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Abstract. Point clouds represent the as-is geometry of indoor and out-
door environments by sets of 3D points. They allow for constructing 3D
models of objects, sites, cities, and landscapes and, hence, form the base
data for almost any conscious, smart city system and application. For
implementing such systems, we need a spatio-temporal data structure
that enables efficient storage and access to 4D point clouds. In particu-
lar, the data structure should allow continuous updates, change tracking,
and support for spatial and spatio-temporal analysis. This paper dis-
cusses challenges and approaches for a 4D point cloud data structure. In
particular, the challenges arise from repeated scanning of environments
in terms of sparsity, data redundancy, and geometric blurring of the cor-
responding point clouds. We outline a scheme for incremental storage of
4D point clouds via signed distance fields using a sparse, voxel-based rep-
resentation. To efficiently implement analysis operations, we discuss how
the data structure supports access based on both spatial and temporal
criteria. In particular, we outline how machine learning-based interpre-
tations used to classify point clouds and derive object-based information
can work with the data structure.
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1 Introduction

The concept of smart city has been studied extensively in the last decades,
but gained popularity recently due to the increase in inexpensive Internet of
Things (IoT) devices. Smart cities build on the idea that “[...] cities are sys-
tems of systems, and that there are emerging opportunities to introduce digital
nervous systems, intelligent responsiveness, and optimization at every level of
system integration - from that of individual devices and appliances [...] to that
of buildings, and ultimately to that of complete cities and urban regions” [20].

In this context, digital twins, as virtual representation of real-world objects,
have been perceived as the “ultimate technological apparatus for ‘smartening’
cities” [35]. Such digital twins are tied together with their physical counterpart
by means of data connections [8], enabling the monitoring, analysis, and control
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Fig. 1. Real-world data obtained by fixed sensors or frequent scanning of the envi-
ronment is used to update the spatial data base. It reflects the state of the city in a
hierarchical, object-structured manner. Real-time monitoring of the current state can
inform responsible parties (e.g., if the breakout of a fire is detected, an unexpected
increase in energy or water usage emerges, or failure of devices occur). Additionally,
analysis features can operate on top of the database (e.g., for traffic flow monitoring
or vegetation analysis).

of the corresponding object in the real world. Therefore, digital twins fulfill a key
role in enabling future smart cities. Figure 1 depicts the integration of a digital
twin into the city environment and existing responsibility structures.

The spatial representation of the geometric realities of physical objects is
an important feature of the digital twin. Brilaikis et al. perceive this geomet-
ric information “as a starting point for a comprehensive digital twin” [3]. For
constructing such virtual, spatial representation of cities and environments, 3D
point clouds can serve as the base data, as they are a common artifact of as-
is environment capturing of both indoor and outdoor scenes and there exist
cost-efficient methods for acquiring them [21]. In general, 3D point clouds are
unorganized, unstructured, but geo-referenced sets of points. Multiple 3D point
clouds that share a common geographic extent, but were captured at different
points in time (i.e., spatio-temporal datasets), are denoted 4D point clouds. The
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increasing degree of automation regarding the data acquisition and integration
processes enables nowadays the capturing of such 4D point clouds by means of
frequent environment scanning (e.g., using devices equipped with Light Detec-
tion and Ranging (LiDAR)-sensors or camera systems used to capture image
data for photogrammetric point cloud creation). As 4D point clouds capture the
history (i.e., changes over time) of the environment and provide the data used to
derive object-related and structure-related information, they are the key com-
ponent for constructing and maintaining a digital twin and operating conscious,
smart city systems, services, or applications.

However, the question arises, how to store this massive, city-scale, spatio-
temporal data, while at the same time enabling access for a broad range of
analysis features, such as object or change detection, required for operating
a smart city system. This work outlines the requirements and challenges for
constructing a suitable data structure and proposes a first concept.

Section 2 reviews related work for smart cities, digital twins, and 4D point
clouds. We then outline the key requirements and challenges for a spatio-
temporal data structure in the context of smart cities in Sect. 3. Subsequently,
we propose a scheme for storing 4D point cloud data via signed distance fields
(Sect. 4) and describe the support for spatial and spatio-temporal access. Addi-
tionally, we outline how machine learning-based analysis approaches can work
with the data structure. Finally, we conclude this work in Sect. 5.

2 Related Work

To understand the requirements for a spatio-temporal data structure in the
context of smart cities, the application scenarios for smart cities, the use-cases
and characteristics of digital twins, and the challenges connected to 4D point
clouds are outlined in the following.

2.1 Smart Cities

The application scenarios for smart cities include real-time monitoring, process
optimization, as well as intelligent responsiveness and control, across the whole
city hierarchy from single buildings, over infrastructure networks, to whole urban
areas. Key application areas of smart cities include energy, water, mobility, build-
ings, vegetation, and government [19] with use cases such as “enhanced street
lighting controls, infrastructure monitoring, public safety and surveillance, phys-
ical security, gunshot detection, meter reading, and transportation analysis and
optimization systems [...] on a city-wide scale”. Ulusoy and Mundy describe
“urban growth analysis, construction site monitoring, natural resource manage-
ment, surveillance and event analysis” as common applications for 4D real-world
data [34]. The direct relation of these applications to the smart city concept
shows the importance of 4D data in this context. Daniel and Doran stress the
importance of geomatics for smart cities. They state that “location is [...] core
information” and the “geographical characteristics [...] and spatial understand-
ing capabilities participate significantly in the design and operation of Smart
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City service and management infrastructures” [6]. This emphasizes the need for
geometric digital twins as key components of smart city systems.

2.2 Digital Twins

Table 1. Overview of use-cases and characteristics of digital twins, according to pre-
vious work in this area.

Publication Characteristics Use-cases

M. Grieves, 2014 [8] Virtual objects linked to
physical objects through data
connections

Comprehension through
conceptualization; Comparison
of as-is and should-be;
Collaboration

A. El Saddik, 2018 [7] Seamless data transmission
between physical and virtual
world; Unique identifier for
communication; Sensors and
actuators on the real-world
object; AI for intelligent
decisions; Virtual representation

Monitor, understand, and
optimize the functions of all
physical entities to improve
health and well-being

Qi et al. , 2018 [25] Virtualization of physical
entities; Ability to
guide/optimize the phyiscal
process

Virtual verification; Simulation;
High-fidelity real-time
monitoring; Predicting and
diagnosing problems;
Optimizing and improving
processes

Brilakis et al. , 2019 [3] Representation of current asset
condition; Visualization of
information and simulation
results; Regular updates

Asset condition monitoring;
Facility management and
operation; Decision making;
Sustainable developement

Wan et al. , 2019 [35] Progressive developement;
Machine learning techniques;
Spatial/temporal resolution
corresponding to use-case

Planning, constructing and
managing national
infrastructure; Optimising use
of resources; Reducing service
disruption; Increasing resilience;
Boosting quality of life for
citizens

Minerva et al. , 2020 [18] Mirror the physical object;
Register status changes; Store
historic status changes;
Simulate behaviour over time

Enabling virtual objects and
smart cities

Grieves describes a concept of a digital twin for manufacturing, defining a digital
twin as a three-part entity comprising the physical objects of the real world, the
virtual objects in virtual space, and the data connections that links these two
together [8]. Three use-cases for digital twins are presented: Comprehension is
improved by eliminating inefficient mental steps through conceptualization, com-
parison between the as-is and the should-be state is facilitated, and collaboration
becomes feasible due to a shared conceptualization. In smart manufacturing, the
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digital twin is described as “the virtualization of physical entities”, guiding “the
physical process to perform the optimized solution” [25]. In particular, the seam-
less data transmission between physical and virtual world is core feature of the
digital twin concept, which El-Saddik extends to living beings with the goal to
improve health and well-being [7]. In contrast, Khajavi et al. study the applica-
tion of the digital twin concept to buildings [12]. Perceiving the developments in
the area of IoT as the driving factor that enables the creation of digital twins,
sensoric parts are considered as key components for operating a digital twin. For
digital twin construction, geometric and structural information from a Building
Information Model (BIM) is combined with a wireless sensor network and data
analytics; for visualization, information extracted from the BIM or a custom 3D
model is used. However, this is based on the assumption that the as-is geome-
try of the model still corresponds to the real-world situation; the changes over
time are not considered. With respect to this, Brilakis et al. state that a digital
twin “should be updated regularly in order to represent the current condition of
the physical asset”, enabling real-time monitoring [3]. Challenges for updating,
maintaining, and operating geometric digital twins include occlusion during envi-
ronment capturing, effective visualization of complex information and simulation
results, and finding a lightweight, scalable, stable, and exchangeable geometric
representation.

Several publications describe the applications and required characteristics of
digital twins. Table 1 gives an overview of these, as described in literature. Espe-
cially the tight data connection between physical and virtual object is empha-
sized. Regular updates of the digital twin are required to mirror the state of the
real world and to enable real-time asset monitoring. Process optimization and
prediction/simulation for supporting decision making are also commonly stated
use-cases.

Minerva et al. discuss basic properties of digital twins, including [18]:

– Reflection: A digital twin mirrors behaviour and status of the physical
object.

– Entanglement: A digital twin is connected to the physical object to register
status changes.

– Memorization: A digital twin stores all the historical status changes that
occurred to the physical object.

– Predictability: A digital twin has the ability to simulate behaviour over
time.

As spatial and georeferenced digital twins operate over time, underlying
spatio-temporal data structures are essential system components for reflecting
and memorizing changes, integrating continuous updates, and enabling simula-
tion and analysis.

Regarding the boundary conditions for building city-level digital twins, “the
spatial/temporal resolution of the digital twin should be informed by the purpose
it serves” [35]. As digital twins serve multiple purposes, they require different
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spatial and temporal resolutions. To this end, spatio-temporal data structures
should support Level-of-Detail (LoD).

2.3 4D Point Clouds

3D point clouds have become one of the most prominent geospatial data formats.
Stojanovic et al. present a workflow for data acquisition to generate as-is BIM
datasets, using regular 3D point cloud capturing to represent structural and
spatial features of the environment [30]. However, “although the 3D point cloud
is very practical, the huge data volume of a 3D point cloud limits its extensive
applications” [15], that is, 3D point clouds always require post processing to be
handled by applications or systems (e.g., compression or LoD).

The extension of 3D point clouds to the temporal domain, i.e., the capturing
and reconstruction of the environment at different points in time, increases the
data volume further. Thus, 4D point clouds are faced by massive storage require-
ments, in particular due to the high degree of redundancy leading to inefficient
use of storage capacity, e.g., in scenarios where the environment changes only
slightly between two points in time. Ulusoy et al. argue similarly that storing a
3D model in every timestamp “does not scale well in dealing with thousands of
frames of data” [33] and Milani et al. state that dynamic point clouds are “highly
inefficient in terms of storage space” [16]; This unanimous view of 4D point clouds
in literature shows that storage and access issues become crucial for such data
and a suitable data structure is urgently required. Additionally, visualizing such
massive amounts of data is challenging and requires out-of-core approaches, as
presented by Richter et al. for massive (city-scale) point clouds [27].

Apart from the storage issue, point clouds pose several other issues concern-
ing noise levels (due to illumination, motion, and sensor noise), sparsity, and
uneven distribution [4]. These issues can lead to inconsistent reconstruction of
the same object at different timestamps and therefore impede 4D analysis, as
the differentiation “between actual changes in the scene from false alarms caused
by inconsistent reconstructions” is complicated [34].

To summarize, 4D point clouds as supposed to be the data basis for conscious,
smart city models, are faced by a number of challenges:

– The huge overall data volume complicates efficient storage. Redundancy in
the spatial and temporal domain is one part of this problem.

– The sparsity and uneven distribution of 3D points in each sample makes direct
comparison of point clouds difficult, complicating analysis. Additionally, the
implementation of incremental storage schemes for a more compact memory
representation are also complicated.

– Inconsistencies due to error-prone acquisition and reconstruction processes as
well as random noise hinder the analysis.

– The inability to control the LoD of a 4D point cloud meaningfully stands
contrary to the fact that different analysis approaches require different LoD
in the spatial or temporal domain. Storing multiple LoDs for point clouds
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directly by removing high frequencies per level either involves a decrease in
point cloud density, or an increase in memory consumption (e.g., smoothing
the point cloud with different strength at each level and storing the results
multiplies the required memory by the number of LoDs).

3 Challenges for Spatio-Temporal Data Structures

Based on the observations in Sect. 2, we now derive requirements and challenges
for a 4D data structure in the context of smart cities. While some of the require-
ments complement each other, other requirements conflict. In practice, an appro-
priate trade-off between the different requirements has to be found, considering
the concrete application scenario and use-cases.

3.1 Requirements and Challenges for a 4D Data Structure

Compact Memory Representation. A 4D data structure for smart city
applications should be able to represent the current state, as well as past states,
of physical objects. The spatial and temporal redundancy should be exploited
for enabling a compact memory representation and reducing storage require-
ments. Incremental storage approaches are, however, faced with the challenge of
geometric fuzziness and inconsistencies in the data.

High Spatial Scale and Sufficient Detail. As we are considering whole
buildings, roads, and even cities, a data structure should be able to handle this
high spatial scale. At the same time, sufficient detail is required, for the data
to be useful for representing and analyzing the real world. This requirement
stands in contrast to the compact memory representation. Out-of-core streaming
approaches may be required to realize digital twin construction and operation
on a city-wide scale. A corresponding data structure therefore has to be able to
support this.

Fast Access. A data structure has to provide fast access in the spatial and
temporal domain for real-time visualization, continuous monitoring, and efficient
spatio-temporal analysis. Especially the task of change detection is one of the
core tasks in the context of digital twins for smart city applications. Fast access
often conflicts with a compact memory representation.

LoD Support. A data structure should support LoD approaches for access, as
“the spatial/temporal resolution of the digital twin should be informed by the
purpose it serves. [...] not all digital twins have to aim at real-time, nor the finest
spatial unit of analysis. For city and infrastructure planning, the resolution of a
digital twin model should be informed by the scale/rate of change of the policy
question” [35]. Additionally, the hierarchical nature of the smart city has to be
considered: buildings forming a site, sites forming a district, districts forming a
city. Depending on the use-case, a different hierarchy level may be required.
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Support for Offline Analysis. Tasks such as measuring key figures or opti-
mizing processes through simulation and prediction build on (offline) analysis
methods. For 4D point clouds, a broad range of analysis methods is already
available. A data structure should support interoperability with these existing
and well-working analysis approaches.

Fast Construction and Data Integration. A data structure should be able
to integrate new data that is recorded from the real world on a regular basis in
a fast manner. As near real-time monitoring is one of the use-cases for digital
twins in smart city applications, the speed for integration of new data should
be suitable for this task. The initial construction of the data structure does not
necessarily need to be very fast, but it would be a beneficial trait.

Compression. If data is archived or should be transmitted over a network, the
size of the data needs to be as small as possible; fast access is not required in
these scenarios. For these use-cases, a data structure should support compression
methods for reducing the size of the data.

Semantics. The data structure should be able to store point-specific attributes
in addition to the geometric properties (i.e., point coordinates). These attributes
could result from analysis and classification operations and can be used to access
subsets of the point cloud belonging to a defined surface category (e.g., ground,
building, vegetation, road). Further, such semantic classification can be used to
separate dynamic objects, such as pedestrians or cars, from the static scene,
which is an important task for meaningful change detection.

Graphics Processing Unit (GPU) Support. To enable efficient analy-
sis on the data structure and real-time visualization of the data, GPU-based
approaches are necessary. These require that the data structure is manageable
on the GPU and that efficient streaming methods exist for loading the currently
relevant parts of the data.

3.2 Existing Spatio-temporal Storage Approaches

Section 2 made clear that a huge problem of 4D point clouds, which are the
common artifact of as-is environment capturing, is the high memory footprint.
To reduce the storage requirements, compression methods have been proposed,
which exploit the redundancy in the temporal domain. Most approaches use an
octree, containing the voxelized point cloud, as intermediate representation for
compression.

Thanou et al. present a compression scheme for dynamic point clouds, based
on interpreting leaf nodes of an octree as graphs and position and color attributes
as signals on the graph [32]. Queiroz and Chou present a lossy compression for
dynamic point clouds using block-wise motion compensation [26]. A voxelized
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point cloud is split into blocks and each “block is either encoded in intra-frame
mode or is replaced by a motion-compensated version of a block in the previous
frame”. Milani et al. presented a 4D point cloud compression scheme based
on a voxelization and cellular automata transforms, tailored to the statistics
of the data [16]. The MPEG have launched the standardization of point cloud
compression in 2017. Liu et al. evaluate the proposed point cloud compression
approaches in extensive experiments [15]. The results show that point cloud
encoding can take several seconds or even minutes (for dynamic point clouds).

These compression methods have in common that a point cloud has to be
decompressed again in order to access the single points. Therefore, while point
cloud compression provides a solution to the high storage requirements, other
challenges, such as fast data integration or fast data access, are not solved.
Additionally, most of the compression methods were tested on scenes with low
spatial extent.

With respect to the challenges of high spatial scale and sufficient detail,
Blaha et al. proposed a hierarchical scheme for reconstruction of large scale
scenes (whole cities). An implicit volumetric representation is used that supports
variable volumetric resolution, refining the reconstruction adaptively only near
surfaces in order to save memory while maintaining sufficient detail [1].

Regarding compact memory representation with fast data integration and
access, Miller et al. presented an approach to reconstruct and dynamically update
a 3D model from images [17]. They use a hybrid representation consisting of a
regular grid and a shallow octree per grid cell. This data structure stores a
probabilistic, volumetric representation of the 3D model, i.e., each cell stores
the probability of being a surface “to represent the ambiguity in reconstruction
of surface from images”.

Based on the work of Miller et al. , Ulusoy and Mundy present an image-based
method to update a reconstructed 3D model of a real-world object only when a
change is detected in images at a later time [34]. “The resulting 4-d models allow
visualization of the full history of the scene from novel viewpoints[...], as well as
spatio-temporal analysis for applications such as tracking and event detection”.
They use the data structure proposed in their previous work [33]: a grid of octrees
for spatial decomposition, and binary trees for modeling temporal variation per
cell of the volumetric model. “This representation is shown to achieve compres-
sion of 4-d data and provide efficient spatio-temporal processing”. The proposed
data structure seems to fulfill many of the challenges described in Sect. 3.1. It
provides a compact memory representation, fast spatio-temporal access, easy
change detection, GPU support, and possibly efficient compression. Neverthe-
less, some challenges remain. Interoperability with existing approaches is not
given and chunking the data along the temporal dimension (for out-of-core or
LoD approaches) is difficult due to the nested structure. The scalability to city-
level scenes and long timespans is also in question, as in their approach the tree
depth is limited to enable fast GPU-based processing.
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4 Concept for an Incremental Spatio-temporal Data
Structure

In the following we describe the concept for a spatio-temporal data structure to
be used for smart city applications. To provide a compact memory representa-
tion, the temporal redundancy has to be eliminated. Therefore, the basic idea
is to store a base geometry G0 for a timestamp t0, while for each subsequent
timestamp ti, i > 0, only the changes Ci compared to the previous timestamp
ti−1 are stored (similar to Laplacian pyramids for images). As change detection
is an important task in the context of smart cities, storing the changes explicitly
is advantageous for monitoring and analysis.

4.1 The Problem of Using Point Clouds

As described in Sect. 1, 4D point clouds serve as the key component for applica-
tions in the area of smart cities. However, using a point cloud as base representa-
tion for the proposed data structure is problematic, as calculating changes is not
trivial for two point clouds due to missing point-to-point correspondences. Lague
et al. describe three basic approaches for point cloud change detection [13]: Grid-
based approaches, approaches based on intermediate representations (e.g., a local
plane or a mesh), or direct pointcloud-to-pointcloud comparison. Additionally,
they proposed the nowadays well-known M3C2 algorithm for change detection,
which is based on measuring the mean surface change along the surface nor-
mal for a number of representative core points. Nevertheless, point cloud change
detection is still an active field of research. In addition to the problem of com-
puting changes for point clouds, the question arises, how to store these changes,
especially if the number of points varies between point clouds from different
timestamps.

In summary, 4D point clouds, while easy to acquire, may not be the most
efficient way to store spatio-temporal data. This has been underlined as well by
other research in this area [17,33]. We therefore propose, to use a voxel-based
Signed Distance Function (SDF) representation that provides an interface for
access similar to a point cloud and can also be converted back to a point cloud
for faster processing, if necessary.

4.2 Voxel-Based, Signed Distance Field Representation

Point clouds are usually derived from LiDAR scans or RGB-D data. Using
Truncated Signed Distance Field (TSDF) fusion, such data can also be used
to reconstruct a voxel volume containing the signed distance to the surface for
every voxel in vicinity to this surface [5,10]. These signed distance fields have
some desirable properties.

In contrast to point clouds, they provide an implicit, continuous surface,
mitigating problems that are related to the sparsity of point clouds (e.g., ren-
dering closed surfaces or performing spatial scaling). Further, their regularity
makes them easy to process, e.g., in the context of compression. Due to their
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regular nature, the distance values can be directly interpreted as signals on a
3D grid. Based on this, Jones presents a lossless compression method for dis-
tance fields [11]. Point clouds, on the other hand, have to construct intermediate
data structures (e.g., octrees [15,16] or graphs [32]). The advantage of the reg-
ularity of distance fields, e.g., for compression purposes, is also underlined by
the fact that Laney et al. use a distance field as intermediate representation for
mesh compression [14]. Additionally, the regularity of distance fields leads to the
fact that they can be subtracted from each other, which is a useful property
for incremental storage approaches that exploit the temporal redundancy of the
data.

We therefore propose to use a TSDF volume as base representation in our
data structure. However, storing the full voxel grid is memory inefficient, espe-
cially in light of the fact that a change Ci might only contains few relevant voxel
cells. A sparse representation of the TSDF is therefore key to a compact storage
format. Niessner et al. presented a spatial hashing approach for TSDFs, with
a special focus on GPU-based, real-time reconstruction from depth data [22].
Their approach is well suited for sparse voxel grids that have to be updated very
often. This hash-based approach seems to be suitable as a base data structure in
the context of smart cities. It was developed for GPU-based processing, provid-
ing a compact memory representation through a sparse voxel structure, without
the overhead of hierarchical structures. Fast access is achieved by means of a
hash table, scalability in the spatial domain is ensured by out-of-core streaming.

We therefore propose to use such a hash-based approach for storing TSDFs,
representing the base geometry implicitly as a sparse field of distances. The
changes can also be stored in the form of TSDFs, understood as distance fields
in the temporal domain. Attributes, such as the color or semantic class, can also
be derived from RGB-D images or point clouds and stored in the data structure
for each voxel (in addition to the signed distance). Figure 2 gives an overview of
our proposed data structure.

4.3 Concept for Data Integration

We now describe how new scan data can be integrated, using the proposed data
structure. Given a base geometry G0 and changes up to this point C1, ..., Ci,
all of them represented as TSDFs. Data recorded for timestamp ti+1 can be
integrated in the following way:

1. Calculate TSDF for timestamp ti+1: Calculate Gi+1 directly from
LiDAR or RGB-D data for best results. Alternatively, a TSDF can be
deducted from a point cloud, e.g., using Jump Flooding [28] or neural
approaches [23].

2. Retrieve TSDF for ti: To retrieve TSDF Gi, accumulate the changes up
to timestamp ti:

Gi = G0 +
i∑

n=1

Cn. (1)
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Fig. 2. Conceptual overview of the proposed spatio-temporal data structure. In the
temporal domain, only changes to a base geometry are stored. For faster access, full
geometry representations are stored in regular intervals. Each geometry or change is
represented as a TSDF with different resolutions (LoDs), stored using a hashing app-
roach for compact memory representation. The geometry can be updated using RGB-
D images or other geometry representations (e.g., point clouds). This data structure
enables the access of single points at any timepoint and LoD, as well as the export
of the geometry at any timestamp ti. Additionally, the changes at different LoDs can
be inspected for analysis purposes. The TSDFs can be compressed easily (e.g., using
wavelet transforms).

3. Compute changes for ti+1 : Ci+1 = Gi+1 − Gi. It has to be ensured
that the spatial extent of both geometries is equal. Cases have to be handled,
where voxels contain distance values in Gi+1 but not in Gi or vice versa.

As two scans are never exactly the same, even if nothing has changed in the
scene, approaches have to be developed to avoid storing “changes” that are none.
A (local) threshold-based approach could be used, where the amount of change
is measured and the change is only stored if it exceeds the threshold. However,
it has to be considered that some things change slowly over time, e.g., plants.

To facilitate LoD approaches, the base geometry and the changes C1 ... Cn

can also be stored in different granularity levels (TSDF resolutions). Similar to
storing only the changes to the previous timestamp in the temporal domain,
we store in the spatial domain for each LoD the change to the previous LoD.
To obtain a representation for a specific LoD, the different levels have to be
summed. The memory impact and the access times (especially for higher LoDs)
for such an approach would have to be investigated.
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4.4 Concept for Spatio-temporal Access

Access in the spatial domain is achieved by means of a hash table, as described
in [22]. Access in the temporal domain, requires accumulation of changes up to a
certain timestamp. To access the distance value stored at a voxel vi = (x, y, z, ti),
the changes to this voxel have to be accumulated:

vi = v0 +
i∑

n=1

vn. (2)

The performance of this accumulation of changes is dependent on the access
performance of the underlying spatial data structure that is used for storing the
TSDFs.

A high resolution in the temporal domain could lead to decreased access per-
formance, as possibly a lot of changes have to be accumulated. This problem can
be mitigated by storing a full representation every x timestamps and calculating
vi as:

vi = va +
i∑

n=a+1

vn, with a =
⌊
i

x

⌋
∗ x. (3)

Alternatively, multiple changes could be squashed into one change representation
after a certain valid-time for the recorded data has been exceeded.

4.5 Support for Machine Learning

Machine learning is a fundamental building block for smart cities. “The advance-
ment of data science, particularly the machine learning techniques, will comple-
ment existing theories of cities and infrastructure and jointly contribute to the
essential knowledge for developing digital twins” [35]. Thus, a data structure has
to support existing machine learning approaches.

Camuffo et al. give a comprehensive overview of deep learning approaches
for point clouds in the areas of semantic scene understanding, compression,
and completion. Additionally, they introduce typical data structures, acquisi-
tion approaches, and common point cloud data sets [4]. “When dealing with
deep learning algorithms, point clouds are usually not the most suitable data
structure to process. Thus, the input data are frequently subject to transforma-
tions that allow them to satisfy the specific needs of the architecture” [4]. Deep
learning approaches either operate

– Discretization-based: The point cloud is transformed into a discrete struc-
ture, such as a voxel grid or an octree (e.g., SEGCloud [31], LatticeNet [29]).

– Projection-based: The point cloud is remapped to a simpler structure,
such as multiview images, a sphere, or a cylinder (e.g., SnapNet [2], Squeeze-
Seg [36]).

– Point cloud-based: The neural net directly processes the points (e.g., Point-
Net [24], RandLA-Net [9]).
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Using the proposed TSDF-based storage format, all of these deep learning
input formats can be derived. A point cloud can be computed in a preprocess-
ing step by retrieving the distance value for each surface voxel for a timestamp,
computing the surface normals using central differences, and deriving the corre-
sponding surface points. If no preprocessing should take place, the points can also
be directly accessed without prior conversion to the full geometry. This involves,
however, distance value accesses and normal calculation, every time a point
is accessed. The ability to convert from TSDFs to point clouds and vice versa
ensures the interoperability with existing analysis approaches. While the derived
point cloud can then be converted to the other input formats, it is also possible
to directly use the TSDF-based representation. As the proposed data structure
is already regular and discrete it can be used directly for discretization-based
approaches. However, for some deep learning approaches it might be required to
convert the distances to occupancies and arrange the voxels in a hierarchical data
structure. The TSDF-based data structure can also be used for projection, using
ray marching methods. As a TSDF provides a continuous surface, the problem
of holes, when using point clouds, is mitigated.

5 Conclusions

This work presented the digital twin as one of the key components for smart city
applications. Such digital twin is the basis for real-time monitoring and offline
analysis of the physical world. Therefore, it has to reflect the current status
of the physical object, memorize the state changes, and offer functionality for
simulation and prediction.

We focused on exploring the boundary conditions, requirements, and chal-
lenges of a data structure for spatio-temporal data in this context. We derived
these requirements and challenges from the applications and characteristics of dig-
ital twins for use in smart city systems. Providing a high spatial scale and sufficient
detail, while maintaining a compactmemory representation is one of the main chal-
lenges for such a data structure. Further, fast access and LoD support for GPU-
based analysis approaches is required. New data has to be integrated efficiently
and existing analysis methods should be able to operate on the data structure.
Compression approaches are useful for archiving and transmission of data.

These requirements should be considered, when searching for a data structure
that is suited for the spatio-temporal data that we have to store and process for
enabling smart cities.

While 4D point clouds are commonly used in the context of digital twins,
as they are a typical artifact of environment scanning, they come with high
storage requirements and deficiencies regarding LoD approaches. We therefore
proposed to use a TSDF-based data structure, using an incremental storage
scheme for exploiting redundancy in the temporal domain. The data structure
has the following advantages:

– In comparison to storing single point clouds for each timestamp, the mem-
ory requirements are reduced by only storing changes to a base geometry.
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This base geometry is represented as a TSDF using a hash-based approach,
facilitating further compression.

– High spatial scale and high detail is supported by using a sparse distance
field and disentangling the spatial and temporal domain, facilitating out-of-
core approaches.

– Fast access is facilitated by avoiding deep hierarchical data structures.
– Interoperability with existing approaches is ensured as direct access to point

data or conversion to other geometry representations is possible.
– LoD approaches for adapting to different resolution requirements are enabled

by decomposing the geometry into different spatial granularities.
– Explicitly storing the changes over time, enables efficient change detection,

which is one of the main tasks for a digital twin in the context of smart cities.

The presented data structure is to be understood as a first proposal and
conceptual step towards developing a base data structure for smart city appli-
cations. In the future, it has to be tested thoroughly and the performance with
respect to the presented requirements, different data acquisition techniques, and
different application domains has to be studied in more detail.
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22. Nießner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3d reconstruc-
tion at scale using voxel hashing. ACM Trans. Graph. 32(6), 169:1–169:11 (2013).
https://doi.org/10.1145/2508363.2508374

https://doi.org/10.1109/MMUL.2018.023121167
https://doi.org/10.1109/CVPR42600.2020.01112
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.1109/ACCESS.2019.2946515
https://doi.org/10.1016/j.isprsjprs.2013.04.009
https://doi.org/10.1016/j.isprsjprs.2013.04.009
https://doi.org/10.1109/TDPVT.2002.1024102
https://doi.org/10.1109/TBC.2019.2957652
https://doi.org/10.1109/TIP.2020.3011811
https://doi.org/10.1109/TIP.2020.3011811
https://doi.org/10.1145/1964179.1964190
https://doi.org/10.1109/MITP.2020.2982896
https://doi.org/10.1109/MITP.2020.2982896
https://doi.org/10.1109/JIOT.2017.2647881
https://doi.org/10.1109/JIOT.2017.2647881
https://smartcities.media.mit.edu/frameset.html
https://smartcities.media.mit.edu/frameset.html
https://doi.org/10.1016/j.compenvurbsys.2010.05.002
https://doi.org/10.1145/2508363.2508374


Concepts and Challenges for 4D Point Clouds 605

23. Park, J.J., Florence, P., Straub, J., Newcombe, R.A., Lovegrove, S.: Deepsdf: Learn-
ing continuous signed distance functions for shape representation. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2019, pp. 165–174.
Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.
00025

24. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for
3d classification and segmentation. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017. pp. 77–85. IEEE Computer Society (2017).
https://doi.org/10.1109/CVPR.2017.16

25. Qi, Q., Tao, F.: Digital twin and big data towards smart manufacturing and indus-
try 4.0: 360 degree comparison. IEEE Access 6, 3585–3593 (2018). https://doi.org/
10.1109/ACCESS.2018.2793265

26. de Queiroz, R.L., Chou, P.A.: Motion-compensated compression of dynamic vox-
elized point clouds. IEEE Trans. Image Process. 26(8), 3886–3895 (2017). https://
doi.org/10.1109/TIP.2017.2707807
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