
High Performance Software Systolic
Array Computing of Multi-channel

Convolution on a GPU

Kazuya Matsumoto(B) , Yoichi Tomioka , and Stanislav Sedukhin

The University of Aizu, Aizu-Wakamatsu, Fukushima, Japan
{kazuya-m,ytomioka,c21stans}@u-aizu.ac.jp

Abstract. The multi-input/multi-output (MIMO) channel 2D convo-
lution is the most compute-intensive operation in Convolutional Neural
Networks (CNNs). This paper presents a high-performance implemen-
tation for the MIMO convolution by extending the well-known software
systolic array model (SSAM) in which the partially computed results
are shifted or shuffled across multiple threads in a CUDA warp to com-
pute the single-input/single-output (SISO) channel convolution. We pro-
pose two methods for computing a full MIMO convolution on the GPU
system. In the first method, the MIMO convolution is performed by
iterations of the multi-input/single-output (MISO) convolution across
multiple output channels while the second method iterates the single-
input/multi-output (SIMO) convolution across multiple input channels.
Both methods systolically shuffle partial results multiple times during the
MIMO computing. It is shown that the first method mostly demonstrates
a higher performance than the second one, since the first one reuses data
effectively on the L1/L2 caches as well as on the register files. We also
experimentally demonstrate that a single-precision performance of the
directly implemented MIMO convolution is much better than that of the
SSAM/SISO-based convolution and a GEMM-based MIMO convolution
of the NVIDIA cuDNN library.

Keywords: Multi-channel convolution · Software systolic array · GPU

1 Introduction

Currently, Convolutional Neural Networks (CNNs) are an effective approach in
machine learning to solve many kinds of real world problems. CNNs need a large
amount of computations for both the training and inference procedures. CNNs
consist of several layers including convolution, activation, fully-connected, and
other types of layers. In particular, the convolution layers are the most compute-
intensive part in the advanced CNN models. The required multi-channel 2D
convolution can be implemented in different ways either by converting it to the
General Matrix-matrix Multiplication (GEMM) [2,7], Winograd algorithm [3],
Fast Fourier Transform (FFT) [6], or by direct computing [8].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Gervasi et al. (Eds.): ICCSA 2022, LNCS 13375, pp. 298–309, 2022.
https://doi.org/10.1007/978-3-031-10522-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10522-7_21&domain=pdf
http://orcid.org/0000-0001-5858-1598
http://orcid.org/0000-0003-3509-6607
http://orcid.org/0000-0002-0071-5140
https://doi.org/10.1007/978-3-031-10522-7_21


High Perf. Software Systolic Array Computing of Multi-channel Convolution 299

In [1], the authors have demonstrated that an SSAM single-input/single-
output channel (SISO)-based direct computing can achieve a much higher per-
formance than deep learning libraries such as cuDNN, ArrayFire and Halide on
Graphics Processing Units (GPUs). However, to accelerate deep learning fur-
ther we need an extension of the SSAM-based approach for the basic multiple-
input/multiple-output (MIMO) channels convolution because the convolutional
layers of CNNs typically deal with a tensor data with MIMO channels.

The SSAM-based input-stationary approach proposed in [1] realizes a sys-
tolic data movement for SISO convolution using CUDA shuffle primitives. The
approach reuses the input feature map from caches and intermediate results on
the register files more effectively and reduces the time and energy expensive
DRAM read/write accesses, which are helpful to extract a higher performance
and, at the same time, to reduce energy consumption. However, for the MIMO
convolution, we need much more data for computing each output pixel. There-
fore, it is essential to effectively use the L1/L2 caches as well as register files to
extract the full performance of the SSAM-based approach.

This paper presents a high-performance implementation for the multi-channel
convolution computing by extending the SSAM-based convolution kernel. We
propose two methods for the multi-channel convolution computing on the
GeForce RTX 3090 of the NVIDIA Ampere GPU architecture. The first method
conducts iterations of a multi-input/single-output convolution. In the second
method, iterations of a single-input/multi-output convolution are conducted by
keeping the partial sums during the MIMO computing. This paper presents per-
formance evaluation results by using a profiling tool and describes performance
comparison results with the original SSAM/SISO-based convolution kernel and
the NVIDIA cuDNN library.

2 Convolution Implementations with Software Systolic
Array for Multi-input and Multi-output Channels

The terminology used in this paper is described in Table 1. The 2D convolution
is expressed as

y[i, j] = (x ∗ w)[i, j] =
au∑

s=al

bu∑

t=bl

x[i − s, j − t] · w[s, t],

where ∗ is the convolution operation, · is the multiplication operation, w is a
filter of the size M × N (M = au − al + 1 and N = bu − bl + 1), x is a 2-
dimensional input matrix (or image) of the size H×W , and y is a 2-dimensional
output matrix of the size (H + 2pad − M + 1) × (W + 2pad − N + 1) (pad
is a padding value). The multi-channel convolution with C-input channels and
K-output channels is expressed as



300 K. Matsumoto et al.

ym[k, i, j] = (xm ∗ wm)[k, i, j]

=
C∑

c=1

au∑

s=al

bu∑

t=bl

xm[c, i − s, j − t] · wm[k, c, s, t]. (1)

wm is a filter of the size K × C × M × N . xm is an input tensor of the size
C ×H ×W . ym is an output tensor of the size K × (H + 2pad−M + 1) × (W +
2pad − N + 1).

Table 1. Terminology

Term Description

H Input image height

W Input image width

M Filter height

N Filter width

C The number of input channels

K The number of output channels

xm Input tensor

ym Output tensor

wm Filter tensor

pad Padding value

BS CUDA thread block size

P Number of rows processed by each thread

In this study, the given tensor data are stored in KCHW, CHW, and KHW
orders for filter, input and output tensors, respectively. For example, in the
KCHW order, the W data elements of the same row are continuously stored,
the H ×W matrix data for each of C input channels are continuously allocated,
and the C ×H ×W tensor data for each of K output channels are continuously
stored.

The methods proposed in this paper basically follow the 2D convolution
algorithm by the Software Systolic Array Model (SSAM) described in [1]. The
software systolic array simulates a mechanism of hardware systolic arrays, and
the SSAM is suitable for memory-bound computations with regular memory
access patterns. The features of the SSAM-based 2D convolution algorithm are
as follows:

– All data of filters are stored into shared memory in the beginning of the
CUDA kernel and are reused during the convolution computing.

– Input image data are cached into registers. A sliding window scheme is used
for the careful management of the limited number of registers.



High Perf. Software Systolic Array Computing of Multi-channel Convolution 301

– Each thread in a CUDA warp caches D(= N + P − 1) elements of the input
image also in the beginning, where P is the number of sliding window steps.
Hence, each thread computes the P rows of elements in the image.

– The input data are multiplied with the filter data and the product is accumu-
lated. The computation is conducted by the fused multiply-add (MAD) oper-
ation, and the partial sums are transferred to the neighbor threads by the
shuffle primitive.

CUDA kernels are called with a block dimension (blockDim) and a grid
dimension (gridDim) of the 3D arrays. The blockDim denotes the number of
threads in a block. The gridDim denotes the number of the blocks in a grid. In
this study, the dimensions of the CUDA kernels are given as

blockDim = (BS, 1, 1) and

gridDim = (� W + 2pad
WarpCount · (WarpSize − N + 1)

�, �H + 2pad
P

�, 1),

where BS is the CUDA thread block size, WarpSize is the CUDA warp size,
and WarpCount = BS/WarpSize. Threads in a block of the CUDA kernels are
in charge of computing a K × P × BS sub-tensor of the K × (H + 2pad − M +
1) × (W + 2pad − N + 1) output tensor.

In the present study, we have implemented two convolution methods for
multi-input and multi-output channels. Listing 1.1 presents iterations across
output channels in the outermost loop, while Listing 1.2 shows iterations across
input channels in the outermost loop. In the following, Listings 1.1 and 1.2 are
called OUT IN method and IN OUT method, respectively. In the implementa-
tion of both the methods, the filters are accessed in a decremental order and
the input images are accessed in an incremental order, whereas each of these is
accessed in the opposite order of the Eq. (1).

In the OUT IN method, the data for the accumulation is initialized to the
zero at the beginning of each outermost-loop (Lines 8–9 in Listing 1.1) and
the computed results are stored to the destination array at the end of each
outermost-loop (Lines 32–33). On the other hand, in the IN OUT method, the
array for the accumulation is initialized before the outermost loop (Lines 7–9
in Listing 1.2) and the results are written out to the destination array after the
outermost-loop (Lines 34–37).

For both the methods, the number of required floating-point operations per
CUDA thread is FLOPthread = 2 ·K ·C ·M ·N · P . The output amount to the
GPU off-chip memory for both the methods is K · P · sizeof(dataType). The
input amount of data from the GPU’s off-chip memory for the OUT IN method
is K · C(P + M − 1 + �M · N/BS�) · sizeof(dataType). The IN OUT method
reuses input data in each outermost iteration after reading the data (Lines 11–12
in Listing 1.2), and the input amount from the GPU’s off-chip memory for the
IN OUT method is C(P +M −1+�M ·N/BS�) ·sizeof(dataType). This means



302 K. Matsumoto et al.

that the IN OUT method requires K times less memory accesses for the input
tensor than the OUT IN method. However, the IN OUT method has to keep K
times larger temporary data for the summations of sum final in a 2D array.
Note that the temporary data might be forced out to the off-chip memory if the
available number of registers is not enough for keeping the data.

Listing 1.1. CUDA kernel of multi-channel SSAM-based convolution (the loop across
the output channels is the outermost).

1 template<typename T, int BS, int P, int M, int N>

2 __global__ void convolution_OUT_IN(const T *xm, T *ym, const T *wm, const int

H, const int W, const int C, const int K) {

3 const int D = P + N - 1;

4 T data[D], sum[P];

5 __shared__ T smem[N][M];

6 T *psmem = &smem[0][0];

7 for (int k = 0; k < K; k++) {

8 for (int p = 0; p < P; p++)

9 sum[p] = 0;

10 for (int c = 0; c < C; c++) {

11 __syncthreads();

12 for (int l = threadIdx.x; l < M*N; l += BS)

13 psmem[l] = wm[M*N*(C*k+c)+l];

14 __syncthreads();

15 for (int d = 0; d < D; d++)

16 data[d] = xm[SRC_IDX+H*W*c+W*d];

17 #pragma unroll

18 for (int p = 0; p < P; p++) {

19 T sum_partial = 0;

20 #pragma unroll

21 for (int j = 0; j < N; j++) {

22 if (j >= 1)

23 sum_partial = __shfl_up_sync(0xffffffff, sum_partial, 1);

24 #pragma unroll

25 for (int i = 0; i < M; i++) {

26 sum_partial = MAD(data[p+i], smem[M-1-i][N-1-j], sum_partial);

27 }

28 }

29 sum[p] += sum_partial;

30 }

31 }

32 for (int p = 0; p < P; p++)

33 ym[DST_IDX+(W+2*pad-N+1)*((H+2*pad-M+1)*k+p)] = sum[p];

34 }

35 }



High Perf. Software Systolic Array Computing of Multi-channel Convolution 303

Listing 1.2. CUDA kernel of multi-channel SSAM-based convolution (the loop across
the input channels is the outermost).

1 template<typename T, int BS, int P, int M, int N>

2 __global__ void convolution_IN_OUT(const T *xm, T *ym, const T *wm, const int

H, const int W, const int C, const int K) {

3 const int D = P + N - 1;

4 T data[D], sum[K][P];

5 __shared__ T smem[N][M];

6 T *psmem = &smem[0][0];

7 for (int k = 0; k < K; k++)

8 for (int p = 0; p < P; p++)

9 sum[k][p] = 0;

10 for (int c = 0; c < C; c++) {

11 for (int d = 0; d < D; d++)

12 data[d] = xm[SRC_IDX+H*W*c+W*d];

13 for (int k = 0; k < K; k++) {

14 __syncthreads();

15 for (int l = threadIdx.x; l < M*N; l += BS)

16 psmem[l] = wm[M*N*(C*k+c)+l];

17 __syncthreads();

18 #pragma unroll

19 for (int p = 0; p < P; p++) {

20 T sum_partial = 0;

21 #pragma unroll

22 for (int j = 0; j < N; j++) {

23 if (j >= 1)

24 sum_partial = __shfl_up_sync(0xffffffff, sum_partial, 1);

25 #pragma unroll

26 for (int i = 0; i < M; i++) {

27 sum_partial = MAD(data[p+i], smem[M-1-i][N-1-j], sum_partial);

28 }

29 }

30 sum[k][p] += sum_partial;

31 }

32 }

33 }

34 for (int k = 0; k < K; k++)

35 for (int p = 0; p < P; p++)

36 ym[DST_IDX+(W+2*pad-N+1)*((H+2*pad-M+1)*k+p)] = sum[k][p];

37 }

3 Performance Evaluation

The specification of the NVIDIA RTX 3090 GPU [5] is shown in Table 2. The
used CUDA toolkit version is 11.4 and the GPU driver version is 470.57.02. The
operating system of the environment is Ubuntu 20.04.2 LTS with Linux 5.13.0-
35-generic kernel. The program codes are compiled by nvcc command with
-gencode arch=compute 86,code=sm 86 -fmad true options and the param-



304 K. Matsumoto et al.

eter setting1 of P = 4 and BS = 128. The performance measurements are
conducted with the padding value pad = 1 . Matrix and tensor data in the pro-
gram are allocated as single-precision floating-point arrays and single-precision
operations are used for computing the multi-channel convolution. CUDA cores
of the GPU are utilized and its Tensor Cores are not used in the evaluation.

Table 2. Specification of the NVIDIA RTX 3090 GPU. The L1 cache and shared
memory use the same 128 KB hardware resources per SM, and the preferred cache
configuration can be selected.

Number of CUDA/shader cores 10,496

Number of Streaming Multiprocessors (SMs) 82

Core base clock speed 1,395 MHz

Theoretical peak single-precision performance 29,284 Gflop/s

Memory type GDDR6X

Memory size 24 GB

Memory base clock speed 1,219 MHz

Memory bus width 384-bit

Memory system bandwidth 936 GB/s

L2 cache size 6 MB

L1 cache size per SM Up to 96 KB

Max 32-bit registers per SM 65,536

Max 32-bit registers per thread 255

Warp size 32

Figure 1 shows the performance of the convolution kernel implementation for
the H×W image with C-input and K-output channels. The Gflop/s performance
is calculated by the following formula:

Performance [flop/s] =
2 · H · W · M · N · C · K [flop]

time [second]
.

In the evaluation, each of the convolution CUDA kernels is called 20 times and
its average time is used as the computation time. The “Original” in Fig. 1 is
the performance of the 2D convolution kernel2 by Chen et al. [1]. Note that the
performance of the “Original” method is almost the same as the performance of
the implemented SISO case (C = K = 1 case).
1 The parameter setting in the convolution kernels affects its performance. Evaluations

of the effects and optimizations of the parameter setting are considered in our future
work.

2 The “Original” kernel implementation was slightly modified for evaluating the per-
formance on the same condition because their kernel supposes that the input matrix
size is equal to the output matrix size.



High Perf. Software Systolic Array Computing of Multi-channel Convolution 305

Fig. 1. Performance of computing convolution with C-input and K-output channels
for the H ×W image.

As shown in Fig. 1, the performance of the IN OUT method is higher than
the OUT IN and Original methods in the most cases. For example, in case of the
H = W = 256,K = 1 (Fig. 1a), the performance of the OUT IN method with
C = 8 for M × N filter is 435 Gflop/s and it is 1.14 and 5.95 times higher than



306 K. Matsumoto et al.

that of the IN OUT method with C = 8 (383 Gflop/s) and the Original method
(73 Gflop/s), respectively. The performance advantage of the OUT IN method
over Original method becomes weaker when the image sizes and filter size are
larger; the Original method shows higher performance than OUT IN method in
the case when H = W = 8192,M = N = 10 (Figs. 1e, 1f).

Table 3 shows profiling results of multi-channel convolution implementations
by using ncu command from the NVIDIA Nsight Compute profiler3 for 512×512
images and 3 × 3 filters. The OUT IN method shows higher cache hit rates and
higher instruction issue slot utilization than the other methods. In case K = 8,
the profiling results of the IN OUT method indicate that its memory utilization
is not efficient: the DRAM (off-chip memory) read amount is much larger and
the cache hit rates are lower than the other cases. The low memory utilization is
probably caused by register spills [4], which lead to repeating read-write accesses
between the registers and off-chip memory. The IN OUT method requires to keep
sum array data during computing all K output channels; hence, a lack of available
registers are highly possible in the case of large number of output channels.

Table 3. Profiling results of multi-channel convolution computing by Nsight Compute
for the case of H = W = 512, C = 1,M = N = 3.

OUT IN IN OUT Original

K = 2 K = 8 K = 2 K = 8

Performance [Gflop/s] 1,030 2,042 665 601 587

(% to peak performance) (3.52%) (6.97%) (2.27%) (2.05%) (2.00%)

DRAM read amount [Mbytes] 1.05 1.06 1.06 12.68 1.05

L1 cache hit rate 52.50% 69.73% 59.13% 39.07% 27.66%

L2 cache hit rate 75.42% 90.91% 89.20% 72.25% 65.05%

Warp cycles per issued instruction 11.10 10.15 21.92 61.28 15.56

Issued instructions 952,283 3,494,891 920,085 2,560,904 464,372

(Issue slot utilization) (56.56%) (63.23%) (27.56%) (10.91%) (39.01%)

Issued instuctions per active cycle 2.26 2.53 1.10 0.44 1.56

Figure 2 shows a performance for the different numbers of input and output
channels, and different sizes of images, and 3 × 3 filters. In Fig. 2, the perfor-
mance of a GEMM-based computing of multi-channel convolution computing in
the NVIDIA cuDNN v8.3.1 is also depicted. The cuDNN is a GPU-accelerated
library for deep neural networks. The cuDNN supports several algorithms for the
convolution foward (cudnnConvolutionForward) function. Figure 2 shows the
cuDNN performance of the IMPLICIT PRECOMP GEMM algorithm which demon-
strates higher performance than other supported algorithms in the most cases for
single-precision data. A performance of the cuDNN library modestely increases
when the image and the number of channels are increased.

3 https://developer.nvidia.com/nsight-compute.

https://developer.nvidia.com/nsight-compute


High Perf. Software Systolic Array Computing of Multi-channel Convolution 307

The OUT IN implementation shows much higher performance than the
cuDNN library. As shown in Fig. 2, increasing the number of channels does not
always improve the performance of the OUT IN implementation. In the case of
relatively small image sizes like H = W = 256 or H = W = 512 (Fig. 2a, b), the
performance tends to improve with respect to increasing the number of channels.
However, the performance deteriorates when H = W = 1024,K = 8 or K = 32
(Fig. 2d). Figure 3 shows L1 and L2 cache hit rates of the OUT IN implementa-
tion (the rates are measured also by the Nsight Compute profiler). The L1 hit
rates for 128 × 128 images do not drop down even when the number of channels
increases. On the flip side, the L1/L2 hit rates for 512 × 512 or 1024 × 1024
images are first decreased and leveled off along with increasing the number of
channels. These results of cache hit rates are compiled with the performance
tendencies as shown in Fig. 2.

Fig. 2. Performance of convolution computing by the OUT IN method and cuDNN
with C-input and K-output channels for the H ×W image and 3 × 3 filters.



308 K. Matsumoto et al.

Fig. 3. L1 and L2 cache hit rates of the OUT IN convolution computing with C-input
and K-output channels for the H ×W image and 3 × 3 filters.

4 Conclusion

We have developed a high-performance kernel for multi-channel convolution com-
puting by extending an existing convolution kernel with a software systolic array
model [1]. The implemented multi-channel kernel demonstrates a higher perfor-
mance than the original single-channel kernel and the GEMM-based computing
of cuDNN library. Profiling results of the implemented kernel show that efficient
usage of registers and caches is more important for the multi-channel computing
than the single-channel computing.

Our future work includes an application of the implemented multi-channel
convolution kernel to different CNN models such as VGG, GoogleNet, and
ResNet. Another future work is to conduct more detailed performance com-
parison with other deep learning libraries using Tensor and CUDA Cores of the
current and future GPUs.



High Perf. Software Systolic Array Computing of Multi-channel Convolution 309

References

1. Chen, P., Wahib, M., Takizawa, S., Takano, R., Matsuoka, S.: A versatile software
systolic execution model for GPU memory-bound kernels. In: SC 2019: Proceedings
of the International Conference for High Performance Computing, Networking, Stor-
age and Analysis, pp. 1–81. ACM (2019). https://doi.org/10.1145/3295500.3356162

2. Jorda, M., Valero-Lara, P., Pena, A.J.: Performance evaluation of cuDNN convolu-
tion algorithms on NVIDIA volta GPUs. IEEE Access 7(1), 70461–70473 (2019).
https://doi.org/10.1109/ACCESS.2019.2918851

3. Lavin, A., Gray, S.: Fast algorithms for convolutional neural networks. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
4013–4021 (2016)

4. Micikevicius, P.: Local Memory and Register Spilling. NVIDIA Corporation (2011)
5. NVIDIA Corporation: 3090 & 3090 Ti Graphics Cards — NVIDIA GeForce. https://

www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
6. Podlozhnyuk, V.: FFT-based 2C convolution. NVIDIA White Paper (2007)
7. Vasudevan, A., Anderson, A., Gregg, D.: Parallel multi channel convolution using

general matrix multiplication. In: Proceedings of the International Conference
on Application-Specific Systems, Architectures and Processors, pp. 19–24 (2017).
https://doi.org/10.1109/ASAP.2017.7995254

8. Zhao, Y., Wang, D., Wang, L.: Convolution accelerator designs using fast algorithms.
Algorithms 12(5), 112 (2019). https://doi.org/10.3390/a12050112

https://doi.org/10.1145/3295500.3356162
https://doi.org/10.1109/ACCESS.2019.2918851
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://doi.org/10.1109/ASAP.2017.7995254
https://doi.org/10.3390/a12050112

	High Performance Software Systolic Array Computing of Multi-channel Convolution on a GPU
	1 Introduction
	2 Convolution Implementations with Software Systolic Array for Multi-input and Multi-output Channels
	3 Performance Evaluation
	4 Conclusion
	References




