

RUS 0.812 0.785 0.882 0.756

NearMiss 0.883 0.916 0.855 0.912

No sampling 0.785 0.834 0.817 0.780

MW1 SMOTE 0.805 0.956 0.863 0.955

ADASYN 0.813 0.971 0.897 0.980

ROS 0.767 0.997 0.857 0.999

RUS 0.722 0.666 0.690 0.533

NearMiss 0.811 0.863 0.844 0.949

No sampling 0.772 0.749 0.774 0.715

For the PC1 dataset, ensemble NB and DT models trained with the balanced PC1
dataset had superiorAUCvalues thanwhen the original PC1 dataset is utilized. Ensemble
NB models developed with SMOTE (BaggedNB: +5.22%; BoostedNB: +4.28%),
ADASYN (BaggedNB: +5.61%; BoostedNB: +0.49%), ROS (BaggedNB: +4.08%;
BoostedNB: +8.20%), NM (BaggedNB: +12.48%; BoostedNB: +4.65%) and RUS
(BaggedNB: +3.44%; BoostedNB: +7.96%)-balanced PC1 datasets had improved
AUC values. Also, the ensemble DTmodel with a balanced PC1 dataset had better AUC
values than when the original PC1 dataset is used.



Empirical Analysis of Data Sampling-Based Ensemble Methods 373

In addition, on the MWI dataset, ensemble NB and DT models trained with the
balanced-MW1 dataset had better AUC values than when the original MW1 dataset is
deployed except in the case of the RUS-balanced MW1 dataset. Ensembled NB models
developed with SMOTE (BaggedNB: +4.27%; BoostedNB: +11.49%), ADASYN
(BaggedNB: +5.31%; BoostedNB: +15.89%), and NearMiss (BaggedNB: + 5.05%;
BoostedNB: +9.04%)-balanced MW1 datasets had increments in AUC values when
compared with the ensemble NB model developed with the original MW1 dataset. A
similar occurrence was observed with ensemble DT models developed with SMOTE
(BaggedDT: +29.63%; BoostedDT: +33.56%), ADASYN (BaggedDT: +29.64%;
BoostedDT: +37.06%), ROS (BaggedDT: +33.11%; BoostedDT: +39.72%) and
NearMiss (BaggedDT: +15.22%; BoostedDT: +32.73%)-balanced MW1 datasets and
original KC3 dataset.

Furthermore, as recommended by [1], the performance of the developed models
was analyzed using the MCC value. Table 6 and Table 7 present the MCC values of
the developed models using both balanced and original NASA datasets. According to
Table 6, NB and DT models created utilizing balanced datasets showed higher MCC
values than original NASA datasets. NB and DT models based on the balanced datasets
showed a considerable increase in their respectiveMCC values. This observation further
supports the notion that data sampling methods can improve the prediction performance
of SDP models in the presence of class imbalance.

Table 6. MCC values of NB and DT models on original and balanced datasets

NB DT

KC3 SMOTE 0.312 0.626

ADASYN 0.308 0.694

ROS 0.317 0.753

RUS 0.321 0.396

NearMiss 0.589 0.727

No sampling 0.278 0.257

PC1 SMOTE 0.396 0.808

ADASYN 0.386 0.839

ROS 0.402 0.930

RUS 0.417 0.273

NearMiss 0.644 0.600

No sampling 0.314 0.271

(continued)



374 A. O. Balogun et al.

Table 6. (continued)

NB DT

MW1 SMOTE 0.479 0.760

ADASYN 0.469 0.743

ROS 0.435 0.890

RUS 0.500 0.280

NearMiss 0.750 0.600

No sampling 0.328 0.142

Table 7. MCC values of ensemble NB and DT models on original and balanced datasets

BaggedNB BaggedDT BoostedNB BoostedDT

KC3 SMOTE 0.328 0.708 0.504 0.728

ADASYN 0.314 0.701 0.459 0.771

ROS 0.338 0.817 0.407 0.875

RUS 0.268 0.000 0.060 0.167

NearMiss 0.626 0.701 0.589 0.556

No sampling 0.233 0.137 0.298 0.223

PC1 SMOTE 0.396 0.861 0.541 0.909

ADASYN 0.384 0.878 0.477 0.905

ROS 0.406 0.944 0.402 0.972

RUS 0.400 0.511 0.401 0.456

NearMiss 0.644 0.711 0.644 0.691

No sampling 0.287 0.194 0.300 0.315

MW1 SMOTE 0.466 0.810 0.609 0.840

ADASYN 0.046 0.852 0.650 0.848

ROS 0.431 0.898 0.536 0.923

RUS 0.446 0.281 0.360 0.000

NearMiss 0.718 0.725 0.750 0.600

No sampling 0.333 0.267 0.279 0.332

Table 7 presents the MCC values of ensemble NB and DT models on both original
and balanced datasets. Except in the case of the RUS-balanced dataset, the MCC values
of ensemble NB and DT models developed using balanced KC3 datasets showed more
than a +40% increase in MCC values. A similar phenomenon was observed with the



Empirical Analysis of Data Sampling-Based Ensemble Methods 375

ensemble NB and DTmodels using balanced-PC1 and balanced-MW1 datasets. Specifi-
cally, ensemble DTmodels on balanced-PC1 and balanced-MW1 datasets had a+100%
increment in their MCC values in most cases.

Consequently, these findings indicate that the deployment of balanced datasets fur-
ther enhances the prediction performances of the experimented ensemble NB and DT
models. Table 8 shows the performance comparison of some of the developed models
(ROS-BoostedDT,ADASYN-BoostedDT andSMOTE-BoostedDT)with existingmeth-
ods on PC1. Specifically, the experimental results from El-Shorbagy, El-Gammal and
Abdelmoez [16], Li, Zhou, Zhang, Liu, Huang and Sun [45], and Alsaeedi and Khan [7]
are compared with ROS-BoostedDT, ADASYN-BoostedDT and SMOTE-BoostedDT.
The developed methods had superior AUC and MCC values to existing SDP models.

Table 8. Comparison of some developed models with existing SDP results

Methods AUC MCC

PC1 Stacking (NB, MLP, J48) [16] 0.876 0.443

Adaboost[45] 0.861 -

AdaboostSVM[7] 0.760 -

BaggedLR[7] 0.770 -

*ROS-BoostedDT 0.999 0.972

*ADASYN-BoostedDT 0.991 0.905

*SMOTE-BoostedDT 0.985 0.909
*Indicates models from this study.

In summary, the analyses of the experimental results show that the investigated data
sampling methods can ameliorate the class imbalance problem in SDP datasets while
also improving the prediction performances of the SDP models. Furthermore, it was
discovered that the analyzed data oversampling techniques (SMOTE, ADASYN, and
ROS) outperformed the data undersampling approaches (NearMiss and RUS). There
are considerable disparities in performance amongst the explored oversampling strate-
gies since this changes throughout the explored datasets and chosen prediction models.
However, it is worth mentioning that the RUS technique had the least influence on
the prediction models and, in some instances, performed worse than when the original
datasets were used. This finding may be ascribed to the random elimination of key data
that might be critical for the SDP process. Although the NearMiss technique is likewise
a data undersampling method, it eliminates instances based on their closest neighbour
characteristics.

5 Conclusion and Future Works

Addressing SDP concepts and the class imbalance problem as described in researchwork
is critical for successful SDPmodel development. Data samplingmethods are utilized on



376 A. O. Balogun et al.

software defect datasets in this study to alleviate the latent class imbalance problem by
levelling the number of minority and majority class instances observed, resulting in new
defect datasets with no class imbalance problem. Particularly, three data oversampling
methods (SMOTE, ADASYN, and ROS) and two data undersampling methods (RUS
and NM) are deployed on defect datasets from the NASA repository, while ensembled
(Bagging and Boosting) NB and DT classifiers are employed on the original and newly
developed software defect datasets.

Overall, the experimental findings showed that the data sampling methods investi-
gated can address the class imbalance problem in SDP datasets. Furthermore, in most of
the experimental scenarios, the studied data sampling method improved the prediction
performances of the deployed ensembled NB and DT models. However, it should be
noted that when combining ensemble models with data sampling methods, the choice
of the data sampling method, as well as the base classifier, is critical if any significant
result is to be achieved. In terms of the effectiveness of the data sampling methods, the
oversampling approaches (ROS, SMOTE, ADASYN) had a greater (positive) impact on
the prediction models than their undersampling counterparts (RUS and NearMiss).

As a result, it is recommended that data sampling operations, particularly over-
sampling approaches, be carried out during SDP activities. Implementing data sam-
pling procedures may help to ease the underlying class imbalance issue and ensure the
effectiveness of SDP models.

Following this, further study on the hybrid technique should be carried out utilizing
other ensemble methods to investigate the data sampling method that best suits them as
well as the classification algorithm that works well with those ensemble methods.

References

1. Song, Q., Guo, Y., Shepperd, M.: A comprehensive investigation of the role of imbalanced
learning for software defect prediction. IIEEE Trans. Software Eng. 45, 1253–1269 (2019)

2. Laradji, I.H., Alshayeb, M., Ghouti, L.: Software defect prediction using ensemble learning
on selected features. Inf. Softw. Technol. 58, 388–402 (2015)

3. El-Sharkawy, S., Yamagishi-Eichler, N., Schmid, K.: Metrics for analyzing variability and its
implementation in software product lines: a systematic literature review. Inf. Softw. Technol.
106, 1–30 (2019)

4. Shepperd, M., Song, Q., Sun, Z., Mair, C.: Data quality: some comments on the NASA
software defect datasets. IIEEE Trans. Softw. Eng. 39, 1208–1215 (2013)

5. Tiwari, S., Rathore, S.S.: Coupling and cohesion metrics for object-oriented software: a
systematic mapping study. In: Proceedings of the 11th Innovations in Software Engineering
Conference, pp. 1–11 (2018)

6. Balogun, A., Oladele, R., Mojeed, H., Amin-Balogun, B., Adeyemo, V.E., Aro, T.O.: Per-
formance analysis of selected clustering techniques for software defects prediction. Afr. J.
Comp. ICT 12, 30–42 (2019)

7. Alsaeedi, A., Khan, M.Z.: Software defect prediction using supervised machine learning and
ensemble techniques: a comparative study. JSEA 12, 85–100 (2019)

8. Kumar, L., Dastidar, T.G., Goyal, A., Murthy, L.B., Misra, S., Kocher, V., Padmanabhuni, S.:
Predicting software defect severity level using deep-learning approach with various hidden
layers. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP
2021. CCIS, vol. 1517, pp. 744–751. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-92310-5_86

https://doi.org/10.1007/978-3-030-92310-5_86


Empirical Analysis of Data Sampling-Based Ensemble Methods 377

9. Kumar, L., et al.: Deep-learning approach with Deepxplore for software defect severity
level prediction. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12955, pp. 398–410.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87007-2_28

10. Balogun, A., Bajeh, A., Mojeed, H., Akintola, A.: Software defect prediction: a multi-criteria
decision-making approach. Niger. J. Technol. Res. 15, 35–42 (2020)

11. Alsawalqah, H., Faris, H., Aljarah, I., Alnemer, L., Alhindawi, N.: Hybrid SMOTE-ensemble
approach for software defect prediction. In: Silhavy, R., Silhavy, P., Prokopova, Z., Senkerik,
R., Kominkova Oplatkova, Z. (eds.) CSOC 2017. AISC, vol. 575, pp. 355–366. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57141-6_39

12. Malhotra, R., Jain, J.: handling imbalanced data using ensemble learning in software defect
prediction. In: 2020 10th International Conference on Cloud Computing, Data Science &
Engineering (Confluence), pp. 300–304. IEEE (2020)

13. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for
balancing machine learning training data. ACM SIGKDD Expl. Newsl. 6, 20–29 (2004)

14. Balogun, A.O., et al.: Data sampling-based feature selection framework for software defect
prediction. In: The International Conference on Emerging Applications and Technologies for
Industry 4.0, pp. 39–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-80216-5

15. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority
over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

16. El-Shorbagy, S.A., El-Gammal, W.M., Abdelmoez, W.M.: Using SMOTE and heteroge-
neous stacking in ensemble learning for software defect prediction. In: The 7th International
Conference, pp. 44–47. ACM Press (2018)

17. Tantithamthavorn, C., Hassan, A.E., Matsumoto, K.: The impact of class rebalancing tech-
niques on the performance and interpretation of defect predictionmodels. IIEEETrans. Softw.
Eng. 46, 1200–1219 (2020)

18. Xie, Z., Jiang, L., Ye, T., Li, X.: A synthetic minority oversampling method based on local
densities in low-dimensional space for imbalanced learning. In: International Conference on
Database Systems for Advanced Applications, pp. 3–18. Springer, Cham (2015). https://doi.
org/10.1007/978-3-030-73200-4

19. Kamalov, F., Elnagar, A., Leung, H.H.: Ensemble learning with resampling for imbalanced
data. In: Huang, D.-S., Jo, K.-H., Li, J., Gribova, V., Hussain, A. (eds.) ICIC 2021. LNCS,
vol. 12837, pp. 564–578. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84529-
2_48

20. Cai, X., et al.: An under-sampled software defect prediction method based on hybrid multi-
objective cuckoo search. Concurr. Comput. Pract. Exp. 32, e5478 (2020)

21. Balogun,A.O., Basri, S.,Abdulkadir, S.J.,Adeyemo,V.E., Imam,A.A.,Bajeh,A.O.: Software
defect prediction: analysis of class imbalance and performance Stability. J. Eng. Sci. Technol.
14, 15 (2019)

22. Goyal, S.: Handling class-imbalance with KNN (Neighbourhood) under-sampling for
software defect prediction. Artif. Intell. Rev. 55, 1–42 (2021)

23. Cao, Y., Ding, Z., Xue, F., Rong, X.: An improved twin support vector machine based on
multi-objective cuckoo search for software defect prediction. Int. J. Bio-Insp. Comput. 11,
282–291 (2018)

24. Mabayoje, M.A., Balogun, A.O., Jibril, H.A., Atoyebi, J.O., Mojeed, H.A., Adeyemo, V.E.:
Parameter tuning in KNN for software defect prediction: an empirical analysis. Jurnal
Teknologi dan Sistem Komputer 7, 121–126 (2019)

25. Yu, Q., Jiang, S., Zhang, Y.: The performance stability of defect prediction models with class
imbalance: an empirical study. IEICE Trans Info Sys. 100, 265–272 (2017)

26. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect
predictors. IIEEE Trans. Softw. Eng. 33, 2–13 (2007)

https://doi.org/10.1007/978-3-030-87007-2_28
https://doi.org/10.1007/978-3-319-57141-6_39
https://doi.org/10.1007/978-3-030-80216-5
https://doi.org/10.1007/978-3-030-73200-4
https://doi.org/10.1007/978-3-030-84529-2_48


378 A. O. Balogun et al.

27. Balogun,A.O., et al.: SMOTE-based homogeneous ensemblemethods for software defect pre-
diction. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 615–631. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_45

28. Mockus, A., Weiss, D.M.: Predicting risk of software changes. Bell Labs Tech. J. 5, 169–180
(2000)

29. Bowes, D., Hall, T., Petrić, J.: Software defect prediction: do different classifiers find the same
defects? Softw. Qual. J. 26(2), 525–552 (2017). https://doi.org/10.1007/s11219-016-9353-3

30. Japkowicz, N.: The class imbalance problem: Significance and strategies. In: Proceedings of
the International Conference on Artificial Intelligence, vol. 56, pp. 111–117. Citeseer (2000)

31. Peng, M., et al.: Trainable undersampling for class-imbalance learning. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4707–4714 (2019)

32. Han, H.,Wang,W.Y., Mao, B.H.: Borderline-SMOTE: a new over-samplingmethod in imbal-
anced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005.
LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/115380
59_91

33. Elhassan, T., Aljurf, M.: Classification of imbalance data using tomek link (t-link) combined
with random under-sampling (rus) as a data reduction method. Global J. Technol. Optim. S 1
(2016)

34. Malhotra, R., Kamal, S.: An empirical study to investigate oversampling methods for
improving software defect prediction using imbalanced data. Neurocomputing 343, 120–140
(2019)

35. Rodriguez,D.,Herraiz, I., Harrison, R.,Dolado, J., Riquelme, J.C.: Preliminary comparison of
techniques for dealingwith imbalance in software defect prediction. In: The 18th International
Conference, pp. 1–10. ACM Press (2014)

36. SureshKumar, P., Behera,H.S., Nayak, J., Naik, B.: Bootstrap aggregation ensemble learning-
based reliable approach for software defect prediction by using characterized code feature.
Innov. Syst. Softw. Eng. 17(4), 355–379 (2021). https://doi.org/10.1007/s11334-021-00399-2

37. Berrar, D.: Bayes’ theorem and naive Bayes classifier. Encyclop. Bioinform. Comput. Biol.
ABC Bioinform. 403 (2018)

38. Balogun, A.O., et al.: Empirical analysis of rank aggregation-based multi-filter feature
selection methods in software defect prediction. Electronics 10, 179 (2021)

39. Ghotra, B., McIntosh, S., Hassan, A.E.: A large-scale study of the impact of feature selec-
tion techniques on defect classification models. In: 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), pp. 146–157. IEEE (2017)

40. Xu, Z., Liu, J., Yang, Z., An, G., Jia, X.: The impact of feature selection on defect prediction
performance: an empirical comparison. In: 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE), pp. 309–320. IEEE (2016)

41. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: An empirical comparison
of model validation techniques for defect prediction models. IIEEE Trans. Softw. Eng. 43,
1–18 (2016)

42. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: Comments on “researcher
bias: the use of machine learning in software defect prediction.” IIEEE Trans. Softw. Eng.
42, 1092–1094 (2016)

43. Yu, Q., Jiang, S., Zhang, Y.: The performance stability of defect prediction models with class
imbalance: an empirical study. IEICE Trans E100.D. Inf. Syst., 265–272 (2017)

https://doi.org/10.1007/978-3-030-58817-5_45
https://doi.org/10.1007/s11219-016-9353-3
https://doi.org/10.1007/11538059_91
https://doi.org/10.1007/s11334-021-00399-2


Empirical Analysis of Data Sampling-Based Ensemble Methods 379

44. Balogun,A.O.,Akande,N.O.,Usman-Hamza, F.E.,Adeyemo,V.E.,Mabayoje,M.A.,Ameen,
A.O.: Rotation forest-based logistic model tree for website phishing detection. In: Gervasi,
O., et al. (eds.) ICCSA 2021. LNCS, vol. 12957, pp. 154–169. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-87013-3_12

45. Li, R., Zhou, L., Zhang, S., Liu, H., Huang, X., Sun, Z.: Software defect prediction based on
ensemble learning. In: DSIT 2019: 2019 2nd International Conference on Data Science and
Information Technology, pp. 1–6. ACM (2019)

https://doi.org/10.1007/978-3-030-87013-3_12

	Empirical Analysis of Data Sampling-Based Ensemble Methods in Software Defect Prediction
	1 Introduction
	2 Related Works 
	3 Methodology
	3.1 Data Sampling Method
	3.2 Prediction Algorithms
	3.3 Ensemble Methods
	3.4 Software Defect Datasets
	3.5 Evaluation Measures
	3.6 Experimental Procedure

	4 Results and Discussion
	5 Conclusion and Future Works
	References




