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Abstract. In the digitization of energy systems, sensors and smart
meters are increasingly being used to monitor production, operation and
demand. Detection of anomalies based on smart meter data is crucial
to identify potential risks and unusual events at an early stage, which
can serve as a reference for timely initiation of appropriate actions and
improving management. However, smart meter data from energy sys-
tems often lack labels and contain noise and various patterns without
distinctively cyclical. Meanwhile, the vague definition of anomalies in
different energy scenarios and highly complex temporal correlations pose
a great challenge for anomaly detection. Many traditional unsupervised
anomaly detection algorithms such as cluster-based or distance-based
models are not robust to noise and not fully exploit the temporal depen-
dency in a time series as well as other dependencies amongst multi-
ple variables (sensors). This paper proposes an unsupervised anomaly
detection method based on a Variational Recurrent Autoencoder with
attention mechanism. with “dirty” data from smart meters, our method
pre-detects missing values and global anomalies to shrink their contri-
bution while training. This paper makes a quantitative comparison with
the VAE-based baseline approach and four other unsupervised learning
methods, demonstrating its effectiveness and superiority. This paper fur-
ther validates the proposed method by a real case study of detecting the
anomalies of water supply temperature from an industrial heating plant.

Keywords: Anomaly detection · Variational autoencoder · Smart
meter data · Attention mechanism

1 Introduction

To achieve sustainable development, effective management of production, dis-
tribution, transport and consumption of smart energy systems has become a
focus for researchers and engineers [23]. As the operations of energy systems
can be disrupted by various events such as equipment failures, power outages
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and malfunctions, energy systems have started to use Internet of Things (IoT)
sensors and smart meters for monitoring and automation. Therefore, anomaly
detection in smart meter data plays an important role in ensuring the healthy
operation of an energy system. When performing anomaly detection, three types
of anomalies are widely detected: global, contextual and collective anomalies [7].
In this paper, we mainly focus on global and contextual anomalies (defined in
Sect. 3.1) from smart meter data. Global and contextual anomalies may indicate
equipment failures or wrong operations. These two types of anomalies detection
are needed for providing early warnings, thus reducing or avoiding economic
losses. Figure 1 illustrates examples of these two types of anomalies in smart
meter data.

contextual anomaly

global anomaly

Fig. 1. A fragment of the water supply temperature data set in our paper, with global
and contextual anomalies marked as red dots. (Color figure online)

However, using smart meter data to detect anomalies faces some key chal-
lenges. First, smart meter data are the time series data from production or
consumption, and are characterised by different seasonal patterns and highly
nonstationary. Various patterns and nonstationary data require more generic
and robust anomaly detection methods. Second, smart meter data are typically
of high volume, high dimensionality and lack of labeled anomalies, which neces-
sitates the use of unsupervised or semi-supervised approaches. In addition, there
are many data quality issues for the collected data, such as missing values, out-
liers and temporal inconsistency. How to deal with “dirty” data will affect the
performance of results.

Currently, there are several algorithms for detecting anomalies in energy
data, such as [6,15,22,29], but these algorithms are mainly designed to detect
point anomalies and do not distinguish between global anomaly and contextual
point anomaly. In addition, irregularly missing points should also be considered
as anomalies, which occur very frequently in the time series of smart meters due
to transmission or meter failures. It is therefore necessary to develop an effective
and reliable anomaly detection model for smart energy systems.
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In this paper, we propose an unsupervised anomaly detection algorithm for
global and contextual anomalies in smart meter data by using variational recur-
rent autoencoders (VRAE) with attention. This algorithm can work without
labels and takes advantage of the pre-detected global anomalies while training.
It can also take advantage of the occasional labels when they are available.

– We adapt and extend VRAE models by taking into account anomaly detec-
tion for smart meter data. The proposed model is capable of detecting not
only global anomalies but also contextual anomalies. Although the model is
presented for smart meter data, it can also be applied to other time series
with time dependency.

– We propose the method for minimising the impact of global anomalies and
missing points on latent variables in the model training, using linear inter-
polation and an improved evidence lower bound function, which can improve
the model performance.

– We evaluate the method comprehensively by comparison with other baseline
methods using a synthetic data set; and present a real world case study for
the proposed method.

2 Related Work

2.1 Traditional Anomaly Detection Methods

Traditional anomaly detection methods include the traditional statistical
approaches, e.g., [10,16,19,33,41,43], the clustering-based approaches, e.g., [8,
42], the prediction-based approaches, e.g., [20–22], the nearest neighbour
approaches, e.g. [5,16,18], the dimensionality reduction approaches, e.g. [10,32]
and other complementary models. These approaches can show good performance
and effectiveness for their specific applications. However, due to the wide vari-
ation of energy data such as patterns, domain expert effort is often required to
select a suitable detector for a particular type of anomaly. In addition, since
most existing methods have their constraints or limitations in terms of parame-
terisation, interpretability and generalisability, a detection framework based on
ensemble learning cannot even help to achieve better results.

2.2 Unsupervised Deep Learning Models

A rich body of literature presents unsupervised learning algorithms for detecting
anomalies using deep learning techniques, among many others, which include [11,
26,27,38,40]. Deep learning approaches can be further categorised into predictive
models [27], VAE [1], Generative Adversarial Networks (GAN) [9] and VRNN
[35]. For modeling sequential data such as time series, Recurrent Neural Networks
(RNNs) show their advantage over others because of their capability to model
long-term temporal dependence. RNNs (e.g. the Long and Short Term Memory
(LSTM) [14] and the Gated Recurrent Unit (GRU)) introduce the so-called
internal self-looping states in the network, which can accumulate information
from the past. [31] combined ARIMA and LSTM to train a prediction model
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for energy anomaly detection. In this paper, we introduce LSTM into our neural
network architecture for modeling the temporal dependence of time series.

VAE has been successfully applied in several applications for anomaly
detection tasks, including [30,36,38,39]. Hollingsworth et al. [15] proposed an
autoencoder-based ensemble method to detect anomalies in building energy con-
sumption data and evaluated their performance among reconstruction ability,
high-level feature quality and computation efficiency. Compared to autoencoders,
the variational inference technique [12] implements the encoding of the latent
space as a distribution and enables the probabilistic reconstruction of a sin-
gle generated value by a probabilistic model [1]. However, in the field of smart
energy, few applications have previously used generative models to detect anoma-
lies. Existing work based on VAE is not designed for energy smart meter data
and requires domain experts in detectiong different types of anomalies.

2.3 Attention Mechanism for Deep Learning Models

Attention mechanisms [3,24,37] have been introduced to obtain state-of-the-
art performance when modeling sequences such as natural language processing.
Attention mechanism can model the relationship regarding different positions of
a single sequence or across multiple sequences to obtain representative sequences.
For example, Pereira et al. [29] used weighted sum of all encoder hidden states
as the attention, which are then fitted to the decoder. The attention mechanism
can, therefore, tackle the weakness of processing a long sequence by neural net-
works. However, there are still limited attempts and their application in anomaly
detection for energy time series data which exists temporal interdependency at
different time positions.

3 Problem Statement and Proposed Method

3.1 Problem Statement

Given historical data of n-dimensional time series with length T , i.e. X =
(x1, · · · ,xn)T ∈ R

n×T , our method is capable of detecting two types of anoma-
lies:

(a) Global anomalies: given an input time-series X, a global anomaly is a
timestamp-value pair 〈t, xt〉 where the observed value is far from the rest of
the data.

(b) Contextual anomalies: given an input time-series X, a contextual
anomaly is a timestamp-value pair 〈t, xt〉 where the observed value differs
significantly from its neighbours in the same context, but is not a global
anomaly.

3.2 Proposed Method

Global Anomaly Detection and Labeling. Data collected from real world
applications are often dirty, which require preprocessing before being used for
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analysis. The training process for the anomaly detection should ideally learn from
“normal” data, rather than learn from abnormal data. One of challenges of unsu-
pervised anomaly detection methods is how to minimise the impact of abnormal
data as much as possible. Hence, we detect global anomalies and sequential
missing points and label them as anomalies before training. We use a statisti-
cal method based on histograms of each dimension. For multivariate time series
with n dimensions, we first construct a univariate histogram with k bins for each
dimension. Second, the frequency of samples in each histogram (dimension) is
used as a density estimate of those samples. The higher the score of a sample,
the higher the probability of anomaly.

For the missing points, we categorise them into the following two categories:
single missing values and sequential missing values. For single missing values,
we fill them with synthetically generated values using linear interpolation. For
sequential missing values, the imputation error for missing data is accumulated
according to the length of the missing subsequences. As it is difficult to gen-
erate sequential data that follow their original patterns, we therefore fill these
sequential missing values with zeros and label them as anomalies.

Network Architecture and Implementation. Figure 2 shows the overall
neural network architecture of the proposed model. As shown in the figure, mul-
tivariate time series data come from smart meters of industries. Given multivari-
ate time series X, we first use a sliding window with length W to segment the
time series into subsequences e.g. (xt−W+1, . . . , xt). The subsequences are then
used as the input of the proposed model which uses a variational auto-encoder
architecture with LSTM to learn normal patterns from training data. The right
side of Fig. 2 shows the detailed network structure with attention mechanism.
The network structure is a variational recurrent auto-encoder which is composed
of an encoder and a decoder.

Fig. 2. The network architecture of the proposed model.
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In the VRAE, the encoder compresses the input time series into the fixed-
length latent representation z based on the variational distribution qφ(z | x) and
outputs the hidden states ht as the summary of the past information until the
time at t. The latent variables z are drawn from a distribution with a given prior
pθ(z), which is usually a multivariate unit with Gaussian distribution N (0, I).
Here, we assume the prior distribution of the latent variables z as a multivari-
ate normal distribution, pθ(z) ∼ N (0, I). The outputs of the encoder are the
parameters (μz and σz) for the posterior qφ(z | x). The approximate posterior
qφ(z | x) of z is diagonal Gaussian qφ(z | x) ∼ N (

μz,σz
2I

)
, where the mean μz

and the co-variance Σz = σz
2I are derived from the two fully connected layers

(μz and σz layers in Fig. 2) with Linear and SoftPlus activations, respectively.
The latent variable z (chosen to be K dimensions) are then sampled from the
approximate distribution with reparameterization trick, z = μz + σz · ε, where
ε ∼ Normal(0, I) is an independent random variable used for feasible stochastic
gradient descent. The decoder also uses a LSTM network to reconstruct the data
from latent variable z through the generation distribution pθ(x | z), and outputs
the parameters (μx and σx) of pθ(x | z).

The objective of a VAE is to maximise the evidence lower bound (ELBO),
L (θ, φ;x), which can be written as follows:

log pθ(x) ≥ L (θ, φ;x)
= Eqφ(z|x) [log pθ(x | z)] − DKL (qφ(z | x)‖pθ(z))

(1)

where the φ and θ are the parameters of the encoder and decoder, respectively.
The first item of the right-hand side of the equation is the reconstruction loss,
which can be approximated by Monte Carlo integration [1]. The second item
DKL is the Kullback-Leibler (KL) divergence between the approximate posterior
and the prior distribution of the latent variable z.

To tackle the posterior collapse in the variational inference and the weakness
in a long sequence, we additionally apply self-attention mechanism that promotes
interaction between the inference model and the generative model. The attention
model extracts a context vector based on all hidden states encoded from the
input time series. The LSTM encoder computes all hidden states {si}Tx

i=1 from
the input time series, while the LSTM decoder estimates the hidden state ht at
each time t by a recurrent function using the previous hidden state ht−1 and
the context vector, denoted by:

ht = f (ht−1, ct) where ct =
Tx∑

i=1

αtisi (2)

where ct is the context vector containing the weighted sum of all source
hidden states si encoded from the input time series. The attention weights,
αt = {αti}Tx

i=1 , are computed by the score function of measuring the similarity
between the hidden states st at time t in the encoder and all hidden states {si}Tx

i=1

of the last recurrent layer in the encoder. The self-attention models the relevance
of each pair of the hidden states of different time instances in the encoder. Here,
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we use the scaled dot-product similarity [37] as the score function because of its
high learning efficiency for a large input.

Due to the bypass phenomenon [4], the variational latent space may not learn
much due to the powerful attention mechanism. We therefore use the variational
attention mechanism to model context vectors as probability distributions. We
choose the prior distribution of the context vectors ct as the Gaussian standard
distribution, i.e., ct ∼ Normal(0, I). We do the same for the latent variables.
The encoder first computes the deterministic context vector ct =

∑Tx

i=1 αtisi,
then passes it to the linear layers to compute the parameters of the approximate
posterior q

(a)
φ (ct | x) ∼ Normal(μct

,Σct
),μct

and Σct
. The decoder takes the

concatenation of the sampled z and the sampled ct from their approximated
posteriors as the input, and generates the parameters of pθ(x | z) as the output.

3.3 Loss Function – ELBO+

With the variational attention mechanism, the variational lower bound L (θ, φ;x)
in Eq. 1 becomes:

L(θ, φ,x) = Ez ,c∼qφ(z ,c|x) [log pθ (x | z, c)]

−DKL (qφ (z, c | x) ‖p(z, c))
(3)

To minimise the effects of learning from abnormal data, we mitigate the con-
tribution of global anomalies (pre-detected) and missing points by introducing
a weighted vector, β = {βi}Tx

i=1, to log pθ (x | z, c) shown in Eq. 4. If xi is an
anomaly, then βi = 0, otherwise βi = 1. We name this improved ELBO as
ELBO+, where λkl weights the reconstruction loss and the KL loss and ηa

weights the latent KL loss and the attention KL loss. The training objective is
to maximise the ELBO in Eq. 4, which is the negative of the loss function for
VAE. Theoretically, the anomalies present can also influence the KL losses, but
the hyperparameters λkl and ηa can reduce the ratio of KL losses. We therefore
do not reduce their contribution to the KL loss.

L(θ, φ,x)+ = E
z∼q

(z)
φ (z |x),ct ∼q

(a)
φ (ct |x)

[β log pθ (x | z, c)]

−λkl

[
DKL

(
q
(z)
φ (z | x) ‖p(z)

)

−ηa

T∑

t=1

DKL

(
q
(a)
φ (ct | x) ‖p(ct)

)
] (4)

3.4 Anomaly Detection

Since the generative model reconstructs the input time series based on the prob-
ability distribution, it can derive different outputs according to the probability
distribution. Normally, rare events (anomalies) have lower probabilities. The rar-
ity of events can be measured by the reconstruction probability, log pθ (x | z),
which can be calculated through the Monte Carlo method.
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The encoder first generates the parameters of the approximate posterior dis-
tribution log pφ (z | x) using the test data. Then, sampled latent variables (L
samples) are derived from the approximate posterior distribution. The sam-
pling strategy for latent variables takes into account the variability of the latent
space in order to increase the robustness of anomaly detection. For each sample,
the decoder outputs the parameters of the approximate posterior distribution
log pθ (x | z). In the end, the average reconstruction probability of each sample
is calculated from the output parameters, i.e.,

Ez∼qφ(z |x)) [log pθ (x | z)] ≈ 1
L

L∑

l=1

log pθ (x | μl,σl) (5)

where μl and σl are the parameters as the output from the decoder for the
approximate distribution log pθ (x | z).

The reconstruction probabilities are then used as anomaly scores (between
0 and 1), which measure the strength of the anomaly of input values. We con-
sider the observations whose anomaly score is greater than 0.5 as the contextual
anomalies for the experiments in the next section. This value can be tuned as
per the requirement of the problem.

4 Experiments

4.1 Data Sets and Experimental Setup

We use two data sets for the experiments, a synthetic data set generated by
PyOD for the detection performance evaluation and a real smart meter data set
about water supply temperature for district heating. In the real smart meter
data set, we segment the time series into subsequences by a sliding window with
a length of 168, and divide the subsequences into a training set, a validation set
and a test set with a ratio of 75/15/10. We use PyTorch v1.6.0 to implement
our algorithm and train the models via CPU i9-9900 and NVIDIA GTX 2080
Ti graphics cards with 16G RAM on Ubuntu 16.04. More details are included
in appendices.

4.2 Evaluation by Comparison with Baselines

To evaluate our method, we compare it with 4 traditional methods and VAE-
baseline using the synthetic data set, and use Precision (P), Recall (R) and F1
score (F1) as the metrics for the comparison. The comparing methods includes
Cluster-based Local Outlier Factor (CBLOF) [13], K nearest Neighbors (KNN)
[2], Principal component analysis (PCA) [34], One-class support vector machines
(OCSVM) [28] and VAE-baseline [17]. The generated time series data by PyOD
have 24,000 data points with 5 features, including 20% abnormal data points.
The normal 20,000 points are used for training and 4,000 points for testing.
Table 3 shows the hyperparameters used in our model.
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From the results in Table 2, we can see that our method outperforms all oth-
ers and are more effective for anomaly detection in terms of all three metrics.
In general, the VAE-based networks have shown better performance in learning
normal patterns from the train set. It also confirms that recurrent neural net-
works have a good capability to model long temporal dependency of time series
(Table 1).

Table 1. Model hyperparameters

LSTM hidden layers 2

Units in hidden layers 218

Sequence length (W ) 168

Latent dimensions 3

Training iterations 550

Learning rate 0.0001

Batch size 1024

Optimiser Adam

λkl 0.01

ηa 0.01

Table 2. Performance on the synthetic
dataset

Method Metrics

P R F1

CBLOF 0.65 0.68 0.66

KNN 0.69 0.69 0.69

PCA 0.83 0.84 0.83

OCSVM 0.82 0.82 0.82

VAE-baseline 0.89 0.90 0.90

Ours 0.95 0.93 0.94

4.3 An Empirical Case Study

We next evaluate the proposed method by an empirical case study, which detects
the “anomalies” in the water temperature time series from an industry district
heating company. The data is recorded from 19/09/2019 11:05:00 to 11/08/2020
15:00:00 with 23 sensors in irregular minute-level, with a total of 220,097 obser-
vations for each time series. We align these fine-grained readings to hourly res-
olution by aggregation, and obtain 7,582 observations for each time series.

Fig. 3. Latent space visualisation of
training set

Fig. 4. F1 score of different models

For visualisation purposes, we reduce the 3-dimensional latent variables of
the training set to 2D and visualise them using Principal Component Analysis
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(PCA) and t-distributed Stochastic Neighbour Embedding (t-SNE) [25]. Figure 3
shows the projected points of subsequences in the latent space by the dimensional
reduction methods, t-SNE and PCA, respectively. The more similar subsequence
are, the closer these points are placed. The color legend represents the time from
the beginning (bottom) to the end (top) sequences.

Effects of ELBO+ and Pre-detected Global Anomalies. To our knowl-
edge, minimising the impact of anomalies during training can assist the learning
processing of networks. To exam the effectiveness of the pre-detected global
anomalies and our modified ELBO loss function, we calculate F1 score in the
test set of the real smart meter data set to compare the performance under
different conditions. The F1 score is a measure of test accuracy and calculated
from the precision and recall of the test. The four models are (1) VAE base-
line, (2) VAE with global anomaly detection, (3) VAE with elbo+, and (4) VAE
with both global anomaly detection and elbo+. Figure 4 shows that predetected
global anomalies and elbo+ have a positive effect on anomaly detection and our
model outperforms the VAE baseline.

From Fig. 3, the latent space has a clear tendency to group which implies
there are distinct features between subsequences. Here, we gives three exam-
ples (Fig. 5) of subsequences in a time series with distinctive features. From
19/09/2019 to 12/12/2019, the transmission water temperature for district heat-
ing continuously is 74.2 °C, which is a straight line (s1). s2 is about 68.4 °C and
is stationary. By contrast, s3 has a lower temperature and is nonstationary.

Fig. 5. Distinctive features (or pat-
terns) in hot water temperature time
series.

Fig. 6. An example of a contextual
anomaly with corresponding anomaly
scores.

The model outputs reconstruction probabilities of time series as anomaly
scores for each point. When the anomaly score is higher than 0.5, the corre-
sponding point is classified as an anomaly. We give an example of detected
contextual anomalies in hot water temperature dataset. Figure 6 shows a con-
textual anomaly example and the corresponding anomaly scores of points. The
red dot indicates a contextual anomalies.
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5 Conclusions and Future Work

In this paper, we proposed an unsupervised anomaly detection algorithm for
smart meter data using VRAE with attention mechanism. Our method can
detect different types of anomalies including global and contextual anomalies.
The enhanced ELBO+ function can mitigate the contribution of global anoma-
lies and missing points. We have evaluated our method comprehensively and the
results have demonstrated the effectiveness and superiority of our method. For
future work, we would further improve our case study by applying a real-time
architecture for online anomaly detection. We would also address dealing with
concept drifts during the anomaly detection process.

Acknowledgements. The research was supported by Heat4.0 project (8090-00046A)
and the project FlexSUS: Flexibility for Smart Urban Energy Systems (91352) funded
by the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 77597.

A Appendix

A.1 Data sets

We use two types of data sets for the experiments: a synthetic data set and a real
smart meter data set. We use the PyOD toolkit [44] to generate synthetic data
sets with anomalies. The normal data were sampled from a multivariate Gaussian
distribution, while the anomalies were sampled from a uniform distribution. The
generated time series data have 24,000 data points with five features, including
20% abnormal data points. The normal 20,000 points are used for training and
4,000 points for testing.

The smart meter data are the supply hot water temperature provided by
a district heating company in Denmark. As there are no labels in the time
series, the anomalies are detected by the unsupervised learning method. The
data used are from 19/09/2019 11:05:00 to 11/08/2020 15:00:00. The time series
data before 04/12/2019 09:00 have an hourly resolution, but have an irregular
minute-level resolution after that time, ranging from 1 to 5 min, with a total of
220,097 observations. Therefore, we align these fine-grained readings to hourly
resolution by aggregation, and obtain a total of 7,582 observations.
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A.2 Experimental setup

Table 3. Model hyperparameters

LSTM hidden layers 2

Units in hidden layers 218

Sequence length (W ) 168

Latent dimensions 3

Training iterations 550

Learning rate 0.0001

Batch size 1024

Optimiser Adam

Input dimensions 5 (synthetic data), 23 (real data)

Divergence ratio λkl 0.01

Attention divergence ratio ηa 0.01

Table 3 shows the model parameters used in the experiments. We use the window
size W = 168, as a smaller size may not be able to capture the normal patterns,
while a larger size may increase the risk of overfitting. We set the latent space
to 3 dimensions for visualization purposes. The encoder and decoder consist of
two hidden LSTM layers, 218 units in each layer. We have tested several combi-
nations of hyperparameters, including the number of the hidden LSTM layers,
the number of hidden units in each layer, and the sequence length. However, the
results do not show much difference in terms of the loss. The number of training
iterations is determined based on the convergence of training loss and validation
loss.
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