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Abstract. The multi-section robots also called variable geometry
robots (VGT), are formed by different modules and have multiple degrees
of freedom (DOF); These robots are a new class that can be defined as
systems adaptable to different environments, unlike conventional robots,
multi-section robots allow greater flexibility and adaptability to carry out
tasks with restricted space conditions, their locomotion has a high degree
of manipulation and dexterity in environments with difficult access and
very closed spaces where maneuverability must be high, these character-
istics are very similar to those exhibited by the movements of snakes,
elephant trunks, and octopus tentacles, capabilities beyond them reach
of traditional handlers of rigid link, multi-link robots can adapt their
shape to navigate through complex environments. In this work, we show
the implementation of the Lie Matrix Theory of the rigid movements
of a body in a multi-link Robot so that through kinematics and with
the planning of trajectories through third-order polynomials this resem-
bles curves smoothed by Bezier to generate different deformations in the
robot in such a way that its movements elude obstacles in a given one
within the workspace. The developed algorithm was implemented on a
simulated virtual platform in a robotics environment. The motivation
of the work was to be able to demonstrate a planning of robot trajec-
tories with multiple degrees of freedom using deterministic algorithms
and not focused on computational intelligence such as neural networks
or reinforced learning.

Keywords: Multi-section robot · Screw transformation · Path
planning · Curvature discretization

1 Introduction

In recent years, a growing interest in bio-inspired robotics has emerged, currently
great advances have been made in numerous applications at an industrial level
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and in the field of medicine, continuous and multi section robots inspired by bio-
logical tubes, tentacles and snakes, can vary Its curvature, a feature called VGT
(Variable Geometry Truss), has recently seen an increase in efforts aimed at
taking advantage of these qualities to improve frontiers in the field of medicine
mainly in minimally invasive surgical interventions. Several designs have now
been commercialized, which are inspiring and allow a traditional change from
the traditional robot that is in greater demand in today’s market, however sur-
gical approaches towards flexible access routes, for example, through natural
orifices such as the nose, where The multi-section robots can easily access.
The main objective of this work is to introduce some mathematical - analytical
concepts applied to model the kinematics of a particular case of Multisection
Robot and a simulation that involves the ROS, MATLAB and GAZEBO com-
putational environments, in such a way as to show the advantages of the imple-
mented mathematical model. and visualize in 3d a construction of a robot with
20 cylindrical links 15 cm long and 1.5 cm in diameter with ball-type joints.

Exponential and its multiplications can parameters angles present in each
joint of the device of this paper, the design here has a nice approach taking into
account product of 4 × 4 square matrices at most. Bezier curves and splines are
introduced to describe paths in the Multi section-Robot.

2 Rigid Body Movements

Rigid motions in the space are modeled in a efficient way using Twist theory. An
affiance map T : R3 → R

3 is called a Rigid motion if: (1) preserve distances, and
(2) preserve orientations (in the sense that, the map T preserves cross product
[1,2]. Given O a non-empty subset of the space R

3, the set of all rigid motions
restricted on O are rotations followed by translations such that conforms the 6-
dimensional Lie group: the 3-Special Euclidean group SE(3), where its Lie algebra
vectors are named Twists. Let SO(3) the Lie group of rotations that preserve
lengths in R

3 named 3-Special Orthogonal group, Chasles’ theorem means that
all rigid motions can be viewed like a composition between a rotation and a
translation about a fixed axis, hence, in symbols, the 3-Special Euclidean group
is the semi direct product [3]

SE(3) = SO(3) × R3.

2.1 Twists Lie’s Theory

Is straightforward that, each element of SO(3) is a rigid motion in the space. An
important strategy here is introducing all element of SO(3) by pick a rotation
axis and a measure of an angle. To give an adequate usage for coordinates, the
first one step is fix an inertial frame and next, fix other positive oriented reference
system about the rigid body with an axis parallel to the rotation axis, where, if
p is an arbitrary point of a rigid body O rotated since a point p(0) by a matrix
RIO, suppose pI the coordinates of the point p respect to the inertial frame and



160 F. C. Castro et al.

pO the coordinates of p respect to the body frame [4]. The relation between the
coordinates are given by the following formula

pI = RIOpO.

Let so(3) the Lie algebra of SO(3) which is re presentable by the skew-symmetric
matrices with Lie bracket the commutator such that is isomorphic to the natu-
ral Lie algebra structure of R3 with cross product operation. An identification
Isomorphic between the Lie’s algebras R3 and so(3) is given in the following way

w :=

⎛
⎝

w1

w2

w3

⎞
⎠ → ŵ :=

⎡
⎣

0 −w3 w2

w3 0 −w1

−w2 w1 0

⎤
⎦ (1)

Also, for each pair ω = [ω1, ω2, ω3]
T and ν = [ν1, ν2, ν3]

T then ω × ν = ω̂ν.
In all cases, ω ∈ so(3) will give the direction of a rotation fixing a measure of an
angle, choosing |ω| = 1 by the magnitude of angular spatial velocity, Rodrigues’
formula says that the relation

eω̂θ = I + sin θω̂ + (1 − cos θ)ω̂2 (2)

gives rotations around the axis described by ω̂ with a measure θ, indeed; giving an
arbitrary point p = p(0) in a rigid body O and a parametrization for determinate
rotation of t radians, is generated the following differential equation

ṗ(t) = ω̂p(t) (3)

where, the solution is given by p(t) = eω̂tp(0) (here, ω × p(t) = ω̂p(t)). Because
exponential map exp : so(3) → SO(3) is surjective [2,9] all rotation matrix is
the exponential of a skew-symmetric matrix.

Onwards, we denote the Lie algebra of SE(3) by se(3). Twists give a way to
parametrize motions of the joints in the Multi–section Robot of this paper (our
Robot are a set of links and joints that form a kinematical chain: an assembly
of rigid bodies connected by joints to provide motion that is the mathematical
model for the mechanical system). Robot modeled here looks like a hypnotized
cobra that eludes obstacles by motions of its links product of setting adequate
configurations of its joints.

2.2 Screw Theory

One of the multiple ways to introduce twists is representing elements by matri-
ces 6 × 1 in the form

[
vT , ωT

]T , where v denotes linear velocity and ω spatial
angular velocity. Another way consists in the following, let ω ∈ R

3 the vector
that describes the direction of the axis of rotation with |ω| = 1, and q ∈ R

3 a
point on the axis [5]. Assuming that the link rotates with unit velocity, then the
velocity of a point p(t) in a rigid body O, is

ṗ(t) = ω × (p(t) − q). (4)
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This equation allows representing each element ξ ∈ so(3) in homogeneous
coordinates by defining the 4 × 4 matrix

ξ̂ :=
[
ŵ v
0 0

]
(5)

where v = −ω×q. Since that the exponential map exp : se(3) → SE(3) can work
in matricial sense by the information given above, eξ̂θ ∈ SE(3) produces rota-
tions followed by translations in both cases of magnitude θ radians (translations
parallel to the rotation axis scaled by ω), Chasles’ theorem says that, all rigid
motion can split by a rotation following by a translation. There are available
computational advantages by using in this way twist’s techniques, as optimize
the computational cost in contrast to Denavid–Hatenberg’s Algorithm.

A geometric approach to twists is given by Screws. A Screw is a triple (l, h, θ)
where l denotes an axis, h the pitch, and θ the magnitude of angle around of
l. A screw motion represents a rigid bdy motion by a magnitude of rotation
about the axis l followed by translation by an amount hθ parallel to the axis
l. If h = ∞ then the corresponding screw motion consists of a pure translation
along the axis of the screw by a distance θ. In other words, in the case that the
pitch h < ∞ the motion of rotation and translation (could be a pure rotation
around the axis when h = 0) is named finite. When h = ∞ the motion is named
infinite or prismatic. Other important facts about Screws are: (1) Rigid motions
associated with screws are in surjective correspondence with motions generated
by twists, and (2) exponential map exp : so(3) → SO(3) is a surjective map.

To can change coordinates in a twist, there exists a map called Adjoint Rep-
resentation denoted by Ad. In general, suppose G is a Lie group, Cg : G → G
the inner automorphism of g ∈ G, g the Lie algebra of G and GL(g) the general
linear group of g (i.e. group of linear automorphism of g). Supposse that g ∈ G,
adjoint representation is defined as

Ad : G −→ GL(g)
g �−→ dCg.

In this particular case, making identifications, for each g ∈ SE(3) with a twist
ξ, occurs that Adg = gξg−1 is a twist change of coordinates of ξ.

2.3 Product of Exponential Formula

The manipulator described here is a sequence of links and joints such that,
they go out of a device setting its joints for eluding obstacles. Until passing
an obstacle, the manipulator takes a determinate sequence of configurations to
avoid. Election of pure rotational motions induces a restriction to a subgroup
of associated screws in SE(3), in this case, joints are named Spherical or of
Socket Ball Joint. The forward kinematics here is based in achieve different
configurations for each joint to can describe the configuration of the last link
of the sequence of joints, in this last join, is installed a camera that visualizes
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the locally available motion space to can elude obstacles, and the initial part
emerges from a device that puts out a determinate number of links and above
is located a camera that maps globally around the manipulator. More precisely,
let I the inertial reference frame, and given a sequence of n + 1 links, then are
n joints, hence; for the i joint (1 ≤ i ≤ n), i should denote the joint that lie
between the i − 1–nth and i–nth link. Then, the relationship that involves the
configuration with the initial joint and the configuration of the nth joint is [5]

gI,n(θ) = gI,1(θ1)g1,2(θ2)...gn,n+1(θn) (6)

where θ1, θ2, ..., θn are the sequence of the amounts of the rotations. We can
construct recursively that in this case

gI,n+1(θ) = eξ̂1θ1eξ̂1,2θ2 ...eξ̂n,n+1θngI,n+1(0) (7)

Choosing an adequate reference frame, is possible pick gn,n+1(0) = Id. Using
adjoint representation is possible to prove that ξ̂i is the twist that corresponds
to the i-nth joint (1 ≤ i ≤ n).

An important step to modeling the manipulator of this paper is, given a
determined net configuration, gives each rotation involved in the motion, for this
objective, we apply Paden-Kahan subproblems to design the inverse kinematic
by focus in Rotation about two subsequent axes [6–8].

3 Path Planning

It is a path where certain time distributions are specified, for example in terms
of speeds and accelerations at each of the different points. Thus, a trajectory is
related to the time in which each part of the path is completed, so depending on
the speed with which it is carried out, the trajectory will change. The different
trajectories are selected considering the physical restrictions of the drives, as
well as certain criteria path quality such as precision and smoothness.

This path planning is made using the point to point method, also using
third degree polynomial for control the position and velocities. To carry out
the planning process it is necessary that the inverse kinematics of the robot
have been designed. I also know must implement a path generation method as
point-to-point movement, sequence movement points, among others.

For this movement a third degree polynomial equation is used, this together
with a set of parameters is performed to obtain the position and acceleration
of the links. These parameters were chosen in a way that the user can modify
both the position and the speed that he expects the actuator to have. This path
planning is made using the point to point method, also using third degree poly-
nomial for control the position and velocities. To carry out the planning process
it is necessary that the inverse kinematics of the robot have been designed. I also
know must implement a path generation method as point-to-point movement,
sequence movement points, among others.
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For this movement a third degree polynomial equation is used, this together
with a set of parameters is performed to obtain the position and acceleration of
the links. These parameters were chosen in a way that the user can modify both
the position and the speed that he expects the actuator to have.

3.1 Path Point to Point

This is a movement method where the manipulator must move from an initial
position (θ0) to a final position (θn) in a time (tf ). For this case the path of
the effector is not taken into account. For this movement a third degree poly-
nomial equation is used, this together with a set of parameters is performed to
obtain the position and acceleration of the links. These parameters were chosen
in which you can modify both the position and the speed that you expect the
actuator to have.

Parameters for positions:

θ(0) = θ0 |rad|
θ(Tf ) = θf |rad| (8)

Parameters for speeds:

˙θ(0) = θ̇0 |rad/s|
˙θ(Tf ) = θ̇f |rad/s|

(9)

Polynomial for position:

θ(0) = a0 + a1t + a2t
2 + a3t

3 (10)

Deriving Eq. 10 gives the speed polynomial:

˙θ(0) = a1 + 2a2t + 3a3t
2 (11)

Deriving Eq. 11 the acceleration polynomial:

˙θ(0) = 2a2 + 6a3t (12)

For the initial time t0 = 0, substituting in 10, 11 obtain a0 = θ0 and a1 = θ̇0
Replacing t = Tf in to find the parameters a2 and a2 arises the following equa-
tions.

a2 =
θ̇f − θ̇o

2
− 3

2
a3t (13)

a3 =
2
t3

(θf − θ0) +
2
t2

θ̇0 +
1
t
(θ̇f − θ̇0) (14)
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Equations can be summarized
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0 = θ0
a1 = θ̇0

a2 =
(

θ̇f−θ̇0
2

)
t − 3

t2 (θf − θ0) + 2
t θ̇0 +

(
θ̇f − θ̇0

)

a3 = 2
t3 (θf − θ0) + 2

t2 θ̇0 + 1
t

(
θ̇f − θ̇0

)
(15)

In the Fig. 1 the qi that represent the angles of the rotational joints and the
Px, Py, Pz are the points respectively in the Cartesian Plane

Fig. 1. Diagram of a servant robot with 10 degrees of freedom

3.2 Implemented Points

A servant-type multi section robot with 10 degrees of freedom was generated.
As a first measure, a simplification of the robot’s block diagram was carried out
where the direct kinematics equations were implemented.

– Goal points
• P01 = (0, 0.6750, 0)
• P02 = (0, 0.1219,−0.0646)
• P03 = (0.43, 0.2464, 0.3)
• P04 = (−0.3, 0.53, 0.1)

In Fig. 2 you can see the goal points in three-dimensional space.
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Fig. 2. Goal points

With the target points defined, the following is to calculate the inverse kine-
matics to know which points the obtained angles will reach, and a comparison
was made of the angles found using the Paden-Kahan sub problem algorithm
and the real angles of the robot. See Table 1.

Table 1. Position error for each target point

Goal point Point kinematic direct Error

0, 0.6750, 0 −0.0038, 0.6421, 0.111 0.11%

0, 0.1219, −0.0649 0.0195, 0.4422, −0.2484 36.98%

0.4300, 0.2464, 0.3 0.4190, 0.0083, −0.1589 27.70%

−0.3, 0.53, 0.010 −0.2752, 0.5743, −0.0320 8.49%

In Fig. 3 you can see the difference between the desired target point (blue
circle) with respect to the point obtained with the inverse kinematics with Paden-
Kahan (red circle).

It is important to take into account the angles with which they were achieved,
for this it presents Table 2, where you can see all the angles for the desired
trajectories, in this table you can see the number of articulation and the objective
angles of this for each point, with which it will go from angle P0 to angle P1 a
if until reaching P4,

As previously described for point-to-point movement, it is necessary that the
trajectory is defined in a period of time . Table 3 shows the selected time for
each way point.

However, this is not the only parameter that must be taken into account. In
addition, all the initial and final speeds were assigned a zero range, with which
the robot will have an infinitesimal time in which it will not move.
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Fig. 3. Goal point and obtained point (Color figure online)

Table 2. Joint movement for all trajectories

Joint P1 P2 P3 P4

1 −0.0740 0.4118 0.4569 0.1549

2 0.22633 −0.0740 −0.8782 0.2470

3 0.0445 −0.3343 0.1862 −0.251

4 0.0538 0.2459 −0.8732 0.0538

5 −0.2660 −0.6566 0.7926 0.1135

6 −0.0740 0.4118 0.4569 0.1549

7 −0.4281 −08652 −0.1151 0.1096

8 −0.0824 −0.2602 0.0724 0.3057

9 0.0751 0.0913 −0.9756 0.0167

10 −0.1827 0.1072 8 −0.1373 −0.2001

Table 3. Times for each trajectory

P1 P2 P3 P4

T(S) 0 3 4 10

4 Architecture System and Algorithms Implemented
and Simulation

The environment is developed in GAZEBO and integrated with ROS (Robot
Operating System) and MATLAB. For the generation in the world, the robot
has been designed as a chain of links taking into account a dynamic (i,e inertia,
friction, and mass), each actuator has a servomotor. This means that the position
and speed of each of them can be used by a PID, the final effector has a camera
that allows determining the correct distance. The virtual environment receives
the angles of each link generated by a twist.
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To avoid obstacles in a static environment was used the algorithm A* or
Astar type search of graphs. The algorithm uses an evaluation function, where
represents the heuristic value within a point in the work-space (C-space) evaluate
from the n step and the end, the real cost of the path traveled to reach the
goal n from the initial point. Algorithm A∗ uses an evaluation function, where
f(n) = g(n) + h′(n) Thus h′(n) represents the heuristic value of the node to be
evaluated from the current one n g(n) the actual cost of the path to reach that
node, until the end. The Fig. 2 and Fig. 3 we show the algorithm implemented in
Matlab for different pathways with restrictions given an initial and final point.
Thus Fig. 2 you can see a trajectory with little deformation since the points
are very close, but unlike figure ?? the trajectory needs deformation due to the
restrictions and distance of the points.

Fig. 4. Path planning using A*

For softening the trajectory the Bezier curves algorithm is used in a poly-
nomial way of order 3. The idea of geometrically defining the shapes is not too
complex: a point on the plane can be defined by coordinates. For example, an
initial point Po has some coordinates (x1, y1) and a final point Pf corresponds to
it (x2, y2). To draw a curve between both, it is enough to know its position and
the essential elements of a Bezier curve; the points are called “reference points”
or “nodes”. Pr. The shape of the curve is defined by invisible points in the plane,
called “control points”, “handlers” or “hands”.

The generalization would become the curves called “Spline”, that is, the
Bezier curve is a third-degree Spline. The Bezier curve of degree n can be gen-
eralized as follows. Given the points P0, P1, ..., Pn, the Bezier curve is of the
type:

B(t) =
n∑

i=0

(
n

i

)
Pi(1 − t)n−iti, t ∈ [

0, 1
]

In Fig. 4 we show how the curve softens after applying the algorithm A,
according to the deformations found, the nodal points are produced which control
the curvature in the robot with the previous expressions, we easily obtain the
positions in which we must place the 3 additional vertices to achieve specific
initial conditions, depending on the position of the point and the first and second
discrete derivatives in it, for each component (in the flat, x and y).
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Fig. 5. Spline curve softens after applying the algorithm A*

For the simulation of the robot, cylindrical links are connected through rev-
olution joints, the initial link of red color is followed by the blue cylinders, in
the end effector is located a camera, this corrects the final angles that the Bezier
algorithm delivers. After the curve is found with the Bezier algorithm, we pro-
ceed by inverse kinematics to find the angles that will be the control variables
for each twist. The simulation here has twenty connected links. The simulation
is tested with two events, the first one step is with two objects as obstacles and
several zones of constraints forcing the robot to generate an s, the second one
generates a virtual environment of a house where the robot searches for the exit
for this test. Environments were controlled, giving curvature parameters and
restriction zones.

The Fig. 6(a) shows the robot generating a curve to avoid different obstacles
and 6(b) generating a curve to embroider an area.

Fig. 6. curvature of the robot in the virtual world

5 Results

In the first trajectory, it was calculated for the links outside the point P1 to Pn

Table 2, this movement was carried out in time shown in Table 3 In the Fig. 7(a)
you can see the movement in three-dimensional space the from movement P1 to
P2 in 7(b) we can see all the complete routes (the sum of all the routes), since
This mode made the robot move from the starting point. P1 to the end point
P4 passing through the intermediate points P2 and P3. It can also be seen that
the curves are made with a smooth movement, this is due to combining it with
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a bezier allowing the robot not to generate sudden movements, protecting the
actuators.

Fig. 7. Path end effector

In the Fig. 8 see the position of joints with respect to time, in each of these
figures it can be seen that the primary requirement of having a smooth movement
in each joint was met, in addition to this, the desired parameter of the initial
and final velocity was met, since it starts at 0 rad/s and ends in 0 rad/s. In the
Fig. 9 see the velocity of joints with respect to time, in each of these figures, it
is important to observe the behavior of the velocity, this tells us that it stops
when it reaches the point end. It can also be observed that a straight path
was not made between point and point, since there were no intermediate points
between these points. Now, if you want to improve this implementation, you
should generate a trajectory with more intermediate points. From Fig. 10 the
total movement of each of the links can be observed, in these figures it can be
observed how, by modifying the time in which the task is required to be carried
out, the speed is modified, making the robot have more abrupt movements.

Fig. 8. Joint positions
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Fig. 9. Joint speeds
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Fig. 10. Joint speeds
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6 Conclusion

This article showed how the screw theory is an alternative method to the tradi-
tional methods to find the kinematics of a robbery, as is the case of the Denavit-
Hartenberg parameters applied to a robot with many links, although in the
clarification of the equations inverse kinematics there was an error in the angles
found with respect to the desired ones. We integrate several algorithms includ-
ing route planning that controls the rotation smoothness of each link through a
third order polynomial, you can see how the robot reaches the inverse kinemat-
ics point in the desired time, for each link it is necessary to find a Polynomial
control global path planning was also implemented to avoid obstacles in a static
environment and together with Bezier’s suvizdo algorithm it is possible to gen-
erate a curve that the robot can copy. A problem with this methodology is that
you have to know the work environment and the obstacles must be static, with-
out the ability to navigate in an unknown environment for future work, it is
proposed to work with more recent methods in the field of artificial intelligence
as a learner. Reinforced to teach the robot how to move according to different
obstacles and see the behaviors in a dynamic environment.
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