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Abstract. Predictive maintenance solutions have been recently applied
in industries for various problems, such as handling the machine status
and maintaining the transmission lines. Industrial digital transformation
promotes the collection of operational and conditional data generated
from different parts of equipment (or power plant) for automatically
detecting failures and seeking solutions. Predictive maintenance aims
at e.g., minimizing downtime and increasing the whole productivity of
manufacturing processes. In this context machine learning techniques
have emerged as promising approaches, however it is challenging to select
proper methods when data contain imbalanced class labels.

In this paper, we propose a pipeline for constructing machine learn-
ing models based on Bayesian optimization approach for imbalanced
datasets, in order to improve the classification performance of this model
in manufacturing and transmission line applications. In this pipeline, the
Bayesian optimization solution is used to suggest the best combination
of hyperparameters for model variables. We analyze four multi-output
models, such as Adaptive Boosting, Gradient Boosting, Random Forest
and MultiLayer Perceptron, to design and develop multi-class and binary
imbalanced classifiers.

We have trained each model on two different imbalanced datasets,
i.e., AI4I 2020 and electrical power system transmission lines, aiming
at constructing a versatile pipeline able to deal with two tasks: failure
type and machine (or electrical) status. In the AI4I 2020 case, Random
Forest model has performed better than other models for both tasks. In
the electrical power system transmission lines case, the MultiLayer Per-
ceptron model has performed better than the others for the failure type
task.
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1 Introduction

Predictive maintenance (PdM) is a specialization of condition-based mainte-
nance that requires data from sensors (e.g., used to monitor the machine) as
well as other operational data, aiming at detecting and solving performance
equipment issues before they take place. PdM focuses on utilizing predictive info
in order to schedule the future maintenance operations [1]. Through the data
collected with the machine under operation, descriptive, statistical or proba-
bilistic approaches can be used to drive prediction and identify potential prob-
lems. With PdM various goals can be achieved, such as reducing the operational
risk of missing-critical equipment; controlling cost of maintenance by enabling
just-in-time maintenance operations; discovering patterns connected to various
maintenance problems; providing key performance indicators. Machine learning
is successfully applied in industrial systems for predictive maintenance [8,28].
Selecting the most appropriate machine learning methods can be very challeng-
ing for the requirements of the predictive maintenance problem. Their perfor-
mance can be influenced by the characteristics of the datasets, therefore it is
important to apply machine learning on as many datasets as possible.

In this paper the field of predictive maintenance in manufacturing and trans-
mission line is considered. The aim is to classify failure modes in class-imbalanced
tabular data according to a supervised fashion. These tabular data contain data
points as rows, and regressors and targets as columns. Moreover machine learn-
ing models and neural networks, combined with Bayesian optimization app-
roach [26], may open new perspectives in detecting fault configurations. With
this in mind, we have developed a pipeline that satisfies the following require-
ments on tabular data: supporting versatile applicability in different contexts;
tackling classification problems with imbalanced classes; discriminating among
different failure modes (primary dependent variable); being able to recognize
faulty and healthy status (secondary dependent variable) with the same settings
(i.e., hyperparameters) used for the primary dependent variable. In order to be
versatile, the pipeline supports multiple models under different settings. The
best set of hyperparameters for each model is the result of an informed search
method based on Bayesian optimization solution. Once the best set of hyperpa-
rameters has been selected, the model is fitted twice with different tasks. The
multi-output approach fits the same model for each dependent variable: first to
solve a multi-class problem (primary dependent variable), then to figure out a
binary problem (secondary dependent variable). Furthermore, we have consid-
ered two different use cases, such as AI4I 2020 predictive maintenance dataset [9]
and electrical power system transmission lines [16] dataset.

The model has been built by considering four machine learning methods:
three techniques belong to the ensemble machine learning methods (where the
model makes predictions based on different decision trees) such as Adaptive
Boosting, Gradient Boosting, Random Forest; and one technique is an artificial
neural network, such as Multilayer Perceptron. Our contribution, beside applying
for a predictive maintenance solution based on Bayesian optimization technique,
aims at replying to the following research question: can a model, whose settings
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are tuned on a more complex task (primary dependent variable), perform well
also on a relative simple task (secondary dependent variable) connected to the
complex one?

2 Background and Related Works

With regards to the related works, our starting point has been focused on main-
tenance modelling approaches on imbalanced classes. A short literature review
has been performed to highlight previous research in the predictive maintenance
field. The machine learning-based PdM strategies are usually modeled as a prob-
lem of failure prediction. With imbalanced classes, ensamble learning methods
as well as neural networks, combined with Bayesian optimization method, can
be used to improve model performances. In the following we have summarized
some papers related to the machine learning methods, such as Adaptive Boost-
ing, Gradient Boosting, Random Forest and Multilayer Perceptron, adopted in
this study showing interesting results in PdM.

Adaptive Boosting is one of the most popular ensamble learning algo-
rithms [30]. I. Martin-Diaz et al. [17] presented a supervised classification app-
roach for induction motors based on the adaptive boosting algorithm with
SMOTE - i.e., a method that combined together the oversampling of the unusual
minority class with the undersampling of the normal majority class - to deal with
imbalanced data. The combined use of SMOTE and Adaptive Boosting presents
stable results. Another ensemble method is the Gradient Boosting method.
Calabrese et al. [6] used a data-driven approach based on machine learning
in woodworking industrial machine predictive maintenance. They achieved an
excellent accuracy 98.9%, recall 99.6% and precision 99.1% with the Gradient
Boosting model.

Some other studies use the Random Forest classifier [21]. M. Paolanti
et al. [22] described a machine learning architecture for predictive maintenance of
electric motors and other equipments based on Random Forest approach. They
developed their methodology in an industrial group focused on cutting machine,
predicting different machine states with high accuracy (95%) on a data set col-
lected in real time from the tested cutting machine. Qin et al. [24] used the
Random Forest method to predict the malfunction of wind turbines. The wind
turbine data is obtained through the use of the supervisory control and data
acquisition (SCADA) approach [24] .

V. Ghate et al. [10] evaluated the performance of the developed MultiLayer
Perceptron and self-organizing map neural network based classifier to detect four
conditions of the three-phase induction motor. In this work, the authors com-
puted statistical parameters to specify the feature space and performed Prin-
cipal Component analysis to reduce the input dimension. M. Jamil et al. [16]
applied artificial neural networks for the detection and classification of faults
on a three-phase transmission lines system. All the artificial neural networks
adopted the back-propagation architecture, providing satisfactory performances
once the most appropriate configuration has been chosen.
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There are many methods for optimizing over hyperparameter settings, rang-
ing from simplistic procedures, like grid or random search [2], to more sophis-
ticated model-based approaches using Random Forests [15] or Gaussian pro-
cesses [26].

3 Dataset Description

3.1 AI4I 2020 Predictive Maintenance Dataset

The AI4I 2020 predictive maintenance dataset [9] comprises 10000 data points,
representing synthetic multivariate time series. It represents a manufacturing
machine where variables reflect (simulate) real signals registered from the equip-
ment. The dataset indicates at each timestamp (row) a failure type and the
machine status. The failure type consists of six independent classes including a
no failure class. If at least one of the five failure modes (one of the 5 classes that
differ from no failure class) is true, the machine stops and the machine status
is set to failure; while if the failure type belongs to no failure class the machine
status is set to working. At each timestamp we have a set of regressors and two
connected targets: the failure type (multi-class) and the machine status (binary
class). The set of regressors includes the original variables and the estimation of
variables of which there are no measurement, by employing measures on other
variables that have been recorded.

Fig. 1. AI4I 2020 dataset: failure types frequencies

The original variables that represent directly real signals are: type, process
temperature in Kelvin [K], rotational speed in revolutions per minute [rpm] and
tool wear in minutes [min]. Type is a categorical variable that is composed of
three classes, representing the quality variants of the process (i.e., low 50%,
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medium 30% and high 20%). We have mapped this variable with a label encod-
ing. Process temperature symbolizes the temperature of the machine that is
generated by using a random walk process, normalized to a standard deviation
of 1 K, and added to the air temperature plus 10 K. The temperature of the envi-
ronment is generated by using a random walk process, normalized to a standard
deviation of 2 K around an average of 300 K. Rotational speed reproduces the
rate of rotation in revolution per minute of the cutting tool that is computed
from a power of 2860 W with a normal noise distribution. Tool wear returns the
minutes of regular operation of the cutting tool in the process.

The estimated variables are defined based on specific failure mode that may
occur. Heat dissipation in Kelvin [K] depicts the absolute difference between the
air temperature and process temperature. Power in Watt [W] acts as a sample
of the power, obtained by the multiplication of the torque (in Newton meter)
applied to the cutting tool and the rotational speed (in radians per seconds):
the torque is generated from a Gaussian distribution around 40 N meter with a
standard deviation of 10 N meter and no negative values. Overstrain in Newton
meter per minute [Nm × min] outlines the demand of resilience by the cutting
tool, expressed by the product of Tool wear (in minutes) and Torque (in Newton
meter). The set of seven regressors reproduces physical conditions responsible
of the failure modes. Figure 1 shows the six failure types on the manufacturing
machine.

3.2 Electrical Power System Transmission Lines Dataset

The electrical power system transmission lines [16] dataset collects 7861 points
of a three-phase power system. The electrical system consists of 4 generators of
11 × 103 Volts [V], each pair located at each end of the transmission line. Data
simulates signals from the circuit under no faulty condition as well as different
fault conditions.

The measures of line voltages in Volts [V] and line currents in Amperes [A]
for each of the three phases (i.e., A, B, C) are collected at the output side of the
power system. Each point in the dataset takes values for: the six regressors (line
currents and line voltages for each of the three phases), the failure types and the
electrical status (connected tasks). The failure type consists of six independent
classes including a no failure class. As in the AI4I 2020 dataset, if at least one
of the five failure modes is true (one of the 5 class that differ from the no failure
class), the electrical transmission goes down and the electrical status is set to
failure; while if the failure type belongs to no failure class the electrical status
is set to working. Figure 2 shows the failure types on the electrical system.

4 Exploratory Analysis

The AI4I 2020 and the electrical power system transmission lines datasets share
some similarities. They have a small number of regressors and data points. Both
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Fig. 2. Electrical power system transmission lines dataset: failure types frequencies

datasets contain 6 classes for the failure type task. The distribution of points
across the known classes is biased with different degree of skewness.

Figure 1 demonstrates the severe imbalance of AI4I 2020 dataset. Even when
the five failure modes are aggregated together at the machine status level, the
distribution of failure and working labels is uneven by a large amount of data
points. The random failure class (standing for the chance of 0.2% to fail regard-
less the value of its regressors) is included in the no failure class due to its low
frequency and its randomness.

Figure 2 represents the slight imbalance of the electrical power system trans-
mission lines dataset. Failure modes are in the same order of magnitude of the
no failure class. Furthermore, when these five modes are aggregated together in
the electrical status, the failure class becomes more frequent than the working
one.

According to the way machine (or electrical) status is defined in Sect. 3, it
is reasonable to consider it connected and correlated to the failure type . The
machine (or electrical) status is a binary variable in which one class aggregates
together the five failure modes of the failure type. Specifically the failure class,
in the machine (or electrical) status dependent variable, includes the five failure
modes, while the working class corresponds to the no failure class of the failure
type dependent variable.

In the two datasets, faults are defined by a single condition or multiple con-
ditions: for AI4I 2020 dataset the tool wear failure consists of randomly selected
tool wear time between 200 and 240 min, as showed in Fig. 3; the heat dissipation
failure occurs when the heat dissipation is below 8.6 Kelvin [K] and the rota-
tional speed is below 1380 revolution per minute [rpm]. For the electrical power
system transmission lines dataset, the fault between phase A and ground only
involves one phase that is shorted to ground; the three phase symmetrical fault
considers all phases that are shorted to ground, as displayed in Figs. 4, 5.
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Fig. 3. AI4I 2020 dataset: tool wear failures

Fig. 4. Electrical power system transmission lines dataset: three phases symmetrical
faults.

Fig. 5. Line voltage phase C: three phases symmetrical faults.

5 Methodology for Predictive Maintenance

The main objective of this study has been the development and validation of
a predictive maintenance model for machine status and fault type detection by
using different use cases. A generalized workflow is shown in Fig. 6 that schema-
tizes the actions that have been undertaken to implement predictive maintenance
model.
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Fig. 6. Methodology overview

Our work has started with the datasets selection. We have continued pro-
cessing data to prepare them for machine learning (ML) techniques, then we
have built our ML-based prediction models and assessed them with respect to
machine status and failure type tasks. The acquired data (already introduced in
Sect. 3) are from AI4I 2020 predictive maintenance and electrical power system
transmission lines. Considering the characteristics of data (such as the imbal-
ance of data and single or multiple-failure conditions), we have decided to build
multi-class and binary imbalanced classifiers. Four multi-output models have
been analyzed and compared: two boosting ensamble classifiers - i.e., Adaptive
Boosting and Gradient Boosting that differ in the way they learn from previous
mistakes; one bagging ensamble classifier - i.e., Random Forest that trains a
bunch of individual models in a parallel way without depending from previous
model; and one neural network method - i.e., Multilayer Perceptron.

For all the classifiers an informed search method based on a Bayesian opti-
mization algorithm has been applied to choose the best set of hyperparameters.
Figure 7 shows details to build our models. For each model the pipeline is charac-
terized by two phases: firstly we have found a combination of hyperparameters
that best describes train data; and secondly we have deployed the model on
unseen data by using the best settings found on the train set.

The first phase takes advantage of: an objective function, a range of val-
ues for each model’s hyperparameter (i.e. hyperparameters spaces), a conjugate
prior distribution for the hyperparameters (prior Knowledge) and an acquisition
function, allowing to determine the next set of hyperparameters to be evalu-
ated. At each step the search computes a posterior distribution of functions by
fitting a Gaussian process model on the set of hyperparameters candidate and
the objective function whose output have tried to maximize. The next set of
hyperparameters to be evaluated is determined by the upper confidence bound
acquisition function [27]. This function tries to explore regions in the hyperpa-
rameter spaces where we have been getting good performance based on previous
search, rather than trying all possible combinations of hyperparameters. The
optimization process [26] is repeated for a defined number of iterations, then the
model is fitted on unseen data with the values of the hyperparameters leading
to the global optimum of the objective function.

Despite the multi-output setting, the objective to be maximized in the
Bayesian search [19] is only computed on the failure type. This choice wants
to test the reliability of the hyperparameters selection computed on multi-class
problem, even into binary problem. In extending a binary metric to multi-class
problem, the data is covered as a collection of binary problems, one for each
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class. We have considered the macro average of the metric. The macro average
computes the metric independently for each class and then takes the average.
The macro average of recall scores per class (macro-recall) [18] is taken into
account for the maximization of the objective function. It is a satisfactory met-
rics able to deal with imbalance at different levels [29], as in our cases of the
severe imbalanced AI4I 2020 dataset and the slight imbalanced electrical power
system transmission lines dataset.

Fig. 7. Model pipeline

5.1 Algorithm Description

Let us summarize the used machine learning techniques together with the already
introduced optimization strategy.

The Bayesian optimization approach fits probabilistic models for finding the
maximum of the objective function. At each iteration, it exploits the probabilistic
model, through the acquisition function, in order to decide where in the hyper-
parameters spaces next evaluates the objective function. It takes into account
uncertainty by balancing exploration (not taking the optimal decision since the
sets of hyperparameters explored are not sufficient to correctly identify the best
set) and exploitation (taking the best set of hyperparameters with respect to the
sets observed so far) during the search. The most commonly used probabilistic
model for the Bayesian optimization solution is the Gaussian process due to its
simplicity and flexibility in terms of conditions and inference [5].

Adaptive Boosting [11] is an algorithm that combines several classifiers into
one superior classifier. This classifier begins by fitting a tree classifier on the
original dataset and then fits additional copies of the classifier on the same
dataset, where the weights of incorrectly classified instances are adjusted, so
that subsequent classifiers focus more on difficult cases.
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Gradient Boosting [7] is a family of powerful machine learning techniques
that has shown success in a wide range of practical applications. It builds an
additive model based on decision trees. The model fits a new decision tree on
the residual errors that are made by the previous predictor. For this reason it
learns from the residual errors directly, rather than update the weights of data
points.

Random Forest (RF) classifier [12] is an ensemble learning algorithm based
on bagging method of trees. It fits a number of decision tree classifiers using
samples from the dataset and uses averaging to improve the predictive accuracy
and control over-fitting. Random Forest uses bootstrap sampling and feature
sampling, and it considers different sets of regressors for different decision trees.
Furthermore, decision trees, used in all ensamble models, are immune to multi-
collinearity and perform feature selection by selecting appropriate split points.

Multilayer Perceptron [20] is used as an artificial neural network classifica-
tion algorithm. It trains using back propagation and supports multi-outputs by
changing the output layer activator. The softmax activator is used with multi-
class while the logistic activator is used with binary output. In the Bayesian
optimization we have considered just one hidden layer. This option prevents
overfitting since the small number of data points in the two datasets [14]. In
addition, a simple architecture of the neural network can manage changes in the
dependent variable from which it learns. We have specified the range for the
number of neurons (hidden layer size) used in the Bayes optimization based on
the number of regressors of the dataset. Ensamble learning algorithms are not
sensible to scaling. However, the MultiLayer Perceptron is sensitive to feature
scaling. In order to compare the performances with the same input data, we have
applied a scaling on the regressors to obtain all values within the range [0,1].

5.2 Training Phase

Despite data from manufacturing machine and transmission lines, registered at
regular cadence, creates multivariate time series, we have not considered the
temporal order of observations (data points) in the analysis. Our aim has been
to discover configurations of regressors values connected to various maintenance
problems. Data points (rows) are randomly located in the train or test set,
generating two independent subsets. We have performed the hyperparameter
selection, with the Bayesian optimization solution, in the train set by a cross-
validation approach as shown in Fig. 8.

The training set is split into five smaller sets, preserving the percentage of
samples for each failure type class. A model, with a given set of hyperparam-
eters, is trained using four of the folds as training data and it is validated on
the remaining fold. This fold is used to compute the performance measure: the
macro-recall of the failure type (primary dependent variable). The performance
measure reported by the five-fold cross validation is the average of the macro-
recall values computed in the loop. Furthermore, it is the objective function to be
maximized in the Bayesian optimization solution. The cross-validation approach
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Fig. 8. Training phase description for both datasets.

can be computationally expensive: however, it is used along the Bayesian opti-
mization method that is trustworthy for finding the maximum of an objective
function (that is expensive to evaluate).

The 33% of the datasets have been used as test set to deploy our predictive
maintenance models on failure type and machine (or electrical) status. Test data
have been scaled by using minimum and maximum values of each regressor of
the train set to simulate unseen data. In order to do a fair comparison among the
models, we have used the Bayesian optimization approach with 20 iterations and
5 random explorations for each model to tune hyperparameters. The hyperpa-
rameters for each model are listed in Table 1, while the hyperparameters spaces
are available online along with our code [25].

6 Results and Discussions

To evaluate the performances of the models we have taken into account the
known threshold metrics for imbalanced datasets [13]. We extend binary metrics
to multi-class problem, by taking the macro average of the metrics, as men-
tioned in Sect. 5. We have also reported confusion matrices for the models that
perform better with respect to the failure type and machine (or electrical) status
classification tasks in the two datasets.
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Table 1. Best hyperparameters suggested by Bayesian optimization

Hyperparameter Adaptive
Boosting

Gradient
Boosting

Random
Forest

MultiLayer
Perceptron

learning rate × × ×
max depth × ×
max features × ×
n estimators × × ×
subsample ×
activation ×
momentum ×
validation fraction ×
batch size ×
solver ×
early stopping ×
max iter ×
alpha ×
hidden layer size ×

In Figs. 9, 11 Adaptive Boosting shows poorest quality with respect to Gra-
dient Boosting in the failure type classification. Among boosting ensamble clas-
sifier, both Adaptive Boosting and Gradient Boosting use an additive structure
of trees. However the lack of previous tree, identified by high-weight data points
(Adaptive Boosting), behaves worse than the residuals of each tree that step-by
step reduce the error by identifying the negative gradient and moving in the
opposite direction (Gradient Boosting).

Fig. 9. Models performances on AI4I 2020 test data: failure type task
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Fig. 10. Models performances on AI4I 2020 test data: machine status task

Fig. 11. Models performances on electrical power system transmission lines test data:
failure type task

For both tasks, the Random Forest model performs better than other models
in the AI4I 2020 case (severe imbalanced dataset), as shown in Figs. 9, 10. In
our experimental setting, we have made a choice between two different ways of
averaging results from trees. Which one of the two methods performs better is
still an open research question based on bias-variance trade off. In our appli-
cation, Random Forest combines each decision tree by computing the average
of their probabilistic prediction [23]: for each data point, the ensemble method
computes the average among trees of the probabilistic prediction of belonging
in each class, and selects the class with the highest average probabilistic pre-
diction. Some errors can be removed by taking the average of the probabilistic
predictions. The model can achieve a reduction in variance by combining diverse
trees at the cost of increasing the bias.
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Fig. 12. Models performances on electrical power system transmission lines: electrical
status task

Alternatively, each decision tree votes for a single class [4]: for a single data
point each tree returns a class, the selected class will be the one with the highest
absolute frequency among the trees. Notice that this combination can lead to a
reduction in bias at the cost of greater variance.

In the failure type task, the MultiLayer Perceptron model performs better
than other models in the electrical power system transmission lines case (slight
imbalanced dataset), as shown in Figs. 11, 13. In this work MultiLayer Percep-
tron model is not superior to tree-based ensemble learning methods in the AI4I
2020 case (severe imbalanced dataset). It is not understood fully why neural
network cannot reveal its superiority of predictive quality in presence of severe
class-imbalanced tabular data. In this direction a recent work [3] has shown that
tree ensemble still outperforms the deep learning models on tabular data. In
addition, the MultiLayer Perceptron model has a large amount of hyperparam-
eters, while tree ensemble models have fewer hyperparameters as displayed in
Table 1. Therefore, the MultiLayer Perceptron model may need a higher number
of iterations in the Bayesian optimization solution to produce predictive qual-
ity. Generally, a small number of hyperparameters is more desirable in order to
improve the versatility and robustness of the model.

In the AI4I 2020 case, the tool wear failure is undetected in the four models
with diverse level of evidence. It is unclear why the models is not able to properly
recognize this class. We have identified two possible reasons: the number of
observed failures in the dataset is quite small (see Fig. 1); this failures are defined
as random failures within a large range of tool wear minutes as shown in Fig. 3.
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Fig. 13. Electrical power system transmission lines dataset: MultiLayer Perceptron
performances, A) failure type task, B) electrical status task.

The proposed models present encouraging results not only for the multi-
class problem (primary dependent variable), but also for the binary problem
(secondary dependent variable) on imbalanced data, showing good generaliza-
tion properties. The choice of selecting the best set of hyperparameters with the
Bayesian optimization method on the multi-class problem, and fitting the model
in the multi-output configuration, has proved to be reliable; firstly solving the
failure type problem, secondly recognizing faulty and healthy status related to
the first one. The electrical status is detected with outstanding quality in the
electrical power system transmission lines case, where all models have excellent
performances (see Fig. 12). Random Forest model identifies better the machine
status than the other models in the AI4I 2020 case (Fig. 10), however its perfor-
mance is biased by the tool wear failures that remain mainly not perceived (see
Fig. 14).
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Fig. 14. AI4I 2020 dataset: Random Forest performances, A) failure type task, B)
machine status task.

7 Conclusions

In this paper we present a pipeline based on the Bayesian optimization solu-
tion for imbalanced datasets in order to design and develop multi-class and
binary imbalanced classifiers. We have considered four models, such as Adaptive
Boosting, Gradient Boosting, Random Forest and MultiLayer Perceptron. The
Bayesian optimization approach has been used to determine the best combina-
tion of hyperparameters for model variables to improve machine learning per-
formances. This pipeline has been applied to two different imbalanced datasets,
such as AI4I 2020 and electrical power system transmission lines, to classify two
connected tasks: failure type and machine (or electrical) status.

Our work includes promising evidence on the ability of models (whose hyper-
parameters are tuned in the Bayesian optimization method on the failure type
variable) to perform well not only on the failure type classification but also on
the machine (or electrical) status by using a multi-output configuration.

In the AI4I 2020 case, the Random Forest model performs better than other
models for both tasks. In the electrical power system transmission lines case,
the MultiLayer Perceptron model performs better than others for the failure
type task. Despite the different domain of the datasets, we have observed the
tendency of tree ensemble models to succeed on the severe imbalanced dataset,
the liability of the MultiLayer Perceptron model to succeed on the slight imbal-
anced dataset. This work can serve as a valuable starting point for data scientists
and practitioners interested in predictive maintenance solutions with imbalanced
tabular data.
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S.G.S.: A systematic literature review of machine learning methods applied to
predictive maintenance. Comput. Ind. Eng. 137, 106024 (2019)

9. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

10. Ghate, V.N., Dudul, S.V.: Optimal MLP neural network classifier for fault detec-
tion of three phase induction motor. Expert Syst. Appl. 37(4), 3468–3481 (2010)

11. Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class AdaBoost. Stat. Interface 2(3),
349–360 (2009)

12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS,
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

13. He, H., Ma, Y.: Imbalanced Learning: Foundations, Algorithms, and Applications.
Wiley-IEEE Press, Hoboken, 216 pages (2013)

14. Heaton, J.: Introduction to Neural Networks with Java. Heaton Research, Inc.
Chesterfield (2008)

15. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

16. Jamil, M., Sharma, S.K., Singh, R.: Fault detection and classification in electrical
power transmission system using artificial neural network. SpringerPlus 4(1), 1–13
(2015). https://doi.org/10.1186/s40064-015-1080-x

17. Martin-Diaz, I., Morinigo-Sotelo, D., Duque-Perez, O., de J. Romero-Troncoso, R.:
Early fault detection in induction motors using AdaBoost with imbalanced small
data and optimized sampling. IEEE Trans. Ind. Appl. 53(3), 3066–3075 (2017)

18. Mosley, L.: A balanced approach to the multi-class imbalance problem. Ph.D. the-
sis, Iowa State University (2013)

https://www.bitbang.com/
http://arxiv.org/abs/2110.01889
http://arxiv.org/abs/1012.2599
https://www.mdpi.com/2078-2489/11/4/202
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1186/s40064-015-1080-x


Predict. Maint. Exp. on Imbalanced Data with Bayesian Opt. 137

19. Nogueira, F.: Bayesian Optimization: open source constrained global optimization
tool for Python (2014). https://github.com/fmfn/BayesianOptimization
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